LTC2846 [Linear]

3.3V Software-Selectable Multiprotocol Transceiver with Termination; 3.3V软件可选的多协议收发器与终止
LTC2846
型号: LTC2846
厂家: Linear    Linear
描述:

3.3V Software-Selectable Multiprotocol Transceiver with Termination
3.3V软件可选的多协议收发器与终止

文件: 总24页 (文件大小:315K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2846  
3.3V Software-Selectable  
Multiprotocol Transceiver  
with Termination  
U
FEATURES  
DESCRIPTIO  
The LTC®2846 is a 3-driver/3-receiver multiprotocol trans-  
ceiver with on-chip cable termination. When combined with  
the LTC2844 or LTC2845, this chip set forms a complete  
software-selectable DTE or DCE interface port that supports  
the RS232, RS449, EIA530, EIA530-A, V.35, V.36 and X.21  
protocols. All necessary cable termination is provided inside  
the LTC2846. The LTC2846 has a boost regulator that takes  
in a 3.3V input and switches at 1.2MHz, allowing the use of  
tiny,lowcostcapacitorsandinductors2mmorlessinheight.  
Software-Selectable Transceiver Supports:  
RS232, RS449, EIA530, EIA530-A, V.35, V.36, X.21  
Operates from Single 3.3V Supply  
TUV Rheinland of North America Inc. Certified NET1,  
NET2 and TBR2 Compliant, Report No.:  
TBR2/050101/02, TBR2/051501/02  
1.2MHz Boost Switching Regulator for 3.3V to 5V  
Conversion  
On-Chip Cable Termination  
Complete DTE or DCE Port with LTC2844 or LTC2845  
The 5V output drives an internal charge pump that requires  
only five space-saving surface mounted capacitors. The  
LTC2846 is available in a 36-lead SSOP surface mount  
package.  
Small Footprint  
Available in 36-Lead SSOP (0.209 Wide) Package  
U
APPLICATIO S  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Data Networking  
CSU and DSU  
Data Routers  
U
TYPICAL APPLICATIO  
Complete DTE or DCE Multiprotocol Serial Interface with DB-25 Connector  
LL  
CTS  
DSR  
DCD  
DTR  
RTS  
TXC  
SCTE  
TXD  
RXD  
RXC  
LTC2846  
LTC2844  
D3  
D4  
D2  
D1  
D3  
D2  
T
D1  
T
R4  
R3  
R2  
R1  
R3  
T
R2  
T
R1  
T
18  
13  
5
22  
6
10  
8
23 20 19  
4
1
7
16  
3
9
17  
12 15 11  
24 14  
2
DB-25 CONNECTOR  
2846 TA01  
sn2846 2846fs  
1
LTC2846  
W W  
U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
VCC Voltage.............................................. 0.3V to 6.5V  
VIN Voltage .............................................. 0.3V to 6.5V  
Input Voltage  
Transmitters ........................... 0.3V to (VCC + 0.3V)  
Receivers............................................... 18V to 18V  
Logic Pins .............................. 0.3V to (VCC + 0.3V)  
Output Voltage  
Transmitters ................. (VEE – 0.3V) to (VDD + 0.3V)  
Receivers................................. 0.3V to (VIN + 0.3V)  
VEE........................................................ 10V to 0.3V  
VDD ....................................................... 0.3V to 10V  
Short-Circuit Duration  
Transmitter Output ..................................... Indefinite  
Receiver Output.......................................... Indefinite  
VEE.................................................................. 30 sec  
SW Voltage ............................................... 0.4V to 36V  
FB Voltage ............................................... 0.3V to 2.5V  
Current into FB Pin .............................................. ±1mA  
SHDN Voltage ........................................... 0.3V to 10V  
Operating Temperature Range  
ORDER PART  
NUMBER  
TOP VIEW  
NC  
1
2
3
4
5
6
7
8
9
36 SW  
35 FB  
LTC2846CG  
LTC2846IG  
BOOST  
SWITCHING  
REGULATOR  
PGND  
V
IN  
34 SGND  
+
SHDN  
33 C2  
C1  
32 C2  
+
C1  
31 V  
EE  
CHARGE PUMP  
V
30 GND  
DD  
V
29 D1 A  
28 D1 B  
27 D2 A  
26 D2 B  
25 D3/R1 A  
24 D3/R1 B  
23 R2 A  
22 R2 B  
21 R3 A  
20 R3 B  
19 DCE/DTE  
CC  
D1  
D1  
D2  
D3  
T
T
D2 10  
D3 11  
R1 12  
R2 13  
R3 14  
M0 15  
M1 16  
T
T
T
R1  
R2  
R3  
V
17  
IN  
M2 18  
LTC2846C ............................................... 0°C to 70°C  
LTC2846I........................................... 40°C to 85°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
G PACKAGE  
36-LEAD PLASTIC SSOP  
TJMAX = 125°C, θJA = 90°C/W, θJC = 35°C/W  
*θJA SOLDERED TO A CIRCUIT BOARD IS TYPICALLY 60°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V, VIN = 3.3V, VSHDN = VIN, unless otherwise noted. (Notes 2, 3)  
SYMBOL PARAMETER  
Supplies  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
V
Supply Current (DCE Mode,  
CC  
RS530, RS530-A, X.21 Modes, No Load  
RS530, RS530-A, X.21 Modes, Full Load  
V.35 Mode  
V.28 Mode, No Load  
V.28 Mode, Full Load  
14  
100  
126  
20  
35  
300  
mA  
mA  
mA  
mA  
mA  
µA  
CC  
All Digital Pins = GND or V )  
130  
170  
IN  
75  
900  
No-Cable Mode  
P
V
Internal Power Dissipation (DCE Mode)  
Positive Charge Pump Output Voltage  
RS530, RS530-A, X.21 Modes, Full Load  
V.35 Mode, Full Load  
V.28 Mode, Full Load  
550  
775  
200  
mW  
mW  
mW  
D
+
V.11 or V.28 Mode, No Load  
V.35 Mode  
V.28 Mode, with Load  
8
7
8
9.3  
8.0  
8.7  
6.5  
V
V
V
V
V.28 Mode, with Load, I = 10mA  
DD  
sn2846 2846fs  
2
LTC2846  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V, VIN = 3.3V, VSHDN = VIN, unless otherwise noted. (Notes 2, 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Negative Charge Pump Output Voltage  
V.28 Mode, No Load  
V.28 Mode, Full Load  
V.35 Mode  
RS530, RS530-A, X.21 Modes, Full Load  
9.6  
8.5  
6.5  
6.0  
V
V
V
V
7.5  
5.5  
4.5  
f
t
Charge Pump Oscillator Frequency  
Charge Pump Rise Time  
500  
2
kHz  
ms  
OSC  
r
No-Cable Mode/Power-Off to Normal Operation  
Logic Inputs and Outputs  
V
Logic Input High Voltage  
Logic Input Low Voltage  
Logic Input Current  
D1, D2, D3, M0, M1, M2, DCE/DTE  
SHDN  
2.0  
2.4  
V
V
IH  
V
D1, D2, D3, M0, M1, M2, DCE/DTE  
SHDN  
0.8  
0.5  
V
V
IL  
I
D1, D2, D3  
M0, M1, M2, DCE/DTE = GND  
±10  
120  
±10  
±0.1  
32  
µA  
µA  
µA  
µA  
µA  
IN  
30  
75  
M0, M1, M2, DCE/DTE = V  
SHDN = GND  
IN  
SHDN = 3V  
16  
3
V
V
Output High Voltage  
I = 3mA  
O
2.7  
V
V
OH  
OL  
Output Low Voltage  
I = 1.6mA  
O
0.2  
0.4  
I
I
Output Short-Circuit Current  
Three-State Output Current  
0V V V  
IN  
±50  
mA  
OSR  
OZR  
O
M0 = M1 = M2 = V , V = GND  
–30  
–85  
–160  
±10  
µA  
µA  
IN  
O
M0 = M1 = M2 = V , V = V  
IN  
O
IN  
V.11 Driver  
V
V
Open Circuit Differential Output Voltage  
Loaded Differential Output Voltage  
R = 1.95k (Figure 1)  
± 5  
V
ODO  
ODL  
L
R = 50(Figure 1)  
0.5V  
±2  
0.67V  
ODO  
V
V
L
ODO  
R = 50(Figure 1)  
L
V  
Change in Magnitude of Differential  
Output Voltage  
R = 50(Figure 1)  
L
0.2  
V
OD  
V
Common Mode Output Voltage  
R = 50(Figure 1)  
3
V
V
OC  
L
V  
Change in Magnitude of Common Mode  
Output Voltage  
R = 50(Figure 1)  
L
0.2  
OC  
I
I
Short-Circuit Current  
V
= GND  
±150  
±100  
mA  
SS  
OZ  
OUT  
Output Leakage Current  
V
and V 0.25V, Power Off or  
± 1  
µA  
A
B
No-Cable Mode or Driver Disabled  
t , t  
Rise or Fall Time  
(Figures 2, 13)  
2
15  
15  
0
15  
40  
40  
3
25  
65  
65  
12  
ns  
ns  
ns  
ns  
ns  
r
f
PLH  
PHL  
t
t
Input to Output Rising  
Input to Output Falling  
(Figures 2, 13)  
(Figures 2, 13)  
t  
Input to Output Difference, t  
Output to Output Skew  
– t  
(Figures 2, 13)  
PLH  
PHL  
t
(Figures 2, 13)  
3
SKEW  
sn2846 2846fs  
3
LTC2846  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V, VIN = 3.3V, VSHDN = VIN, unless otherwise noted. (Notes 2, 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
0.2  
100  
TYP  
MAX  
UNITS  
V.11 Receiver  
V
Input Threshold Voltage  
Input Hysteresis  
7V V 7V  
0.2  
40  
V
mV  
TH  
CM  
V  
TH  
7V V 7V  
15  
103  
15  
50  
50  
4
CM  
R
IN  
Input Impedance  
–7V V 7V (Figure 3)  
CM  
t , t  
Rise or Fall Time  
C = 50pF (Figures 4, 14)  
L
ns  
ns  
ns  
ns  
r
f
PLH  
PHL  
t
t
Input to Output Rising  
Input to Output Falling  
Input to Output Difference, t  
C = 50pF (Figures 4, 14)  
L
90  
90  
25  
C = 50pF (Figures 4, 14)  
L
t  
– t  
PHL  
C = 50pF (Figures 4, 14)  
L
0
PLH  
V.35 Driver  
V
Differential Output Voltage  
Open Circuit, R = 1.95k (Figure 5)  
±1.2  
±0.66  
V
V
OD  
L
With Load, 4V V 4V (Figure 6)  
±0.44  
±0.55  
CM  
V
V
, V  
Single-Ended Output Voltage  
Transmitter Output Offset  
Open Circuit, R = 1.95k (Figure 5)  
±1.2  
±0.6  
13  
13  
V
V
OA OB  
L
R = 50(Figure 5)  
L
OC  
I
I
I
Transmitter Output High Current  
Transmitter Output Low Current  
V , V = 0V  
–9  
9
11  
11  
±1  
100  
150  
5
mA  
mA  
µA  
OH  
A
B
V , V = 0V  
OL  
OZ  
A
B
Transmitter Output Leakage Current  
V
and V 0.25V  
±100  
150  
A
B
R
R
Transmitter Differential Mode Impedance  
Transmitter Common Mode Impedance  
Rise or Fall Time  
50  
OD  
OC  
2V V 2V (Figure 7)  
135  
165  
CM  
t , t  
(Figures 8, 13)  
(Figures 8, 13)  
(Figures 8, 13)  
(Figures 8, 13)  
(Figures 8, 13)  
ns  
ns  
ns  
ns  
ns  
r
f
PLH  
PHL  
t
t
Input to Output  
15  
15  
35  
35  
0
65  
65  
16  
Input to Output  
t  
Input to Output Difference, t  
Output to Output Skew  
– t  
PLH PHL  
t
4
SKEW  
V.35 Receiver  
V
Differential Receiver Input Threshold Voltage  
Receiver Input Hysteresis  
Receiver Differential Mode Impedance  
Receiver Common Mode Impedance  
Rise or Fall Time  
2V V 2V (Figure 9)  
0.2  
0.2  
40  
V
mV  
TH  
CM  
V  
2V V 2V (Figure 9)  
15  
103  
150  
15  
TH  
CM  
R
R
2V V 2V  
90  
110  
165  
ID  
IC  
CM  
2V V 2V (Figure 10)  
135  
CM  
t , t  
r
C = 50pF (Figures 4, 14)  
L
ns  
ns  
ns  
ns  
f
t
t
Input to Output  
C = 50pF (Figures 4, 14)  
L
50  
90  
90  
25  
PLH  
PHL  
Input to Output  
C = 50pF (Figures 4, 14)  
L
50  
t  
Input to Output Difference, t  
Output Voltage  
– t  
PHL  
C = 50pF (Figures 4, 14)  
L
0
4
PLH  
V.28 Driver  
V
Open Circuit  
R = 3k (Figure 11)  
L
±10  
V
V
O
±5  
±8.5  
I
Short-Circuit Current  
Power-Off Resistance  
V
= GND  
±150  
mA  
SS  
OUT  
R
2V < V < 2V, Power Off  
or No-Cable Mode  
300  
4
OZ  
O
SR  
Slew Rate  
R = 7k, C = 0 (Figures 11, 15)  
30  
2.5  
2.5  
V/µs  
µs  
L
L
t
t
Input to Output  
Input to Output  
R = 3k, C = 2500pF (Figures 11, 15)  
1.5  
1.5  
PLH  
PHL  
L
L
R = 3k, C = 2500pF (Figures 11, 15)  
µs  
L
L
sn2846 2846fs  
4
LTC2846  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V, VIN = 3.3V, VSHDN = VIN, unless otherwise noted. (Notes 2, 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V.28 Receiver  
V
V
Input Low Threshold Voltage  
Input High Threshold Voltage  
Receiver Input Hysteresis  
Receiver Input Impedance  
Rise or Fall Time  
(Figure 12)  
(Figure 12)  
(Figure 12)  
0.8  
V
V
THL  
TLH  
2
0
3
V  
0.05  
5
0.3  
7
V
TH  
R
15V V 15V  
kΩ  
ns  
ns  
ns  
IN  
A
t , t  
r
C = 50pF (Figures 12, 16)  
L
15  
f
t
t
Input to Output  
C = 50pF (Figures 12, 16)  
L
60  
300  
300  
PLH  
PHL  
Input to Output  
C = 50pF (Figures 12, 16)  
L
160  
Boost Switching Regulator (Note 4)  
V
V
Operating Voltage  
Feedback Voltage  
FB Pin Bias Current  
3
3.3  
1.255  
120  
3.6  
1.280  
360  
V
V
IN  
1.230  
FB  
I
I
V
= 1.255V  
nA  
FB  
FB  
Quiescent Current  
Quiescent Current in Shutdown  
V
SHDN  
V
SHDN  
= 2.4V, Not Switching  
= 0V, V = 3V  
4.2  
0.01  
6
1
mA  
µA  
Q
IN  
V  
f
Reference Line Regulation  
Switching Frequency  
Maximum Duty Cycle  
Switch Current Limit  
3V V 3.6V  
0.01  
1.2  
0.05  
1.6  
%/V  
MHz  
%
FB(LR)  
IN  
0.85  
82  
1
DC  
MAX  
90  
I
(Note 5)  
1.2  
2
1
A
LIM  
V
Switch V  
I
SW  
= 900mA  
= 5V  
350  
0.01  
mV  
µA  
SAT  
CESAT  
I
Switch Leakage Current  
V
SW  
LEAK  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of the device may be impaired.  
Note 3: All typicals are given for V = 5V, V = 3.3V, C  
= C = 10µF,  
VCC VIN  
CC  
IN  
C
= 1µF, C  
= 3.3µF and T = 25°C.  
VEE A  
VDD  
Note 2: All currents into device pins are positive; all currents out of device  
are negative. All voltages are referenced to device ground unless otherwise  
specified.  
Note 4: The Boost Regulator is specified for V = 3V unless otherwise  
noted.  
Note 5: Current limit guaranteed by design and/or correlation to static test.  
IN  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
V.11 Mode ICC vs Data Rate  
V.35 Mode ICC vs Data Rate  
V.28 Mode ICC vs Data Rate  
60  
55  
50  
45  
40  
35  
30  
150  
145  
140  
135  
130  
125  
120  
170  
160  
150  
140  
T
= 25°C  
T
= 25°C  
T
= 25°C  
A
A
A
130  
120  
110  
100  
90  
10  
20  
40  
60  
80 100  
100  
1000  
10  
100  
1000  
10000  
10  
10000  
DATA RATE (kBd)  
DATA RATE (kBd)  
DATA RATE (kBd)  
2846 G06  
2846 G04  
2846 G05  
sn2846 2846fs  
5
LTC2846  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
V.11 Mode ICC vs Temperature  
V.35 Mode ICC vs Temperature  
V.28 Mode ICC vs Temperature  
128.0  
127.5  
127.0  
126.5  
126.0  
125.5  
125.0  
124.5  
124.0  
123.5  
123.0  
110  
105  
100  
95  
37.5  
37.0  
36.5  
36.0  
35.5  
35.0  
34.5  
34.0  
90  
85  
80  
33.5  
–40  
0
20  
40  
60  
80 100  
–20  
40  
TEMPERATURE (°C)  
80 100  
20  
0
40  
60  
80 100  
–40 –20  
0
20  
60  
–40  
20  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2846 G08  
2846 G07  
3846 G09  
Boost Switching Regulator  
Oscillator Frequency  
vs Temperature  
Boost Switching Regulator SHDN  
Pin Current vs Voltage  
Boost Switching Regulator  
Current Limit vs Duty Cycle  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.4  
1.2  
40  
35  
30  
25  
T
A
= 25°C  
1.0  
0.8  
0.6  
0.4  
0.2  
T
= 100°C  
T
= 25°C  
A
A
20  
15  
10  
5
0
0
–40 –20  
0
20  
40  
60  
80 100  
1
2
4
50  
DUTY CYCLE (%)  
70  
80  
0
5
6
10 20  
30  
40  
60  
3
TEMPERATURE (°C)  
SHDN PIN VOLTAGE (V)  
2846 G12  
2846 G10  
2846 G11  
Efficiency vs Load Current  
90  
85  
80  
75  
70  
65  
60  
55  
50  
T
= 25°C  
A
V
= 3.3V  
IN  
0
50 100 150 200 250 300 350 400 450 500  
LOAD CURRENT (mA)  
2846 TA01b  
sn2846 2846fs  
6
LTC2846  
U
U
U
PI FU CTIO S  
NC (Pin 1): No Connect.  
M2 (Pin 18): TTL Level Mode Select Input 2 with Pull-Up  
to VIN. See Table 1.  
PGND (Pin 2): Boost Switching Regulator Power Ground.  
Tie PGND to SGND.  
DCE/DTE (Pin 19): TTL Level Mode Select Input with  
Pull-Up to VIN. See Table 1.  
VIN (Pin 3): Input Supply Pin. Input supply to boost  
switching regulator. 3V VIN 3.6V. Bypass with a 10µF  
capacitor to ground.  
R3 B (Pin 20): Receiver 3 Noninverting Input.  
R3 A (Pin 21): Receiver 3 Inverting Input.  
R2 B (Pin 22): Receiver 2 Noninverting Input.  
R2 A (Pin 23): Receiver 2 Inverting Input.  
SHDN (Pin 4): Boost Switching Regulator Shutdown Pin.  
Tie to 2.4V or more to enable regulator. Ground to shut  
down.  
C1(Pin 5): Capacitor C1 Negative Terminal. Connect a  
D3/R1 B (Pin 24): Receiver 1 Noninverting Input and  
Driver 3 Noninverting Output.  
1µF capacitor between C1+ and C1.  
C1+ (Pin 6): Capacitor C1 Positive Terminal. Connect a  
1µF capacitor between C1+ and C1.  
D3/R1 A (Pin 25): Receiver 1 Inverting Input and Driver 3  
Inverting Output.  
D2 B (Pin 26): Driver 2 Noninverting Output.  
D2 A (Pin 27): Driver 2 Inverting Output.  
D1 B (Pin 28): Driver 1 Noninverting Output.  
D1 A (Pin 29): Driver 1 Inverting Output.  
GND (Pin 30): Transceiver Ground.  
VDD (Pin 7): Generated Positive Supply Voltage for  
V.28. Connect a 1µF capacitor to ground.  
VCC (Pin 8): Input Supply Pin. Input supply to trans-  
ceiver. 4.75VVCC 5.25V. Connect to output of switch-  
ing regulator.  
D1 (Pin 9): TTL Level Driver 1 Input.  
D2 (Pin 10): TTL Level Driver 2 Input.  
D3 (Pin 11): TTL Level Driver 3 Input.  
VEE (Pin31):GeneratedNegativeSupplyVoltage.Connect  
a 3.3µF capacitor to GND.  
C2(Pin 32): Capacitor C2 Negative Terminal. Connect a  
R1 (Pin 12): CMOS Level Receiver 1 Output with Pull-Up  
to VIN when Three-Stated.  
1µF capacitor between C2+ and C2.  
C2+ (Pin 33): Capacitor C2 Positive Terminal. Connect a  
1µF capacitor between C2+ and C2.  
R2 (Pin 13): CMOS Level Receiver 2 Output with Pull-Up  
to VIN when Three-Stated.  
SGND(Pin34):BoostSwitchingRegulatorSignalGround.  
Tie PGND to SGND.  
R3 (Pin 14): CMOS Level Receiver 3 Output with Pull-Up  
to VIN when Three-Stated.  
FB (Pin 35): Boost Switching Regulator Feedback Pin.  
Reference voltage is 1.255V. Connect resistive divider tap  
here. Minimize trace area at FB.  
M0 (Pin 15): TTL Level Mode Select Input 0 with Pull-Up  
to VIN. See Table 1.  
M1 (Pin 16): TTL Level Mode Select Input 1 with Pull-Up  
SW (Pin 36): Boost Switching Regulator Switch Pin.  
Connect inductor/diode here. Minimize trace area at this  
pin to reduce EMI.  
to VIN. See Table 1.  
VIN (Pin17):InputSupplyPin.Inputsupplytotransceiver.  
3V VIN 3.6V. Connect to Pin 3.  
sn2846 2846fs  
7
LTC2846  
W
BLOCK DIAGRA  
BOOST SWITCHING REGULATOR  
GND SW  
SW  
2
3
4
36  
35  
34  
PGND  
V
FB  
FB  
V
IN  
IN  
SHDNGND  
SGND  
SHDN  
CHARGE PUMP  
+
+
C1  
C1  
C1  
V
C2  
C2  
V
C2  
5
6
7
33  
32  
31  
+
+
C1  
C2  
V
V
DD  
DD  
EE  
EE  
V
8
V
GND  
30 GND  
29 D1A  
CC  
CC  
50Ω  
S1  
D1  
9
D1  
S2  
125Ω  
50Ω  
D1B  
28  
27 D2A  
50Ω  
S1  
D2 10  
D2  
D3  
S2  
125Ω  
50Ω  
D2B  
26  
D3 11  
DCE/DTE 19  
R1 12  
25 D3/R1 A  
20k  
20k  
10k  
6k  
51.5Ω  
S3  
S1  
S2  
125Ω  
10k  
20k  
51.5Ω  
24 D3/R1 B  
R1  
R2A  
23  
6k  
S3  
10k  
51.5Ω  
S2  
R2 13  
R2  
125Ω  
10k  
20k  
51.5Ω  
R2B  
R3A  
22  
21  
20k  
10k  
6k  
S3  
51.5Ω  
51.5Ω  
S2  
R3 14  
R3  
125Ω  
V
17  
15  
IN  
10k  
20k  
M0  
R3B  
20  
MODE  
SELECTION  
LOGIC  
2846 BD  
M1 16  
M2 18  
sn2846 2846fs  
8
LTC2846  
TEST CIRCUITS  
C
L
R
R
L
B
A
100pF  
B
A
D
D
R
L
V
OD  
100Ω  
C
L
V
OC  
L
100pF  
2846 F02  
2846 F01  
Figure 1. V.11 Driver DC Test Circuit  
Figure 2. V.11 Driver AC Test Circuit  
I
B
B
R
B
I
A
R
C
A
L
A
+
= ±7V  
V
CM  
2(V – V )  
B
A
R
=
IN  
I
B
– I  
2846 F04  
A
2846 F03  
Figure 3. Input Impedance Test Circuit  
Figure 4. V.11, V.35 Receiver AC Test Circuit  
V
OB  
V
OB  
50Ω  
50Ω  
R
R
50  
50Ω  
50Ω  
50Ω  
50Ω  
L
125Ω  
125Ω  
125Ω  
125Ω  
V
OD  
50Ω  
V
OC  
+
L
V
V
CM  
= ±2V  
CM  
2846 F05  
2846 F06  
2846 F07  
V
OA  
V
OA  
Figure 5. V.35 Driver Open-Circuit Test  
Figure 6. V.35 Driver Test Circuit  
Figure 7. V.35 Driver Common Mode  
Impedance Test Circuit  
51.5Ω  
125Ω  
50Ω  
50Ω  
50Ω  
125Ω  
125Ω  
+
+
V
CM  
= ±2V  
V
50Ω  
TH  
51.5Ω  
+
2846 F08  
V
CM  
2846 F09  
2846 F10  
Figure 8. V.35 Driver AC Test Circuit  
Figure 9. V.35 Receiver DC Test Circuit  
Figure 10. Receiver Common Mode  
Impedance Test Circuit  
D
A
A
R
R
C
V
A
C
L
L
L
2846 F11  
2846 F12  
Figure 11. V.28 Driver Test Circuit  
Figure 12. V.28 Receiver Test Circuit  
sn2846 2846fs  
9
LTC2846  
W
U
ODE SELECTIO  
Table 1  
Mode Name M2 M1 M0 DCE/ D1,2 D3  
DTE  
D1  
D2  
D3  
R1  
R2  
R3  
R1  
R2,R3  
V
V
EE  
DD  
(Note 3) (Note 3) (Note 4) (Note 5)  
(Note 2)  
(Note 2)  
(Note 2)  
A
B
A
B
A
B
A
B
A
B
A
B
Not Used  
(Default V.11)  
RS530A  
RS530  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
X
X
X
X
X
X
X
X
X
V.11 V.11 V.11 V.11  
V.11 V.11 V.11 V.11  
V.11 V.11 V.11 V.11  
V.11 V.11 V.11 V.11  
V.35 V.35 V.35 V.35  
V.11 V.11 V.11 V.11  
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
V.11 V.11 V.11 V.11 V.11 V.11 CMOS CMOS 9.3V  
V.11 V.11 V.11 V.11 V.11 V.11 CMOS CMOS 9.3V  
V.11 V.11 V.11 V.11 V.11 V.11 CMOS CMOS 9.3V  
V.11 V.11 V.11 V.11 V.11 V.11 CMOS CMOS 9.3V  
–6V  
–6V  
–6V  
X.21  
–6V  
V.35  
V.35 V.35 V.35 V.35 V.35 V.35 CMOS CMOS  
8V  
–6.5V  
–6V  
RS449/V.36  
V.28/RS232  
No Cable  
V.11 V.11 V.11 V.11 V.11 V.11 CMOS CMOS 9.3V  
V.28  
Z
Z
Z
V.28  
Z
Z
Z
V.28 30k V.28 30k V.28 30k CMOS CMOS 8.7V –8.5V  
30k 30k 30k 30k 30k 30k  
Z
Z
4.7V  
0.3V  
Not Used  
(Default V.11)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1
TTL TTL V.11 V.11 V.11 V.11 V.11 V.11 30k 30k V.11 V.11 V.11 V.11  
TTL TTL V.11 V.11 V.11 V.11 V.11 V.11 30k 30k V.11 V.11 V.11 V.11  
TTL TTL V.11 V.11 V.11 V.11 V.11 V.11 30k 30k V.11 V.11 V.11 V.11  
TTL TTL V.11 V.11 V.11 V.11 V.11 V.11 30k 30k V.11 V.11 V.11 V.11  
TTL TTL V.35 V.35 V.35 V.35 V.35 V.35 30k 30k V.35 V.35 V.35 V.35  
TTL TTL V.11 V.11 V.11 V.11 V.11 V.11 30k 30k V.11 V.11 V.11 V.11  
Z
Z
Z
Z
Z
Z
Z
Z
CMOS 9.3V  
CMOS 9.3V  
CMOS 9.3V  
CMOS 9.3V  
–6V  
–6V  
RS530A  
RS530  
–6V  
X.21  
–6V  
V.35  
CMOS  
8V  
–6.5V  
–6V  
RS449/V.36  
V.28/RS232  
No Cable  
CMOS 9.3V  
TTL TTL V.28  
Z
Z
V.28  
Z
Z
Z
V.28  
Z
Z
Z
30k 30k V.28 30k V.28 30k  
30k 30k 30k 30k 30k 30k  
CMOS 8.7V –8.5V  
4.7V 0.3V  
X
X
Z
Z
Note 1: Driver inputs are TTL level compatible.  
Note2:Unusedreceiverinputsareterminatedwith30ktoground. Inaddition, R2andR3arealways  
terminated by a 103differential impedence (see Block Diagram on page 8).  
Note 4: VDD values shown are typical values for VCC = 5V, VIN = 3.3V and TA = 25°C with LTC2846  
under full load for each mode.  
Note 5: VEE values shown are typical values for VCC = 5V, VIN = 3.3V and TA = 25°C with LTC2846  
under full load for each mode.  
Note 3: Receiver Outputs are CMOS level compatible and have a weak pull up to VIN when Z.  
U
W
W
SWITCHI G TI E WAVEFOR S  
3V  
f = 1MHz : t 10ns : t 10ns  
r
f
1.5V  
1.5V  
D
0V  
t
t
PHL  
PLH  
V
O
90%  
90%  
10%  
B – A  
50%  
50%  
10%  
–V  
O
1/2 V  
O
t
t
f
r
A
V
O
B
t
t
2846 F13  
SKEW  
SKEW  
Figure 13. V.11, V.35 Driver Propagation Delays  
V
B – A  
OD2  
f = 1MHz : t 10ns : t 10ns  
INPUT  
r
f
0V  
t
0V  
–V  
OD2  
t
PLH  
PHL  
V
R
OH  
OUTPUT  
1.65V  
1.65V  
V
OL  
2846 F14  
Figure 14. V.11, V.35 Receiver Propagation Delays  
sn2846 2846fs  
10  
LTC2846  
U
W
W
SWITCHI G TI E WAVEFOR S  
3V  
1.5V  
t
1.5V  
D
0V  
PHL  
3V  
t
PLH  
V
O
3V  
SR =  
2846 F15  
6V  
f
6V  
r
0V  
0V  
SR =  
–3V  
A
t
t
–3V  
–V  
O
t
t
r
f
Figure 15. V.28 Driver Propagation Delays  
V
IH  
1.5V  
A
1.5V  
V
IL  
t
PHL  
t
PLH  
V
R
OH  
1.65V  
2846 F16  
1.65V  
V
OL  
Figure 16. V.28 Receiver Propagation Delays  
W U U  
U
APPLICATIO S I FOR ATIO  
Mode Selection  
Overview  
The interface protocol is selected using the mode select  
pins M0, M1 and M2 (see Table 1).  
The LTC2846 consists of a boost switching regulator, a  
charge pump and a 3-driver/3-receiver transceiver. The  
boost switching regulator generates a 5V VCC from the  
3.3V input at VIN to power the charge pump and trans-  
ceiver. The charge pump generates the VDD and VEE  
supplies. The LTC2846’s VCC, VDD and VEE supplies can  
be used to power a companion chip like the LTC2844 or  
LTC2845. The receiver outputs are driven between 0V and  
VIN to interface with 3.3V logic.  
For example, if the port is configured as a V.35 interface,  
the mode selection pins should be M2 = 1, M1 = 0, M0 = 0.  
For the control signals, the drivers and receivers will  
operateinV.28(RS232)electricalmode. Fortheclockand  
data signals, the drivers and receivers will operate in V.35  
electrical mode. The DCE/DTE pin will configure the port  
for DCE mode when high, and DTE when low.  
The LTC2846 and LTC2844 form a complete software-  
selectable DTE or DCE interface port that supports the  
RS232, RS449, EIA530, EIA530-A, V.35, V.36 and X.21  
protocols. Cable termination is provided on-chip, elimi-  
nating the need for discrete termination designs.  
Theinterfaceprotocolmaybeselectedsimplybyplugging  
the appropriate interface cable into the connector. The  
mode pins are routed to the connector and are left uncon-  
nected (1) or wired to ground (0) in the cable as shown in  
Figure 18. The internal pull-up current sources will ensure  
a binary 1 when a pin is left unconnected.  
A complete DCE-to-DTE interface operating in EIA530  
modeisshowninFigure17. TheLTC2846halfofeachport  
is used to generate and appropriately terminate the clock  
and data signals. The LTC2844 is used to generate the  
control signals along with LL (Local Loopback).  
The mode selection may also be accomplished by using  
jumpers to connect the mode pins to ground or VIN.  
sn2846 2846fs  
11  
LTC2846  
W U U  
U
APPLICATIO S I FOR ATIO  
DTE  
DCE  
SERIAL  
CONTROLLER  
LTC2846  
LTC2846  
SERIAL  
CONTROLLER  
103Ω  
103Ω  
R3  
D1  
D2  
D3  
TXD  
TXD  
TXD  
SCTE  
R2  
R1  
SCTE  
SCTE  
D3  
TXC  
RXC  
RXD  
R1  
103Ω  
103Ω  
103Ω  
TXC  
RXC  
RXD  
TXC  
RXC  
R2  
R3  
D2  
D1  
RXD  
LTC2844  
R3  
LTC2844  
D1  
RTS  
DTR  
RTS  
DTR  
RTS  
DTR  
D2  
D3  
R2  
R1  
D3  
DCD  
DSR  
R1  
R2  
R3  
DCD  
DSR  
DCD  
DSR  
D2  
D1  
CTS  
LL  
CTS  
LL  
CTS  
LL  
D4  
R4  
R4  
D4  
2846 F17  
Figure 17. Complete Multiprotocol Interface in EIA530 Mode  
When the cable is removed, leaving all mode pins uncon-  
nected, the LTC2846/LTC2844 will enter no-cable mode.  
In this mode the LTC2846/LTC2844 supply current drops  
to less than 900µA and the LTC2846/LTC2844 driver out-  
puts are forced into a high impedance state. At the same  
time, the R2 and R3 receivers of the LTC2846 are differ-  
entially terminated with 103and the other receivers on  
the LTC2846 and LTC2844 are terminated with 30kto  
ground.  
Cable Termination  
Traditional implementations used expensive relays to  
switch resistors or required the user to change termina-  
tion modules every time a new interface standard was  
sn2846 2846fs  
12  
LTC2846  
W U U  
APPLICATIO S I FOR ATIO  
U
(DATA)  
CONNECTOR  
15  
16  
18  
19  
M0  
LTC2846  
M1  
M2  
NC  
NC  
DCE/DTE  
CABLE  
14  
13  
12  
11  
DCE/DTE  
M2  
LTC2844  
M1  
M0  
2846 F18  
(DATA)  
Figure 18. Single Port DCE V.35 Mode Selection in the Cable  
BALANCED  
INTERCONNECTING  
CABLE  
selected. Switching the terminations with FETs is difficult  
because the FETs must remain off when the signal voltage  
is beyond the supply voltage. Alternatively, custom cables  
may contain termination in the cable head or route signals  
to various terminations on the board.  
LOAD  
GENERATOR  
CABLE  
TERMINATION  
RECEIVER  
A
A'  
The LTC2846/LTC2844 chip set solves the cable termina-  
tion switching problem by automatically providing the  
appropriate termination and switching on-chip for the  
V.10 (RS423), V.11 (RS422), V.28 (RS232) and V.35  
electrical protocols.  
2846 F19  
C
C'  
Figure 19. Typical V.10 Interface  
V.10 (RS423) Interface  
I
Z
3.25mA  
All V.10 drivers and receivers necessary for the RS449,  
EIA530, EIA530-A, V.36 and X.21 protocols are imple-  
mented on the LTC2844 or LTC2845.  
A typical V.10 unbalanced interface is shown in Figure 19.  
A V.10 single-ended generator with output A and ground  
C is connected to a differential receiver with input A' con-  
nected to A, and ground C' connected via the signal return  
to ground C. Usually, no cable termination is required for  
V.10 interfaces, but the receiver inputs must be compliant  
with the impedance curve shown in Figure 20.  
–10V  
–3V  
V
Z
3V  
10V  
The V.10 receiver configuration in the LTC2844 and  
LTC2845 is shown in Figure 21. In V.10 mode, switch S3  
inside the LTC2844 and LTC2845 is turned off. The  
noninverting input is disconnected inside the LTC2844  
2846 F20  
–3.25mA  
Figure 20. V.10 Receiver Input Impedance  
sn2846 2846fs  
13  
LTC2846  
W U U  
U
APPLICATIO S I FOR ATIO  
A
A
'
A'  
LTC2844  
LTC2846  
R5  
20k  
R5  
20k  
R1  
R8  
6k  
R8  
6k  
51.5Ω  
R6  
10k  
R6  
10k  
RECEIVER  
RECEIVER  
S3  
S1  
S2  
S3  
R3  
124Ω  
R7  
10k  
R7  
10k  
R2  
51.5Ω  
R4  
20k  
R4  
20k  
B
B'  
B'  
C'  
C'  
2846 F23  
2846 F21  
GND  
GND  
Figure 21. V.10 Receiver Configuration  
Figure 23. V.11 Receiver Configuration  
termination impedance to the cable as shown in Figure  
231. The LTC2844 and LTC2845 only handle control  
signals, so no termination other than their V.11 receivers’  
30k input impedance is necessary.  
BALANCED  
INTERCONNECTING  
CABLE  
LOAD  
GENERATOR  
CABLE  
TERMINATION  
RECEIVER  
A
A'  
V.28 (RS232) Interface  
100Ω  
MIN  
A typical V.28 unbalanced interface is shown in Figure 24.  
A V.28 single-ended generator with output A and ground  
C is connected to a single-ended receiver with input A  
connected to A and ground C  
return to ground C.  
B
C
B'  
C'  
2846 F22  
'
' connected via the signal  
Figure 22. Typical V.11 Interface  
and LTC2845 receivers and connected to ground. The  
cable termination is then the 30k input impedance to  
ground of the LTC2844 and LTC2845 V.10 receiver.  
BALANCED  
INTERCONNECTING  
CABLE  
LOAD  
GENERATOR  
CABLE  
TERMINATION  
RECEIVER  
V.11 (RS422) Interface  
A
A'  
A typical V.11 balanced interface is shown in Figure 22. A  
V.11 differential generator with outputs A and B and  
ground C is connected to a differential receiver with input  
2846 F24  
C
C'  
A' connected to A, input B' connected to B, and ground C'  
Figure 24. Typical V.28 Interface  
connected via the signal return to ground C. The V.11  
interface has a differential termination at the receiver end  
that has a minimum value of 100. The termination  
resistor is optional in the V.11 specification, but for the  
high speed clock and data lines, the termination is essen-  
tial to prevent reflections from corrupting the data. The  
receiver inputs must also be compliant with the imped-  
ance curve shown in Figure 20.  
A
'
LTC2846  
R5  
R1  
R8  
6k  
20k  
51.5Ω  
R6  
RECEIVER  
10k  
S3  
S1  
S2  
R3  
124Ω  
R7  
10k  
R2  
51.5Ω  
R4  
20k  
B
'
In V.11 mode, all switches are off except S1 of the  
LTC2846’s receivers which connects a 103differential  
2846 F25  
GND  
C
'
1Actually, there is no switch S1 in receivers R2 and R3. However, for simplicity, all termination  
networks on the LTC2846 can be treated identically if it is assumed that an S1 switch exists and is  
always closed on the R2 and R3 receivers.  
Figure 25. V.28 Receiver Configuration  
sn2846 2846fs  
14  
LTC2846  
W U U  
APPLICATIO S I FOR ATIO  
U
In V.28 mode, S3 is closed inside the LTC2846/LTC2844  
which connects a 6k (R8) impedance to ground in parallel  
with 20k (R5) plus 10k (R6) for a combined impedance of  
5k as shown in Figure 25. Proper termination is only pro-  
videdwhentheBinputofthereceiversisfloating, sinceS1  
of the LTC2846’s R2 and R3 receivers remains on in V.28  
mode1. The noninverting input is disconnected inside the  
LTC2846/LTC2844 receiver and connected to a TTL level  
reference voltage to give a 1.4V receiver trip point.  
100Ω ±10, and the impedance between shorted termi-  
nals (A and B ) and ground (C') must be 150Ω ±15.  
'
'
InV.35mode,bothswitchesS1andS2insidetheLTC2846  
are on, connecting a T network impedance as shown in  
Figure 27. The 30k input impedance of the receiver is  
placed in parallel with the T network termination, but does  
not affect the overall input impedance significantly.  
The generator differential impedance must be 50to  
150and the impedance between shorted terminals (A  
and B) and ground (C) must be 150Ω ±15.  
V.35 Interface  
A typical V.35 balanced interface is shown in Figure 26. A  
V.35 differential generator with outputs A and B and  
ground C is connected to a differential receiver with input  
No-Cable Mode  
The no-cable mode (M0 = M1 = M2 = 1) is intended for  
the case when the cable is disconnected from the con-  
nector. The charge pump, bias circuitry, drivers and  
receiversareturnedoff, thedriveroutputsareforcedinto  
a high impedance state, and theVCC supply current to the  
transceiver drops to less than 300µA while its VIN supply  
current drops to less than 10µA. Note that the LTC2846’s  
A' connected to A, input B' connected to B, and ground C'  
connected via the signal return to ground C. The V.35  
interface requires a T or delta network termination at the  
receiver end and the generator end. The receiver differen-  
tial impedance measured at the connector must be  
BALANCED  
R2andR3receiverscontinuetobeterminatedbya103  
differential impedance.  
INTERCONNECTING  
CABLE  
GENERATOR  
LOAD  
CABLE  
TERMINATION  
RECEIVER  
Charge Pump  
A'  
A
The LTC2846 uses an internal capacitive charge pump to  
generate VDD and VEE as shown in Figure 28. A voltage  
doubler generates about 8V on VDD and a voltage inverter  
generatesabout7.5VonVEE.Three1µFsurfacemounted  
tantalumorceramiccapacitorsarerequiredforC1, C2and  
C3. The VEE capacitor C4 should be a minimum of 3.3µF.  
All capacitors are 16V and should be placed as close as  
possible to the LTC2846 to reduce EMI.  
50Ω  
50Ω  
125Ω  
125Ω  
50Ω  
50Ω  
B
'
B
C
C'  
2846 F26  
Figure 26. Typical V.35 Interface  
A
'
LTC2846  
R5  
20k  
R1  
51.5Ω  
R8  
6k  
7
6
5
8
33  
32  
31  
30  
+
V
C2  
C2  
DD  
+
R6  
RECEIVER  
C2  
C3  
1µF  
10k  
1µF  
S1  
S2  
S3  
C1  
C1  
V
R3  
124Ω  
C1  
1µF  
LTC2846  
V
EE  
C4  
3.3µF  
R7  
10k  
R2  
51.5Ω  
R4  
20k  
+
B
'
GND  
5V  
CC  
C5  
10µF  
2846 F27  
GND  
C
'
2846 F28  
Figure 27. V.35 Receiver Configuration  
Figure 28. Charge Pump  
sn2846 2846fs  
15  
LTC2846  
W U U  
U
APPLICATIO S I FOR ATIO  
Switching Regulator  
The switching regulator has a switch current limit of 1A.  
This current limit protects the switch as well as the exter-  
nal components connected to the switching regulator.  
ThecircuitasshowninFigure29canprovideupto480mA  
at 5V to drive the LTC2846’s transceiver as well as its  
companionchipintheDTE-DCEinterface. Initsshutdown  
mode with the SHDN pin at 0V, the boost switching  
regulator draws less than 10µA.  
The high speed operation of the boost switching regulator  
demands careful attention to board layout. Figure 30  
shows the recommended component placement.  
Ferrite core inductors should be used to obtain the best  
efficiency, as core losses at 1.2MHz are much lower for  
ferritecoresthanforcheaperpowdered-irontypes.Choose  
an inductor that can handle at least 1A without saturating,  
and ensure that the inductor has a low DCR (copper wire  
resistance) to minimize I2R power losses.  
Receiver Fail-Safe  
All LTC2846/LTC2844 receivers feature fail-safe opera-  
tion in all modes. If the receiver inputs are left floating or  
areshortedtogetherbyaterminationresistor, thereceiver  
output will always be forced to a logic high.  
Use low ESR capacitors for the output to minimize output  
ripple voltage. Multilayer ceramic capacitors are an excel-  
lent choice, as they have extremely low ESR and are  
available in very small packages. Ceramic capacitors also  
make a good choice for the input decoupling capacitor,  
and should be placed as close as possible to the switching  
regulator. Solid tantalum or OS-CON capacitors can be  
used but they will occupy more board area than a ceramic  
and will have a higher ESR.  
DTE vs DCE Operation  
The DCE/DTE pin acts as an enable for Driver 3/Receiver 1  
in the LTC2846, and Driver 3/Receiver 1 and Receiver 4/  
Driver 4 in the LTC2844.  
The LTC2846/LTC2844 can be configured for either DTE  
or DCE operation in one of two ways: a dedicated DTE or  
DCE port with a connector of appropriate gender or a port  
with one connector that can be configured for DTE or DCE  
operationbyreroutingthesignalstotheLTC2846/LTC2844  
using a dedicated DTE cable or dedicated DCE cable.  
ASchottkydiodeisrecommendedforusewiththeswitch-  
ing regulator. The ON Semiconductor MBR0520 is a very  
good choice.  
A dedicated DTE port using a DB-25 male connector is  
showninFigure31.Theinterfacemodeisselectedbylogic  
outputs from the controller or from jumpers to either VIN  
or GND on the mode select pins. A dedicated DCE port  
using a DB-25 female connector is shown in Figure 32.  
To set the output voltage, select the values of R1 and R2  
according to the following equation.  
R1 = R2[(5V/1.255V) – 1]  
A good value for R2 is 4.3k which sets the current in the  
resistor divider chain to 1.255V/4.3k = 292µA.  
V
CC  
GND  
L1  
V
D1  
IN  
5.6µH  
V
CC  
V
IN  
5V  
3.3V  
C5  
480mA  
3
36  
SW  
R1  
R2  
V
D1  
R1  
13k  
C6  
10µF  
L1  
IN  
C6  
BOOST  
SWITCHING  
REGULATOR  
SHDN  
C5  
10µF  
35  
4
SHDN  
FB  
R2  
4.3k  
GND  
2, 34  
SHUTDOWN  
2846 F30  
C5,C6: TAIYO YUDEN X5R JMK316BJ106ML  
D1: ON SEMICONDUCTOR MBR0520  
L1: SUMIDA CR43-5R6  
2846 F29  
Figure 29. Boost Switching Regulator  
Figure 30. Suggested Layout  
sn2846 2846fs  
16  
LTC2846  
U
TYPICAL APPLICATIO S  
A port with one DB-25 connector, that can be configured  
for either DTE or DCE operation is shown in Figure 33. The  
configuration requires separate cables for proper signal  
routing in DTE or DCE operation. For example, in DTE  
mode, the TXD signal is routed to Pins 2 and 14 via the  
LTC2846’s Driver 1. In DCE mode, Driver 1 now routes the  
RXD signal to Pins 2 and 14.  
PRT refers to the power dissipated by each driver in a  
receiver termination on the far end of the cable while ND is  
the number of drivers. Conversely, current from the far  
end drivers dissipate power NR • PRT in the internal  
receiver termination where NR is the number of receivers.  
LTC2846 Power Dissipation  
Consider an LTC2846 in X.21, DCE mode (three V.11  
drivers and two V.11 receivers). From the Electrical Char-  
acteristics Table, ICC at no load = 14mA, ICC at full load =  
100mA. Each receiver termination is 100(RRT) and  
current going into each receiver termination = (100mA –  
14mA)/3 = 28.7mA (IRT).  
Multiprotocol Interface with RL, LL, TM  
and a DB-25 Connector  
IftheRL,LLandTMsignalsareimplemented,therearenot  
enough drivers and receivers available in the LTC2846/  
LTC2844. In Figure 34, the required control signals are  
handled by the LTC2845. The LTC2845 has an additional  
single-endeddriver/receiverpairthatcanhandletwomore  
optional control signals such as TM and RL.  
PRT = (IRT)2 • RRT  
(2)  
From Equation (2), PRT = 82.4mW and from Equation (1),  
DC power dissipation PDISS(2846) = 125% • (5V • 100mA)  
– 3 • 82.4mW + 2 • 82.4mW = 543mW.  
Cable-Selectable Multiprotocol Interface  
A cable-selectable multiprotocol DTE/DCE interface is  
shown in Figure 35. The select lines M0, M1 and DCE/DTE  
are brought out to the connector. The mode is selected by  
the cable by wiring M0 (connector Pin 18) and M1 (con-  
nector Pin 21) and DCE/DTE (connector Pin 25) to ground  
(connector Pin 7) or letting them float. If M0, M1 or  
DCE/DTE is floating, internal pull-up current sources will  
pull the signals to VIN. The select bit M2 is floating, and  
therefore, internally pulled high. When the cable is pulled  
out, the interface will go into the no-cable mode.  
Consider the above example running at a baud rate of  
10MBd. From the Typical Characteristic for “V.11 Mode  
ICC vs Data Rate,” the ICC at 10MBd is 160mA. ICC  
increases with baud rate due to driver transient dissipa-  
tion. From Equation (1), AC power dissipation PDISS(2846)  
= 125% • (5V • 160mA) –3 • 82.4mW + 2 • 82.4mW =  
918mW.  
LTC2845 Power Dissipation  
If a LTC2845 is used to form a complete DCE port with the  
LTC2846, it will be running in the X.21 mode (three V.11  
drivers and two V.10 drivers, two V.11 receivers and two  
V.10 receivers, all with internal 30k termination). In addi-  
tion to VCC, it uses the VDD and VEE outputs from the  
LTC2846. Negligible power is dissipated in the large  
internal receiver termination of the LTC2845 so the NR •  
PRT termofEquation(1)canbeomitted.ThusEquation(1)  
is modified as follows:  
Power Dissipation Calculations  
TheLTC2846takesina3.3Vsupplyandproducesa5VVCC  
with an internal switcher at approximately 80% efficiency.  
VDD andVEE areinturnproducedfromVCC withaninternal  
charge pump at approximately 80% and 70% efficiency  
respectively. Current drawn internally from VDD or VEE  
translates directly into a higher ICC. The LTC2846 dissi-  
pates power according to the equation:  
PDISS(2845) = (VCC • ICC) + (VDD • IDD)  
PDISS(2846) = 125% • (VCC • ICC)  
– ND • PRT + NR • PRT  
(1)  
sn2846 2846fs  
17  
LTC2846  
U
TYPICAL APPLICATIO S  
+ (VEE • IEE) – ND • PRT  
(3)  
79mW and V.10 PRT = 49.6mW.  
Since power is drawn from the supplies of the LTC2846  
(VCC, VDD and VEE) at less than 100% efficiency, the  
LTC2846 dissipates extra power to source PDISS(2845) and  
From Equation (3), PDISS(2845) = 5V • (110mA – 23mA) +  
(8V • 0.3mA) + 5.5V • 23mA – 3 • 79mW – 2 • 49.6mW =  
228mW. SincetheLTC2845runsslowcontrolsignals, the  
ACpowerdissipationcanbeassumedtobeequaltotheDC  
power dissipation.  
PRT  
:
PDISS1(2846) = 125% • (VCC • ICC) + 125% • 125%  
• (VDD • IDD) + 125% • 143% • (VEE • IEE)  
– PDISS(2845) – ND • PRT  
TheextrapowerdissipatedintheLTC2846duetoLTC2845  
is given by Equation(4), PDISS1(2846) = 25% • (5V • 87mA)  
+ 56% • (8V • 0.3mA) + 79% • (5.5V • 23mA) = 210mW.  
So for an X.21 DCE port running at 10MBd, the LTC2846  
dissipates approximately 918mW + 210mW = 1128mW  
while the LTC2845 dissipates 228mW.  
= 25% • (VCC • ICC) + 56% • (VDD • IDD)  
+ 79% • (VEE • IEE)  
(4)  
From the LTC2845 Electrical Characteristics Table, for  
VCC = 5V, VDD = 8V and VEE = – 5.5V:  
Compliance Testing  
I
I
I
I
I
I
at no load  
2.7mA  
110mA  
2mA  
CC  
CC  
EE  
at full load with all drivers high  
at no load  
The LTC2846/LTC2844 and LTC2846/LTC2845 chipsets  
have been tested by TUV Rheinland of North America Inc.  
and passed the NET1, NET2 and TBR2 requirements.  
Copies of the test reports are available from LTC or TUV  
Rheinland of North America Inc.  
at full load with both V.10 drivers low  
at no load  
23mA  
0.3mA  
0.3mA  
EE  
DD  
DD  
at full load  
The title of the reports are Test Report No.:  
TBR2/051501/02 and TBR2/050101/02  
The V.11 drivers are driven between VCC and GND while  
the V.10 drivers are driven between VCC and VEE. Assume  
that the V.11 driver outputs are high and V.10 driver  
outputs low. Current going into each 100V.11 receiver  
termination = (110mA – 2.7mA) – 23mA/3 = 28.1mA.  
Current going into each 450V.10 receiver termination =  
The address of TUV Rheinland of North America Inc. is:  
TUV Rheinland of North America Inc.  
1775, Old Highway 8 NW, Suite 107  
St. Paul, MN 55112  
Tel. (651) 639-0775  
Fax (651) 639-0873  
23mA – 2mA/2 = 10.5mA. From Equation (2), V.11 PRT  
=
sn2846 2846fs  
18  
LTC2846  
U
TYPICAL APPLICATIO S  
D1  
L1  
MBR0520  
5.6µH  
V
V
IN  
3.3V  
CC  
5V  
3
36  
C6  
R1  
10µF  
13k  
BOOST  
SWITCHING  
REGULATOR  
4
7
5
35  
33  
C5  
10µF  
SHDN  
R2  
4.3k  
C2  
1µF  
C3  
1µF  
32  
31  
C1  
CHARGE  
PUMP  
6
8
1µF  
C4  
V
+
3.3µF  
CC  
30  
29  
5V  
LTC2846  
2
TXD A (103)  
9
TXD  
D1  
D2  
D3  
T
T
T
14  
24  
28  
27  
TXD B  
SCTE A (113)  
10  
11  
SCTE  
11  
26  
SCTE B  
25  
15  
TXC A (114)  
12  
13  
14  
TXC  
RXC  
RXD  
R1  
R2  
R3  
24  
23  
12  
17  
TXC B  
RXC A (115)  
T
T
22  
21  
9
3
RXC B  
RXD A (104)  
16  
7
20  
15  
16  
18  
19  
RXD B  
SG  
M0  
M1  
M2  
17  
1
V
IN  
SHIELD  
DCE/DTE  
3.3V  
V
CC  
C7  
1µF  
C8  
1µF  
DB-25 MALE  
CONNECTOR  
28  
27  
1
2
V
V
EE  
GND  
CC  
C9  
1µF  
V
DD  
26  
4
RTS A (105)  
RTS B  
3
4
5
RTS  
D1  
D2  
D3  
25  
24  
23  
19  
20  
23  
DTR A (108)  
DTR B  
DTR  
LTC2844  
8
10  
6
22  
21  
20  
19  
6
7
8
DCD A (109)  
DCD B  
R1  
R2  
R3  
R4  
DCD  
DSR  
CTS  
LL  
DSR A (107)  
22  
DSR B  
5
18  
17  
CTS A (106)  
CTS B  
13  
10  
9
16  
18  
LL A (141)  
D4  
11  
12  
13  
14  
15  
V
IN  
3.3V  
M0  
M1  
M2  
M0  
M1  
M2  
V
IN  
C10  
1µF  
DCE/DTE  
2846 F31  
Figure 31. Controller-Selectable Multiprotocol DTE Port with DB-25 Connector  
sn2846 2846fs  
19  
LTC2846  
U
TYPICAL APPLICATIO S  
D1  
MBR0520  
L1  
5.6µH  
V
V
CC  
5V  
IN  
3.3V  
3
36  
C6  
R1  
10µF  
13k  
BOOST  
SWITCHING  
REGULATOR  
4
7
5
35  
33  
C5  
10µF  
SHDN  
R2  
4.3k  
C2  
C3  
1µF  
1µF  
32  
31  
C1  
1µF  
CHARGE  
PUMP  
6
8
C4  
V
CC  
5V  
+
3.3µF  
30  
29  
LTC2846  
3
RXD A (104)  
9
RXD  
D1  
D2  
D3  
T
T
T
16  
17  
28  
27  
RXD B  
RXC A (115)  
10  
11  
RXC  
9
26  
RXC B  
25  
15  
TXC A (114)  
12  
13  
14  
TXC  
SCTE  
TXD  
R1  
R2  
R3  
24  
23  
12  
24  
TXC B  
SCTE A (113)  
T
T
22  
21  
11  
2
SCTE B  
TXD A (103)  
14  
7
20  
15  
16  
18  
19  
TXD B  
M0  
M1  
M2  
SGND (102)  
17  
1
V
IN  
3.3V  
SHIELD (101)  
DCE/DTE  
NC  
V
CC  
C7  
1µF  
C8  
1µF  
DB-25 FEMALE  
CONNECTOR  
28  
27  
1
2
V
V
EE  
GND  
CC  
C9  
1µF  
V
DD  
26  
5
CTS A (106)  
CTS B  
3
4
5
CTS  
D1  
D2  
D3  
25  
24  
23  
13  
6
DSR A (107)  
DSR B  
22  
DSR  
LTC2844  
8
10  
20  
23  
22  
21  
20  
19  
6
7
8
DCD A (109)  
DCD B  
R1  
R2  
R3  
R4  
DCD  
DTR  
RTS  
LL  
DTR A (108)  
DTR B  
4
18  
17  
RTS A (105)  
RTS B  
19  
10  
9
16  
18  
LL A (141)  
D4  
11  
12  
13  
14  
15  
V
IN  
3.3V  
M0  
M1  
M2  
M0  
M1  
M2  
V
IN  
C10  
1µF  
NC  
DCE/DTE  
2846 F32  
Figure 32. Controller-Selectable DCE Port with DB-25 Connector  
sn2846 2846fs  
20  
LTC2846  
U
TYPICAL APPLICATIO S  
D1  
L1  
MBR0520  
5.6µH  
V
V
IN  
3.3V  
CC  
5V  
3
36  
C6  
R1  
10µF  
13k  
BOOST  
SWITCHING  
REGULATOR  
4
7
5
35  
33  
C5  
10µF  
SHDN  
R2  
4.3k  
C2  
1µF  
C3  
1µF  
32  
31  
C1  
1µF  
CHARGE  
PUMP  
6
8
C4  
V
+
3.3µF  
CC  
30  
29  
5V  
DTE  
DCE  
LTC2846  
2
TXD A  
RXD A  
9
DTE_TXD/DCE_RXD  
DTE_SCTE/DCE_RXC  
D1  
D2  
D3  
T
T
T
14  
24  
28  
27  
TXD B  
RXD B  
SCTE A RXC A  
10  
11  
11  
26  
SCTE B RXC B  
15  
25  
TXC A  
TXC A  
12  
13  
14  
DTE_TXC/DCE_TXC  
DTE_RXC/DCE_SCTE  
DTE_RXD/DCE_TXD  
R1  
R2  
R3  
12  
17  
24  
23  
TXC B  
TXC B  
RXC A  
SCTE A  
T
T
22  
21  
9
3
SCTE B  
TXD A  
RXC B  
RXD A  
16  
7
20  
TXD B  
RXD B  
SG  
15  
16  
18  
19  
M0  
M1  
M2  
17  
1
V
IN  
3.3V  
SHIELD  
DCE/DTE  
V
CC  
C7  
1µF  
C8  
1µF  
DB-25  
CONNECTOR  
28  
27  
1
2
V
V
EE  
GND  
CC  
C9  
1µF  
V
DD  
26  
4
RTS A  
CTS A  
3
4
5
DTE_RTS/DCE_CTS  
DTE_DTR/DCE_DSR  
D1  
D2  
D3  
25  
24  
23  
19  
20  
RTS B  
DTR A  
DTR B  
CTS B  
DSR A  
DSR B  
23  
LTC2844  
8
10  
6
22  
21  
20  
19  
DCD A  
DCD B  
DSR A  
DCD A  
DCD B  
DTR A  
6
7
8
DTE_DCD/DCE_DCD  
DTE_DSR/DCE_DTR  
DTE_CTS/DCE_RTS  
DTE_LL/DCE_LL  
R1  
R2  
R3  
R4  
22  
DSR B  
CTS A  
CTS B  
DTR B  
RTS A  
RTS B  
5
18  
17  
13  
10  
9
16  
18  
LL A  
LL A  
D4  
11  
12  
13  
14  
15  
V
IN  
3.3V  
M0  
M1  
M0  
M1  
M2  
V
IN  
C10  
1µF  
M2  
DCE/DTE  
DCE/DTE  
2846 F33  
Figure 33. Controller-Selectable Multiprotocol DTE/DCE Port with DB-25 Connector  
sn2846 2846fs  
21  
LTC2846  
U
TYPICAL APPLICATIO S  
D1  
MBR0520  
L1  
5.6µH  
V
V
CC  
5V  
IN  
3.3V  
3
36  
C6  
R1  
10µF  
13k  
BOOST  
SWITCHING  
REGULATOR  
4
7
5
35  
33  
C5  
10µF  
SHDN  
R2  
4.3k  
C2  
C3  
1µF  
1µF  
32  
31  
C1  
1µF  
CHARGE  
PUMP  
6
8
C4  
V
+
3.3µF  
CC  
30  
29  
5V  
LTC2846  
DTE  
TXD A  
DCE  
RXD A  
2
9
DTE_TXD/DCE_RXD  
DTE_SCTE/DCE_RXC  
D1  
D2  
D3  
T
T
T
14  
24  
28  
27  
TXD B  
RXD B  
SCTE A RXC A  
10  
11  
26  
11  
SCTE B RXC B  
25  
15  
TXC A  
TXC B  
RXC A  
TXC A  
TXC B  
SCTE A  
12  
13  
14  
DTE_TXC/DCE_TXC  
DTE_RXC/DCE_SCTE  
DTE_RXD/DCE_TXD  
R1  
R2  
R3  
12  
17  
24  
23  
T
T
9
3
22  
21  
RXC B  
RXD A  
SCTE B  
TXD A  
20  
16  
7
RXD B  
SG  
TXD B  
15  
16  
18  
19  
M0  
M1  
M2  
1
SHIELD  
17  
V
IN  
3.3V  
DCE/DTE  
V
CC  
C7  
1µF  
5V  
C8  
1µF  
36  
35  
DB-25  
CONNECTOR  
1, 19  
2
V
CC  
V
EE  
GND  
C9  
1µF  
V
DD  
34  
4
19  
20  
RTS A  
CTS A  
CTS B  
DSR A  
DSR B  
3
4
5
DTE_RTS/DCE_CTS  
DTE_DTR/DCE_DSR  
D1  
D2  
D3  
33  
32  
RTS B  
DTR A  
DTR B  
23  
31  
LTC2845  
8
30  
29  
28  
27  
DCD A  
DCD B  
DSR A  
DCD A  
DCD B  
DTR A  
6
7
R1  
R2  
R3  
10  
DTE_DCD/DCE_DCD  
DTE_DSR/DCE_DTR  
6
22  
DSR B  
CTS A  
DTR B  
RTS A  
26  
5
13  
18  
8
9
DTE_CTS/DCE_RTS  
DTE_LL/DCE_RI  
DTE_RI/DCE_LL  
25  
24  
CTS B  
LL  
RTS B  
RI  
D4  
R4  
10  
23  
*
RI  
LL  
25  
21  
17  
18  
22  
21  
DTE_TM/DCE_RL  
DTE_RL/DCE_TM  
R5  
TM  
RL  
RL  
TM  
D5  
11  
12  
13  
14  
20  
15  
V
IN  
M0  
M1  
M0  
M1  
M2  
V
IN  
3.3V  
*OPTIONAL  
C10  
1µF  
D4ENB  
2846 F34  
M2  
16  
NC  
DCE/DTE  
R4EN  
DCE/DTE  
Figure 34. Controller-Selectable Multiprotocol DTE/DCE Port with RL, LL, TM and DB-25 Connector  
sn2846 2846fs  
22  
LTC2846  
U
TYPICAL APPLICATIO S  
D1  
L1  
MBR0520  
5.6µH  
V
V
IN  
3.3V  
CC  
5V  
3
36  
C6  
R1  
10µF  
13k  
BOOST  
SWITCHING  
REGULATOR  
4
7
5
35  
33  
C5  
10µF  
SHDN  
R2  
4.3k  
C2  
1µF  
C3  
32  
31  
1µF  
C1  
1µF  
CHARGE  
PUMP  
6
8
C4  
V
+
3.3µF  
CC  
30  
29  
5V  
DTE  
DCE  
LTC2846  
2
TXD A  
RXD A  
9
DTE_TXD/DCE_RXD  
DTE_SCTE/DCE_RXC  
D1  
D2  
D3  
T
T
T
14  
24  
28  
27  
TXD B  
RXD B  
RXC A  
SCTE A  
10  
11  
11  
26  
SCTE B  
RXC B  
25  
15  
TXC A  
TXC A  
12  
13  
14  
DTE_TXC/DCE_TXC  
DTE_RXC/DCE_SCTE  
DTE_RXD/DCE_TXD  
R1  
R2  
R3  
12  
17  
24  
23  
TXC B  
RXC A  
TXC B  
SCTE A  
T
T
9
3
22  
21  
SCTE B  
TXD A  
RXC B  
RXD A  
16  
7
20  
RXD B  
SG  
15  
16  
18  
19  
TXD B  
M0  
M1  
M2  
NC  
1
17  
V
IN  
3.3V  
SHIELD  
DCE/DTE  
DB-25  
CONNECTOR  
V
CC  
C7  
1µF  
C8  
1µF  
25  
21  
18  
28  
27  
DCE/DTE  
1
2
V
V
EE  
GND  
CC  
C9  
1µF  
M1  
M0  
V
DD  
26  
4
RTS A  
RTS B  
DTR A  
DTR B  
CTS A  
CTS B  
DSR A  
DSR B  
3
4
5
DTE_RTS/DCE_CTS  
DTE_DTR/DCE_DSR  
D1  
D2  
D3  
25  
24  
23  
19  
20  
23  
LTC2844  
8
10  
6
22  
21  
20  
19  
6
7
8
DCD A  
DCD B  
DSR A  
DSR B  
DCD A  
DCD B  
DTR A  
DTR B  
R1  
R2  
R3  
R4  
DTE_DCD/DCE_DCD  
DTE_DSR/DCE_DTR  
DTE_CTS/DCE_RTS  
22  
5
18  
17  
RTS A  
RTS B  
CTS A  
CTS B  
13  
CABLE WIRING FOR MODE SELECTION  
10  
9
16  
MODE  
V.35  
RS449, V.36  
RS232  
PIN 18  
PIN 7  
NC  
PIN 21  
PIN 7  
PIN 7  
NC  
D4  
11  
12  
13  
14  
15  
PIN 7  
V
IN  
3.3V  
M0  
M1  
M2  
V
IN  
C10  
1µF  
CABLE WIRING FOR  
DTE/DCE SELECTION  
NC  
MODE  
DTE  
DCE  
PIN 25  
PIN 7  
NC  
DCE/DTE  
2846 F35  
Figure 35. Cable-Selectable Multiprotocol DTE/DCE Port with DB-25 Connector  
sn2846 2846fs  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
23  
LTC2846  
U
PACKAGE DESCRIPTIO  
G Package  
36-Lead Plastic SSOP (5.3mm)  
(Reference LTC DWG # 05-08-1640)  
12.50 – 13.10*  
(.492 – .516)  
1.25 ±0.12  
36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19  
7.8 – 8.2  
5.3 – 5.7  
7.40 – 8.20  
(.291 – .323)  
0.42 ±0.03  
0.65 BSC  
5
7
8
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
6
9 10 11 12 13 14 15 16 17 18  
5.00 – 5.60**  
(.197 – .221)  
2.0  
(.079)  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.25  
(.0035 – .010)  
0.55 – 0.95  
(.022 – .037)  
0.05  
0.22 – 0.38  
(.009 – .015)  
(.002)  
NOTE:  
G36 SSOP 0802  
1. CONTROLLING DIMENSION: MILLIMETERS  
MILLIMETERS  
2. DIMENSIONS ARE IN  
(INCHES)  
3. DRAWING NOT TO SCALE  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED .152mm (.006") PER SIDE  
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED .254mm (.010") PER SIDE  
RELATED PARTS  
PART NUMBER  
LTC1321  
DESCRIPTION  
COMMENTS  
Dual RS232/RS485 Transceiver  
Two RS232 Driver/Receiver Pairs or Two RS485 Driver/Receiver Pairs  
Two RS232 Driver/Receiver or Four RS232 Driver/Receiver Pairs  
4-Driver/4-Receiver for Data and Clock Signals  
LTC1334  
Single 5V RS232/RS485 Multiprotocol Transceiver  
Software-Selectable Multiprotocol Transceiver  
Software-Selectable Cable Terminator  
Single Supply V.35 Transceiver  
LTC1343  
LTC1344A  
LTC1345  
Perfect for Terminating the LTC1543 (Not Needed with LTC1546)  
3-Driver/3-Receiver for Data and Clock Signals  
LTC1346A  
LTC1543  
Dual Supply V.35 Transceiver  
3-Driver/3-Receiver for Data and Clock Signals  
Software-Selectable Multiprotocol Transceiver  
Terminated with LTC1344A for Data and Clock Signals, Companion to  
LTC1544 or LTC1545 for Control Signals  
LTC1544  
LTC1545  
Software-Selectable Multiprotocol Transceiver  
Software-Selectable Multiprotocol Transceiver  
Companion to LTC1546 or LTC1543 for Control Signals Including LL  
5-Driver/5-Receiver Companion to LTC1546 or LTC1543  
for Control Signals Including LL, TM and RL  
LTC1546  
LTC2844  
LTC2845  
Software-Selectable Multiprotocol Transceiver  
3.3V Software-Selectable Multiprotocol Transceiver  
3.3V Software-Selectable Multiprotocol Transceiver  
3-Driver/3-Receiver with Termination for Data and Clock Signals  
Companion to LTC2846 for Control Signals Including LL  
5-Driver/5-Receiver Companion to LTC2846 for Control Signals  
Including LL, TM and RL  
sn2846 2846fs  
LT/TP 0503 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2002  

相关型号:

LTC2846CG

3.3V Software-Selectable Multiprotocol Transceiver with Termination
Linear

LTC2846CG#TR

LTC2846 - 3.3V Software-Selectable Multiprotocol Transceiver with Termination; Package: SSOP; Pins: 36; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2846IG

3.3V Software-Selectable Multiprotocol Transceiver with Termination
Linear

LTC2846IG#PBF

LTC2846 - 3.3V Software-Selectable Multiprotocol Transceiver with Termination; Package: SSOP; Pins: 36; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2846IG#TRPBF

LTC2846 - 3.3V Software-Selectable Multiprotocol Transceiver with Termination; Package: SSOP; Pins: 36; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2847

Software-Selectable Multiprotocol Transceiver with Termination and 3.3V Digital Interface
Linear

LTC2847CUHF

Software-Selectable Multiprotocol Transceiver with Termination and 3.3V Digital Interface
Linear

LTC2847CUHF#TRPBF

LTC2847 - Software-Selectable Multiprotocol Transceiver with Termination and 3.3V Digital Interface; Package: QFN; Pins: 38; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2847IUHF

Software-Selectable Multiprotocol Transceiver with Termination and 3.3V Digital Interface
Linear

LTC2847IUHF#PBF

LTC2847 - Software-Selectable Multiprotocol Transceiver with Termination and 3.3V Digital Interface; Package: QFN; Pins: 38; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2847IUHF#TR

LTC2847 - Software-Selectable Multiprotocol Transceiver with Termination and 3.3V Digital Interface; Package: QFN; Pins: 38; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2847IUHF#TRPBF

LTC2847 - Software-Selectable Multiprotocol Transceiver with Termination and 3.3V Digital Interface; Package: QFN; Pins: 38; Temperature Range: -40&deg;C to 85&deg;C
Linear