LTC2754AIUKG-16PBF [Linear]

Quad 12-/16-Bit SoftSpan IOUT DACs; 四核12位/ 16位的SoftSpan IOUT DAC的
LTC2754AIUKG-16PBF
型号: LTC2754AIUKG-16PBF
厂家: Linear    Linear
描述:

Quad 12-/16-Bit SoftSpan IOUT DACs
四核12位/ 16位的SoftSpan IOUT DAC的

文件: 总28页 (文件大小:497K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2754  
Quad 12-/16-Bit  
SoftSpan I DACs  
OUT  
FEATURES  
DESCRIPTION  
TheLTC®2754isafamilyofquad12- and16-bitmultiplying  
serial-input, current-output digital-to-analog converters.  
They operate from a single 3V to 5V supply and are guar-  
anteed monotonic over temperature. The LTC2754A-16  
provides full 16-bit performance ( 1LꢀS ꢁIL and ꢂIL,  
max) over temperature without any adjustments. These  
ꢀoftꢀpan™ ꢂACs offer six output ranges (up to 1ꢃV) that  
canbeprogrammedthroughthe3-wirePserialinterface,  
or pinstrapped for operation in a single range.  
n
Program or Pin-Strap Six Output Ranges  
0V to 5V, 0V to 10V, 2.5V to 7.5V, 2.5V, 5V, 10V  
n
Maximum 16-Bit INL Error: 1 LSB oꢀer  
Temperature  
Guaranteed Monotonic oꢀer Temperature  
n
n
Low Glitch Impulse 0.26nV•s (3V), 1.25nV•s (5V)  
n
Serial Readback of All On-Chip Registers  
n
Low 1μA Maximum ꢀupply Current  
n
2.7V to 5.5V ꢀingle-ꢀupply Operation  
n
16-Sit ꢀettling Time: 2ꢄs  
The content of any on-chip register (including ꢂAC out-  
put-range settings) can be verified in just one instruction  
cycle; and if you change any register, that register will be  
automatically read back during the next instruction cycle.  
n
Voltage-Controlled Offset and Gain Trims  
n
Clear and Power-On-Reset to ꢃV Regardless of  
Output Range  
52-Pin 7mm × 8mm QFI Package  
n
Voltage-controlled offset and gain adjustments are also  
provided; and the power-on reset circuit and CLR pin both  
reset the ꢂAC outputs to ꢃV regardless of output range.  
APPLICATIONS  
High Resolution Offset and Gain Adjustment  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. SoftSpan is a trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Process Control and ꢁndustrial Automation  
Automatic Test Equipment  
ꢂata Acquisition ꢀystems  
Protected by U.S. Patents, including 5481178.  
TYPICAL APPLICATION  
Quad 16-Bit VOUT DAC with Software-Selectable Ranges  
V
REFA  
V
REFS  
+
+
LTC2754-16 Integral  
Nonlinearity (INL)  
V
ꢂꢂ  
1.ꢃ  
ꢃ.8  
V
V
= 5V  
= 5V  
1ꢃV RAIGE  
ꢂꢂ  
REF  
V
V
OꢀAꢂJS  
OUT2S  
OꢀAꢂJA  
ꢃ.6  
+
+
OUT2A  
V
V
V
OUTS  
OUTA  
ꢃ.4  
ꢂAC A  
ꢂAC ꢂ  
ꢂAC S  
OUT1A  
OUT1S  
R
FSA  
R
ꢃ.2  
FSS  
ꢀPꢁ with REAꢂSACK  
LTC2754-16  
R
R
FSC  
FSꢂ  
–ꢃ.2  
–ꢃ.4  
–ꢃ.6  
–ꢃ.8  
–1.ꢃ  
+
+
OUT1ꢂ  
OUT2ꢂ  
OUT1C  
OUT2C  
V
OUTC  
OUTꢂ  
ꢂAC C  
V
V
OꢀAꢂJC  
OꢀAꢂJꢂ  
16384  
32768  
COꢂE  
49152  
65535  
+
+
ALL AMPLꢁFꢁERꢀ 1/2 LT1469  
2754 Gꢃ1  
V
REFꢂ  
V
REFC  
2754 TAꢃ1  
2754f  
1
LTC2754  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Notes 1, 2)  
TOP VꢁEW  
, ꢁ  
to GIꢂ............................................ ꢃ.3V  
OUT1X OUT2X  
R
, R  
, REFX, R , R  
, V  
,
ꢁIX COMX  
FSX OFꢀX OꢀAꢂJX  
GE  
V
to GIꢂ........................................................ 18V  
AꢂJX  
52 51 5ꢃ 49 48 47 46 45 44 43 42 41  
to GI...................................................3V to 7V  
ꢂꢂ  
GE  
1
2
4ꢃ GE  
AꢂJS  
AꢂJA  
ꢂigital ꢁnputs and  
R
ꢁIA  
39  
38  
37  
R
ꢁIS  
3
Outputs to GIꢂ ................ –ꢃ.3V to V +ꢃ.3V (max 7V)  
OUT2A  
GIꢂ  
OUT2S  
GIꢂ  
ꢂꢂ  
4
Operating Temperature Range  
CS/Lꢂ  
ꢀꢂꢁ  
5
36 LDAC  
ꢀ2  
35  
LTC2754C ................................................ ꢃ°C to 7ꢃ°C  
LTC2754ꢁ..............................................–4ꢃ°C to 85°C  
Maximum Junction Temperature........................... 15ꢃ°C  
ꢀtorage Temperature Range...................–65°C to 15ꢃ°C  
6
ꢀCK  
7
34 ꢀ1  
53  
ꢀRO  
8
33 ꢀꢃ  
ꢀROGIꢂ  
9
32 M-ꢀPAI  
31 RFLAG  
3ꢃ CLR  
V
1ꢃ  
ꢂꢂ  
GIꢂ 11  
12  
13  
14  
29  
28  
OUT2C  
OUT2ꢂ  
R
R
ꢁIC  
ꢁIꢂ  
GE  
27 GE  
AꢂJC  
AꢂJꢂ  
15 16 17 18 19 2ꢃ 21 22 23 24 25 26  
UKG PACKAGE  
52-LEAꢂ (7mm s 8mm) PLAꢀTꢁC QFI  
T
= 15ꢃ°C, θ = 29°C/W  
JA  
JMAX  
EXPOꢀEꢂ PAꢂ (PꢁI 53) ꢁꢀ GIꢂ, MUꢀT SE ꢀOLꢂEREꢂ TO PCS  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
LTC2754UKG-12  
LTC2754UKG-12  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
ꢃ°C to 7ꢃ°C  
LTC2754CUKG-12#PSF  
LTC2754ꢁUKG-12#PSF  
LTC2754CUKG-12#TRPSF  
LTC2754ꢁUKG-12#TRPSF  
52-Lead (7mm × 8mm) Plastic QFI  
52-Lead (7mm × 8mm) Plastic QFI  
52-Lead (7mm × 8mm) Plastic QFI  
52-Lead (7mm × 8mm) Plastic QFI  
52-Lead (7mm × 8mm) Plastic QFI  
52-Lead (7mm × 8mm) Plastic QFI  
–4ꢃ°C to 85°C  
ꢃ°C to 7ꢃ°C  
LTC2754SCUKG-16#PSF LTC2754SCUKG-16#TRPSF LTC2754UKG-16  
LTC2754SꢁUKG-16#PSF LTC2754SꢁUKG-16#TRPSF LTC2754UKG-16  
LTC2754ACUKG-16#PSF LTC2754ACUKG-16#TRPSF LTC2754UKG-16  
LTC2754AꢁUKG-16#PSF LTC2754AꢁUKG-16#TRPSF LTC2754UKG-16  
–4ꢃ°C to 85°C  
ꢃ°C to 7ꢃ°C  
–4ꢃ°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
2754f  
2
LTC2754  
ELECTRICAL CHARACTERISTICS VDD = 5V, VREF = 5V unless otherwise specified. The denotes the  
specifications which apply oꢀer the full operating temperature range, otherwise specifications are at TA = 25°C.  
LTC2754-12  
TYP  
LTC2754B-16  
TYP  
LTC2754A-16  
TYP  
SYMBOL  
Static Performance  
Resolution  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
UNITS  
12  
12  
16  
16  
16  
16  
Sits  
Sits  
LꢀS  
Monotonicity  
ꢂIL  
ꢂifferential  
Ionlinearity  
1
1
ꢃ.2  
1
ꢁIL  
GE  
ꢁntegral Ionlinearity  
1
2
2
ꢃ.4  
2
1
LꢀS  
LꢀS  
Gain Error  
All Output Ranges  
ΔGain/ΔTemp  
ꢃ.5  
1
2ꢃ  
12  
Gain Error Temp-  
erature Coefficient  
1
1
ppm/°C  
SZE  
Sipolar Zero Error  
All Sipolar Ranges  
ꢃ.2  
ꢃ.5  
1
12  
1
8
LꢀS  
Sipolar Zero Temp-  
erature Coefficient  
ꢃ.5  
ꢃ.5  
ppm/°C  
PꢀR  
Power ꢀupply  
Rejection  
V
ꢂꢂ  
V
ꢂꢂ  
= 5V, 1ꢃ0  
= 3V, 1ꢃ0  
ꢃ.ꢃ25  
ꢃ.ꢃ6  
ꢃ.4  
1
ꢃ.ꢃ3  
ꢃ.1  
ꢃ.2  
ꢃ.5  
LꢀS/V  
LꢀS/V  
Leakage Current T = 25°C  
ꢃ.ꢃ5  
2
5
ꢃ.ꢃ5  
2
5
ꢃ.ꢃ5  
2
5
nA  
nA  
LKG  
OUT1  
A
T
to T  
MAX  
MꢁI  
VDD = 5V, VREF = 5V unless otherwise specified. The denotes specifications that apply oꢀer the full operating temperature range,  
otherwise specifications are at TA = 25°C.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Analog Pins  
Reference ꢁnverting Resistors  
ꢂAC ꢁnput Resistance  
Feedback Resistors  
(Iote 4)  
16  
8
2ꢃ  
1ꢃ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
pF  
R
R
R
REF  
(Iote 3)  
(Iote 3)  
8
1ꢃ  
FS  
Sipolar Offset Resistors  
Offset Adjust Resistors  
Gain Adjust Resistors  
Output Capacitance  
16  
2ꢃ  
OFꢀ  
R
1ꢃ24  
2ꢃ48  
128ꢃ  
256ꢃ  
VOꢀAꢂJ  
R
GEAꢂJ  
ꢁOUT1  
C
Full-ꢀcale  
Zero-ꢀcale  
75  
45  
Dynamic Performance  
Output ꢀettling Time  
ꢃV to 1ꢃV Range, 1ꢃV ꢀtep. To ꢃ.ꢃꢃ150 Fꢀ  
(Iote 5)  
2
μs  
Glitch ꢁmpulse  
V
V
= 5V (Iote 6)  
= 3V (Iote 6)  
1.25  
ꢃ.26  
nV•s  
nV•s  
ꢂꢂ  
ꢂꢂ  
ꢂigital-to-Analog Glitch ꢁmpulse  
Reference Multiplying SW  
(Iote 7)  
ꢃV to 5V Range, V = 3V  
2
2
nV•s  
MHz  
,
RMꢀ  
REF  
Code = Full ꢀcale, –3dS SW  
Multiplying Feedthrough Error  
ꢃV to 5V Range, V = 1ꢃV, 1ꢃkHz  
ꢃ.5  
mV  
REF  
ꢀine Wave  
Analog Crosstalk  
(Iote 8)  
–1ꢃ9  
–11ꢃ  
13  
dS  
dS  
THꢂ  
Total Harmonic ꢂistortion  
Output Ioise Voltage ꢂensity  
(Iote 9) Multiplying  
(Iote 1ꢃ) at ꢁ  
nV/√Hz  
OUT1  
2754f  
3
LTC2754  
ELECTRICAL CHARACTERISTICS VDD = 5V, VREF = 5V unless otherwise specified. The denotes the  
specifications which apply oꢀer the full operating temperature range, otherwise specifications are at TA = 25°C.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Supply  
V
ꢀupply Voltage  
2.7  
5.5  
1
V
ꢂꢂ  
ꢂꢂ  
ꢀupply Current, V  
ꢂigital ꢁnputs = ꢃV or V  
ꢂꢂ  
ꢃ.5  
μA  
ꢂꢂ  
Digital Inputs  
V
ꢂigital ꢁnput High Voltage  
ꢂigital ꢁnput Low Voltage  
3.3V ≤ V ≤ 5.5V  
2.4  
2
V
V
ꢁH  
ꢂꢂ  
2.7V ≤ V < 3.3V  
ꢂꢂ  
V
4.5V < V ≤ 5.5V  
ꢃ.8  
ꢃ.6  
V
V
ꢁL  
ꢂꢂ  
2.7V ≤ V ≤ 4.5V  
ꢂꢂ  
Hysteresis Voltage  
ꢃ.1  
V
ꢄA  
pF  
ꢂigital ꢁnput Current  
ꢂigital ꢁnput Capacitance  
V
V
= GIꢂ to V  
ꢂꢂ  
1
6
ꢁI  
ꢁI  
C
= ꢃV (Iote 11)  
ꢁI  
ꢁI  
Digital Outputs  
V
OH  
V
OL  
= 2ꢃꢃꢄA  
= 2ꢃꢃꢄA  
2.7V ≤ V ≤ 5.5V  
V – ꢃ.4  
ꢂꢂ  
V
V
OH  
ꢂꢂ  
2.7V ≤ V ≤ 5.5V  
ꢃ.4  
OL  
ꢂꢂ  
TIMING CHARACTERISTICS  
The denotes specifications that apply oꢀer the full operating temperature range,  
otherwise specifications are at TA = 25°C.  
SYMBOL PARAMETER  
= 4.5V to 5.5V  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
DD  
t
t
t
t
t
t
t
t
t
t
t
t
t
ꢀꢂꢁ Valid to ꢀCK ꢀet-Up  
ꢀꢂꢁ Valid to ꢀCK Hold  
ꢀCK High Time  
7
7
ns  
ns  
1
2
11  
11  
9
ns  
3
ꢀCK Low Time  
ns  
4
CS/Lꢂ Pulse Width  
ns  
5
LꢀS ꢀCK High to CS/Lꢂ High  
CS/Lꢂ Low to ꢀCK Positive Edge  
CS/Lꢂ High to ꢀCK Positive Edge  
ꢀRO Propagation ꢂelay  
CLR Pulse Width Low  
LDAC Pulse Width Low  
CLR Low to RFLAG Low  
CS/Lꢂ High to RFLAG High  
ꢀCK Frequency  
4
ns  
6
4
ns  
7
4
ns  
8
C
= 1ꢃpF  
18  
ns  
9
LOAꢂ  
36  
15  
ns  
1ꢃ  
11  
12  
13  
ns  
C
C
= 1ꢃpF (Iote 11)  
= 1ꢃpF (Iote 11)  
5ꢃ  
4ꢃ  
4ꢃ  
ns  
LOAꢂ  
ns  
LOAꢂ  
5ꢃ0 ꢂuty Cycle (Iote 12)  
MHz  
V
= 2.7V to 3.3V  
DD  
t
t
t
t
t
t
ꢀꢂꢁ Valid to ꢀCK ꢀet-Up  
ꢀꢂꢁ Valid to ꢀCK Hold  
ꢀCK High Time  
9
9
ns  
ns  
ns  
ns  
ns  
ns  
1
(Iote 11)  
2
3
4
5
6
C = 1ꢃpF  
L
15  
15  
12  
5
ꢀCK Low Time  
CS/Lꢂ Pulse Width  
LꢀS ꢀCK High to CS/Lꢂ High  
2754f  
4
LTC2754  
TIMING CHARACTERISTICS The denotes specifications that apply oꢀer the full operating temperature range,  
otherwise specifications are at TA = 25°C.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
5
TYP  
MAX  
UNITS  
ns  
t
t
t
t
t
t
t
CS/Lꢂ Low to ꢀCK Positive Edge  
CS/Lꢂ High to ꢀCK Positive Edge  
ꢀRO Propagation ꢂelay  
CLR Pulse Width Low  
LDAC Pulse Width Low  
CLR Low to RFLAG Low  
CS/Lꢂ High to RFLAG high  
ꢀCK Frequency  
7
5
ns  
8
C
LOAꢂ  
= 1ꢃpF  
26  
ns  
9
6ꢃ  
2ꢃ  
ns  
1ꢃ  
11  
12  
13  
ns  
C
C
= 1ꢃpF (Iote 11)  
= 1ꢃpF (Iote 11)  
7ꢃ  
6ꢃ  
25  
ns  
LOAꢂ  
ns  
LOAꢂ  
5ꢃ0 ꢂuty Cycle (Iote 12)  
MHz  
Note 1: ꢀtresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 7. Full-scale transition; REF = ꢃV.  
Note 8. Analog Crosstalk is defined as the AC voltage ratio V  
/V  
,
OUTS REFA  
expressed in dS. REFS is grounded, and ꢂAC S is set to ꢃV-5V span and  
zero-, mid- or full- scale code. V is a 3V , 1kHz sine wave. Crosstalk  
REFA  
RMꢀ  
Note 2: Continuous operation above the specified maximum operating  
between other ꢂAC channels is similar or better.  
junction temperature may impair device reliability.  
Note 9. REF = 6V at 1kHz. ꢃV to 5V range. ꢂAC code = Fꢀ. Output  
RMꢀ  
Note 3: Secause of the proprietary ꢀoftꢀpan switching architecture, the  
amplifier = LT1469.  
measured resistance looking into each of the specified pins is constant for  
Note 10. Calculation from V = √4kTRB, where k = 1.38E-23 J/°K  
(Soltzmann constant), R = resistance (Ω), T = temperature (°K), and S =  
bandwidth (Hz). ꢃV to 5V Range; zero-, mid-, or full- scale.  
n
all output ranges if the ꢁ  
and ꢁ  
pins are held at ground.  
OUT1X  
OUT2X  
Note 4: ꢁnput resistors measured from R to R  
; feedback resistors  
ꢁIX  
COMX  
measured from R  
to REFX.  
COMX  
Note 11. Guaranteed by design, not subject to test.  
Note 5: Using LT1469 with C  
= 15pF. A ꢃ.ꢃꢃ150 settling time  
FEEꢂSACK  
Note 12. When using ꢀRO, maximum ꢀCK frequency f  
is limited by  
MAX  
of 1.7μs can be achieved by optimizing the time constant on an individual  
basis. ꢀee Application Iote 74, Component and Measurement Advances  
Ensure 16-Sit ꢂAC ꢀettling Time.  
ꢀRO propagation delay t as follows:  
9
1
fMAX  
=
Note 6: Measured at the major carry transition, ꢃV to 5V range. Output  
2 t + t  
, where t is the setup time of the receiving device.  
(
)
9
S
amplifier: LT1469; C = 27pF.  
FS  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
LTC2754-16  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
INL ꢀs Temperature  
1.ꢃ  
ꢃ.8  
1.ꢃ  
ꢃ.8  
1.ꢃ  
ꢃ.8  
V
V
= 5V  
= 5V  
V
V
= 5V  
= 5V  
V
V
= 5V  
= 5V  
ꢂꢂ  
REF  
ꢂꢂ  
REF  
1ꢃV RAIGE  
ꢂꢂ  
REF  
1ꢃV RAIGE  
1ꢃV RAIGE  
ꢃ.6  
ꢃ.6  
ꢃ.6  
ꢃ.4  
ꢃ.4  
ꢃ.4  
+ꢁIL  
–ꢁIL  
ꢃ.2  
ꢃ.2  
ꢃ.2  
ꢃ.ꢃ  
–ꢃ.2  
–ꢃ.4  
–ꢃ.6  
–ꢃ.8  
–1.ꢃ  
–ꢃ.2  
–ꢃ.4  
–ꢃ.6  
–ꢃ.8  
–1.ꢃ  
–ꢃ.2  
–ꢃ.4  
–ꢃ.6  
–ꢃ.8  
–1.ꢃ  
16384  
32768  
COꢂE  
49152  
65535  
16384  
32768  
COꢂE  
49152  
65535  
–4ꢃ  
–2ꢃ  
2ꢃ  
4ꢃ  
6ꢃ  
8ꢃ  
TEMPERATURE (°C)  
2754 Gꢃ3  
2754 Gꢃ1  
2754 Gꢃ2  
2754f  
5
LTC2754  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
LTC2754-16  
DNL ꢀs Temperature  
Bipolar Zero ꢀs Temperature  
Gain Error ꢀs Temperature  
1.ꢃ  
ꢃ.8  
8
6
4
2
16  
12  
8
V
V
= 5V  
= 5V  
V
V
= 5V  
= 5V  
ꢂꢂ  
REF  
V
V
= 5V  
= 5V  
ꢂꢂ  
REF  
1ꢃV RAIGE  
ꢂꢂ  
REF  
1ꢃV RAIGE  
1ꢃV RAIGE  
ꢃ.6  
ꢃ.4  
4
ꢃ.2  
+ꢂIL  
–ꢂIL  
ꢃ.5ppm/°C (TYP)  
1ppm/°C (TYP)  
ꢃ.ꢃ  
–ꢃ.2  
–ꢃ.4  
–ꢃ.6  
–ꢃ.8  
–1.ꢃ  
–2  
–4  
–4  
–6  
–8  
–8  
–12  
–16  
–4ꢃ  
–2ꢃ  
2ꢃ  
4ꢃ  
6ꢃ  
8ꢃ  
–4ꢃ  
–2ꢃ  
4ꢃ  
2ꢃ  
6ꢃ  
8ꢃ  
–2ꢃ  
4ꢃ  
2ꢃ  
–4ꢃ  
6ꢃ  
8ꢃ  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2754 Gꢃ4  
2754 Gꢃ5  
2754 Gꢃ6  
INL ꢀs VREF  
DNL ꢀs VREF  
1.ꢃ  
ꢃ.8  
1.ꢃ  
ꢃ.8  
ꢃ.6  
ꢃ.4  
ꢃ.2  
ꢃ.ꢃ  
V
= 5V  
V
= 5V  
ꢂꢂ  
ꢂꢂ  
5V RAIGE  
5V RAIGE  
ꢃ.6  
ꢃ.4  
+ꢁIL  
+ꢁIL  
–ꢁIL  
ꢃ.2  
+ꢂIL  
–ꢂIL  
+ꢂIL  
–ꢂIL  
ꢃ.ꢃ  
–ꢁIL  
–ꢃ.2  
–ꢃ.4  
–ꢃ.6  
–ꢃ.8  
–1.ꢃ  
–ꢃ.2  
–ꢃ.4  
–ꢃ.6  
–ꢃ.8  
–1.ꢃ  
–1ꢃ –8 –6  
4
2
2
4
6
8
1ꢃ  
–1ꢃ –8 –6  
4
2
2
4
6
8
1ꢃ  
V
(V)  
V
(V)  
REF  
REF  
2754 Gꢃ7  
2754 Gꢃ8  
Multiplying Frequency Response  
ꢀs Digital Code  
INL ꢀs VDD  
1.ꢃ  
ꢃ.8  
ALL SꢁTꢀ OI  
–2ꢃ  
ꢂ15  
ꢂ14  
ꢂ13  
ꢂ12  
ꢂ11  
ꢂ1ꢃ  
ꢂ9  
ꢃ.6  
ꢃ.4  
+ꢁIL  
–4ꢃ  
ꢃ.2  
ꢂ8  
ꢂ7  
ꢃ.ꢃ  
–6ꢃ  
ꢂ6  
ꢂ5  
ꢂ4  
ꢂ3  
–ꢁIL  
–ꢃ.2  
–ꢃ.4  
–ꢃ.6  
–ꢃ.8  
–1.ꢃ  
–8ꢃ  
ꢂ2  
ꢂ1  
ꢂꢃ  
UIꢁPOLAR 5V OUTPUT RAIGE  
LT1469 OUTPUT AMPLꢁFꢁER  
FEEꢂSACK  
–1ꢃꢃ  
–12ꢃ  
C
= 8.2pF  
ALL SꢁTꢀ OFF  
2.5  
3
3.5  
4
4.5  
5
5.5  
1ꢃꢃ  
1k  
1ꢃk  
1ꢃꢃk  
1M  
1ꢃM  
FREQUEICY (Hz)  
V
(V)  
ꢂꢂ  
2754 Gꢃ9  
2754 G1ꢃ  
2754f  
6
LTC2754  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
LTC2754-12  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
1.ꢃ  
ꢃ.8  
1.ꢃ  
ꢃ.8  
V
V
= 5V  
= 5V  
V
V
= 5V  
= 5V  
ꢂꢂ  
REF  
1ꢃV RAIGE  
ꢂꢂ  
REF  
1ꢃV RAIGE  
ꢃ.6  
ꢃ.6  
ꢃ.4  
ꢃ.4  
ꢃ.2  
ꢃ.2  
–ꢃ.2  
–ꢃ.4  
–ꢃ.6  
–ꢃ.8  
–1.ꢃ  
–ꢃ.2  
–ꢃ.4  
–ꢃ.6  
–ꢃ.8  
–1.ꢃ  
1ꢃ24  
2ꢃ48  
3ꢃ72  
4ꢃ95  
1ꢃ24  
2ꢃ48  
3ꢃ72  
4ꢃ95  
COꢂE  
COꢂE  
2754 G11  
2754 G12  
LTC2754  
Supply Current  
ꢀs Logic Input Voltage  
Logic Threshold  
Supply Current  
ꢀs Supply Voltage  
ꢀs Clock Frequency  
5
4
3
2
1
2
1ꢃꢃ  
CLR, LDAC, ꢀꢂꢁ, ꢀCK,  
Cꢀ/LD TꢁEꢂ TOGETHER  
1.75  
1.5  
1.25  
1
1ꢃ  
RꢁꢀꢁIG  
1
V
= 5V  
V
ꢂꢂ  
ꢃ.1  
= 3V  
ꢂꢂ  
FALLꢁIG  
ꢃ.ꢃ1  
ꢃ.ꢃꢃ1  
V
= 5V  
ꢂꢂ  
3
ꢃ.75  
ꢃ.5  
V
= 3V  
ꢂꢂ  
2
ꢃ.ꢃꢃꢃ1  
1
4
5
2.5  
3.5  
4
4.5  
5
5.5  
3
1
1ꢃꢃ  
1ꢃk  
1M  
1ꢃꢃM  
V
(V)  
ꢂꢁGꢁTAL ꢁIPUT VOLTAGE (V)  
ꢀCK FREQUEICY (Hz)  
ꢂꢂ  
2754 G14  
2754 G13  
2754 G15  
Settling 0V to 10V  
Midscale Glitch  
Midscale Glitch  
CS/Lꢂ  
2V/ꢂꢁV  
CS/Lꢂ  
5V/ꢂꢁV  
CS/Lꢂ  
5V/ꢂꢁV  
ꢃ.26nV•s TYP  
1.25nV•s TYP  
GATEꢂ  
ꢀETTLꢁIG  
WAVEFORM  
25ꢃꢄV/ꢂꢁV  
V
OUT  
V
5mV/ꢂꢁV  
OUT  
5mV/ꢂꢁV  
2754 G17  
2754 G17  
2754 G16  
5ꢃꢃns/ꢂꢁV  
UꢀꢁIG LT1469 AMP  
C = 12pF  
FEEꢂSACK  
V
V
= 5V  
= 5V  
5ꢃꢃns/ꢂꢁV  
V
V
= 3V  
REF  
5ꢃꢃns/ꢂꢁV  
ꢂꢂ  
REF  
5V RAIGE  
ꢂꢂ  
= 5V  
5V RAIGE  
LT1468 OUTPUT AMPLꢁFꢁER  
= 27pF  
LT1468 OUTPUT AMPLꢁFꢁER  
= 27pF  
ꢃV TO 1ꢃV ꢀTEP  
C
C
FEEꢂSACK  
FEEꢂSACK  
RISING MAJOR CARRY TRANSITION.  
FALLING TRANSITION IS SIMILAR OR BETTER  
RISING MAJOR CARRY TRANSITION.  
FALLING TRANSITION IS SIMILAR OR BETTER  
2754f  
7
LTC2754  
PIN FUNCTIONS  
GE  
(Pin1): Gain Adjust Pin for ꢂAC A. This control  
Applications).Anyoralloftheseprecision-matchedresis-  
torsets(EachsetcomprisingRꢁIX,RCOMX andREFX)may  
be used to invert one or more positive reference voltages  
to the negative voltages needed by the ꢂACs. Typically  
5V; accepts up to 15V.  
ADJA  
pin can be used to null gain error or to compensate for  
reference errors. Iominal adjustment range is 512 LꢀS  
(LTC2754-16)foravoltageinputrangeof V  
(i.e., 5V  
RꢁIA  
for a 5V reference input). Tie to ground if not used.  
R
(Pin 2): ꢁnput Resistor for Reference ꢁnverting  
GE  
(Pin 14): Gain Adjust Pin for ꢂAC ꢂ. This control  
INA  
ADJD  
Amplifier. The 2ꢃk input resistor is connected internally  
from R to R . For normal operation tie R to the  
pin can be used to null gain error or to compensate for  
reference errors. Iominal adjustment range is 512 LꢀS  
ꢁIA  
COMA  
ꢁIA  
externalreferencevoltageV  
Any or all of these precision-matched resistor sets (Each  
set comprising R , R and REFX) may be used to  
invertoneormorepositivereferencevoltagestothenega-  
tive voltages needed by the ꢂACs. Typically 5V; accepts  
up to 15V.  
(seeTypicalApplications).  
(LTC2754-16)foravoltageinputrangeof V  
for a 5V reference input). Tie to ground if not used.  
(i.e., 5V  
REFA  
RꢁIꢂ  
ꢁIX COMX  
R
COMD  
(Pin 15): Center Tap Point for Reference Amplifier  
ꢁnverting Resistors. The 2ꢃk reference inverting resistors  
are connected internally from R to R and from  
ꢁIꢂ  
COMꢂ  
R
COMꢂ  
to REFꢂ, respectively (see Slock ꢂiagram). For  
I
(Pin 3): ꢂAC A Current Output Complement. Tie  
to ground.  
normaloperationtieR  
tothenegativeinputofexternal  
OUT2A  
COMꢂ  
reference inverting amplifier (see Typical Applications).  
OUT2A  
GND (Pin 4): Ground; provides shielding for ꢁ  
. Tie  
REFD(Pin16):ꢁnvertedReferenceVoltageforAC,with  
OUT2A  
to ground.  
internal connection to the reference inverting resistor. The  
2ꢃk resistor is connected internally from REFꢂ to R  
.
COMꢂ  
CS/LD (Pin 5): ꢀynchronous Chip ꢀelect and Load Pin.  
For normal operation tie this pin to the output of reference  
invertingamplifier(seeTypicalApplications).Typically5V;  
accepts up to 15V. The impedance looking into this pin  
SDI (Pin 6): ꢀerial ꢂata ꢁnput. ꢂata is clocked in on the  
rising edge of the serial clock (ꢀCK) when CS/Lꢂ is low.  
is 1ꢃk to ground (R and R  
floating).  
COMꢂ  
ꢁIꢂ  
SCK (Pin 7): ꢀerial Clock.  
R
(Pin 17): Sipolar Offset Ietwork for ꢂAC ꢂ. This  
OFSD  
SRO (Pin 8): ꢀerial Readback Output. ꢂata is clocked out  
on the falling edge of ꢀCK. Readback data begins clocking  
out after the last address bit Aꢃ is clocked in. ꢀRO is an  
active output only when the chip is selected (i.e., when  
CS/Lislow). OtherwiseROpresentsahigh-impedance  
output in order to allow other parts to control the bus.  
pin provides the translation of the output voltage range for  
bipolar spans. Accepts up to 15V; for normal operation  
tie to the positive reference voltage at R (Pin 13). The  
impedance looking into this pin is 2ꢃk to ground.  
ꢁIꢂ  
R
(Pin 18): ꢂAC ꢂ Feedback Resistor. For normal  
FBD  
operation tie to the output of the ꢁ/V converter amplifier  
for ꢂAC ꢂ (see Typical Applications). The ꢂAC output  
SROGND (Pin 9): Ground pin for ꢀRO. Tie to ground.  
V
(Pin10):Positiveupplynput;2.7V≤V ≤5.5V.Sy-  
ꢂꢂ  
DD  
current from ꢁ  
flows through the feedback resistor  
OUT1ꢂ  
pass with a ꢃ.1μF low-EꢀR ceramic capacitor to ground.  
to the R  
pin. The impedance looking into this pin is  
FSꢂ  
1ꢃk to ground.  
GND (Pin 11): Ground. Tie to ground.  
I
(Pin 19): ꢂAC ꢂ Current Output. This pin is a  
OUT1D  
I
(Pin 12): ꢂAC ꢂ Current Output Complement. Tie  
OUT2D  
virtual ground when the ꢂAC is operating and should  
reside at ꢃV. For normal operation tie to the negative  
input of the ꢁ/V converter amplifier for ꢂAC ꢂ (see Typi-  
cal Applications).  
to ground.  
OUT2ꢂ  
RIND (Pin 13): ꢁnput Resistor for Reference ꢁnverting  
Amplifier. The 2ꢃk input resistor is connected inter-  
nally from RꢁIꢂ to RCOMꢂ. For normal operation tie RꢁIꢂ  
to the external reference voltage VREFꢂ (see Typical  
2754f  
8
LTC2754  
PIN FUNCTIONS  
V
(Pin 20): ꢂAC ꢂ Offset Adjust Pin. This control  
GE  
(Pin 27): Gain Adjust Pin for ꢂAC C. This control  
OSADJD  
ADJC  
pin can be used to null unipolar offset or bipolar zero error.  
Theoffsetvoltagedeltaisinvertedandattenuatedsuchthat  
pin can be used to null gain error or to compensate for  
reference errors. Iominal adjustment range is 512 LꢀS  
a 5V control voltage applied to V  
-512 LꢀS (LTC2754-16) in any output range (assumes a  
5V reference voltage at R ). Tie to ground if not used.  
produces ΔV  
=
(LTC2754-16)foravoltageinputrangeof V  
for a 5V reference input). Tie to ground if not used.  
(i.e., 5V  
OꢀAꢂJꢂ  
Oꢀ  
RꢁIC  
ꢁIꢂ  
R
INC  
(Pin 28): ꢁnput Resistor for Reference ꢁnverting  
V
(Pin 21): ꢂAC C Offset Adjust Pin. This control  
Amplifier. The 2ꢃk input resistor is connected internally  
from R to R . For normal operation tie R to the  
OSADJC  
pincanbeusedtonullunipolaroffsetorbipolarzeroerror.  
Theoffsetvoltagedeltaisinvertedandattenuatedsuchthat  
ꢁIC  
COMC  
ꢁIC  
external reference voltage V  
(see Typical Applica-  
REFC  
a 5V control voltage applied to V  
-512 LꢀS (LTC2754-16) in any output range (assumes a  
5V reference voltage at R ). Tie to ground if not used.  
produces ΔV  
=
tions). Any or all of these precision-matched resistor  
sets (Each set comprising R , R and R ) may be  
OꢀAꢂJC  
Oꢀ  
ꢁIX COMX  
EFX  
used to invert one or more positive reference voltages to  
the negative voltages needed by the ꢂACs. Typically 5V;  
accepts up to 15V.  
ꢁIC  
I
(Pin 22): ꢂAC C Current Output. This pin is a virtual  
OUT1C  
ground when the ꢂAC is operating and should reside at  
V. For normal operation tie to the negative input of the ꢁ/V  
converter amplifier for ꢂAC C (see Typical Applications).  
I
(Pin 29): ꢂAC C Current Output Complement. Tie  
to ground.  
OUT2C  
OUT2C  
R
(Pin 23): ꢂAC C Feedback Resistor. For normal  
CLR (Pin 30): Asynchronous Clear Pin. When this pin is  
low, all ꢂAC registers (both code and span) are cleared to  
zero. All ꢂAC outputs are cleared to zero volts.  
FBC  
operation tie to the output of the ꢁ/V converter amplifier  
for ꢂAC C (see Typical Applications). The ꢂAC output  
current from ꢁ  
flows through the feedback resistor  
OUT1ꢂ  
RFLAG (Pin 31): Reset Flag Pin. An active low output is  
asserted when there is a power-on reset or a clear event.  
Returns high when an Update command is executed.  
to the R  
pin. The impedance looking into this pin is  
FSC  
1ꢃk to ground.  
R
(Pin 24): Sipolar Offset Ietwork for ꢂAC C. This  
OFSC  
M-SPAN (Pin 32): Manual ꢀpan Control Pin. M-ꢀPAI is  
used in conjunction with pins ꢀ2, ꢀ1 and ꢀꢃ (Pins 33, 34  
and 35) to configure all ꢂACs for operation in a single,  
fixed output range.  
pin provides the translation of the output voltage range for  
bipolar spans. Accepts up to 15V; for normal operation  
tie to the positive reference voltage at R (Pin 28). The  
ꢁIC  
impedance looking into this pin is 2ꢃk to ground.  
To configure the part for manual-span use, tie M-ꢀPAI  
REFC(Pin25):ꢁnvertedReferenceVoltageforACC, with  
directly to V . The active output range is then set via  
ꢂꢂ  
internal connection to the reference inverting resistor. The  
hardware pin strapping of pins ꢀ2, ꢀ1 and ꢀꢃ (rather than  
through the ꢀPꢁ port); and Write and Update commands  
have no effect on the active output span.  
2ꢃk resistor is connected internally from REFC to R  
.
COMC  
For normal operation tie this pin to the output of reference  
invertingamplifier(seeTypicalApplications).Typically5V;  
accepts up to 15V. The impedance looking into this pin  
To configure the part for ꢀoftꢀpan use, tie M-ꢀPAI di-  
rectly to GIꢂ. The output ranges are then individually and  
dynamically controllable through the ꢀPꢁ port; and pins  
ꢀ2, ꢀ1 and ꢀꢃ have no effect.  
is 1ꢃk to ground (R and R  
floating).  
COMC  
ꢁIC  
R
(Pin 26): Center Tap Point for Reference Amplifier  
COMC  
ꢁnverting Resistors. The 2ꢃk reference inverting resistors  
are connected internally from R to R and from  
ꢀee ‘Manual ꢀpan Configuration’ in the Operation sec-  
tion. M-ꢀPAI must be connected either directly to  
ꢁIC  
COMC  
R
to REFC, respectively (see Slock ꢂiagram). For  
COMC  
GIꢂ (ꢀoftꢀpan configuration) or to V (manual-span  
normaloperationtieR  
tothenegativeinputofexternal  
ꢂꢂ  
COMC  
configuration).  
reference inverting amplifier (see Typical Applications).  
2754f  
9
LTC2754  
PIN FUNCTIONS  
S0 (Pin 33): ꢀpan Sit ꢃ. ꢁn Manual ꢀpan mode (M-ꢀPAI  
2ꢃk resistor is connected internally from REFS to R  
.
COMS  
tied to V ), Pins ꢀꢃ, ꢀ1 and ꢀ2 are pin-strapped to select  
For normal operation tie this pin to the output of reference  
invertingamplifier(seeTypicalApplications).Typically5V;  
accepts up to 15V. The impedance looking into this pin  
ꢂꢂ  
a single fixed output range for all ꢂACs. These pins should  
be tied to either GIꢂ or V even if they are unused.  
ꢂꢂ  
is 1ꢃk to ground (R and R  
floating).  
COMS  
ꢁIS  
S1 (Pin 34): ꢀpan Sit 1. ꢁn Manual ꢀpan mode (M-ꢀPAI  
tied to V ), Pins ꢀꢃ, ꢀ1 and ꢀ2 are pin-strapped to select  
R
(Pin 43): Sipolar Offset Ietwork for ꢂAC S. This  
OFSB  
ꢂꢂ  
a single fixed output range for all ꢂACs. These pins should  
pin provides the translation of the output voltage range for  
bipolar spans. Accepts up to 15V; for normal operation  
be tied to either GIꢂ or V even if they are unused.  
ꢂꢂ  
tie to the positive reference voltage at R (Pin 39). The  
impedance looking into this pin is 2ꢃk to ground.  
ꢁIS  
S2 (Pin 35): ꢀpan Sit 2. ꢁn Manual ꢀpan mode (M-ꢀPAI  
tied to V ), Pins ꢀꢃ, ꢀ1 and ꢀ2 are pin-strapped to select  
ꢂꢂ  
a single fixed output range for all ꢂACs. These pins should  
R
(Pin 44): ꢂAC S Feedback Resistor. For normal  
FBB  
be tied to either GIꢂ or V even if they are unused.  
operation tie to the output of the ꢁ/V converter amplifier  
for ꢂAC S (see Typical Applications). The ꢂAC output  
ꢂꢂ  
LDAC (Pin 36): Asynchronous ꢂAC Load ꢁnput. When  
LDAC is a logic low, all ꢂACs are updated (CS/Lꢂ must  
be high).  
current from ꢁ  
flows through the feedback resistor  
OUT1S  
to the R  
pin. The impedance looking into this pin is  
FSS  
1ꢃk to ground.  
GND (Pin 37): Ground; provides shielding for ꢁ  
to ground.  
. Tie  
OUT2S  
I
(Pin 45): ꢂAC S Current Output. This pin is a virtual  
OUT1B  
ground when the ꢂAC is operating and should reside at  
V. For normal operation tie to the negative input of the ꢁ/V  
converter amplifier for ꢂAC S (see Typical Applications).  
I
(Pin 38): ꢂAC S Current Output Complement. Tie  
to ground.  
OUT2B  
OUT2S  
R
(Pin 39): ꢁnput Resistor for Reference ꢁnverting  
V
(Pin 46): ꢂAC S Offset Adjust Pin. This control  
INB  
OSADJB  
Amplifier. The 2ꢃk input resistor is connected internally  
pincanbeusedtonullunipolaroffsetorbipolarzeroerror.  
Theoffset-voltagedeltaisinvertedandattenuatedsuchthat  
from R to R  
external reference voltage V  
tions). Any or all of these precision-matched resistor sets  
(Each set comprising R , R and REFX) may be  
used to invert one or more positive reference voltages to  
the negative voltages needed by the ꢂACs. Typically 5V;  
accepts up to 15V.  
. For normal operation tie R to the  
ꢁIS  
ꢁIS  
COMS  
(see Typical Applica-  
a 5V control voltage applied to V  
produces ΔV  
=
REFS  
OꢀAꢂJS  
Oꢀ  
–512 LꢀS (LTC2754-16) in any output range (assumes a  
5V reference voltage at R ). Tie to ground if not used.  
ꢁIX  
COMX  
ꢁIS  
V
(Pin 47): ꢂAC A Offset Adjust Pin. This control  
OSADJA  
pincanbeusedtonullunipolaroffsetorbipolarzeroerror.  
Theoffset-voltagedeltaisinvertedandattenuatedsuchthat  
GE  
(Pin 40): Gain Adjust Pin for ꢂAC S. This control  
a 5V control voltage applied to V  
produces ΔV  
=
ADJB  
OꢀAꢂJA  
Oꢀ  
pin can be used to null gain error or to compensate for  
reference errors. Iominal adjustment range is 512 LꢀS  
–512 LꢀS (LTC2754-16) in any output range (assumes a  
5V reference voltage at R ). Tie to ground if not used.  
ꢁIA  
(LTC2754-16)foravoltageinputrangeof V  
for a 5V reference input). Tie to ground if not used.  
(i.e., 5V  
RꢁIS  
I
(Pin 48): ꢂAC A Current Output. This pin is a virtual  
OUT1A  
ground when the ꢂAC is operating and should reside at  
ꢃV. For normal operation tie to the negative input of the ꢁ/V  
converter amplifier for ꢂAC A (see Typical Applications).  
R
(Pin 41): Center Tap Point for Reference Amplifier  
COMB  
ꢁnverting Resistors. The 2ꢃk reference inverting resistors  
are connected internally from R to R and from  
ꢁIS  
COMS  
R
(Pin 49): ꢂAC A Feedback Resistor. For normal  
FBA  
R
to REFS, respectively (see Slock ꢂiagram). For  
COMS  
operation tie to the output of the ꢁ/V converter amplifier  
for ꢂAC A (see Typical Applications). The ꢂAC output  
normaloperationtieR  
tothenegativeinputofexternal  
COMS  
reference inverting amplifier (see Typical Applications).  
current from ꢁ  
flows through the feedback resistor  
OUT1A  
REFB(Pin42):ꢁnvertedReferenceVoltageforACS, with  
internal connection to the reference inverting resistor. The  
to the R  
pin. The impedance looking into this pin is  
FSA  
1ꢃk to ground.  
2754f  
10  
LTC2754  
PIN FUNCTIONS  
R
(Pin 50): Sipolar Offset Ietwork for ꢂAC A. This  
accepts up to 15V. The impedance looking into this pin  
OFSA  
pin provides the translation of the output voltage range for  
bipolar spans. Accepts up to 15V; for normal operation  
is 1ꢃk to ground (R and R  
floating).  
COMA  
ꢁIA  
R
(Pin 52): Center Tap Point for Reference Amplifier  
COMA  
tie to the positive reference voltage at R (Pin 2). The  
impedance looking into this pin is 2ꢃk to ground.  
ꢁIA  
ꢁnverting Resistors. The 2ꢃk reference inverting resistors  
are connected internally from R to R and from  
ꢁIA  
COMA  
REFA(Pin51):ꢁnvertedReferenceVoltageforACA, with  
R
to REFA, respectively (see Slock ꢂiagram). For  
COMA  
internal connection to the reference inverting resistor. The  
normaloperationtieR  
tothenegativeinputofexternal  
COMA  
2ꢃk resistor is connected internally from REFA to R  
.
reference inverting amplifier (see Typical Applications).  
COMA  
For normal operation tie this pin to the output of reference  
invertingamplifier(seeTypicalApplications).Typically5V;  
Exposed Pad (Pin 53): Ground. The Exposed Pad must  
be soldered to the PCS.  
BLOCK DIAGRAM  
V
ꢂꢂ  
10  
R
R
ꢁIS  
2
1
39  
40  
41  
ꢁIA  
2.56M  
2.56M  
GE  
R
GE  
R
2ꢃk  
2ꢃk  
2ꢃk  
2ꢃk  
AꢂJA  
AꢂJS  
52  
COMA  
COMS  
LTC2754-16  
REFA  
REFS  
51  
50  
49  
48  
42  
43  
44  
45  
R
OFꢀA  
R
R
OFꢀS  
FSS  
ꢂATA REGꢁꢀTERꢀ  
ꢂATA REGꢁꢀTERꢀ  
16  
3
16  
3
R
FSA  
ꢂAC REG ꢁIPUT REG  
ꢁIPUT REG ꢂAC REG  
ꢂAC A  
16-SꢁT WꢁTH  
ꢀPAI ꢀELECT  
ꢂAC S  
16-SꢁT WꢁTH  
ꢀPAI ꢀELECT  
OUT1A  
OUT2A  
OUT1S  
OUT2S  
ꢀPAI REGꢁꢀTERꢀ  
ꢀPAI REGꢁꢀTERꢀ  
3
38  
ꢂAC REG ꢁIPUT REG  
ꢁIPUT REG ꢂAC REG  
V
V
V
V
47  
20  
46  
21  
OꢀAꢂJA  
OꢀAꢂJS  
OꢀAꢂJC  
OꢀAꢂJꢂ  
ꢂATA REGꢁꢀTERꢀ  
ꢂATA REGꢁꢀTERꢀ  
16  
3
16  
3
ꢂAC REG ꢁIPUT REG  
ꢁIPUT REG ꢂAC REG  
ꢂAC ꢂ  
16-SꢁT WꢁTH  
ꢀPAI ꢀELECT  
ꢂAC C
16-SꢁT WꢁTH  
ꢀPAI ꢀELECT  
12  
19  
29  
22  
OUT2ꢂ  
OUT2C  
OUT1C  
ꢀPAI REGꢁꢀTERꢀ  
ꢀPAI REGꢁꢀTERꢀ  
OUT1ꢂ  
ꢂAC REG ꢁIPUT REG  
ꢁIPUT REG ꢂAC REG  
R
R
R
18  
17  
16  
23  
24  
25  
FSꢂ  
FSC  
R
OFꢀꢂ  
OFꢀC  
REFꢂ  
REFC  
POWER-OI  
REꢀET  
2ꢃk  
2ꢃk  
2ꢃk  
2ꢃk  
R
R
15  
14  
13  
26  
27  
28  
COMꢂ  
COMC  
2.56M  
2.56M  
GE  
AꢂJꢂ  
GE  
R
AꢂJC  
COITROL AIꢂ REAꢂSACK LOGꢁC  
R
ꢁIꢂ  
ꢁIC  
4, 11, 37  
GIꢂ  
32  
35 34 33  
31  
30  
5
6
7
36  
8
9
2754 Sꢂ  
M-ꢀPAI ꢀ2 ꢀ1 ꢀꢃ  
RFLAG  
CLR  
CS/Lꢂ ꢀꢂꢁ ꢀCK LDAC ꢀRO  
ꢀROGIꢂ  
2754f  
11  
LTC2754  
TIMING DIAGRAMS  
t
1
t
6
t
t
t
4
2
3
1
2
31  
32  
ꢀCK  
ꢀꢂꢁ  
t
8
LꢀS  
t
t
7
5
CS/Lꢂ  
LDAC  
ꢀRO  
t
11  
t
9
Hi-Z  
LꢀS  
2754 Tꢂ  
OPERATION  
Output Ranges  
V
V
ꢂꢂ  
ꢂꢂ  
The LTC2754 is a quad, current-output, serial-input preci-  
sionmultiplyingACwithselectableoutputranges.Ranges  
can either be programmed in software for maximum  
flexibility—each of the four ꢂACs can be programmed  
to any one of six output ranges—or hardwired through  
pin-strapping. Two unipolar ranges are available (ꢃV to 5V  
and ꢃV to 1ꢃV), and four bipolar ranges ( 2.5V, 5V, 1ꢃV  
and –2.5V to 7.5V). These ranges are obtained when an  
external precision 5V reference is used. When a reference  
voltage of 2V is used, the ranges become: ꢃV to 2V, V to  
4V, 1V, 2V, 4V and –1V to 3V. The output ranges are  
linearly scaled for other reference voltages.  
LTC2754-16  
+
ꢂAC A  
1ꢃV  
M-ꢀPAI  
ꢀ2  
ꢀ1  
+
ꢂAC S  
ꢂAC C  
ꢂAC ꢂ  
1ꢃV  
1ꢃV  
1ꢃV  
ꢀꢃ  
+
+
CS/Lꢂ ꢀꢂꢁ ꢀCK  
Manual Span Configuration  
2754 Fꢃ1  
Multiple output ranges are not needed in some applica-  
tions. To configure the LTC2754 to operate in a single span  
without additional operational overhead, tie the M-ꢀPAI  
Figure 1. Using M-SPAN to Configure the LTC2754  
for Single-Span Operation ( 10V Range Shown).  
pin directly to V . The active output range for all four  
ꢂꢂ  
ꢂACs is then set via hardware pin strapping of pins ꢀ2,  
ꢀ1 and ꢀꢃ (rather than through the ꢀPꢁ port); and Write  
and Update commands have no effect on the active output  
span. ꢀee Figure 1 and Table 3.  
Tie the M-ꢀPAI pin to ground for normal ꢀoftꢀpan  
operation.  
2754f  
12  
LTC2754  
OPERATION  
Input and DAC Registers  
data begins. For a 24-bit input sequence, the 16 readback  
bits are shifted out on the falling edges of clocks 8-23,  
suitable for shifting into a microprocessor on the rising  
edges of clocks 9-24. For a 32-bit sequence, the bits are  
shifted out on clocks 16-31; see Figure 3b.  
The LTC2754 has 5 internal registers for each ꢂAC, a total  
of 2ꢃ registers (see Slock ꢂiagram). Each ꢂAC channel  
has two sets of double-buffered registers—one set for the  
code data, and one for the output range of the ꢂAC—plus  
one readback register. ouble buffering provides the ca-  
pability to simultaneously update the span (output range)  
and code, which allows smooth voltage transitions when  
changing output ranges. ꢁt also permits the simultaneous  
updating of multiple ꢂACs.  
WhenCS/Lishigh,theROpinpresentsahighimpedance  
(three-state) output.  
LDAC is an asynchronous update pin. When LDAC is  
taken low, all ꢂACs are updated with code and span data  
(data in the ꢁnput buffers is copied into the ꢂAC buffers).  
CS/Lꢂ must be high during this operation; otherwise  
LDAC is locked out and will have no effect. The use of  
LDAC is functionally identical to the “Update All ꢂACs”  
serial input command.  
Each set of double-buffered registers comprises an ꢁnput  
register and a ꢂAC register.  
ꢁnput register: The Write operation shifts data from the  
ꢀꢂꢁ pin into a chosen ꢁnput register. The ꢁnput registers  
are holding buffers; Write operations do not affect the  
ꢂAC outputs.  
The codes for the command word (C3-Cꢃ) are defined in  
Table 1; Table 2 defines the codes for the address word  
(A3-Aꢃ).  
ꢂAC register: The Update operation copies the contents  
of an ꢁnput register to its associated ꢂAC register. The  
contents of a ꢂAC register directly updates the associated  
ꢂAC output voltage or output range.  
Readback  
ꢁn addition to the ꢁnput and ꢂAC registers, each ꢂAC has  
one Readback register associated with it. When a Read  
command is issued to a ꢂAC, the contents of one of its  
four buffers (ꢁnput and ꢂAC registers for each of ꢀpan  
and Code) is copied into its Readback register and seri-  
ally shifted out through the ꢀRO pin. Figure 3 shows the  
loading and readback sequences.  
Iote that updates always include both ꢂata and ꢀpan  
registers; but the values held in the ꢂAC registers will  
only change if the associated ꢁnput register values have  
previously been changed via a Write operation.  
Serial Interface  
nthedataeld(ꢂ15-ꢂꢃ)ofanynon-readinstructioncycle,  
ꢀROshiftsoutthecontentsofthebufferthatwasspecified  
intheprecedingcommand.Thisrollingreadbackdefault  
mode of operation can dramatically reduce the number  
of instruction cycles needed, since any command can be  
verified during succeeding commands with no additional  
overhead. ꢀeeFigure4. Table1showsthestoragelocation  
(‘readback pointer’) of the data which will be output from  
ꢀRO during the next instruction.  
When the CS/Lꢂ pin is taken low, the data on the ꢀꢂꢁ  
pin is loaded into the shift register on the rising edge of  
the clock (ꢀCK pin). The minimum (24-bit wide) loading  
sequence required for the LTC2754 is a 4-bit command  
word (C3 C2 C1 Cꢃ), followed by a 4-bit address word  
(A3 A2 A1 Aꢃ) and 16 data (span or code) bits, MꢀS first.  
Figure 2 shows the ꢀꢂꢁ input word syntax to use when  
writing code or span. ꢁf a 32-bit input sequence is used,  
the first eight bits must be zeros, followed by the same  
sequence as for a 24-bit wide input. Figure 3 shows the  
input and readback sequences for both 24-bit and 32-bit  
operations.  
ForReadcommands,thedataisshiftedoutduringtheRead  
instruction itself (on the 16 falling ꢀCK edges immediately  
afterthelastaddressbitisshiftedinonꢂꢁ).Whenchecking  
the span of a ꢂAC using ꢀRO, the span bits are the last  
four bits shifted out, corresponding to their sequence and  
positions when writing a span. ꢀee Figure 3.  
When CS/Lꢂ is low, the ꢀRO pin (ꢀerial Readback Output)  
is an active output.The readback data begins after the  
command (C3-Cꢃ) and address (A3-Aꢃ) words have been  
shiftedintoꢂꢁ.ROoutputsalogiclowuntilthereadback  
2754f  
13  
LTC2754  
OPERATION  
Table 1. Command Codes  
CODE  
READBACK POINTER–  
CURRENT INPUT WORD W  
READBACK POINTER–  
NEXT INPUT WORD W  
C3  
C2  
C1  
C0  
COMMAND  
0
+1  
1
Write ꢀpan ꢂAC n  
Write Code ꢂAC n  
Update ꢂAC n  
ꢀet by Previous Command  
ꢀet by Previous Command  
ꢀet by Previous Command  
ꢀet by Previous Command  
ꢀet by Previous Command  
ꢁnput ꢀpan Register ꢂAC n  
ꢁnput Code Register ꢂAC n  
ꢂAC ꢀpan Register ꢂAC n  
ꢂAC Code Register ꢂAC A  
ꢂAC ꢀpan Register ꢂAC n  
1
1
1
1
1
Update All ꢂACs  
1
1
Write ꢀpan ꢂAC n  
Update ꢂAC n  
1
1
1
1
1
1
Write Code ꢂAC n  
Update ꢂAC n  
ꢀet by Previous Command  
ꢀet by Previous Command  
ꢀet by Previous Command  
ꢂAC Code Register ꢂAC n  
ꢂAC ꢀpan Register ꢂAC n  
ꢂAC Code Register ꢂAC n  
Write ꢀpan ꢂAC n  
Update All ꢂACs  
Write Code ꢂAC n  
Update All ꢂACs  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Read ꢁnput ꢀpan Register ꢂAC n  
Read ꢁnput Code Register ꢂAC n  
Read ꢂAC ꢀpan Register ꢂAC n  
Read ꢂAC Code Register ꢂAC n  
Io Operation  
ꢁnput ꢀpan Register ꢂAC n  
ꢁnput Code Register ꢂAC n  
ꢂAC ꢀpan Register ꢂAC n  
ꢂAC Code Register ꢂAC n  
ꢀet by Previous Command  
ꢂAC Code Register ꢂAC n  
ꢂAC ꢀpan Register ꢂAC A  
ꢂAC ꢀpan Register ꢂAC A  
ꢀystem Clear  
ꢁnitial Power-Up or Power ꢁnterupt  
Codes not shown are reserved–do not use  
Table 2. Address Codes  
Table 3. Span Codes  
A3  
A2  
A1  
A0  
×
n
ꢂAC A  
S3 S2 S1 S0 SPAN  
1
1
1
1
1
1
1
Unipolar ꢃV to 5V  
×
×
×
×
×
×
1
ꢂAC S  
Unipolar ꢃV to 1ꢃV  
Sipolar –5V to 5V  
×
1
ꢂAC C  
×
1
1
ꢂAC ꢂ  
Sipolar –1ꢃV to 1ꢃV  
Sipolar –2.5V to 2.5V  
Sipolar –2.5V to 7.5V  
×
1
1
1
All ꢂACs (Iote 1)  
×
Codes not shown are reserved–do not use.  
Note 1. ꢁf readback is taken using the All ꢂACs address, the LTC2754  
defaults to ꢂAC A.  
× = ꢂon’t Care.  
Codes not shown are reserved–do not use.  
× = ꢂon’t Care.  
2754f  
14  
LTC2754  
OPERATION  
Readback in M-Span Configuration  
2. Using a 32-bit load sequence, load ꢂAC C with bipolar  
2.5V and its output at zero volts. Use readback to check  
ꢁnput register contents before updating the ꢂAC output  
(i.e., before copying ꢁnput register contents into ꢂAC  
register).  
ꢁf the part is in M-ꢀpan configuration and a ꢂAC ꢀpan  
register is specified for readback, then the data shifted out  
of ꢀRO will reflect the actual active span. The hardware-  
configured output range is therefore software detectable  
and available for use in programming.  
a) CS/Lꢂ(Iote that after power-on, the code in  
ꢁnput register is zero)  
Examples  
Clock ꢀꢂꢁ = ꢃꢃꢃꢃ ꢃꢃꢃꢃ ꢃꢃ11 ꢃ1ꢃꢃ 1ꢃꢃꢃ ꢃꢃꢃꢃ  
ꢃꢃꢃꢃ ꢃꢃꢃꢃ  
1. Using a 24-bit instruction, load ꢂAC A with the unipolar  
range of ꢃV to 1ꢃV, output at zero volts and all other ꢂACs  
with the bipolar range of 1ꢃV, outputs at zero volts. Iote  
all ꢂAC outputs should change at the same time.  
b) CS/Lꢂ↑  
ꢁnput register- Code of ꢂAC C set to midscale  
setting.  
a) CS/Lꢂ↓  
c) CS/Lꢂ↓  
Clock ꢀꢂꢁ = ꢃꢃ1ꢃ 1111 ꢃꢃꢃꢃ ꢃꢃꢃꢃ ꢃꢃꢃꢃ ꢃꢃ11  
Clock ꢀꢂꢁ = ꢃꢃꢃꢃ ꢃꢃꢃꢃ ꢃꢃ1ꢃ ꢃ1ꢃꢃ ꢃꢃꢃꢃ ꢃꢃꢃꢃ  
ꢃꢃꢃꢃ ꢃ1ꢃꢃ  
b) CS/Lꢂ↑  
ꢂata out on ꢀRO = 1ꢃꢃꢃ ꢃꢃꢃꢃ ꢃꢃꢃꢃ ꢃꢃꢃꢃ Verifies  
that ꢁnput register- Code ꢂAC C is at midscale  
setting.  
ꢁnput register- Range of all ꢂACs set to bipolar  
1ꢃV.  
c) CS/Lꢂ↓  
d) CS/Lꢂ↑  
Clock ꢀꢂꢁ = ꢃꢃ1ꢃ ꢃꢃꢃꢃ ꢃꢃꢃꢃ ꢃꢃꢃꢃ ꢃꢃꢃꢃ ꢃꢃꢃ1  
ꢁnput register- Range of ꢂAC C set to Sipolar  
2.5V range.  
d) CS/Lꢂ↑  
ꢁnput register- Range of ꢂAC A set to unipolar ꢃV  
to 1ꢃV.  
e) CS/Lꢂ↓  
Clock ꢀꢂꢁ = ꢃꢃꢃꢃ ꢃꢃꢃꢃ 1ꢃ1ꢃ ꢃ1ꢃꢃ xxxx xxxx  
xxxx xxxx  
e) CS/Lꢂ↓  
Clock ꢀꢂꢁ = ꢃꢃ11 1111 1ꢃꢃꢃ ꢃꢃꢃꢃ ꢃꢃꢃꢃ ꢃꢃꢃꢃ  
ꢂata Out on ꢀRO = ꢃꢃꢃꢃ ꢃꢃꢃꢃ ꢃꢃꢃꢃ ꢃ1ꢃꢃ  
Verifies that ꢁnput register- range of ꢂAC C set to  
Sipolar 2.5V Range.  
f) CS/Lꢂ↑  
ꢁnput register- Code of all ꢂACs set to midscale.  
CS/Lꢂ↑  
g) CS/Lꢂ↓  
f) CS/Lꢂ↓  
Clock ꢀꢂꢁ = ꢃꢃ11 ꢃꢃꢃꢃ ꢃꢃꢃꢃ ꢃꢃꢃꢃ ꢃꢃꢃꢃ ꢃꢃꢃꢃ  
Clock ꢀꢂꢁ = ꢃꢃꢃꢃ ꢃꢃꢃꢃ ꢃ1ꢃꢃ ꢃ1ꢃꢃ xxxx xxxx  
xxxx xxxx  
h) CS/Lꢂ↑  
ꢁnput register- Code of ꢂAC A set to zero code.  
g) CS/Lꢂ↑  
i) CS/Lꢂ↓  
Update ꢂAC C for both Code and Range  
Clock ꢀꢂꢁ = ꢃ1ꢃꢃ 1111 XXXX XXXX XXXX XXXX  
h) Alternatively steps f and g could be replaced with  
j) CS/Lꢂ↑  
LDAC  
.
Update all ꢂACs for both Code and Range.  
k) Alternatively steps i and j could be replaced with  
LDAC  
.
2754f  
15  
LTC2754  
OPERATION  
System Offset and Reference Adjustments  
The V  
pins have an input impedance of 1.28MΩ.  
OꢀAꢂJX  
These pins should be driven with a Thevenin-equivalent  
impedance of 1ꢃk or less to preserve the settling  
performance of the LTC2754. They should be shorted to  
GIꢂ if not used.  
The LTC2754 has individual offset- and gain- adjust pins  
(V  
and GE  
, respectively) for each of its four  
OꢀAꢂJX  
AꢂJX  
ꢂACs.  
Many systems require compensation for overall system  
offset. This may be an order of magnitude or more greater  
than the offset of the LTC2754, which is so low as to be  
dominated by external output amplifier errors even when  
using the most precise op amps.  
TheGE  
pinshaveaninputimpedanceof2.56MΩ, and  
AꢂJX  
are intended for use with fixed reference voltages only.  
TheyshouldbeshortedtoGIifnotused. ꢁfthereference  
inverting resistors are not used for that channel, then  
GE  
, R  
and R should all be shorted to REFX.  
AꢂJX COMX ꢁIX  
The offset adjust pins V  
can be used to null  
OꢀAꢂJX  
unipolar offset or bipolar zero error. The offset-voltage  
delta is inverted and attenuated such that a 5V control  
Power-On Reset and Clear  
When power is first applied to the LTC2754, all ꢂACs  
power-up in unipolar 5V mode (ꢀ3 ꢀ2 ꢀ1 ꢀꢃ = ꢃꢃꢃꢃ). All  
internal ꢂAC registers are reset to ꢃ and the ꢂAC outputs  
initialize to zero volts.  
voltage applied to V  
produces ΔV = –512 LꢀS  
OꢀAꢂJX  
Oꢀ  
(LTC2754-16) in any output range (assumes a 5V refer-  
ence voltage at R ).  
ꢁIX  
ꢁn voltage terms, the offset delta is attenuated by a factor  
of 32, 64 or 128, depending on the output range. (These  
functions hold regardless of reference voltage.)  
ꢁf the part is configured for manual span operation, all four  
ꢂACs will be set into the pin-strapped range at the first  
Update command. This allows the user to simultaneously  
update span and code for a smooth voltage transition into  
the chosen output range.  
ΔV = –(1/128)V  
[ꢃV to 5V, 2.5V spansꢅ  
Oꢀ  
OꢀAꢂJX  
OꢀAꢂJX  
ΔV = –(1/64)V  
[ꢃV to 1ꢃV, 5V, 2.5V to 7.5V  
Oꢀ  
spansꢅ  
When the CLR pin is taken low, a system clear results.  
The ꢂAC buffers are reset to ꢃ and the ꢂAC outputs are  
all reset to zero volts. The ꢁnput buffers are left intact, so  
that any subsequent Update command (including the use  
of LDAC) restores the addressed ꢂACs to their respective  
previous states.  
ΔV = –(1/32)V  
[ 1ꢃV spanꢅ  
Oꢀ  
OꢀAꢂJX  
The gain error adjust pins GE  
can be used to null  
AꢂJX  
gain error or to compensate for reference errors. Iominal  
adjustment range is 512 LꢀS (LTC2754-16) for a volt-  
age input range of V  
(i.e., 5V for a 5V reference  
RꢁIX  
ꢁf CLR is asserted during an instruction, i.e., when CS/Lꢂ  
is low, the instruction is aborted. ꢁntegrity of the relevant  
ꢁnput buffers is not guaranteed under these conditions,  
therefore the contents should be checked using readback  
or replaced.  
input). The gain-error delta is non-inverting for positive  
reference voltages.  
Iote that these pins compensate the gain by altering the  
invertedreferencevoltageV  
.nvoltageterms,theV  
REFX  
REFX  
delta is inverted and attenuated by a factor of 128.  
The RFLAG pin is used as a flag to notify the system of a  
loss of data integrity. The RFLAG output is asserted low  
ΔV = –(1/128)GE  
REFX  
AꢂJX  
at power-up, system clear, or if the supply V dips below  
ꢂꢂ  
The nominal input range of these pins is 5V; other volt-  
ages of up to 15V may be used if needed. However, do  
not use voltages divided down from power supplies; ref-  
erence-quality, low-noise inputs are required to maintain  
the performance of which the part is capable.  
approximately2V;andstaysasserteduntilanyvalidUpdate  
command is executed.  
2754f  
16  
LTC2754  
OPERATION  
2754f  
17  
LTC2754  
OPERATION  
2754f  
18  
LTC2754  
OPERATION  
WRꢁTE ꢂATA  
ꢂAC A  
WRꢁTE ꢂATA  
ꢂAC S  
WRꢁTE ꢂATA  
ꢂAC C  
WRꢁTE ꢂATA  
ꢂAC ꢂ  
UPꢂATE  
ALL ꢂACs  
...  
ꢀꢂꢁ  
REAꢂ  
REAꢂ  
REAꢂ  
REAꢂ  
REAꢂ  
...  
ꢀRO  
ꢁIPUT ꢂATA  
ꢁIPUT ꢂATA  
ꢁIPUT ꢂATA  
ꢁIPUT ꢂATA  
ꢂAC ꢂATA  
REGꢁꢀTER ꢂAC A  
REGꢁꢀTER ꢂAC S  
REGꢁꢀTER ꢂAC C  
REGꢁꢀTER ꢂAC ꢂ  
REGꢁꢀTER ꢂAC A  
2754 Fꢃ4  
Figure 4. Rolling Readback  
2754f  
19  
LTC2754  
APPLICATIONS INFORMATION  
Op Amp Selection  
in 16-bit LꢀSs. ꢂivide these results by 16 to obtain the  
correct LꢀS sizing.  
Secause of the extremely high accuracy of the 16-bit  
LTC2754-16, careful thought should be given to op amp  
selection in order to achieve the exceptional performance  
of which the part is capable. Fortunately, the sensitivity of  
ꢁIL and ꢂIL to op amp offset has been greatly reduced  
compared to previous generations of multiplying ꢂACs.  
Table 6 contains a partial list of LTC precision op amps  
recommended for use with the LTC2754. The easy-to-use  
designequationssimplifytheselectionofopampstomeet  
Table 4. Coefficients for the Equations in Table 5  
OUTPUT RANGE  
A1  
1.1  
2.2  
2
A2  
2
A3  
1
A4  
A5  
1
Tables 4 and 5 contain equations for evaluating the effects  
of op amp parameters on the LTC2754’s accuracy when  
programmed in a unipolar or bipolar output range. These  
are the changes the op amp can cause to the ꢁIL, ꢂIL,  
unipolaroffset,unipolargainerror,bipolarzeroandbipolar  
gain error. Tables 4 and 5 can also be used to determine  
the effects of op amp parameters on the LTC2754-12.  
However, the results obtained from Tables 4 and 5 are  
5V  
1ꢃV  
3
ꢃ.5  
1
1.5  
1.5  
2.5  
1
5V  
2
1
1
1ꢃV  
4
4
ꢃ.83  
1.4  
ꢃ.7  
2.5V  
1
1
1
–2.5V to 7.5V  
1.9  
3
ꢃ.5  
1.5  
Table 5. Easy-to-Use Equations Determine Op Amp Effects on DAC Accuracy in All Output Ranges (Circuit of Page 1). Subscript 1  
Refers to Output Amp, Subscript 2 Refers to Reference Inꢀerting Amp.  
UNIPOLAR  
OFFSET (LSB)  
BIPOLAR ZERO  
ERROR (LSB)  
UNIPOLAR GAIN  
ERROR (LSB)  
BIPOLAR GAIN  
ERROR (LSB)  
OP AMP  
INL (LSB)  
DNL (LSB)  
5V  
REF  
5V  
REF  
5V  
REF  
5V  
REF  
5V  
REF  
5V  
REF  
V
(mV)  
V
• 3.2 •  
V
• ꢃ.82 •  
A3 • V  
• 13.2 •  
A3 • V  
• 19.8 •  
V
• 13.2 •  
V
• 13.2 •  
Oꢀ1  
)
)
)
)
)
)
)
)
(V  
(V  
(V  
(V  
(V  
(V  
Oꢀ1  
Oꢀ1  
Oꢀ1  
Oꢀ1  
Oꢀ1  
Oꢀ1  
5V  
5V  
5V  
5V  
5V  
5V  
(nA)  
• ꢃ.ꢃꢃꢃ3 •  
• ꢃ.ꢃꢃꢃꢃ8 •  
• ꢃ.13 •  
S1  
• ꢃ.13 •  
• ꢃ.ꢃꢃ18 •  
• ꢃ.ꢃꢃ18 •  
(V  
(V  
S1  
S1  
S1  
S1  
S1  
S1  
)
(V  
(V  
(V  
(V  
)
)
)
REF  
REF  
REF  
REF  
REF  
REF  
( 16.5k)  
1.5k  
VOL1  
131k  
VOL1  
131k  
VOL1  
A
VOL1  
(V/V)  
(mV)  
A1 •  
A2 •  
A5 •  
A5 •  
)
A
(A  
)
)
(A  
(A  
VOL1  
5V  
5V  
5V  
V
A4 • V  
• 13.1 •  
V
• 26.2 •  
V
• 26.2 •  
Oꢀ2  
Oꢀ2  
Oꢀ2  
Oꢀ2  
(V  
)
(V  
(V  
(
))  
))  
)
REF  
REF  
REF  
5V  
5V  
REF  
5V  
REF  
(mV)  
A4 • ꢁ • ꢃ.13 •  
• ꢃ.26 •  
S2  
• ꢃ.26 •  
131k  
S2  
S2  
S2  
(
(V  
REF  
(V  
)
)
(V  
66k  
VOL2  
131k  
(A  
A
VOL2  
(V/V)  
A4 •  
(A  
)
(A  
)
)
VOL2  
VOL2  
Table 6. Partial List of LTC Precision Amplifiers Recommended for Use with the LTC2754 with Releꢀant Specifications  
AMPLIFIER SPECIFICATIONS  
t
VOLTAGE CURRENT  
SLEW  
RATE  
V/μs  
GAIN BANDWIDTH  
PRODUCT  
MHz  
POWER  
SETTLING  
V
I
A
VOL  
NOISE  
NOISE  
with LTC2755 DISSIPATION  
OS  
B
AMPLIFIER  
LT1ꢃꢃ1  
μV  
nA  
V/mV  
nV/Hz  
pA/Hz  
μs  
12ꢃ  
12ꢃ  
115  
19  
mW  
46  
25  
2
8ꢃꢃ  
1ꢃ  
14  
14  
2.7  
5
ꢃ.12  
ꢃ.ꢃꢃ8  
ꢃ.ꢃꢃ8  
ꢃ.3  
ꢃ.25  
ꢃ.2  
ꢃ.16  
4.5  
22  
ꢃ.8  
ꢃ.7  
ꢃ.75  
12.5  
9ꢃ  
LT1ꢃ97  
5ꢃ  
ꢃ.35  
ꢃ.25  
2ꢃ  
1ꢃꢃꢃ  
15ꢃꢃ  
4ꢃꢃꢃ  
5ꢃꢃꢃ  
2ꢃꢃꢃ  
11  
LT1112 (ꢂual)  
LT1124 (ꢂual)  
LT1468  
6ꢃ  
1ꢃ.5/Op Amp  
69/Op Amp  
117  
7ꢃ  
75  
1ꢃ  
ꢃ.6  
2
LT1469 (ꢂual)  
125  
1ꢃ  
5
ꢃ.6  
22  
9ꢃ  
2
123/Op Amp  
2754f  
20  
LTC2754  
APPLICATIONS INFORMATION  
the system’s specified error budget. ꢀelect the amplifier  
from Table 6 and insert the specified op amp parameters  
in Table 5. Add up all the errors for each category to de-  
termine the effect the op amp has on the accuracy of the  
part.Arithmeticsummationgivesan(unlikely)worst-case  
effect. A root-sum-square (RMꢀ) summation produces a  
more realistic estimate.  
applications:outputvoltageinitialtolerance,outputvoltage  
temperature coefficient and output voltage noise.  
ꢁnitial reference output voltage tolerance, if uncorrected,  
generates a full-scale error term. Choosing a reference  
with low output voltage initial tolerance, like the LT1236  
( ꢃ.ꢃ50),minimizesthegainerrorcausedbythereference;  
however, a calibration sequence that corrects for system  
zero- and full-scale error is always recommended.  
Op amp offset will contribute mostly to output offset and  
gain error, and has minimal effect on ꢁIL and ꢂIL. For  
example, for the LTC2754-16 with a 5V reference in 5V  
unipolar mode, a 25ꢃꢄV op amp offset will cause a 3.3LꢀS  
zero-scale error and a 3.3LꢀS gain error; but only ꢃ.8LꢀS  
of ꢁIL degradation and ꢃ.2LꢀS of ꢂIL degradation.  
A reference’s output voltage temperature coefficient af-  
fects not only the full-scale error, but can also affect the  
circuit’s apparent ꢁIL and ꢂIL performance. ꢁf a refer-  
ence is chosen with a loose output voltage temperature  
coefficient, then the ꢂAC output voltage along its transfer  
characteristicwillbeverydependentonambientconditions.  
Minimizing the error due to reference temperature coef-  
ficient can be achieved by choosing a precision reference  
with a low output voltage temperature coefficient and/or  
tightly controlling the ambient temperature of the circuit  
to minimize temperature gradients.  
While not directly addressed by the simple equations in  
Tables 4 and 5, temperature effects can be handled just  
as easily for unipolar and bipolar applications. First, con-  
sult an op amp’s data sheet to find the worst-case V  
Oꢀ  
and ꢁ over temperature. Then, plug these numbers into  
S
the V and ꢁ equations from Table 5 and calculate the  
Oꢀ  
S
temperature-induced effects.  
Table 7. Partial List of LTC Precision References Recommended  
for Use with the LTC2754 with Releꢀant Specifications  
For applications where fast settling time is important, Ap-  
plicationNote74,ComponentandMeasurementAdvances  
Ensure16-BitDACSettlingTime,offersathoroughdiscus-  
sion of 16-bit DAC settling time and op amp selection.  
INITIAL  
TOLERANCE  
TEMPERATURE 0.1Hz to 10Hz  
REFERENCE  
DRIFT  
NOISE  
LT1ꢃ19A-5,  
LT1ꢃ19A-1ꢃ  
ꢃ.ꢃ50  
ꢃ.ꢃ50  
ꢃ.ꢃ750  
5ppm/°C  
12ꢄV  
P-P  
LT1236A-5,  
LT1236A-1ꢃ  
5ppm/°C  
3ꢄV  
P-P  
Precision Voltage Reference Considerations  
Much in the same way selecting an operational amplifier  
for use with the LTC2754 is critical to the performance of  
the system, selecting a precision voltage reference also  
requires due diligence. The output voltage of the LTC2754  
is directly affected by the voltage reference; thus, any  
voltage reference error will appear as a ꢂAC output volt-  
age error.  
LT146ꢃA-5,  
LT146ꢃA-1ꢃ  
1ꢃppm/°C  
2ꢃꢄV  
12ꢄV  
P-P  
LT179ꢃA-2.5  
ꢃ.ꢃ50  
ꢃ.ꢃ50  
1ꢃppm/°C  
5ppm/°C  
P-P  
LTC6652A-2.ꢃ48  
LTC6652A-2.5  
LTC6652A-3  
2.1ppm  
2.1ppm  
2.1ppm  
2.2ppm  
2.3ppm  
2.8ppm  
P-P  
P-P  
P-P  
P-P  
P-P  
P-P  
LTC6652A-3.3  
LTC6652A-4.ꢃ96  
LTC6652A-5  
There are three primary error sources to consider  
when selecting a precision voltage reference for 16-bit  
2754f  
21  
LTC2754  
APPLICATIONS INFORMATION  
As precision ꢂAC applications move to 16-bit and higher  
performance, referenceoutputvoltagenoisemaycontrib-  
ute a dominant share of the system’s noise floor. This in  
turn can degrade system dynamic range and signal-to-  
noise ratio. Care should be exercised in selecting a voltage  
reference with as low an output noise voltage as practi-  
cal for the system resolution desired. Precision voltage  
references, like the LT1236, produce low output noise in  
the ꢃ.1Hz to 1ꢃHz region, well below the 16-bit LꢀS level  
in 5V or 1ꢃV full-scale systems. However, as the circuit  
bandwidths increase, filtering the output of the reference  
may be required to minimize output noise.  
When it is not possible to locate star ground close to  
, a low resistance trace should be used to route this  
OUT2  
pin to star ground. This minimizes the voltage drop from  
this pin to ground caused by the code-dependent current  
flowing to ground. When the resistance of this circuit  
board trace becomes greater than 1Ω, a force/sense am-  
plifier configuration should be used to drive this pin (see  
Figure 5). This preserves the excellent accuracy (1LꢀS  
ꢁIL and ꢂIL) of the LTC2754-16.  
Layout  
Figures 6, 7, 8, and 9 show the layout for the LTC2754  
evaluation board, ꢂC1546. This shows how to route the  
digital signals around the device without interfering with  
the reference and output op amps. Complete demo board  
documentation is available in the ꢂC1546 “Quick ꢀtart  
Guide.”  
Grounding  
As with any high resolution converter, clean grounding is  
important. A low impedance analog ground plane and star  
groundingtechniquesshouldbeused. ꢁ  
mustbetied  
OUT2X  
to the star ground with as low a resistance as possible.  
2754f  
22  
LTC2754  
APPLICATIONS INFORMATION  
ALTERNATE AMPLIFIER FOR OPTIMUM SETTLING TIME PERFORMANCE  
3, 12, 29, 38  
OUT2  
2ꢃꢃΩ  
2ꢃꢃ7  
+
2
3
2
6
LT1ꢃꢃ1  
OUT2  
6
1ꢃꢃꢃpF  
LT1468  
1
2
1
2
+ 3  
ZETEX  
SAT54ꢀ  
ZETEX*  
SAT54ꢀ  
3
3
*ꢀCHOTTKY SARRꢁER ꢂꢁOꢂE  
V
REF  
5V  
LTC2754-16  
49  
R
5ꢃ  
OFꢀA  
R
FSA  
R
2
ꢁIA  
15pF  
+ 3  
1
GE  
AꢂJA  
48  
1
OUT1A  
OUT2A  
2
3
1/2 LT1469  
1
R
52  
2
COMA  
V
OUTA  
ꢂAC A  
1/2 LT1469  
3
+
15ꢃpF  
V
51  
47  
OꢀAꢂJA  
REFA  
+
ꢂAC S  
ꢂAC C  
ꢂAC ꢂ  
+
+
2754 Fꢃ5  
Figure 5. Optional Circuits for Driꢀing IOUT2 from GND with a Force/Sense Amplifier.  
2754f  
23  
LTC2754  
APPLICATIONS INFORMATION  
2754 Fꢃ6  
Figure 6. LTC2754 Eꢀaluation Board DC1546. Layer 1, Top Layer (Component Side)  
2754 Fꢃ7  
Figure 7. LTC2754 Eꢀaluation Board DC1546. Layer 2, GND Plane  
2754f  
24  
LTC2754  
APPLICATIONS INFORMATION  
2754 Fꢃ8  
Figure 8. LTC2754 Eꢀaluation Board DC1546. Layer 3, Power Traces  
2754 Fꢃ9  
Figure 9. LTC2754 Eꢀaluation Board DC1546. Layer 4, Bottom Layer (Solder Side)  
2754f  
25  
LTC2754  
TYPICAL APPLICATION  
Digitally Controlled Offset and Gain Trim Circuit. Powering VDD from LT1236 Ensures Quiet Supply  
15ꢃpF  
15ꢃpF  
+
+
V
V
2
3 +  
6
8
8
7
1
5 +  
4
4
V
R
V
5V  
2
6
5
+
ꢁI  
OUT  
LT1236-5  
V
1ꢃ  
39  
41  
2
52  
42  
REFS  
43  
44  
51  
REFA  
5ꢃ  
OFꢀA  
49  
1ꢃꢄF  
1ꢃꢄF  
ꢃ.1ꢄF  
27pF  
TRꢁM  
V
R
R
R
R
R
FSS  
R
R
FSA  
ꢂꢂ  
ꢁIS RCOMS ꢁIA  
COMA  
OFꢀS  
GIꢂ  
4
1ꢃk  
1ꢃk  
1ꢃk  
+
V
V
3ꢃ  
31  
5
48  
3
6
5 +  
8
CLR  
OUT1A  
7
V
V
V
OUTꢂ  
OUTS  
OUTC  
RFLAG  
CS/Lꢂ  
ꢀꢂꢁ  
OUT2A  
4
CS1  
47  
6
V
27pF  
TO LT1991  
ꢀꢂꢁ  
ꢀCK  
ꢀꢂO  
CS2  
OꢀAꢂJA  
7
ꢀCK  
+
8
V
ꢀRO  
2
3 +  
45  
38  
8
OUT1S  
7
36  
5V  
LDAC  
OUT2S  
4
V
ꢃ.1ꢄF  
ꢃ.1ꢄF  
46  
V
27pF  
TO LT1991  
OꢀAꢂJS  
11  
1
LTC2754  
1ꢃk  
REF  
V
CC  
7
8
9
2
3
4
5
12  
13  
14  
15  
Tꢃ  
+
CS/Lꢂ  
ꢀCK  
ꢀꢂꢁ  
V
OUTA  
OUTS  
OUTC  
V
AꢂꢂꢁTꢁOIAL  
OFFꢀET AꢂJUꢀT  
CꢁRCUꢁTꢀ  
6
5 +  
22  
29  
V
V
V
8
32  
35  
34  
33  
OUT1C  
7
M-ꢀPAI  
ꢀ2  
OUT2C  
LT1469  
4
OUTꢂ  
LTC2636  
V
OUTE  
V
Tꢃ  
ꢀ1  
21  
V
OUTF  
OUTG  
OUTH  
1ꢃ  
6
V
OꢀAꢂJC  
AꢂꢂꢁTꢁOIAL  
GAꢁI AꢂJUꢀT  
CꢁRCUꢁTꢀ  
TO LT1991  
CLR  
LDAC  
V
V
27pF  
ꢀꢃ  
GIꢂ  
16  
+
V
V
19  
2
8
OUT1ꢂ  
OUT2ꢂ  
1
V
3 +  
OUTA  
12  
2ꢃ  
4
LT1469  
V
OꢀAꢂJꢂ  
+
GE  
GE  
GE  
GE  
GIꢂ GIꢂ GIꢂ GIꢂ ꢀROGIꢂ R  
R
R
R
REFC R  
25  
R
REFꢂ  
R
R
AꢂJA  
1
AꢂJS  
4ꢃ  
AꢂJC  
27  
AꢂJꢂ  
14  
ꢁIC COMC ꢁIꢂ COMꢂ  
OFꢀC FSC  
OFꢀꢂ FSꢂ  
V
7
4
11 37 53  
9
28  
26  
13  
15  
24  
23 16 17 18  
LT1991  
45ꢃk  
5ꢃk  
8
M9  
M3  
M1  
P1  
TO LT1991s  
5V  
15ꢃpF  
15ꢃk  
4ꢄF  
9
1ꢃ  
1
+
+
45ꢃk  
45ꢃk  
+
V
V
V
15ꢃpF  
OUT  
6
5
3 +  
2
3 +  
2
8
8
7
45ꢃk  
4ꢄF  
15ꢃk  
5ꢃk  
2
4
4
LT1469  
LT1469  
P3  
V
REF  
3
2754 TAꢃ2  
P9  
4
7
V
+
V
LT1991  
5ꢃk  
45ꢃk  
4ꢄF  
8
9
M9  
M3  
M1  
P1  
15ꢃk  
45ꢃk  
45ꢃk  
+
1ꢃ  
1
OUT  
REF  
6
5
45ꢃk  
4ꢄF  
15ꢃk  
5ꢃk  
2
P3  
3
P9  
4
V
2754f  
26  
LTC2754  
PACKAGE DESCRIPTION  
UKG Package  
52-Lead Plastic QFN (7mm × 8mm)  
(Reference LTC ꢂWG # ꢃ5-ꢃ8-1729 Rev Ø)  
7.50 p0.05  
6.10 p0.05  
5.50 REF  
(2 SIDES)  
0.70 p0.05  
6.45 p0.05  
6.50 REF  
(2 SIDES)  
7.10 p0.05 8.50 p0.05  
5.41 p0.05  
PACKAGE OUTLINE  
0.25 p0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
5.50 REF  
(2 SIDES)  
0.75 p 0.05  
7.00 p 0.10  
(2 SIDES)  
R = 0.115  
TYP  
0.00 – 0.05  
51  
52  
0.40 p 0.10  
PIN 1 TOP MARK  
(SEE NOTE 6)  
1
2
PIN 1 NOTCH  
R = 0.30 TYP OR  
0.35 s 45oC  
CHAMFER  
6.45 p0.10  
8.00 p 0.10  
(2 SIDES)  
6.50 REF  
(2 SIDES)  
5.41 p0.10  
(UKG52) QFN REV  
Ø 0306  
R = 0.10  
TYP  
0.25 p 0.05  
TOP VIEW  
SIDE VIEW  
0.50 BSC  
0.200 REF  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
0.75 p 0.05  
NOTE:  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE, IF PRESENT  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
2754f  
ꢁnformation furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LTC2754  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1ꢃ27  
Precision Reference  
Precision Reference  
16-Sit Accurate Op-Amp  
ꢂual 16-Sit Accurate Op-Amp  
1ppm/°C Maximum ꢂrift  
LT1236A-5  
LT1468  
ꢃ.ꢃ50 Maximum Tolerance, 1ppm ꢃ.1Hz to 1ꢃHz Ioise  
9ꢃMHz GSW, 22V/ꢄs ꢀlew Rate  
LT1469  
9ꢃMHz GSW, 22V/ꢄs ꢀlew Rate  
LTC1588/LTC1589/ ꢀerial 12-/14-/16-Sit ꢁ  
LTC1592  
ꢀingle ꢂAC  
ꢀoftware-ꢀelectable (ꢀoftꢀpan) Ranges, 1LꢀS ꢁIL, ꢂIL, 16-Lead ꢀꢀOP Package  
OUT  
LTC1591/LTC1597 Parallel 14-/16-Sit ꢁ  
ꢀingle ꢂAC  
ꢁntegrated 4-Quadrant Resistors  
OUT  
LTC27ꢃ4  
LTC2751  
ꢀerial 12-/14-/16-Sit V  
Quad ꢂACs  
ꢀoftware-ꢀelectable (ꢀoftꢀpan) Ranges, ꢁntegrated Amplifiers, 1LꢀS ꢁIL  
OUT  
Parallel 12-/14-/16-Sit ꢁ  
ꢀingle ꢂAC  
ꢀoftꢀpan  
1LꢀS ꢁIL, ꢂIL, ꢀoftware-ꢀelectable (ꢀoftꢀpan) Ranges, 5mm ꢆ 7mm  
QFI-38 Package  
OUT  
LTC2753  
LTC2755  
Parallel 12-/14-16-Sit ꢁ  
ꢂACs  
ꢀoftꢀpan ꢂual  
ꢀoftꢀpan Quad  
1LꢀS ꢁIL, ꢂIL, ꢀoftware-ꢀelectable (ꢀoftꢀpan) Ranges, 7mm ꢆ 7mm  
QFI-48 Package  
OUT  
Parallel 12-/14-/16-Sit ꢁ  
ꢂACs  
1LꢀS ꢁIL, ꢂIL, ꢀoftware-ꢀelectable (ꢀoftꢀpan) Ranges, 9mm ꢆ 9mm  
QFI-64 Package  
OUT  
2754f  
LT 0609 • PRINTED IN USA  
LinearTechnology Corporation  
163ꢃ McCarthy Slvd., Milpitas, CA 95ꢃ35-7417  
28  
© LINEAR TECHNOLOGY CORPORATION 2009  
(4ꢃ8) 432-19ꢃꢃ FAX: (4ꢃ8) 434-ꢃ5ꢃ7 www.linear.com  

相关型号:

LTC2754AIUKG-16TRPBF

Quad 12-/16-Bit SoftSpan IOUT DACs
Linear

LTC2754BCUKG-16

Quad 12-/16-Bit SoftSpan IOUT DACs
Linear

LTC2754BCUKG-16PBF

Quad 12-/16-Bit SoftSpan IOUT DACs
Linear

LTC2754BCUKG-16TRPBF

Quad 12-/16-Bit SoftSpan IOUT DACs
Linear

LTC2754BIUKG-16

Quad 12-/16-Bit SoftSpan IOUT DACs
Linear

LTC2754BIUKG-16PBF

Quad 12-/16-Bit SoftSpan IOUT DACs
Linear

LTC2754BIUKG-16TRPBF

Quad 12-/16-Bit SoftSpan IOUT DACs
Linear

LTC2754CUKG-12

Quad 12-/16-Bit SoftSpan IOUT DACs
Linear

LTC2754CUKG-12PBF

Quad 12-/16-Bit SoftSpan IOUT DACs
Linear

LTC2754CUKG-12TRPBF

Quad 12-/16-Bit SoftSpan IOUT DACs
Linear

LTC2754IUKG-12

Quad 12-/16-Bit SoftSpan IOUT DACs
Linear

LTC2754IUKG-12PBF

Quad 12-/16-Bit SoftSpan IOUT DACs
Linear