LTC2862IDD-2#PBF [Linear]

LTC2862 - ±60V Fault Protected 3V to 5.5V RS485/RS422 Transceivers; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C;
LTC2862IDD-2#PBF
型号: LTC2862IDD-2#PBF
厂家: Linear    Linear
描述:

LTC2862 - ±60V Fault Protected 3V to 5.5V RS485/RS422 Transceivers; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C

驱动 光电二极管 接口集成电路 驱动器
文件: 总26页 (文件大小:380K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2862/LTC2863/  
LTC2864/LTC2865  
±±6VFault Protected 3Vto 5.5V  
RS485/RS422 Transceivers  
FeaTures  
DescripTion  
n
Protected from Overvoltage Line Faults to ±±6V  
TheLTC®2862/LTC2863/LTC2864/LTC2865arelowpower,  
20Mbpsor250kbpsRS485/RS422transceiversoperating  
on 3V to 5.5V supplies that feature 60V overvoltage fault  
protectiononthedatatransmissionlinesduringallmodes  
of operation, including power-down. Low EMI slew rate  
limited data transmission is available in a logic-selectable  
250kbpsmodeintheLTC2865andin250kbpsversionsof  
the LTC2862-LTC2864. Enhanced ESD protection allows  
these parts to withstand 15kV HBM on the transceiver  
interface pins without latchup or damage.  
n
3V to 5.5V Supply Voltage  
n
26Mbps or Low EMI 256kbps Data Rate  
n
±ꢀ5kV ESD Interface Pinsꢁ ±8kV ꢂll Other Pins  
n
Extended Common Mode Range: ±25V  
n
Guaranteed Failsafe Receiver Operation  
n
High Input Impedance Supports 256 Nodes  
n
1.65V to 5.5V Logic Supply Pin (V ) for Flexible  
L
Digital Interface (LTC2865)  
n
n
MP-Grade Option Available (–55°C to 125°C)  
Fully Balanced Differential Receiver Thresholds for  
Low Duty Cycle Distortion  
Extended 25V input common mode range and full fail-  
safe operation improve data communication reliability in  
electrically noisy environments and in the presence of  
large ground loop voltages.  
n
n
n
Current Limited Drivers and Thermal Shutdown  
Pin Compatible with LT1785 and LT1791  
Available in DFN and Leaded Packages  
proDucT selecTion GuiDe  
applicaTions  
PꢂRT  
MꢂX DꢂTꢂ  
RꢂTE (bps)  
NUMBER  
DUPLEX  
HALF  
HALF  
FULL  
FULL  
FULL  
FULL  
FULL  
ENꢂBLES  
YES  
V PIN  
L
n
Supervisory Control and Data Acquisition (SCADA)  
LTC2862-1  
LTC2862-2  
LTC2863-1  
LTC2863-2  
LTC2864-1  
LTC2864-2  
LTC2865  
20M  
250k  
NO  
NO  
NO  
NO  
NO  
NO  
YES  
n
Industrial Control and Instrumentation Networks  
YES  
n
Automotive and Transportation Electronics  
NO  
20M  
n
Building Automation, Security Systems and HVAC  
Medical Equipment  
Lighting and Sound System Control  
NO  
250k  
n
YES  
20M  
n
YES  
250k  
L, LT, LTC, LTM, Linear Technology the Linear logo and µModule are registered trademarks of  
Linear Technology Corporation. All other trademarks are the property of their respective owners.  
YES  
20M/250k  
LTC28±5 Receiving ꢀ6Mbps ±266mV Differential  
Signal with ꢀMHz ±25V Common Mode Sweep  
Typical applicaTion  
RS485 Link With Large Ground Loop Voltage  
A,B  
LTC2862  
LTC2862  
A,B  
50V/DIV  
VCC1  
VCC2  
RO1  
RE1  
DE1  
R
R
RO2  
RE2  
DE2  
A-B  
A-B  
0.5V/DIV  
R
t
R
t
DI1  
D
D
DI2  
RO  
RO  
V GROUND LOOP  
≤25V PEAK  
5V/DIV  
2862345 TA01a  
GND1  
GND2  
2862345 TA01b  
100ns/DIV  
2862345fc  
1
For more information www.linear.com/LTC2862  
LTC2862/LTC2863/  
LTC2864/LTC2865  
absoluTe MaxiMuM raTinGs  
(Note ꢀ)  
Supply Voltages  
Receiver Output (RO)  
V ............................................................. –0.3 to 6V  
(LTC2865) ..................................–0.3V to (V + 0.3V)  
CC  
L
V .............................................................. –0.3 to 6V  
L
Operating Ambient Temperature Range (Note 4)  
Logic Input Voltages (RE, DE, DI, SLO).......... –0.3 to 6V  
Interface I/O: A, B, Y, Z..............................–60V to +60V  
Receiver Output (RO)  
LTC286xC ................................................ 0°C to 70°C  
LTC286xI .............................................–40°C to 85°C  
LTC286xH.......................................... –40°C to 125°C  
LTC286xMP ....................................... –55°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
(LTC2862-LTC2864) ...................–0.3V to (V +0.3V)  
CC  
pin conFiGuraTion  
LTC2862-1, LTC2862-2  
LTC2862-1, LTC2862-2  
TOP VIEW  
TOP VIEW  
RO  
RE  
DE  
DI  
1
2
3
4
8
7
6
5
V
B
A
CC  
RO  
RE  
DE  
DI  
1
2
3
4
8
7
6
5
V
B
A
CC  
9
GND  
GND  
S8 PACKAGE  
8-LEAD (150mil) PLASTIC SO  
DD PACKAGE  
T
= 150°C, θ = 150°C/W, θ = 39°C/W  
JMAX  
JA  
JC  
8-LEAD (3mm × 3mm) PLASTIC DFN  
EXPOSED PAD (PIN 9) CONNECT TO PCB GND  
T
= 150°C, θ = 43°C/W, θ = 3°C/W  
JMAX  
JA  
JC  
LTC2863-1, LTC2863-2  
LTC2863-1, LTC2863-2  
TOP VIEW  
TOP VIEW  
V
1
2
3
4
8
A
B
Z
Y
CC  
V
1
2
3
4
8
7
6
5
A
B
Z
Y
CC  
RO  
DI  
7
6
5
RO  
DI  
9
GND  
GND  
S8 PACKAGE  
8-LEAD (150mil) PLASTIC SO  
DD PACKAGE  
T
= 150°C, θ = 150°C/W, θ = 39°C/W  
JMAX  
JA  
JC  
8-LEAD (3mm × 3mm) PLASTIC DFN  
EXPOSED PAD (PIN 9) CONNECT TO PCB GND  
T
= 150°C, θ = 43°C/W, θ = 3°C/W  
JMAX  
JA  
JC  
LTC2864-1, LTC2864-2  
LTC2864-1, LTC2864-2  
TOP VIEW  
TOP VIEW  
NC  
1
2
3
4
5
6
7
14  
V
CC  
RO  
1
2
3
4
5
10  
V
A
B
Z
Y
CC  
RO  
RE  
13  
12  
11  
10  
9
NC  
A
RE  
DE  
9
8
7
6
11  
DI  
DE  
B
GND  
DI  
Z
GND  
GND  
Y
DD PACKAGE  
10-LEAD (3mm × 3mm) PLASTIC DFN  
8
NC  
EXPOSED PAD (PIN 11) CONNECT TO PCB GND  
T
= 150°C, θ = 43°C/W, θ = 3°C/W  
JMAX  
JA JC  
S PACKAGE  
14-LEAD (150mil) PLASTIC SO  
T
= 150°C, θ = 88°C/W, θ = 37°C/W  
JMAX  
JA JC  
2862345fc  
2
For more information www.linear.com/LTC2862  
LTC2862/LTC2863/  
LTC2864/LTC2865  
pin conFiGuraTion  
LTC2865  
LTC2865  
TOP VIEW  
TOP VIEW  
1
2
3
4
5
6
RO  
RE  
DE  
DI  
12  
11  
10  
9
8
7
V
A
B
Z
Y
CC  
RO  
RE  
DE  
DI  
1
2
3
4
5
6
12  
11  
10  
9
V
A
B
Z
Y
CC  
13  
V
13  
L
GND  
SLO  
V
8
L
MSE PACKAGE  
12-LEAD PLASTIC MSOP  
EXPOSED PAD (PIN 13) CONNECT TO PCB GND  
= 150°C, θ = 40°C/W, θ = 10°C/W  
GND  
7
SLO  
T
JMAX  
JA  
JC  
DE PACKAGE  
12-LEAD (4mm × 3mm) PLASTIC DFN  
EXPOSED PAD (PIN 13) CONNECT TO PCB GND  
T
= 150°C, θ = 43°C/W, θ = 4.3°C/W  
JMAX  
JA JC  
orDer inForMaTion  
LEꢂD FREE FINISH  
LTC2862CS8-1#PBF  
LTC2862IS8-1#PBF  
LTC2862HS8-1#PBF  
LTC2862CS8-2#PBF  
LTC2862IS8-2#PBF  
LTC2862HS8-2#PBF  
LTC2862CDD-1#PBF  
LTC2862IDD-1#PBF  
LTC2862HDD-1#PBF  
LTC2862CDD-2#PBF  
LTC2862IDD-2#PBF  
LTC2862HDD-2#PBF  
LTC2863CS8-1#PBF  
LTC2863IS8-1#PBF  
LTC2863HS8-1#PBF  
LTC2863CS8-2#PBF  
LTC2863IS8-2#PBF  
LTC2863HS8-2#PBF  
LTC2863CDD-1#PBF  
LTC2863IDD-1#PBF  
LTC2863HDD-1#PBF  
LTC2863CDD-2#PBF  
LTC2863IDD-2#PBF  
LTC2863HDD-2#PBF  
TꢂPE ꢂND REEL  
PꢂRT MꢂRKING*  
28621  
28621  
28621  
28622  
28622  
28622  
LFXK  
PꢂCKꢂGE DESCRIPTION  
8-Lead (150mil) Plastic SO  
8-Lead (150mil) Plastic SO  
8-Lead (150mil) Plastic SO  
8-Lead (150mil) Plastic SO  
8-Lead (150mil) Plastic SO  
8-Lead (150mil) Plastic SO  
TEMPERTURE RꢂNGE  
0°C to 70°C  
LTC2862CS8-1#TRPBF  
LTC2862IS8-1#TRPBF  
LTC2862HS8-1#TRPBF  
LTC2862CS8-2#TRPBF  
LTC2862IS8-2#TRPBF  
LTC2862HS8-2#TRPBF  
LTC2862CDD-1#TRPBF  
LTC2862IDD-1#TRPBF  
LTC2862HDD-1#TRPBF  
LTC2862CDD-2#TRPBF  
LTC2862IDD-2#TRPBF  
LTC2862HDD-2#TRPBF  
LTC2863CS8-1#TRPBF  
LTC2863IS8-1#TRPBF  
LTC2863HS8-1#TRPBF  
LTC2863CS8-2#TRPBF  
LTC2863IS8-2#TRPBF  
LTC2863HS8-2#TRPBF  
LTC2863CDD-1#TRPBF  
LTC2863IDD-1#TRPBF  
LTC2863HDD-1#TRPBF  
LTC2863CDD-2#TRPBF  
LTC2863IDD-2#TRPBF  
LTC2863HDD-2#TRPBF  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (150mil) Plastic SO  
LFXK  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LFXK  
LFXM  
LFXM  
LFXM  
28631  
28631  
28631  
28632  
28632  
28632  
LFXN  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
8-Lead (150mil) Plastic SO  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
8-Lead (150mil) Plastic SO  
8-Lead (150mil) Plastic SO  
8-Lead (150mil) Plastic SO  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
8-Lead (150mil) Plastic SO  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
LFXN  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LFXN  
LFXP  
LFXP  
–40°C to 85°C  
–40°C to 125°C  
LFXP  
2862345fc  
3
For more information www.linear.com/LTC2862  
LTC2862/LTC2863/  
LTC2864/LTC2865  
orDer inForMaTion  
LEꢂD FREE FINISH  
LTC2864CS-1#PBF  
LTC2864IS-1#PBF  
LTC2864HS-1#PBF  
LTC2864CS-2#PBF  
LTC2864IS-2#PBF  
LTC2864HS-2#PBF  
LTC2864CDD-1#PBF  
LTC2864IDD-1#PBF  
LTC2864HDD-1#PBF  
LTC2864CDD-2#PBF  
LTC2864IDD-2#PBF  
LTC2864HDD-2#PBF  
LTC2865CMSE#PBF  
LTC2865IMSE#PBF  
LTC2865HMSE#PBF  
LTC2865CDE#PBF  
LTC2865IDE#PBF  
TꢂPE ꢂND REEL  
PꢂRT MꢂRKING*  
LTC2864S-1  
LTC2864S-1  
LTC2864S-1  
LTC2864S-2  
LTC2864S-2  
LTC2864S-2  
LFXQ  
PꢂCKꢂGE DESCRIPTION  
TEMPERTURE RꢂNGE  
0°C to 70°C  
LTC2864CS-1#TRPBF  
LTC2864IS-1#TRPBF  
LTC2864HS-1#TRPBF  
LTC2864CS-2#TRPBF  
LTC2864IS-2#TRPBF  
LTC2864HS-2#TRPBF  
LTC2864CDD-1#TRPBF  
LTC2864IDD-1#TRPBF  
LTC2864HDD-1#TRPBF  
LTC2864CDD-2#TRPBF  
LTC2864IDD-2#TRPBF  
LTC2864HDD-2#TRPBF  
LTC2865CMSE#TRPBF  
LTC2865IMSE#TRPBF  
LTC2865HMSE#TRPBF  
LTC2865CDE#TRPBF  
LTC2865IDE#TRPBF  
14-Lead (150mil) Plastic SO  
14-Lead (150mil) Plastic SO  
14-Lead (150mil) Plastic SO  
14-Lead (150mil) Plastic SO  
14-Lead (150mil) Plastic SO  
14-Lead (150mil) Plastic SO  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
12-Lead Plastic MSOP  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LFXQ  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LFXQ  
LFXR  
LFXR  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LFXR  
2865  
2865  
12-Lead Plastic MSOP  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
2865  
12-Lead Plastic MSOP  
2865  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
8-Lead (150mm) Plastic SO  
8-Lead (150mm) Plastic SO  
8-Lead (150mm) Plastic SO  
8-Lead (150mm) Plastic SO  
14-Lead (150mm) Plastic SO  
14-Lead (150mm) Plastic SO  
2865  
–40°C to 85°C  
–40°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
LTC2865HDE#PBF  
LTC2862MPS8-1#PBF  
LTC2862MPS8-2#PBF  
LTC2863MPS8-1#PBF  
LTC2863MPS8-2#PBF  
LTC2864MPS-1#PBF  
LTC2864MPS-2#PBF  
LTC2865HDE#TRPBF  
LTC2862MPS8-1#TRPBF  
LTC2862MPS8-2#TRPBF  
LTC2863MPS8-1#TRPBF  
LTC2863MPS8-2#TRPBF  
LTC2864MPS-1#TRPBF  
LTC2864MPS-2#TRPBF  
2865  
28621  
28622  
28631  
28632  
LTC2864S-1  
LTC2864S-2  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature rangeꢁ otherwise specifications are at T= 25°C. VCC = VL = 3.3V unless otherwise noted. (Note 2)  
SYMBOL  
Supplies  
PꢂRꢂMETER  
CONDITIONS  
MIN  
TYP  
MꢂX  
UNITS  
l
l
l
V
V
Primary Power Supply  
3
5.5  
V
V
CC  
L
Logic Interface Power Supply  
LTC2865 Only  
1.65  
V
CC  
I
Supply Current in Shutdown Mode  
(C-, I-Grade) (N/A LTC2863)  
DE = 0V, RE = V = V  
0
0
5
µA  
CCS  
CC  
L
L
l
l
Supply Current in Shutdown Mode  
(H-, MP-Grade) (N/A LTC2863)  
DE = 0V, RE = V = V  
40  
µA  
µA  
CC  
I
Supply Current with Both Driver and  
Receiver Enabled (LTC2862-1, LTC2863-1,  
LTC2864-1, LTC2865 with SLO High)  
No Load, DE = V = V , RE = 0V  
900  
1300  
CCTR  
CC  
L
2862345fc  
4
For more information www.linear.com/LTC2862  
LTC2862/LTC2863/  
LTC2864/LTC2865  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature rangeꢁ otherwise specifications are at T= 25°C. VCC = VL = 3.3V unless otherwise noted. (Note 2)  
SYMBOL  
PꢂRꢂMETER  
CONDITIONS  
No Load, DE = V = V , RE = 0V  
MIN  
TYP  
MꢂX  
UNITS  
l
I
Supply Current with Both Driver and  
Receiver Enabled (LTC2862-2, LTC2863-2,  
LTC2864-2, LTC2865 with SLO Low)  
3.3  
8
mA  
CCTRS  
CC  
L
Driver  
l
l
l
l
|V  
|
Differential Driver Output Voltage  
R = ∞ (Figure 1)  
1.5  
1.5  
2
V
V
V
V
V
OD  
CC  
R = 27Ω (Figure 1)  
R = 50Ω (Figure 1)  
5
V
CC  
Δ|V  
|
Change in Magnitude of Driver Differential R = 27Ω or 50Ω (Figure 1)  
Output Voltage  
0.2  
OD  
l
l
V
Driver Common-Mode Output Voltage  
R = 27Ω or 50Ω (Figure 1)  
R = 27Ω or 50Ω (Figure 1)  
3
V
V
OC  
Δ|V  
|
Change in Magnitude of Driver  
Common-Mode Output Voltage  
0.2  
OC  
l
l
I
I
Maximum Driver Short-Circuit Current  
–60V ≤ (Y or Z) ≤ 60V (Figure 2)  
150  
250  
30  
mA  
µA  
OSD  
Driver Three-State (High Impedance)  
Output Current on Y and Z  
DE = 0V, V = 0V or 3.3V, V = –25V,  
CC O  
25V  
OZD  
Receiver  
l
l
l
l
I
IN  
Receiver Input Current (A,B)  
V
CC  
V
CC  
V
CC  
V
CC  
= 0V or 3.3V, V = 12V (Figure 3)  
125  
143  
µA  
µA  
µA  
µA  
IN  
(C-, I-Grade LTC2863, LTC2864, LTC2865)  
= 0V or 3.3V, V = –7V (Figure 3)  
–100  
–100  
IN  
Receiver Input Current (A,B)  
(H-, MP-Grade LTC2863, LTC2864,  
LTC2865; C-, I-, H-, MP-Grade LTC2862)  
= 0V or 3.3V, V = 12V (Figure 3)  
IN  
= 0V or 3.3V, V = –7V (Figure 3)  
IN  
R
Receiver Input Resistance  
0 ≤ V ≤ 5.5V, V = –25V or 25V  
112  
kΩ  
V
IN  
CC  
IN  
(Figure 3)  
l
l
V
V
Receiver Common Mode Input Voltage  
(A + B)/2  
–25  
25  
CM  
Differential Input Signal Threshold  
Voltage (A – B)  
–25V ≤ V ≤ 25V  
200  
mV  
TH  
CM  
ΔV  
Differential Input Signal Hysteresis  
V
= 0V  
150  
–50  
25  
mV  
mV  
mV  
V
TH  
CM  
l
Differential Input Failsafe Threshold Voltage –25V ≤ V ≤ 25V  
–200  
0
CM  
Differential Input Failsafe Hysteresis  
Receiver Output High Voltage  
V
CM  
= 0V  
V
V
I(RO) = –3mA (Sourcing)  
l
l
l
V
–0.4V  
OH  
CC  
V ≥ 2.25V, I(RO) = –3mA (LTC2865)  
V –0.4V  
L
L
V < 2.25V, I(RO) = –2mA (LTC2865)  
V –0.4V  
L
L
l
l
Receiver Output Low Voltage  
I(RO) = 3mA (Sinking)  
0.4  
5
V
OL  
I
Receiver Three-State (High Impedance)  
Output Current on RO  
RE = High, RO = 0V or V  
RO = 0V or V (LTC2865)  
µA  
OZR  
CC  
L
l
I
Receiver Short-Circuit Current  
RE = Low, RO = 0V or V  
20  
mA  
OSR  
CC  
RO = 0V or V (LTC2865)  
L
Logic  
(LTC28±2ꢁ LTC28±3ꢁ LTC28±4)  
Input Threshold Voltage (DE, DI, RE)  
Logic Input Current (DE, DI, RE)  
(LTC28±5)  
l
l
V
TH  
3.0 ≤ V ≤ 5.5V  
0.33 V  
0.67 • V  
CC  
V
CC  
CC  
I
INL  
0 ≤ V ≤ V  
CC  
0
0
5
µA  
IN  
Logic  
l
l
V
TH  
Input Threshold Voltage (DE, DI, RE, SLO) 1.65V ≤ V ≤ 5.5V  
0.33 V  
0.67 V  
L
V
L
L
I
INL  
Logic Input Current (DE, DI, RE, SLO)  
0 ≤ V ≤ V  
L
5
µA  
IN  
2862345fc  
5
For more information www.linear.com/LTC2862  
LTC2862/LTC2863/  
LTC2864/LTC2865  
swiTchinG characTerisTics The l denotes the specifications which apply over the full operating  
temperature rangeꢁ otherwise specifications are at T= 25°C. VCC = VL = 3.3V unless otherwise noted. (Note 2)  
SYMBOL  
PꢂRꢂMETER  
CONDITIONS  
MIN  
TYP  
MꢂX  
UNITS  
Driver – High Speed (LTC28±2-ꢀꢁ LTC28±3-ꢀꢁ LTC28±4-ꢀꢁ LTC28±5 with SLO High)  
l
l
l
f
t
Maximum Data Rate  
(Note 3)  
20  
Mbps  
ns  
MAX  
, t  
Driver Input to Output  
R
DIFF  
DIFF  
= 54Ω, C = 100pF (Figure 4)  
25  
2
50  
9
PLHD PHLD  
L
Δt  
Driver Input to Output Difference  
R
= 54Ω, C = 100pF (Figure 4)  
ns  
PD  
L
|t  
– t  
PHLD  
|
PLHD  
l
l
l
t
t
Driver Output Y to Output Z  
Driver Rise or Fall Time  
R
R
= 54Ω, C = 100pF (Figure 4)  
10  
15  
ns  
ns  
ns  
SKEWD  
DIFF  
L
, t  
RD FD  
= 54Ω, C = 100pF (Figure 4)  
4
DIFF  
L
t
t
, t  
, t  
,
Driver Enable or Disable Time  
R = 500Ω, C = 50pF, RE = 0V  
180  
ZLD ZHD  
LZD HZD  
L
L
(Figure 5)  
l
l
t
, t  
Driver Enable from Shutdown  
Time to Shutdown  
R =500Ω, C = 50pF, RE = High  
9
µs  
ns  
ZHSD ZLSD  
L
L
(Figure 5)  
t
R = 500Ω, C = 50pF, RE = High  
180  
SHDND  
L
L
(Figure 5)  
Driver – Slew Rate Limited ( LTC28±2-2ꢁ LTC28±3-2ꢁ LTC28±4-2ꢁ LTC28±5 with SLO Low)  
l
l
l
f
Maximum Data Rate  
(Note 3)  
250  
500  
kbps  
ns  
MAX  
t
, t  
Driver Input to Output  
R
= 54Ω, C = 100pF (Figure 4)  
850  
50  
1500  
500  
PLHD PHLD  
DIFF  
DIFF  
L
Δt  
Driver Input to Output Difference  
R
= 54Ω, C = 100pF (Figure 4)  
ns  
PD  
L
|t  
PLHD  
– t  
PHLD  
|
l
l
l
t
t
t
Driver Output Y to Output Z  
Driver Rise or Fall Time  
Driver Enable Time  
R
R
= 54Ω, C = 100pF (Figure 4)  
500  
1200  
1200  
ns  
ns  
ns  
SKEWD  
DIFF  
L
, t  
= 54Ω, C =100pF (Figure 4)  
800  
RD FD  
DIFF  
L
, t  
R = 500Ω, C = 50pF, RE = 0V  
ZLD ZHD  
L
L
(Figure 5)  
l
l
l
t
t
t
, t  
Driver Disable Time  
R = 500Ω, C = 50pF, RE = 0V  
180  
10  
ns  
µs  
ns  
LZD HZD  
L
L
(Figure 5)  
, t  
Driver Enable from Shutdown  
Time to Shutdown  
R = 500Ω, C = 50pF, RE = High  
ZHSD ZLSD  
L
L
(Figure 5)  
R =500Ω, C = 50pF, RE = High  
180  
SHDND  
L
L
(Figure 5)  
Receiver  
l
t
t
t
, t  
Receiver Input to Output  
Differential Receiver Skew  
C = 15pF, V = 1.5V, |V | = 1.5V,  
50  
2
65  
9
ns  
ns  
PLHR PHLR  
L
CM  
AB  
t and t < 4ns (Figure 6)  
R
F
C = 15pF (Figure 6)  
L
SKEWR  
|t  
– t  
|
PLHR  
PHLR  
l
l
, t  
Receiver Output Rise or Fall Time  
Receiver Enable/Disable Time  
C = 15pF (Figure 6)  
L
3
12.5  
40  
ns  
ns  
RR FR  
t
t
, t  
, t  
,
R = 1k, C = 15pF, DE = High (Figure 7)  
L L  
ZLR ZHR  
LZR HZR  
l
l
t
, t  
Receiver Enable from Shutdown  
Time to Shutdown  
R = 1k, C = 15pF, DE = 0V, (Figure 7)  
9
µs  
ns  
ZHSR ZLSR  
SHDNR  
L
L
t
R = 1k, C = 15pF, DE = 0V, (Figure 7)  
100  
L
L
Note ꢀ. Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2. All currents into device pins are positive; all currents out of device  
pins are negative. All voltages are referenced to device ground unless  
otherwise specified.  
Note 3. Maximum data rate is guaranteed by other measured parameters  
and is not tested directly.  
Note 4. This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 150ºC when overtemperature protection is active.  
Continuous operation above the specified maximum operating temperature  
may result in device degradation or failure.  
2862345fc  
6
For more information www.linear.com/LTC2862  
LTC2862/LTC2863/  
LTC2864/LTC2865  
T= 25°Cꢁ VCC = VL = 3.3Vꢁ unless otherwise noted.  
Typical perForMance characTerisTics  
Supply Current vs VCC  
Supply Current vs Temperature  
Supply Current vs Data Rate  
10000  
1000  
100  
10  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
20  
16  
12  
8
250  
200  
150  
100  
50  
R
C
= 54Ω  
I
DIFF  
L
CCTRS  
= 100pF  
I
CCTRS  
I
CCTR  
SLEW LIMITED  
NON SLEW LIMITED  
4
1
I
CCTR  
I
CCS  
0
0
0.1  
3.0  
4.0  
V
4.5  
(V)  
5.0  
5.5  
30  
35  
45  
50  
55  
60  
3.5  
40  
–50  
0
50  
100  
150  
SUPPLY CURRENT (mA)  
CC  
TEMPERATURE (°C)  
2862345 G01  
2862345 G03  
2862345 G02  
Driver Output Short-Circuit  
Current vs Voltage  
Driver Propagation Delay vs  
Temperature  
Driver Skew vs Temperature  
1.5  
1.0  
120  
35  
1000  
200  
150  
100  
50  
R
L
= 54Ω  
R
L
= 54Ω  
DIFF  
= 100pF  
DIFF  
C
C
= 100pF  
100  
80  
OUTPUT LOW  
NON SLEW LIMITED  
SLEW LIMITED  
900  
800  
700  
0.5  
30  
25  
20  
0.0  
60  
0
–50  
–100  
–150  
–200  
40  
–0.5  
–1.0  
SLEW LIMITED  
OUTPUT HIGH  
20  
NON SLEW LIMITED  
–1.5  
0
–50  
50  
100  
150  
–50  
50  
100  
150  
0
0
–60  
–20  
0
20  
40  
60  
–40  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
2862345 G04  
2862345 G05  
2862345 G06  
Driver Output Low/High Voltage  
vs Output Current  
Driver Differential Output Voltage  
vs Temperature  
VL Supply Current vs Data Rate  
3.5  
3.0  
2.5  
2.3  
2.1  
1.9  
1.7  
600  
500  
400  
300  
200  
100  
0
C
V
(RO) = 15pF  
CC  
L
= 5V  
R
DIFF  
= 100Ω  
V
OH  
V
= 5V  
L
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
V
= 3.3V  
L
R
DIFF  
= 54Ω  
V
OL  
V
L
= 2.5V  
V
= 1.8V  
L
1.5  
0
20  
30  
40  
50  
–50  
50  
100  
150  
10  
0
0
10  
DATA RATE (Mbps)  
15  
20  
5
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
2862345 G07  
2862345 G08  
2862345 G09  
2862345fc  
7
For more information www.linear.com/LTC2862  
LTC2862/LTC2863/  
LTC2864/LTC2865  
T= 25°Cꢁ VCC = VL = 3.3Vꢁ unless otherwise noted.  
Typical perForMance characTerisTics  
Receiver Output Voltage vs  
Receiver Propagation Delay  
vs Temperature  
Output Current (Source and Sink)  
Receiver Skew vs Temperature  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
58  
56  
54  
52  
50  
48  
46  
–1.6  
V
C
= 1.5V  
V = 1.5V  
AB  
C = 15pF  
L
V
= 5.5V  
AB  
= 15pF  
L
L
–1.8  
–2.0  
–2.2  
–2.4  
–2.6  
V
V
= 3.3V  
L
= 2.25V  
L
V
= 1.65V  
4.0  
L
V
L
= 1.65V TO 5.5V  
2.0  
0.0  
6.0  
8.0  
–50  
50  
100  
150  
–50  
50  
100  
150  
0
0
OUTPUT CURRENT (ABSOLUTE VALUE) (mA)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2862345 G10  
2862345 G11  
2862345 G12  
pin FuncTions  
PIN NUMBER  
PIN  
NꢂME  
LTC28±4 LTC28±4  
DESCRIPTION  
LTC28±2 LTC28±3  
(DFN)  
(SO)  
LTC28±5  
RO  
1
2
3
4
2
1
2
1
Receiver Output. If the receiver output is enabled (RE low) and A–B > 200mV,  
then RO will be high. If A–B < –200mV, then RO will be low. If the receiver  
inputs are open, shorted, or terminated without a signal, RO will be high.  
RE  
DE  
DI  
-
2
3
4
3
4
5
2
3
4
Receiver Enable. A low input enables the receiver. A high input forces the  
receiver output into a high impedance state. If RE is high with DE low, the part  
will enter a low power shutdown state.  
-
Driver Enable. A high input on DE enables the driver. A low input will force the  
driver outputs into a high impedance state. If DE is low with RE high, the part  
will enter a low power shutdown state.  
3
Driver Input. If the driver outputs are enabled (DE high), then a low on DI  
forces the driver noninverting output Y low and inverting output Z high. A high  
on DI, with the driver outputs enabled, forces the driver noninverting output Y  
high and inverting output Z low.  
V
-
-
-
-
5
Logic Supply: 1.65V ≤ V ≤ V . Bypass with 0.1µF ceramic capacitor. Powers  
L CC  
RO, RE, DE, DI and SLO interfaces on LTC2865 only.  
Ground.  
L
GND  
5
9
-
4
9
-
5
11  
-
6, 7  
6
13  
7
Exposed Pad  
SLO  
-
-
Connect the exposed pads on the DFN and MSOP packages to GND  
Slow Mode Enable. A low input switches the transmitter to the slew rate  
limited 250kbps max data rate mode. A high input supports 20Mbps.  
Y
Z
B
A
-
-
5
6
7
8
1
6
7
9
8
Noninverting Driver Output for LTC2863, LTC2864, LTC2865.  
High-impedance when driver disabled or unpowered.  
10  
11  
12  
9
Inverting Driver Output for LTC2863, LTC2864, LTC2865.  
High-impedance when driver disabled or unpowered.  
7
6
8
8
10  
11  
12  
Inverting Receiver Input (and Inverting Driver Output for LTC2862).  
Impedance is > 96kΩ in receive mode or unpowered.  
9
Noninverting Receiver Input (and Noninverting Driver Output for LTC2862).  
Impedance is > 96kΩ in receive mode or unpowered.  
V
CC  
10  
14  
Power Supply. 3V < V < 5.5V. Bypass with 0.1µF ceramic capacitor to GND.  
CC  
NC  
1, 8, 13  
Unconnected Pins. Float or connect to GND.  
2862345fc  
8
For more information www.linear.com/LTC2862  
LTC2862/LTC2863/  
LTC2864/LTC2865  
FuncTion Tables  
LTC28±2  
LTC28±4ꢁ LTC28±5:  
LOGIC INPUTS  
LOGIC INPUTS  
MODE  
ꢂꢁ B  
RO  
MODE  
ꢂꢁ B  
Yꢁ Z  
RO  
DE  
0
RE  
0
DE  
0
RE  
0
Receive  
Shutdown  
Transceive  
Transmit  
R
R
Active  
High-Z  
Active  
High-Z  
Receive  
Shutdown  
Transceive  
Transmit  
R
R
R
R
High-Z  
High-Z  
Active  
Active  
Active  
High-Z  
Active  
High-Z  
IN  
IN  
IN  
IN  
IN  
0
1
0
1
IN  
1
0
Active  
Active  
1
0
1
1
1
1
block DiaGraMs  
LTC28±2  
LTC28±3  
V
CC  
V
CC  
A*  
B*  
RO  
RO  
RECEIVER  
RECEIVER  
A*  
B*  
RE  
MODE CONTROL  
DE  
LOGIC  
Z*  
Y*  
DI  
DRIVER  
DI  
DRIVER  
GND  
2862345 BDb  
*15kV ESD  
GND  
2862345 BDa  
*15kV ESD  
LTC28±4  
LTC28±5  
V
V
CC  
CC  
VL  
A*  
A*  
RO  
RO  
RECEIVER  
RECEIVER  
B*  
B*  
RE  
RE  
MODE CONTROL  
LOGIC  
MODE CONTROL  
LOGIC  
DE  
DE  
Z*  
Y*  
Z*  
Y*  
DI  
DI  
DRIVER  
DRIVER  
SLO  
GND  
GND  
2862345 BDc  
2862345 BDd  
*15kV ESD  
*15kV ESD  
2862345fc  
9
For more information www.linear.com/LTC2862  
LTC2862/LTC2863/  
LTC2864/LTC2865  
TesT circuiTs  
Y**  
Z**  
Y**  
R
I
OSD  
+
GND  
OR  
CC  
GND  
OR  
CC  
V
DI  
DRIVER  
DI  
DRIVER  
OD  
V
*
V
*
+
R
+
–60V TO 60V  
V
OC  
Z**  
2862345 FO2  
2862345 FO1  
*LTC2865 ONLY: SUBSTITUTE V FOR V  
*LTC2865 ONLY: SUBSTITUTE V FOR V  
L
CC  
L
CC  
**LTC2862 ONLY: SUBSTITUTE A, B FOR Y, Z  
**LTC2862 ONLY: SUBSTITUTE A, B FOR Y, Z  
Figure ꢀ. Driver DC Characteristics  
Figure 2. Driver Output Short-Circuit Current  
I
IN  
A OR B  
B OR A  
RECEIVER  
+
V
IN  
2862345 FO3  
V
I
IN  
IN  
R
=
IN  
Figure 3. Receiver Input Current and Input Resistance  
V
*
CC  
Y**  
Z**  
DI  
t
t
PHLD  
PLHD  
C
C
L
0V  
DI  
t
SKEWD  
R
DIFF  
DRIVER  
1/2 V  
O
V
Y, Z  
O
L
2862345 FO4  
90%  
90%  
(Y–Z)  
0
0
10%  
10%  
t
RD  
t
FD  
**LTC2862 ONLY: SUBSTITUTE A, B FOR Y, Z  
2862345 F04b  
*LTC2865 ONLY: SUBSTITUTE V FOR V  
CC  
L
Figure 4. Driver Timing Measurement  
2862345fc  
10  
For more information www.linear.com/LTC2862  
LTC2862/LTC2863/  
LTC2864/LTC2865  
TesT circuiTs  
GND  
OR  
CC  
R
R
L
L
Y**  
Z**  
V
DE  
*
CC  
1/2 V  
*
V
CC  
C
C
t
t
,
L
ZLD  
ZLSD  
0V  
V
*
CC  
t
LZD  
DI  
DRIVER  
DE  
OR  
V
CC  
GND  
1/2 V  
1/2 V  
Y OR Z  
Z OR Y  
CC  
V
CC  
0.5V  
0.5V  
V
V
OL  
OR  
GND  
OH  
0V  
L
CC  
2862345 F05b  
t
,
t
,
HZD  
ZHD  
t
t
ZHSD  
SHDN  
*LTC2865 ONLY: SUBSTITUTE V FOR V  
L
CC  
**LTC2862 ONLY: SUBSTITUTE A, B FOR Y, Z  
2862345 FO5  
*LTC2865 ONLY: SUBSTITUTE V FOR V  
L
CC  
Figure 5. Driver Enable and Disable Timing Measurements  
t
= |t  
– t |  
PLHR PHLR  
SKEWR  
V
AB  
V
/2  
/2  
A–B  
–V  
0
AB  
A
B
AB  
RO  
t
t
PLHR  
PHLR  
V
RECEIVER  
CM  
V
V
*
CC  
90%  
10%  
90%  
10%  
C
1/2 V  
*
1/2 V *  
CC  
RO  
L
CC  
AB  
0
2862345 F06b  
t
t
FR  
RR  
2862345 FO6a  
*LTC2865 ONLY: SUBSTITUTE V FOR V  
CC  
L
Figure ±. Receiver Propagation Delay Measurements  
V
RE  
*
CC  
CC  
t
t
,
ZLR  
ZLSR  
1/2 V *  
CC  
A
B
0V OR V  
CC  
R
L
0V  
V *  
CC  
RO  
t
LZR  
OR  
RECEIVER  
V
*
GND  
C
1/2 V  
1/2 V  
*
*
V
OR 0V  
RO  
L
CC  
CC  
CC  
0.5V  
0.5V  
V
OL  
RE  
DI = 0V OR V  
*
CC  
V
OH  
RO  
0V  
2862345 F07b  
2862345 FO7a  
t
,
t
,
HZR  
ZHR  
t
t
ZHSR  
SHDNR  
*LTC2865 ONLY: SUBSTITUTE V FOR V  
L
CC  
*LTC2865 ONLY: SUBSTITUTE V FOR V  
L
CC  
Figure 7. Receiver Enable/Disable Time Measurements  
2862345fc  
11  
For more information www.linear.com/LTC2862  
LTC2862/LTC2863/  
LTC2864/LTC2865  
applicaTions inForMaTion  
±±6V Fault Protection  
±25V Extended Common Mode Range  
The LTC2862-LTC2865 devices answer application needs  
for overvoltage fault-tolerant RS485/RS422 transceivers  
operating from 3V to 5.5V power supplies. Industrial  
installations may encounter common mode voltages  
between nodes far greater than the –7V to 12V range  
specified by the RS485 standards. Standard RS485  
transceiverscanbedamagedbyvoltagesabovetheirtypical  
absolute maximum ratings of –8V to 12.5V. The limited  
overvoltage tolerance of standard RS485 transceivers  
makes implementation of effective external protection  
networks difficult without interfering with proper data  
network performance within the –7V to 12V region of  
RS485operation. ReplacingstandardRS485transceivers  
withtheruggedLTC2862-LTC2865devicesmayeliminate  
fieldfailuresduetoovervoltagefaultswithoutusingcostly  
external protection devices.  
To further increase the reliability of operation and extend  
functionality in environments with high common mode  
voltages due to electrical noise or local ground potential  
differences due to ground loops, the LTC2862-LTC2865  
devices feature an extended common mode operating  
range of –25V to 25V. This extended common mode  
range allows the LTC2862-LTC2865 devices to transmit  
and receive under conditions that would cause data errors  
and possible device damage in competing products.  
±ꢀ5kV ESD Protection  
The LTC2862 series devices feature exceptionally robust  
ESD protection. The transceiver interface pins (A,B,Y,Z)  
feature protection to 15kV HBM with respect to GND  
without latchup or damage, during all modes of operation  
orwhileunpowered.Alltheotherpinsareprotectedto 8kV  
HBMtomakethisacomponentcapableofreliableoperation  
under severe environmental conditions.  
The 60V fault protection of the LTC2862 series is  
achievedbyusingahigh-voltageBiCMOSintegratedcircuit  
technology. The naturally high breakdown voltage of this  
technology provides protection in powered-off and high-  
impedanceconditions.Thedriveroutputsuseaprogressive  
foldbackcurrentlimitdesigntoprotectagainstovervoltage  
faults while still allowing high current output drive.  
Driver  
ThedriverprovidesfullRS485/RS422compatibility.When  
enabled, if DI is high, Y–Z is positive for the full-duplex  
devices (LTC2863-LTC2865) and A–B is positive for the  
half-duplex device (LTC2862).  
TheLTC2862seriesisprotectedfrom 60Vfaultsevenwith  
GNDopen,orV openorgrounded.Additionalprecautions  
When the driver is disabled, both outputs are high-  
impedance. For the full-duplex devices, the leakage on  
the driver output pins is guaranteed to be less than 30µA  
over the entire common mode range of –25V to 25V. On  
the half-duplex LTC2862, the impedance is dominated by  
CC  
must be taken in the case of V present and GND open.  
CC  
The LTC2862 series chip will protect itself from damage,  
but the chip ground current may flow out through the ESD  
diodes on the logic I/O pins and into associated circuitry.  
The system designer should examine the susceptibility  
of the associated circuitry to damage if the condition of a  
the receiver input resistance, R .  
IN  
GND open fault with V present is anticipated.  
Driver Overvoltage and Overcurrent Protection  
CC  
The high voltage rating of the LTC2862 series makes it  
simple to extend the overvoltage protection to higher  
levels using external protection components. Compared  
to lower voltage RS485 transceivers, external protection  
devices with higher breakdown voltages can be used, so  
as not to interfere with data transmission in the presence  
of large common mode voltages. The Typical Applications  
section shows a protection network against faults up to  
360V peak, while still maintaining the extended 25V  
common mode range on the signal lines.  
The driver outputs are protected from short circuits to any  
voltage within the Absolute Maximum range of –60V to  
60V. Themaximumcurrentinafaultconditionis 250mA.  
Thedriverincludesaprogressivefoldbackcurrentlimiting  
circuit that continuously reduces the driver current limit  
with increasing output fault voltage. The fault current is  
less than 15mA for fault voltages over 40V.  
All devices also feature thermal shutdown protection that  
disablesthedriverandreceiverincaseofexcessivepower  
dissipation (see Note 4).  
2862345fc  
12  
For more information www.linear.com/LTC2862  
LTC2862/LTC2863/  
LTC2864/LTC2865  
applicaTions inForMaTion  
Full Failsafe Operation  
the positive and negative thresholds. If this condition  
persists for more than about 3µs the failsafe condition is  
asserted and the RO pin is forced to the logic 1 state. This  
circuit provides full failsafe operation with no negative  
impact to receiver duty cycle symmetry, as shown in  
Figure 8. The input signal in Figure 8 was obtained by  
drivinga10MbpsRS485signalthrough1000feetofcable,  
thereby attenuating it to a 200mV signal with slow rise  
and fall times. Good duty cycle symmetry is observed at  
RO despite the degraded input signal.  
Whentheabsolutevalueofthedifferentialvoltagebetween  
the A and B pins is greater than 200mV with the receiver  
enabled, the state of RO will reflect the polarity of (A–B).  
These parts have a failsafe feature that guarantees the  
receiver output will be in a logic 1 state (the idle state)  
when the inputs are shorted, left open, or terminated but  
not driven, for more than about 3µs. The delay allows  
normal data signals to transition through the threshold  
regionwithoutbeinginterpretedasafailsafecondition.This  
failsafe feature is guaranteed to work for inputs spanning  
the entire common mode range of –25V to 25V.  
Enhanced Receiver Noise Immunity  
An additional benefit of the fully symmetric receiver  
thresholds is enhanced receiver noise immunity. The  
differential input signal must go above the positive  
threshold to register as a logic 1 and go below the  
negative threshold to register as a logic 0. This provides  
a hysteresis of 150mV (typical) at the receiver inputs for  
any valid data signal. (An invalid data condition such as  
a DC sweep of the receiver inputs will produce a different  
observed hysteresis due to the activation of the failsafe  
circuit.) Competing devices that employ a negative offset  
of the input threshold voltage generally have a much  
smaller hysteresis and subsequently have lower receiver  
noise immunity.  
Most competing devices achieve the failsafe function by a  
simple negative offset of the input threshold voltage. This  
causes the receiver to interpret a zero differential voltage  
as a logic 1 state. The disadvantage of this approach is  
the input offset can introduce duty cycle asymmetry at the  
receiver output that becomes increasingly worse with low  
input signal levels and slow input edge rates.  
Other competing devices use internal biasing resistors to  
create a positive bias at the receiver inputs in the absence  
of an external signal. This type of failsafe biasing is  
ineffectiveifthenetworklinesareshorted,orifthenetwork  
is terminated but not driven by an active transmitter.  
RS485 Network Biasing  
A, B  
RS485 networks are usually biased with a resistive divider  
to generate a differential voltage of ≥200mV on the data  
lines, which establishes a logic 1 state (the idle state)  
when all the transmitters on the network are disabled. The  
values of the biasing resistors are not fixed, but depend  
on the number and type of transceivers on the line and  
the number and value of terminating resistors. Therefore,  
the values of the biasing resistors must be customized to  
eachspecificnetworkinstallation,andmaychangeifnodes  
are added to or removed from the network.  
200mV/DIV  
A–B  
200mV/DIV  
RO  
1.6V/DIV  
2862345 F08  
40ns/DIV  
Figure 8. Duty Cycle of Balanced Receiver with ±266mV  
ꢀ6Mbps Input Signal  
The internal failsafe feature of the LTC2862-LTC2865  
eliminates the need for external network biasing resistors  
provided they are used in a network of transceivers with  
similar internal failsafe features. The LTC2862-LTC2865  
transceivers will operate correctly on biased, unbiased,  
or under-biased networks.  
The LTC2862 series uses fully symmetric positive and  
negativereceiverthresholds(typically 75mV)tomaintain  
gooddutycyclesymmetryatlowsignallevels. Thefailsafe  
operation is performed with a window comparator to  
determinewhenthedifferentialinputvoltagefallsbetween  
2862345fc  
13  
For more information www.linear.com/LTC2862  
LTC2862/LTC2863/  
LTC2864/LTC2865  
applicaTions inForMaTion  
Hi-Z State  
There are no power-up sequence restrictions on the  
LTC2865.However,correctoperationisnotguaranteedfor  
The receiver output is internally driven high (to V or V )  
CC  
L
V > V .  
L
CC  
orlow(toGND)withnoexternalpull-upneeded. Whenthe  
receiver is disabled the RO pin becomes Hi-Z with leakage  
of less than 5ꢀA for voltages within the supply range.  
Shutdown Mode Delay  
TheLTC2862,LTC2864,andLTC2865featurealowpower  
shutdown mode that is entered when both the driver and  
the receiver are simultaneously disabled (pin DE low and  
REhigh). Ashutdownmodedelayofapproximately250ns  
(not tested in production) is imposed after this state is  
receivedbeforethechipentersshutdown.IfeitherDEgoes  
high or RE goes low during this delay, the delay timer is  
reset and the chip does not enter shutdown. This reduces  
the chance of accidentally entering shutdown if DE and  
RE are driven in parallel by a slowly changing signal or if  
DE and RE are driven by two independent signals with a  
timing skew between them.  
High Receiver Input Resistance  
ThereceiverinputloadfromAorBtoGNDfortheLTC2863,  
LTC2864, and LTC2865 is less than one-eighth unit load,  
permitting a total of 256 receivers per system without  
exceeding the RS485 receiver loading specification. All  
grades of the LTC2862 and the H- and MP-grade devices  
of the LTC2863, LTC2864, and LTC2865 have an input  
load less than one-seventh unit load over the complete  
temperaturerangeof40°Cto125°C. Theincreasedinput  
load specification for these devices is due to increased  
junction leakage at high temperature and the transmitter  
circuitry sharing the A and B pins on the LTC2862. The  
inputloadofthereceiverisunaffectedbyenabling/disabling  
the receiver or by powering/unpowering the part.  
This shutdown mode delay does not affect the outputs of  
the transmitter and receiver, which start to switch to the  
high impedance state upon the reception of their respec-  
tive disable signals as defined by the parameters t  
SHDND  
Supply Current  
and t  
. The shutdown mode delay affects only the  
SHDNR  
The unloaded static supply currents in these devices  
are low —typically 900ꢀA for non slew limited devices  
and 3.3mA for slew limited devices. In applications  
with resistively terminated cables, the supply current is  
dominatedbythedriverload.Forexample,whenusingtwo  
120Ω terminators with a differential driver output voltage  
of 2V, the DC load current is 33mA, which is sourced by  
thepositivevoltagesupply.Powersupplycurrentincreases  
with toggling data due to capacitive loading and this term  
can increase significantly at high data rates. A plot of  
the supply current vs data rate is shown in the Typical  
Performance Characteristics of this data sheet.  
time when all the internal circuits that draw DC power  
from V are turned off.  
CC  
High Speed Considerations  
Agroundplanelayoutwitha0.1µFbypasscapacitorplaced  
lessthan7mmawayfromtheV pinisrecommended.The  
CC  
PC board traces connected to signals A/B and Z/Y should  
be symmetrical and as short as possible to maintain good  
differentialsignalintegrity. Tominimizecapacitiveeffects,  
the differential signals should be separated by more than  
the width of a trace and should not be routed on top of  
each other if they are on different signal planes.  
During fault conditions with a positive voltage larger than  
thesupplyvoltageappliedtothetransmitterpins,orduring  
transmitter operation with a high positive common mode  
voltage, positive current of up to 80mA may flow from the  
Care should be taken to route outputs away from any  
sensitive inputs to reduce feedback effects that might  
cause noise, jitter, or even oscillations. For example, in  
the full-duplex devices, DI and A/B should not be routed  
near the driver or receiver outputs.  
transmitter pins back to V . If the system power supply  
CC  
or loading cannot sink this excess current, a 5.6V 1W  
1N4734 Zener diode may be placed between V and GND  
CC  
The logic inputs have a typical hysteresis of 100mV to  
provide noise immunity. Fast edges on the outputs can  
causeglitchesinthegroundandpowersupplieswhichare  
to prevent an overvoltage condition on V .  
CC  
2862345fc  
14  
For more information www.linear.com/LTC2862  
LTC2862/LTC2863/  
LTC2864/LTC2865  
applicaTions inForMaTion  
exacerbated by capacitive loading. If a logic input is held  
near its threshold (typically V /2 or V /2), a noise glitch  
lengths, these transition times become a significant part  
of the signal bit time. Jitter and intersymbol interference  
aggravate this so that the time window for capturing valid  
data at the receiver becomes impossibly small.  
CC  
L
fromadrivertransitionmayexceedthehysteresislevelson  
the logic and data input pins, causing an unintended state  
change. This can be avoided by maintaining normal logic  
levels on the pins and by slewing inputs faster than 1V/  
ꢀs. Goodsupplydecouplingandproperdrivertermination  
also reduce glitches caused by driver transitions.  
The boundary at 20Mbps in Figure 9 represents the  
guaranteed maximum operating rate of the LTC2862  
series. The dashed vertical line at 10Mbps represents the  
specified maximum data rate in the RS485 standard. This  
boundary is not a limit, but reflects the maximum data  
rate that the specification was written for.  
RS485 Cable Length vs Data Rate  
Many factors contribute to the maximum cable length  
that can be used for RS485 or RS422 communication,  
including driver transition times, receiver threshold, duty  
cycle distortion, cable properties and data rate. A typical  
curve of cable length versus maximum data rate is shown  
in Figure 9. Various regions of this curve reflect different  
performance limiting factors in data transmission.  
It should be emphasized that the plot in Figure 9 shows  
a typical relation between maximum data rate and  
cable length. Results with the LTC2862 series will vary,  
depending on cable properties such as conductor gauge,  
characteristic impedance, insulation material, and solid  
versus stranded conductors.  
Atfrequenciesbelow100kbps,themaximumcablelengthis  
determined by DC resistance in the cable. In this example,  
a cable longer than 4000ft will attenuate the signal at the  
far end to less than what can be reliably detected by the  
receiver.  
Low EMI 256kbps Data Rate  
The LTC2862-2, LTC2863-2, and the LTC2864-2 feature  
slew rate limited transmitters for low electromagnetic  
interference (EMI) in sensitive applications. In addition,  
theLTC2865hasalogic-selectable250kbpstransmitrate.  
The slew rate limit circuit maintains consistent control of  
transmitter slew rates across voltage and temperature to  
ensure low EMI under all operating conditions. Figure 10  
demonstrates the reduction in high frequency content  
achieved by the 250kbps mode compared to the 20Mbps  
mode.  
For data rates above 100kbps the capacitive and inductive  
propertiesofthecablebegintodominatethisrelationship.  
The attenuation of the cable is frequency and length  
dependent, resulting in increased rise and fall times at  
the far end of the cable. At high data rates or long cable  
20  
80  
10k  
0
60  
NON SLEW LIMITED  
–20  
–40  
40  
1k  
20  
LOW EMI  
MODE  
–60  
0
SLO = GND  
100  
–80  
–20  
–40  
–60  
RS485  
STANDARD  
SPEC  
–100  
–120  
SLEW LIMITED  
10  
10  
0
4
6
8
12  
2
10k  
100k  
1M  
10M  
100M  
FREQUENCY (MHz)  
DATA RATE (bps)  
2862345 F10  
2862345 F09  
Figure 9. Cable Length vs Data Rate (RS485/RS422 Standard  
Shown in Vertical Solid Line)  
Figure ꢀ6. High Frequency EMI Reduction of Slew Limited  
256kbps Mode Compared to Non Slew Limited 26Mbps Mode  
2862345fc  
15  
For more information www.linear.com/LTC2862  
LTC2862/LTC2863/  
LTC2864/LTC2865  
applicaTions inForMaTion  
The 250kbps mode has the added advantage of reducing  
signal reflections in an unterminated network, and there-  
by increasing the length of a network that can be used  
without termination. Using the rule of thumb that the rise  
time of the transmitter should be greater than four times  
the one-way delay of the signal, networks of up to 140  
feet can be driven without termination.  
cable to attenuate the transmitted signal to meet the  
PROFIBUSupperlimitof7Vwhilestillprovidingenough  
drive strength to meet the lower limit of 4V.  
4. The LTC2865 family transceiver should be powered by  
a 5% tolerance 5V supply (4.75V to 5.25V) to ensure  
that the PROFIBUS V tolerances are met.  
OD  
ꢂuxiliary Protection For IEC Surgeꢁ EFT and ESD  
PROFIBUS Compatible Interface  
An interface transceiver used in an industrial setting  
may be exposed to extremely high levels of electrical  
overstress due to phenomena such as lightning surge,  
electrical fast transient (EFT) from switching high current  
inductive loads, and electrostatic discharge (ESD) from  
the discharge of electrically charged personnel or equip-  
ment. Test methods to evaluate immunity of electronic  
equipment to these phenomenon are defined in the IEC  
standards 61000-4-2, 61000-4-4, and 61000-4-5, which  
address ESD, EFT, and surge, respectively. The transi-  
ents produced by the EFT and particularly the surge tests  
contain much more energy than the ESD transients. The  
LTC2865 family is designed for high robustness against  
ESD, but the on-chip protection is not able to absorb the  
energy associated with the 61000-4-5 surge transients.  
Therefore,aproperlydesignedexternalprotectionnetwork  
is necessary to achieve a high level of surge protection,  
and can also extend the ESD and EFT performance of the  
LTC2865 family to extremely high levels.  
PROFIBUS is an RS485-based field bus. In addition  
to the specifications of TIA/EIA-485-A, the PROFIBUS  
specification contains additional requirements for cables,  
interconnects, line termination, and signal levels. The  
followingdiscussionappliestothePROFIBUSTypeAcables  
with associated connectors and termination. The Type A  
cable is a twisted pair shielded cable with a characteristic  
impedance of 135Ω to 165Ω and a loop resistance of  
< 110Ω/km.  
The LTC2865 family of RS485 transceivers may be used  
in PROFIBUS compatible equipment if the following  
considerations are implemented. (Please refer to the  
schematic of the PROFIBUS Compatible Interface in the  
Typical Applications Section.)  
1. The polarity of the PROFIBUS signal is opposite to the  
polarity convention used in this data sheet. The PRO-  
FIBUS B wire is driven by a non-inverted signal, while  
the A wire is driven by an inverted signal. Therefore,  
it is necessary to swap the output connections from  
the transceiver. Pin A is connected to the PROFIBUS B  
wire, and Pin B is connected to the PROFIBUS A wire.  
In addition to providing surge, EFT and ESD protection,  
an external network should preserve or extend the ability  
of the LTC2865 family to withstand overvoltage faults,  
operate over a wide common mode, and communicate  
at high frequencies. In order to meet the first two  
requirements, protection components with suitably high  
conduction voltages must be chosen. A means to limit  
current must be provided to prevent damage in case  
a secondary protection device or the ESD cell on the  
LTC2865 family fires and conducts. The capacitance of  
thesecomponentsmustbekeptlowinordertopermithigh  
frequency communication over a network with multiple  
nodes. Meetingtherequirementsforconductingveryhigh  
energyelectricaltransientswhilemaintaininghighhold-off  
voltages and low capacitance is a considerable challenge.  
2. Each end of the PROFIBUS line is terminated with a  
220Ω resistor between B and A, a 390Ω pull-up resis-  
tor between B and V , and a 390Ω pull-down resistor  
CC  
be-tweenAandGND.Thisprovidessuitabletermination  
for the 150Ω twisted pair transmission cable.  
3. The peak to peak differential voltage V received at  
OD  
the end of a 100m cable with the cable and termina-  
tions described above must be greater than 4V and less  
than 7V. The LTC2865 family produces signal levels in  
excess of 7V when driving this network directly. 8.2Ω  
resistors may be inserted between the A and B pins of  
the transceiver and the B and A pins of the PROFIBUS  
2862345fc  
16  
For more information www.linear.com/LTC2862  
LTC2862/LTC2863/  
LTC2864/LTC2865  
applicaTions inForMaTion  
A protection network shown in the Typical Applications  
section (network for IEC level 4 protection against surge,  
EFT and ESD) meets this challenge. The network provides  
the following protection:  
The gas discharge tubes (GDTs) provide the primary pro-  
tection against electrical surges. These devices provide a  
very low impedance and high current carrying capability  
when they fire, safely discharging the surge current to  
GND. The transient blocking units (TBUs) are solid state  
devices that switch from a low impedance pass through  
state to a high impedance current limiting state when a  
specified current level is reached. These devices limit the  
current and power that can pass through to the secondary  
protection. The secondary protection consists of a  
bidirectionalthyristor,whichtriggersabove35Vtoprotect  
the bus pins of the LTC2865 family transceiver. The high  
trigger voltage of the secondary protection maintains the  
full 25V common mode range of the receivers. The final  
component of the network is the metal oxide varistors  
(MOVs) which are used to clamp the voltage across the  
TBUs to protect them against fast ESD and EFT transients  
which exceed the turn-on time of the GDT.  
IEC 61000-4-2 ESD Level 4: 30KV contact, 30kV air  
(linetoGND,directdischargetobuspinswithtransceiver  
and protection circuit mounted on a ground referenced  
test card per Figure 4 of the standard)  
IEC 61000-4-4 EFT Level 4: 5KV (line to GND, 5kHz  
repetition rate, 15ms burst duration, 60 second test  
duration, discharge coupled to bus pins through 100pF  
capacitor per paragraph 7.3.2 of the standard)  
IEC 61000-4-5 Surge Level 4: 5KV (line to GND, line to  
line, 8/20µs waveform, each line coupled to generator  
through 80Ω resistor per Figure 14 of the standard)  
This protection circuit adds only ~8pF of capacitance per  
line(linetoGND),therebyprovidinganextremelyhighlevel  
ofprotectionwithoutsignificantimpacttotheperformance  
of the LTC2865 family transceivers at high data rates.  
The high performance of this network is attributable to  
the low capacitance of the GDT and thyristor primary  
and secondary protection devices. The high capacitance  
MOV floats on the line and is shunted by the TBU, so it  
contributes no appreciable capacitive load on the signal.  
Typical applicaTions  
PROFIBUS Compatible Line Interface  
V
CC  
(4.75V TO 5.25V)  
V
CC  
V
CC  
LTC2862-1  
390Ω  
390Ω  
8.2Ω  
8.2Ω  
RO  
A*  
B*  
B WIRE  
A WIRE  
B WIRE  
100m  
V
RE  
220Ω  
390Ω  
220Ω  
390Ω  
OD  
5.5Ω/WIRE  
DI  
A WIRE  
DE  
4V ≤ V ≤ 7V AT 12Mbps  
P-P  
OD  
P-P  
GND  
* THE POLARITY OF A AND B IN THIS DATA SHEET IS OPPOSITE THE POLARITY DEFINED BY PROFIBUS.  
2862345 TA02  
2862345fc  
17  
For more information www.linear.com/LTC2862  
LTC2862/LTC2863/  
LTC2864/LTC2865  
Typical applicaTions  
Bidirectional ±±6V 26Mbps Level Shifter/Isolator  
C
LTC2863-1  
LTC2863-1  
R1  
A
B
Y
Z
V
V
CC  
CC  
DI  
RO  
R2  
DATA OUT 2  
DATA IN 2  
R1  
C
C
R1  
A
B
Y
Z
DI  
RO  
DATA IN 1  
DATA OUT 1  
R2  
R1  
C
GND  
V
V
CC  
CC  
GND  
6ꢀV  
2862345 TAꢀ3  
R1 = 1ꢀꢀk 1%. PLACE R1 RESISTORS NEAR A AND B PINS.  
R2 = 1ꢀk  
C = 47pF, 5%, 5ꢀ WVDC. MAY BE OMITTED FOR DATA RATES ≤ 1ꢀꢀkbps.  
Failsafe O ꢂpplication (Idle State = Logic O)  
5V  
LTC2862  
RO  
V
I1  
RO  
CC  
B
R
“A”  
“B”  
DE  
DI/  
A
DE  
DI  
D
GND  
I2  
2862345 TA04  
2862345fc  
18  
For more information www.linear.com/LTC2862  
LTC2862/LTC2863/  
LTC2864/LTC2865  
packaGe DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610 Rev G)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
4. PIN 1 CAN BE BEVEL EDGE OR A DIMPLE  
SO8 REV G 0212  
2862345fc  
19  
For more information www.linear.com/LTC2862  
LTC2862/LTC2863/  
LTC2864/LTC2865  
packaGe DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698 Rev C)  
0.70 ±0.05  
3.5 ±0.05  
2.10 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.125  
0.40 ± 0.10  
TYP  
5
8
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
(DD8) DFN 0509 REV C  
4
1
0.25 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.50 BSC  
2.38 ±0.10  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
2862345fc  
20  
For more information www.linear.com/LTC2862  
LTC2862/LTC2863/  
LTC2864/LTC2865  
packaGe DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
S Package  
14-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610 Rev G)  
.337 – .344  
.045 .005  
(8.560 – 8.738)  
.050 BSC  
NOTE 3  
13  
12  
11  
10  
8
14  
N
9
N
1
.245  
MIN  
.160 .005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
2
3
N/2  
N/2  
7
.030 .005  
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
.010 – .020  
(0.254 – 0.508)  
× 45  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
.016 – .050  
(0.406 – 1.270)  
S14 REV G 0212  
NOTE:  
INCHES  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
1. DIMENSIONS IN  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
4. PIN 1 CAN BE BEVEL EDGE OR A DIMPLE  
2862345fc  
21  
For more information www.linear.com/LTC2862  
LTC2862/LTC2863/  
LTC2864/LTC2865  
packaGe DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DD Package  
ꢀ6-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699 Rev C)  
0.70 ±0.05  
3.55 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.125  
0.40 ± 0.10  
TYP  
6
10  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1 NOTCH  
R = 0.20 OR  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
0.35 × 45°  
CHAMFER  
(DD) DFN REV C 0310  
5
1
0.25 ± 0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
2862345fc  
22  
For more information www.linear.com/LTC2862  
LTC2862/LTC2863/  
LTC2864/LTC2865  
packaGe DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DE/UE Package  
ꢀ2-Lead Plastic DFN (4mm × 3mm)  
(Reference LTC DWG # 05-08-1695 Rev D)  
0.70 ±0.05  
3.30 ±0.05  
3.60 ±0.05  
2.20 ±0.05  
1.70 ± 0.05  
PACKAGE OUTLINE  
0.25 ± 0.05  
0.50 BSC  
2.50 REF  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.40 ± 0.10  
4.00 ±0.10  
(2 SIDES)  
R = 0.115  
TYP  
7
12  
R = 0.05  
TYP  
3.30 ±0.10  
3.00 ±0.10  
(2 SIDES)  
1.70 ± 0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
PIN 1 NOTCH  
R = 0.20 OR  
0.35 × 45°  
CHAMFER  
(UE12/DE12) DFN 0806 REV D  
6
1
0.25 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.50 BSC  
2.50 REF  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING PROPOSED TO BE A VARIATION OF VERSION  
(WGED) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
2862345fc  
23  
For more information www.linear.com/LTC2862  
LTC2862/LTC2863/  
LTC2864/LTC2865  
packaGe DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
MSE Package  
ꢀ2-Lead Plastic MSO ꢁ Exposed Die Pad  
(Reference LTC DWG # 05-08-1666 Rev G)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
2.845 ±0.102  
2.845 ±0.102  
(.112 ±.004)  
0.889 ±0.127  
(.035 ±.005)  
(.112 ±.004)  
1
6
0.35  
REF  
1.651 ±0.102  
(.065 ±.004)  
5.10  
(.201)  
MIN  
1.651 ±0.102  
(.065 ±.004)  
3.20 – 3.45  
(.126 – .136)  
0.12 REF  
DETAIL “B”  
CORNER TAIL IS PART OF  
THE LEADFRAME FEATURE.  
FOR REFERENCE ONLY  
NO MEASUREMENT PURPOSE  
DETAIL “B”  
12  
7
0.65  
(.0256)  
BSC  
0.42 ±0.038  
4.039 ±0.102  
(.159 ±.004)  
(NOTE 3)  
(.0165 ±.0015)  
TYP  
0.406 ±0.076  
RECOMMENDED SOLDER PAD LAYOUT  
(.016 ±.003)  
12 11 10 9 8 7  
REF  
DETAIL “A”  
0.254  
(.010)  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 4)  
0° – 6° TYP  
4.90 ±0.152  
(.193 ±.006)  
GAUGE PLANE  
0.53 ±0.152  
(.021 ±.006)  
1
2 3 4 5 6  
DETAIL “A”  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.1016 ±0.0508  
(.004 ±.002)  
MSOP (MSE12) 0213 REV G  
0.650  
(.0256)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6. EXPOSED PAD DIMENSION DOES INCLUDE MOLD FLASH. MOLD FLASH ON E-PAD SHALL  
NOT EXCEED 0.254mm (.010") PER SIDE.  
2862345fc  
24  
For more information www.linear.com/LTC2862  
LTC2862/LTC2863/  
LTC2864/LTC2865  
revision hisTory  
REV  
DTE  
DESCRIPTION  
PꢂGE NUMBER  
A
03/13 Added MP-Grade to Data Sheet  
Updated S8 and S Package  
2, 4  
17, 19  
4
B
01/14 Changed I  
for H-/MP-Grade.  
CCS  
Added V Supply Current vs Data Rate graph.  
7
L
Added Shutdown Mode Delay section.  
14  
Added PROFIBUS Compatible Interface section, Auxiliary protection For IEC Surge, EFT and ESD section, and  
PROFIBUS Compatible Line Interface schematic.  
16, 17  
Replaced RS485 Network with 120V AC Line Fault Protection schematic with Network for IEC Level 4 Protection  
Against Surge, EFT and ESD Plus 360V Overvoltage Protection schematic.  
26  
C
03/14 Changed part marking for DE package  
4
2862345fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnectionofitscircuitsasdescribedhereinwill notinfringeon existing patent rights.  
25  
LTC2862/LTC2863/  
LTC2864/LTC2865  
Typical applicaTion  
Network for IEC Level 4 Protection gainst Surge EFT and ESD  
Plus 36 V Overvoltage Protection  
MOV  
RS485 A  
(EXTERNAL)  
V
LTC2862-1  
R
CC  
DE  
A
TBU  
RO  
DI  
GDT  
GDT  
SCR  
GND  
T
B
SCR  
RE  
TBU  
GND  
RS485 B  
(EXTERNAL)  
2862345 TA05  
MOV  
GDT: BOURNS 2031-42T-SM; 420V GAS DISCHARGE TUBE  
TBU: BOURNS TBU-CA085-300-WH; 850V TRANSIENT BLOCKING UNIT  
MOV: BOURNS MOV-7D391K; 390V 25J METAL OXIDE VARISTOR  
SCR: BOURNS TISP4P035L1NR-S; 35V BIDIRECTIONAL THYRISTOR  
relaTeD parTs  
P RT NUMBER  
LT1785, LT1791  
LTC2850-53  
DESCRIPTION  
COMMENTS  
60ꢀ ꢁaꢂlꢃ ꢄroꢃecꢃeꢅ ꢆR485/ꢆR422 Tranꢇceiꢈerꢇ  
3.3ꢀ 20Mkbꢇ 15ꢉꢀ ꢆR485 Tranꢇceiꢈerꢇ  
60ꢀ Toleranꢃ, 15ꢉꢀ ꢊRS, 250ꢉkbꢇ  
Ub ꢃo 256 Tranꢇceiꢈerꢇ ꢄer Bꢂꢇ  
25ꢉꢀ ꢊRS (LTC2854), 15ꢉꢀ ꢊRS (LTC2855)  
15ꢉꢀ ꢊRS  
LTC2854, LTC2855 3.3ꢀ 20Mkbꢇ ꢆR485 Tranꢇceiꢈerꢇ wiꢃh Inꢃegraꢃeꢅ Rwiꢃchakle Terminaꢃion  
LTC2856-1 ꢁamily 5ꢀ 20Mkbꢇ anꢅ Rlew ꢆaꢃe Limiꢃeꢅ ꢆR485 Tranꢇceiꢈerꢇ  
LTC2859, LTC2861 5ꢀ 20Mkbꢇ ꢆR485 Tranꢇceiꢈerꢇ wiꢃh Inꢃegraꢃeꢅ Rwiꢃchakle Terminaꢃion  
15ꢉꢀ ꢊRS  
LTC1535  
LTM2881  
Iꢇolaꢃeꢅ ꢆR485 Tranꢇceiꢈer  
Combleꢃe 3.3ꢀ Iꢇolaꢃeꢅ ꢆR485/ꢆR422 μMoꢅꢂle® Tranꢇceiꢈer + ꢄower  
2500ꢀ  
2500ꢀ  
Iꢇolaꢃion, ꢆeqꢂireꢇ ꢊxꢃernal Tranꢇceiꢈer  
ꢆMR  
Iꢇolaꢃion wiꢃh Inꢃegraꢃeꢅ Iꢇolaꢃeꢅ SC/SC  
Conꢈerꢃer, 1W ꢄower, Low ꢊMI, 15ꢉꢀ ꢊRS, 30ꢉꢀ/ꢋꢇ  
Common Moꢅe Tranꢇienꢃ Immꢂniꢃy  
ꢆMR  
2862345fc  
LT 0314 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarꢃhy Blꢈꢅ., Milbiꢃaꢇ, CA 95035-7417  
26  
LINEAR TECHNOLOGY CORPORATION 2011  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC2862  

相关型号:

LTC2862IS8-1#TRPBF

LTC2862 - ±60V Fault Protected 3V to 5.5V RS485/RS422 Transceivers; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2862IS8-2#PBF

LTC2862 - ±60V Fault Protected 3V to 5.5V RS485/RS422 Transceivers; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2862IS8-2#TRPBF

LTC2862 - ±60V Fault Protected 3V to 5.5V RS485/RS422 Transceivers; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2862_15

60V Fault Protected 3V to 5.5V RS485/RS422 Transceivers
Linear

LTC2863

Complete Isolated RS485/RS422 μModule
Linear

LTC2863HDD-1#PBF

暂无描述
Linear

LTC2863HS8-1#PBF

LTC2863 - ±60V Fault Protected 3V to 5.5V RS485/RS422 Transceivers; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC2863IDD-1#PBF

LTC2863 - ±60V Fault Protected 3V to 5.5V RS485/RS422 Transceivers; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2863IS8-1#PBF

LTC2863 - ±60V Fault Protected 3V to 5.5V RS485/RS422 Transceivers; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2863IS8-2#PBF

LTC2863 - ±60V Fault Protected 3V to 5.5V RS485/RS422 Transceivers; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2863_15

60V Fault Protected 3V to 5.5V RS485/RS422 Transceivers
Linear

LTC2864

Complete Isolated RS485/RS422 μModule
Linear