LTC2873CUFD#PBF [Linear]

LTC2873 - Single-Bus RS485/RS232 Multiprotocol Transceiver with Switchable Termination; Package: QFN; Pins: 24; Temperature Range: 0°C to 70°C;
LTC2873CUFD#PBF
型号: LTC2873CUFD#PBF
厂家: Linear    Linear
描述:

LTC2873 - Single-Bus RS485/RS232 Multiprotocol Transceiver with Switchable Termination; Package: QFN; Pins: 24; Temperature Range: 0°C to 70°C

文件: 总30页 (文件大小:1126K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2873  
Single-Bus RS485/RS232  
Multiprotocol Transceiver with  
Switchable Termination  
FeaTures  
DescripTion  
The LTC®2873 is a robust pin-configurable multiprotocol  
transceiver that supports RS232, RS485, and RS422  
protocols while operating on a single 3V to 5.5V supply.  
The LTC2873 can be configured as a half-duplex RS485  
transceiver or as an RS232 transceiver using the same  
two bus pins.  
n
One RS485 or One RS232 Transceiver  
n
3V to 5.5V Supply Voltage  
n
Up to 20Mbps RS485  
n
Slew-Controlled RS232 Operation:  
n
Selectable 1Mbps or 250kbps  
n
Automatic Selection of Integrated RS485 (120Ω)  
and RS232 (5kΩ) Termination Resistors  
High ESD: 26kV HBM  
Logic Loopback Mode  
1.7V to 5.5V Logic Interface  
Supports Up to 256 RS485 Nodes  
A pin-controlled integrated termination resistor allows for  
easy interface reconfiguration, eliminating external resis-  
tors and control relays. Loopback mode steers the driver  
inputs to the receiver outputs for diagnostic self-test.  
The RS485 receiver supports up to 256 nodes per bus,  
and features full failsafe operation for floating, shorted or  
terminated inputs.  
n
n
n
n
n
RS485 Receiver Failsafe Eliminates UART Lockup  
n
H-Grade Available (–40°C to 125°C)  
n
Available in 24-Pin 4mm × 5mm QFN Package  
An integrated DC/DC boost converter uses a tiny  
2mm × 1.6mm inductor and one capacitor, eliminating  
the need for multiple supplies when driving RS232 levels.  
applicaTions  
n
L, LT, LTC, LTM, Linear Technology, the Linear logo and µModule are registered trademarks of  
Linear Technology Corporation. All other trademarks are the property of their respective owners.  
Software Selectable RS232/RS485/RS422 Interface  
n
Industrial Sensors and Actuators  
n
Alarm Systems  
Traffic Control and Monitoring  
Highway Signs and Jumbo Displays  
n
n
Typical applicaTion  
220nF  
10μH  
1.7V TO V  
3V TO 5.5V  
CC  
2.2μF  
1μF  
RS485/RS232 Mode Switching  
LTC2873  
RS485  
V
V
CAP  
SW  
CC  
L
RS485  
(485/232 (485/232  
HIGH) LOW)  
RS232  
SHDN  
DI  
DI  
DATA IN  
A/DO  
B/RI  
485/232  
5V/DIV  
RS232  
RS485  
120Ω  
RO  
DATA OUT  
B/RI  
485/232  
485/232  
V
DD  
1μF  
A/DO  
3V/DIV  
RE485  
TE485  
RS232  
D/R  
(485)  
5k  
DE485/  
V
EE  
F232  
1μF  
LB  
2873 TA01b  
GND  
1µs/DIV  
2873 TA01  
2873fa  
1
For more information www.linear.com/LTC2873  
LTC2873  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Notes 1 and 2)  
TOP VIEW  
Input Supplies  
V , V .................................................... –0.3V to 7V  
CC  
L
Generated Supplies  
................................................V – 0.3V to 7.5V  
24 23 22 21 20  
V
V
1
2
3
4
5
6
7
19  
18  
17  
16  
15  
14  
13  
NC  
V
DD  
CC  
EE  
RO  
485/232  
RE485  
V .........................................................7.5V to 0.3V  
CC  
EE  
A/DO  
GND  
B/RI  
SW............................................... –0.3V to (V + 0.3V)  
DD  
25  
CAP................................................. (V 0.3V) to 0.3V  
V
EE  
EE  
DE485/F232  
DI  
A/DO, B/RI ...................................................15V to 15V  
V
V
CC  
DD  
DI, 485/232, DE485/F232, RE485,  
SHDN  
8
9
10 11 12  
TE485, LB ................................................ –0.3V to 7V  
SHDN, RO .......................................–0.3V to (V + 0.3V)  
L
Differential Terminator Voltage (Enabled)  
UFD PACKAGE  
24-LEAD (4mm × 5mm) PLASTIC QFN  
(A/DO to B/RI) ..................................................... 6V  
Differential Terminator Voltage (Disabled)  
(A/DO to B/RI) ................................................... 30V  
Operating Temperature  
T
= 150°C, θ = 43°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 25) IS V , MUST BE SOLDERED TO PCB  
EE  
LTC2873C............................................... 0°C to 70°C  
LTC2873I .............................................–40°C to 85°C  
LTC2873H.......................................... –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
orDer inForMaTion http://www.linear.com/product/LTC2873#orderinfo  
LEAD FREE FINISH  
LTC2873CUFD#PBF  
LTC2873IUFD#PBF  
LTC2873HUFD#PBF  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2873CUFD#TRPBF  
LTC2873IUFD#TRPBF  
LTC2873HUFD#TRPBF  
2873  
24-Lead (4mm × 5mm) Plastic QFN  
24-Lead (4mm × 5mm) Plastic QFN  
24-Lead (4mm × 5mm) Plastic QFN  
2873  
40°C to 85°C  
2873  
40°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through  
designated sales channels with #TRMPBF suffix.  
2873fa  
2
For more information www.linear.com/LTC2873  
LTC2873  
elecTrical characTerisTics The ldenotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = VL = 3.3V, TE485 = VL, LB = 0V unless otherwise noted. (Notes 2, 6)  
SYMBOL PARAMETER  
Supplies  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
V
CC  
V
L
Supply Voltage Operating Range  
3
5.5  
V
V
Logic Supply Voltage Operating Range  
V ≤ V  
1.7  
V
CC  
L
CC  
V
V
Supply Current in Shutdown Mode  
Supply Current in RS232 Mode or  
SHDN = 0V  
8
4
30  
µA  
mA  
CC  
No Load, SHDN = TE485 = DE485/F232 = V  
RE485 = 0  
9
9
5
CC  
L
RS485 Mode, Driver and Receiver Enabled,  
Termination Disabled  
l
l
V
Supply Current in RS485 Mode with  
No Load, SHDN = 485/232 = V  
DE485/F232 = RE485 = TE485 = 0  
4
0
mA  
µA  
CC  
L
Receiver and Termination Enabled, Driver  
Disabled  
V Supply Current in Any Mode  
L
No Load  
Power Supply Generator  
V
DD  
V
EE  
Regulated V Output Voltage  
SHDN = V , No Load  
7.0  
V
V
DD  
L
Regulated V Output Voltage  
SHDN = V , No Load  
6.3  
EE  
L
RS485 Driver  
l
l
l
l
|V  
OD  
|
Differential Output Voltage  
R = Open, V = 3V (Figure 1)  
V
V
V
V
V
L
CC  
CC  
CC  
CC  
R = 27Ω, V = 4.5V (Figure 1)  
2.1  
1.5  
2
V
V
L
CC  
R = 27Ω, V = 3V (Figure 1)  
L
CC  
R = 50Ω, V = 3.13V (Figure 1)  
L
CC  
l
l
∆|V |  
OD  
Difference in Magnitude of Differential Output  
Voltage for Complementary Output States  
R = 27Ω, V = 3V (Figure 1)  
0.2  
0.2  
V
L
CC  
R = 50Ω, V = 3.13V (Figure 1)  
L
CC  
l
l
V
Common Mode Output Voltage  
R = 27Ω or 50Ω (Figure 1)  
3
V
V
OC  
L
∆|V  
|
Difference in Magnitude of Common Mode Output R = 27Ω or 50Ω (Figure 1)  
Voltage for Complementary Output States  
0.2  
OC  
L
l
l
I
Maximum Short-Circuit Current  
–7V ≤ V  
≤ 12V (Figure 2)  
OUT  
250  
125  
mA  
OSD485  
RS485 Receiver  
I
Input Current (A/DO, B/RI)  
(A/DO or B/RI) = 12V or –7V,  
= 0V or 3.3V (Figure 3)  
–100  
–200  
µA  
kΩ  
mV  
IN485  
V
CC  
R
Input Resistance (A/DO, B/RI)  
(A/DO or B/RI) = 12V or –7V,  
= 0V or 3.3V (Figure 3)  
125  
IN485  
V
CC  
l
l
Differential Input Signal Threshold  
Voltage (A/DO to B/RI)  
–7V ≤ (A/DO or B/RI) ≤ 12V  
200  
–20  
Input Hysteresis  
B = 0V  
220  
–70  
40  
mV  
mV  
mV  
V
Differential Input Failsafe Rising Threshold Voltage –7V ≤ (A/DO or B/RI) ≤ 12V, (A/D0 – B/RI) Rising  
Input DC Failsafe Hysteresis  
l
l
V
Receiver Output Low Voltage  
Output Low, I(RO) = 3mA (Sinking),  
0.4  
0.4  
OL  
3V ≤ V ≤ 5.5V  
L
Output Low, I(RO) = 1mA (Sinking),  
1.7V ≤ V < 3V  
V
L
2873fa  
3
For more information www.linear.com/LTC2873  
LTC2873  
elecTrical characTerisTics The ldenotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = VL = 3.3V, TE485 = VL, LB = 0V unless otherwise noted. (Notes 2, 6)  
SYMBOL PARAMETER  
Receiver Output High Voltage  
CONDITIONS  
MIN  
V – 0.4  
TYP  
MAX  
UNITS  
l
l
V
Output High, I(RO) = –3mA (Sourcing),  
V
OH  
L
3V ≤ V ≤ 5.5V  
L
Output High, I(RO) = –1mA (Sourcing),  
V – 0.4  
L
V
1.7V ≤ V < 3V  
L
l
l
l
Three-State (High Impedance) Output Current (RO) 0V ≤ RO ≤ V , V = 5.5V, RE485 = V  
L
0
5
µA  
mA  
Ω
L
L
Short-Circuit Current (RO)  
Terminating Resistor  
0V ≤ RO ≤ V , V = 5.5V  
135  
156  
L
L
R
TERM  
TE485 = 0V, V = 2V,  
108  
120  
AB  
V = –7V, 0V, 10V (Figure 8)  
B
RS232 Driver  
l
l
l
V
OLD  
V
OHD  
Output Low Voltage  
R = 3kΩ, V ≤ –6V  
–5  
5
–5.5  
5.9  
25  
V
V
V
L
EE  
EE  
Output High Voltage  
R = 3kΩ, V ≥ 6.5V  
V
DD  
L
DD  
Output Short-Circuit Current  
Driver Output = 0V  
90  
mA  
RS232 Receiver  
Input Threshold Voltage  
l
l
l
l
l
l
0.6  
0.1  
1.5  
0.4  
2.5  
1.0  
0.4  
V
V
Input Hysteresis  
Output Low Voltage  
Output High Voltage  
Input Resistance  
I(RO) = 1mA (Sinking), 1.7V ≤ V < 5.5V  
V
L
I(RO) = –1mA (Sourcing), 1.7V ≤ V < 5.5V  
V – 0.4  
L
V
L
–15V ≤ B/RI ≤ 15V, 485/232 = 0V  
3
5
7
kΩ  
mA  
Output Short-Circuit Current  
V = 5.5V, 0V ≤ RO ≤ V  
25  
50  
L
L
Logic Inputs  
l
l
Threshold Voltage  
Input Current  
0.4  
0.75 V  
V
L
0
5
µA  
ESD  
Interface Pins (A/DO, B/RI)  
All Other Pins  
Human Body Model to GND or V , Powered  
26  
4
kV  
kV  
CC  
or Unpowered (Note 5)  
Human Body Model (Note 5)  
2873fa  
4
For more information www.linear.com/LTC2873  
LTC2873  
swiTching characTerisTics The ldenotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = VL = 3.3V, TE485 = VL, LB = 0V unless otherwise noted. (Notes 2, 6)  
SYMBOL  
RS485 Switching Characteristics  
Maximum Data Rate  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
(Note 3) (Figure 15)  
20  
Mbps  
ns  
t
, t  
Driver Propagation Delay  
R
DIFF  
= 54Ω, C = 100pF (Figure 4)  
20  
0
70  
6
PLHD485 PHLD485  
L
Driver Propagation Delay Difference  
l
R
= 54Ω, C = 100pF (Figure 4)  
ns  
DIFF  
L
t
– t  
PHLD485  
PLHD485  
t
t
Driver Skew (A/DO to B/RI)  
Driver Rise or Fall Time  
R
R
= 54Ω, C = 100pF (Figure 4)  
0
8
ns  
ns  
ns  
SKEWD485  
DIFF  
L
, t  
= 54Ω, C = 100pF (Figure 4)  
7.5  
12.5  
120  
RD485 FD485  
DIFF  
L
l
l
l
l
l
t
t
, t  
, t  
,
Driver Output Enable or Disable Time SHDN = V , R = 500Ω, C = 50pF,  
L L L  
ZLD485 ZHD485  
LZD485 HZD485  
DE485 and (Figure 5)  
t
t
t
t
t
, t  
Driver Enable from Shutdown Time  
(Note 7)  
DE485/F232 = V , R = 500Ω,  
4
0.5  
45  
0
12  
1
µs  
μs  
ns  
ns  
ZHSD485 ZLSD485  
L
L
C = 50pF, SHDN (Figure 5)  
L
, t  
Driver Output Disable Into  
Shutdown Time  
DE485/F232 = V , R = 500Ω,  
L L  
HZSD485 LZSD485  
C = 50pF, SHDN (Figure 5)  
L
, t  
Receiver Input to Output Time  
C = 15pF, V = 1.5V,  
85  
9
PLHR485 PHLR485  
L
CM  
|A/DO to B/RI| = 1.5V, (Figure 6)  
Differential Receiver Skew  
C = 15pF (Figure 6)  
L
SKEWR485  
t
– t  
PHLR485  
PLHR485  
l
l
, t  
Receiver Output Rise or Fall Time  
C = 15pF (Figure 6)  
L
3
15  
85  
ns  
ns  
RR485 FR485  
t
t
, t  
, t  
,
Receiver Output Enable or  
Disable Time  
485/232 = SHDN = V , R = 1kΩ,  
12  
ZLR485 ZHR485  
LZR485 HZR485  
L
L
C = 15pF, RE485 and (Figure 7)  
L
l
l
l
t
t
t
, t  
Receiver Enable from Shutdown Time 485/232 = V , RE485 = 0V, R = 1kΩ,  
4
12  
1
µs  
µs  
µs  
ZHSR485 ZLSR485  
L
L
(Note 7)  
C = 15pF , SHDN (Figure 7)  
L
, t  
Receiver Output Disable Into  
Shutdown Time  
485/232 = V , RE485 = 0V, R = 1kΩ,  
L
0.5  
HZSR485 LZSR485  
L
L
C = 15pF ,SHDN (Figure 7)  
, t  
Termination Enable or Disable  
Time  
485/232 = V , SHDN = V , B = 0,  
100  
RTEN485 RTZ485  
L
L
(A/DO to B/RI) = 2V (Figure 8)  
RS232 Switching Characteristics  
Maximum Data Rate (Figure 15)  
l
l
l
R = 3kΩ, C = 2.5nF, (Fast, Slow Modes)  
100  
250  
1000  
kbps  
kbps  
kbps  
L
L
R = 3kΩ, C = 1nF, (Fast, Slow Modes)  
L
L
R = 3kΩ, C = 0.25nF, (Fast Mode)  
L
L
l
l
l
Driver Slew Rate (Figure 9)  
R = 3kΩ, C = 2.5nF, (Fast, Slow Modes)  
2
V/µs  
V/µs  
V/µs  
L
L
R = 3kΩ, C = 50pF, (Slow Mode)  
30  
150  
L
L
R = 3kΩ, C = 50pF, (Fast Mode)  
L
L
l
l
t
t
t
t
, t  
Driver Propagation Delay (Figure 9)  
Driver Skew (Figure 9)  
R = 3kΩ, C = 50pF, (Slow Mode)  
1.5  
0.4  
3
1
µs  
µs  
PHLD232 PLHD232  
L
L
R = 3kΩ, C = 50pF, (Fast Mode)  
L
L
R = 3kΩ, C = 50pF, (Slow Mode)  
0
0
400  
100  
ns  
ns  
SKEWD232  
L
L
R = 3kΩ, C = 50pF, (Fast Mode)  
L
L
l
l
l
, t  
Driver Enable from Shutdown  
Time (Note 7)  
V
= 7.0V, V = –6.3V, 485/232 = 0V,  
5
12  
µs  
ZLSD232 ZHSD232  
DD  
L
EE  
R = 3kΩ, C = 50pF, SHDN (Figure 10)  
L
, t  
Driver Output Disable into  
Shutdown Time  
485/232 = 0V, R = 3kΩ, C = 50pF,  
0.6  
2
µs  
LZSD232 HZSD232  
L
L
SHDN (Figure 10)  
t
t
t
, t  
Receiver Propagation Delay  
Receiver Skew  
C = 150pF (Figure 11)  
L
60  
25  
70  
200  
ns  
ns  
ns  
PHLR232 PLHR232  
C = 150pF (Figure 11)  
L
SKEWR232  
l
, t  
Receiver Output Rise or Fall Time  
C = 150pF (Figure 11)  
L
200  
RR232 FR232  
2873fa  
5
For more information www.linear.com/LTC2873  
LTC2873  
swiTching characTerisTics The ldenotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = VL = 3.3V, TE485 = VL, LB = 0V unless otherwise noted. (Notes 2, 6)  
SYMBOL  
PARAMETER  
CONDITIONS  
= 7.0V, V = –6.3V, 485/232 = 0V,  
MIN  
TYP  
MAX  
UNITS  
l
l
t
, t  
Receiver Enable from Shutdown  
Time (Note 7)  
V
5
12  
µs  
ZLSR232 ZHSR232  
DD  
EE  
R = 1kΩ, C = 150pF, SHDN (Figure 12)  
L
L
t
, t  
Receiver Disable Into Shutdown Time 485/232 = 0V, R = 1kΩ, C = 150pF  
0.4  
2
μs  
LZSR232 HZSR232  
L
L
SHDN (Figure 12)  
Mode Change Characteristics  
l
l
l
l
t
t
t
t
V
and V Supply Rise Time  
(Figure 13)  
0.2  
0.2  
0.8  
70  
1
1
ms  
µs  
µs  
ns  
RDY  
DD  
EE  
(Time from Shutdown to RS485 Ready)  
Time from RS485 Mode to RS232 Mode (Figure 14)  
RS232 Driver Ready  
DR232  
R232  
Time from RS485 Mode to RS232 Mode (Figure 14)  
RS232 Receiver Ready  
3
Time from RS232 Mode to RS485  
Mode RS485 Driver and Receiver Ready  
(Figure 14)  
250  
DR485  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: All currents into device pins are positive; all currents out of device  
pins are negative. All voltages are referenced to device ground unless  
otherwise specified.  
Note 5: Guaranteed by design and not subject to production test.  
Note 6:Testing was done with V and V back driven to valid supply  
levels for functions that require these supplies, unless otherwise noted.  
DD  
EE  
Note 7: If enabling from shutdown, where V and V supplies are  
DD  
EE  
collapsed, allow the extra time it takes to generate valid V and V  
DD  
EE  
supplies (t ).  
RDY  
Note 3: Guaranteed by other measured parameters and not tested directly.  
Note 4: Time from SHDN until V ≥ 5V and V ≤ –5V. External  
DD  
EE  
components as shown in the Typical Application section.  
TA = 25°C, VCC = VL = 3.3V, unless otherwise noted.  
Typical perForMance characTerisTics  
VCC Supply Current vs Supply  
Voltage in Shutdown Mode  
VCC Supply Current vs Supply  
Voltage in RDY Mode  
VCC Supply Current  
vs RS485 Data Rate  
100  
5
4
3
2
1
15  
14  
13  
12  
11  
10  
9
V
CC  
V
CC  
= 5V  
= 3.3V  
RS485 DRIVER  
AND RECEIVER  
SWITCHING.  
DRIVER, RECEIVER AND TERMINATOR  
DISABLED  
80  
60  
40  
20  
0
CL = 100pF ON EACH  
DRIVER OUTPUT.  
85°C  
25°C  
TE485 LOW  
–40°C  
8
7
TE485 HIGH  
6
5
3
3.5  
4
4.5  
5
5.5  
0.1  
1
10  
100  
3
3.5  
4
4.5  
5
5.5  
SUPPLY VOLTAGE (V)  
DATA RATE (Mbps)  
SUPPLY VOLTAGE (V)  
2873 G02  
2873 G03  
2873 G01  
2873fa  
6
For more information www.linear.com/LTC2873  
LTC2873  
TA = 25°C, VCC = VL = 3.3V, unless otherwise noted.  
Typical perForMance characTerisTics  
VCC Supply Current vs RS232  
Data Rate in Slow Mode  
VCC Supply Current vs RS232  
Data Rate in Fast Mode  
RS485 Driver Differential Output  
Voltage vs Temperature  
20  
16  
12  
8
24  
20  
16  
12  
8
4.5  
DRIVER AND  
DRIVER AND  
V
V
= 5V  
= 3.3V  
V
V
= 5V  
= 3.3V  
CC  
CC  
CC  
CC  
R
= 100Ω  
= 54Ω  
L
RECEIVER ENABLED  
A/DO TIED TO B/RI  
VARIOUS LOADS  
RECEIVER ENABLED  
A/DO TIED TO B/RI  
VARIOUS LOADS  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
R
L
250pF  
1nF  
2.5nF  
2.5nF  
1nF  
R
= 100Ω  
= 54Ω  
L
75pF  
R
1nF  
1nF  
L
250pF  
75pF  
2.5nF  
75pF  
75pF  
V
CC  
V
CC  
= 5V  
= 3.3V  
2.5nF  
4
4
0
50  
100  
150  
200  
250  
0
200  
400  
600  
800  
1000  
–50  
–25  
0
25  
50  
75  
100  
DATA RATE (kbps)  
DATA RATE (kbps)  
TEMPERATURE (°C)  
2873 G04  
2873 G05  
2873 G06  
RS485 Driver Propagation Delay  
vs Temperature  
RS485 Driver Skew  
vs Temperature  
RS485 Driver Short-Circuit  
Current vs Short-Circuit Voltage  
2.0  
1.5  
1.0  
0.5  
0
150  
100  
50  
50  
40  
30  
20  
10  
0
V
CC  
V
CC  
= 5V  
= 3.3V  
V
V
V
V
= 3.3V, V = 1.7V  
L
CC  
CC  
CC  
CC  
= 5V, V = 1.7V  
L
= 3.3V, V = 3.3V  
L
= 5V, V = 5V  
L
OUTPUT LOW  
0
–50  
–100  
–150  
OUTPUT HIGH  
10  
–0.5  
–1.0  
–50  
–25  
0
25  
50  
75  
100  
–10  
–5  
0
5
15  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
SHORT-CIRCUIT VOLTAGE (V)  
TEMPERATURE (°C)  
2873 G08  
2873 G09  
2873 G07  
RS485 Receiver Propagation  
Delay vs Temperature  
RS485 Receiver Skew  
vs Temperature  
RS485 Receiver Output Voltage  
vs Load Current  
2.0  
1.5  
1.0  
0.5  
0
6
5
4
3
2
1
0
80  
70  
60  
50  
40  
V
V
V
= 5V  
= 3.3V  
= 1.7V  
L
L
L
V
V
V
V
= 3.3V, V = 1.7V  
L
CC  
CC  
CC  
CC  
= 5V, V = 1.7V  
L
= 3.3V, V = 3.3V  
L
= 5V, V = 5V  
L
–0.5  
–1.0  
–50  
–25  
0
25  
50  
75  
100  
0
2
4
6
8
10  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
2873 G11  
2873 G12  
2873 G10  
2873fa  
7
For more information www.linear.com/LTC2873  
LTC2873  
TA = 25°C, VCC = VL = 3.3V, unless otherwise noted.  
Typical perForMance characTerisTics  
RS232 Receiver Input Threshold  
vs Temperature  
RS232 Receiver Output Voltage  
vs Load Current  
RS485 Termination Resistance  
vs Temperature  
130  
128  
126  
124  
122  
120  
118  
116  
114  
112  
110  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
6
5
4
3
2
1
0
V
V
V
= 5V  
= 3.3V  
= 1.7V  
L
L
L
V
CM  
V
CM  
V
CM  
= –7V  
= 2V  
= 12V  
INPUT HIGH  
INPUT LOW  
V
CC  
V
CC  
= 5V  
= 3.3V  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
0
2
4
6
8
10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
2873 G15  
2873 G13  
2873 G14  
RS232 Operation at 1Mbps  
FAST Mode (DE485/F232 High)  
RS232 Driver Switching at 250kbps  
LTC2873 Drivers Changing Modes  
50pF FROM A/DO to B/RI,  
TERMINATION ENABLED  
DI  
3V/DIV  
DI  
3V/DIV  
DI  
5V/DIV  
A/DO  
1V/DIV  
A = B  
3V/DIV  
A
3V/DIV  
B/RI  
1V/DIV  
RO  
3V/DIV  
RO  
5V/DIV  
FAST MODE  
SLOW MODE  
2µs/DIV  
2873 G16  
2873 G17  
2873 G18  
400ns/DIV  
20ns/DIV  
Transition from Shutdown to RS232  
Driver Output Going High and Low  
RS232/RS485 Mode Switching  
VDD and VEE Ripple  
DI  
V
DD  
RIPPLE  
SHDN  
485/232  
5V/DIV  
RS232  
V
DD  
RS485  
10mV/DIV  
A HIGH  
V
RIPPLE  
EE  
3V/DIV  
A LOW  
B/RI  
V
EE  
A/DO  
3V/DIV  
2873 G20  
2873 G19  
2873 G21  
40µs/DIV  
40µs/DIV  
2µs/DIV  
RS485 READY MODE,  
ALL DRIVERS AND RECEIVERS DISABLED  
2873fa  
8
For more information www.linear.com/LTC2873  
LTC2873  
pin FuncTions  
V
(Pins 1, 10, 25): Generated Negative Supply Voltage  
V
(Pin 13): Generated Positive Supply Voltage for  
EE  
DD  
forRS232Driver(–6.3V).Tie allpinstogetherandconnect  
RS232 Driver (+7.0V). Connect 1µF capacitor between  
1µF capacitor between V (Pin 10) and GND. Exposed  
V
DD  
and GND.  
EE  
pad (Pin 25) must be soldered to PCB to maintain low  
V
(Pin 14, 18, 21): Input Supply (3V to 5.5V). Tie all  
CC  
thermal resistance.  
threepinstogetherandconnecta2.2µForlargercapacitor  
RO(Pin2):RS485DifferentialReceiverOutputandRS232  
Receiver Output. Logic level referenced to GND and V .  
between V (adjacent to V ) and GND.  
CC DD  
L
B/RI (Pin 15): RS485 Negative Receiver Input and Driver  
Output. In RS232 mode, this is the RS232 receiver input.  
485/232(Pin3):InterfaceSelectInput.Alogiclowenables  
RS232 mode and a high enables RS485 mode. The mode  
determines which transceiver inputs and outputs are ac-  
cessible at the LTC2873 pins. Logic level referenced to  
A/DO (Pin 17): RS485 Positive Receiver Input and Driver  
Output. In RS232 mode, this is the RS232 driver output.  
NC (Pin 19): Not connected internally.  
GND and V . Do not float.  
L
V (Pin 22): Logic Supply (1.7V to 5.5V) for the Receiver  
RE485 (Pin4): RS485 Receiver Enable. In RS485 mode, a  
logic high disables the RS485 receiver, leaving its output  
Hi-ZandalogiclowenablestheRS485receiver.Thisinput  
has no function in RS232 mode (485/232 low). Logic level  
L
Outputs, Driver Inputs, and Control Inputs. Bypass this  
pin to GND with a 0.1µF capacitor if not tied to V . Keep  
CC  
V ≤ V for operation guaranteed to meet specifications.  
L
CC  
However, V > V will not damage the device, provided  
referenced to GND and V . Do not float.  
L
CC  
L
thatabsolutemaximumlimitsarerespected.SeeV Logic  
L
DE485/F232(Pin5):RS485DriverEnableandRS232Fast  
Mode Enable. In RS485 mode (485/232 high), a logic low  
disables the RS485 driver leaving the driver outputs in a  
Hi-Z state and a logic high enables the RS485 driver. In  
RS232mode(485/232low),alogichighenablesFastmode  
with maximum data rate of 1Mbps. A logic low enables  
Slow mode with a maximum data rate of 250kbps. Logic  
Supply and Logic Pins” in Applications section for more  
information.  
LB (Pin 23): Loopback Enable. A logic high enables logic  
loopback diagnostic mode, internally routing the driver  
input logic signals to the receiver output pins. This applies  
to RS232 and RS485 operation. The targeted receiver  
must be enabled for the loopback signal to be available  
on its output. A logic low disables Loopback mode. In  
Loopback mode, signals are not inverted from driver  
inputs to receiver outputs. Logic level referenced to GND  
level referenced to GND and V . Do not float.  
L
DI (Pin 6): RS485 and RS232 Driver Input. Logic level  
referenced to GND and V . Do not float.  
L
SHDN (Pin7): Shutdown Control. A logic low disables the  
LTC2873 into low power shutdown state, independent  
of the other inputs. Driver and receiver outputs become  
and V . Do not float.  
L
TE485(Pin24):RS485TerminationEnable.InRS485mode,  
a logic low enables a 120Ω resistor between pins A/DO  
and B/RI. A logic high opens the resistor between A/DO  
and B/RI, leaving the pins unterminated. In RS485 mode,  
the 5k resistor between B/RI and GND is never engaged.  
In RS232 mode, the 120Ω resistor between A/DO and B/  
RI is never engaged, regardless of the state of TE485, and  
the 5k resistor between B/RI and GND is always engaged.  
Hi-Z. Logic level referenced to GND and V . Do not float.  
L
GND(Pin8,11,16,20):Ground.Tie allfourpinstogether.  
CAP(Pin9):ChargePumpCapacitorforGeneratedNegative  
Supply Voltage V . Connect a 220nF capacitor between  
EE  
CAP and SW.  
SW (Pin 12): Switch Pin. Connect 10µH inductor between  
Logic level referenced to GND and V . Do not float.  
L
SW and V . See Inductor Selection section for further  
CC  
details.  
2873fa  
9
For more information www.linear.com/LTC2873  
LTC2873  
block DiagraM  
1.7V TO 5.5V  
(≤ V  
)
3V TO 5.5V  
10µH  
CC  
220nF  
SW  
0.1µF  
2.2µF  
V
L
V
CAP  
CC  
SHDN  
485/232  
DE485/F232  
RE485  
V
V
DD  
EE  
1µF  
PULSE-SKIPPING  
BOOST  
REGULATOR  
f = 1.2MHz  
RT232  
RT485  
CONTROL  
LOGIC  
1µF  
TE485  
DRIVERS  
LB  
232  
485  
DI  
A/DO  
B/RI  
RT485  
125k  
120Ω  
LOOPBACK  
PATH  
125k  
RECEIVERS  
232  
RT232  
5k  
RO  
485  
2873 BD  
GND  
2873fa  
10  
For more information www.linear.com/LTC2873  
LTC2873  
TesT circuiTs  
A/DO  
A/DO OR  
B/RI  
I
OSD485  
R
R
L
GND  
DI  
+
OR  
DRIVER  
V
OD  
GND  
OR  
V
L
DI  
DRIVER  
B/RI  
+
L
V
L
V
B/RI  
OR A/DO  
+
OC  
V
OUT  
2873 F01  
2873 F02  
Figure 1. RS485 Driver DC Characteristics  
Figure 2. RS485 Driver Output Current  
I
A/DO OR  
B/RI  
IN485  
B/RI  
OR A/DO  
RECEIVER  
+
V
IN  
V
IN  
R
=
IN485  
I
2873 F03  
IN485  
Figure 3. RS485 Receiver Input Current and Resistance  
V
L
t
t
PHLD485  
DI  
PLHD485  
A/DO  
0V  
t
SKEWD485  
B/RI  
C
C
L
L
DI  
V
½V  
OD  
OD  
R
DIFF  
DRIVER  
A/DO  
B/RI  
90%  
10%  
90%  
10%  
0V  
0V  
A/RO – B/DI  
t
t
FD485  
RD485  
2873 F04  
Figure 4. RS485 Driver Timing Measurement  
2873fa  
11  
For more information www.linear.com/LTC2873  
LTC2873  
TesT circuiTs  
V
L
DE485/F232  
OR SHDN  
½V  
½V  
GND  
OR  
L
L
R
L
L
t
,
ZLD485  
0V  
t
,
t
A/DO  
V
CC  
LZD485  
ZLSD485  
V
CC  
t
LZSD485  
C
C
L
V
OR  
GND  
L
½V  
½V  
A/DO OR B/RI  
B/RI OR A/DO  
CC  
CC  
DI  
0.5V  
0.5V  
DRIVER  
V
V
OL  
OH  
B/RI  
R
V
OR  
CC  
DE485/F232  
OR SHDN  
0V  
GND  
t
,
t
,
HZD485  
ZHD485  
t
t
L
HZSD485  
ZHSD485  
2873 F05  
Figure 5. RS485 Driver Enable and Disable Timing Measurements  
V
AB  
0V  
A/DO TO B/RI  
RO  
V
V
/2  
/2  
A/DO  
B/RI  
AB  
AB  
–V  
AB  
t
t
PLHR485  
PHLR485  
RO  
V
V
RECEIVER  
CM  
L
90%  
10%  
90%  
10%  
½V  
½V  
C
L
L
L
0V  
t
t
RR485  
FR485  
t
= t  
– t  
SKEWR485 PLHR485 PHLR485  
2873 F06  
Figure 6. RS485 Receiver Propagation Delay Measurements  
V
L
RE485  
OR SHDN  
½V  
½V  
L
L
0V  
t
,
ZLR485  
t
,
LZR485  
t
ZLRSR485  
t
LZSR485  
A/DO  
B/RI  
V
L
0V TO 3V  
3V TO 0V  
V
OR  
GND  
R
L
L
RO  
½V  
½V  
RO  
L
L
RECEIVER  
0.5V  
0.5V  
V
V
OL  
OH  
C
L
RE485  
OR SHDN  
RO  
0V  
t
t
,
t
,
HZR485  
ZHR485  
t
HZSR485  
ZHRSR485  
2873 F07  
Figure 7. RS485 Receiver Enable and Disable Timing Measurements  
V
I
AB  
A
R
TERM  
=
V
L
I
A
TE485  
½V  
½V  
L
L
A/DO  
B/RI  
+
0V  
RECEIVER  
V
V
AB  
t
t
RTZ485  
RTEN485  
90%  
I
TE485  
A
10%  
+
B
2873 F08  
Figure 8. RS485 Termination Resistance and Timing Measurements  
2873fa  
12  
For more information www.linear.com/LTC2873  
LTC2873  
TesT circuiTs  
V
L
t
PHLD232  
½V  
L
½V  
L
DI  
A/DO  
DI  
t
PLHD232  
0V  
t
t
R
F
V
OHD  
R
L
C
L
3V  
3V  
–3V  
0V  
0V  
A/DO  
–3V  
V
OLD  
6V  
t OR t  
t
= |t  
– t  
|
SLEW RATE =  
SKEWD232  
PHLD232 PLHD232  
F
R
2873 F09  
Figure 9. RS232 Driver Timing and Slew Rate Measurements  
V
L
½V  
½V  
L
L
A/DO  
SHDN  
0V OR V  
L
0V  
t
t
HZSD232  
ZHSD232  
SHDN  
R
C
L
L
V
OHD  
0.5V  
5V  
A/DO  
A/DO  
0V  
0V  
t
t
LZSD232  
ZLSD232  
–5V  
0.5V  
V
OLD  
2873 F10  
Figure 10. RS232 Driver Enable and Disable Times  
+3V  
–3V  
1.5V  
B/RI  
1.5V  
B/RI  
RO  
t
t
PLHR232  
PHLR232  
V
C
L
L
90%  
10%  
90%  
10%  
RO  
½V  
½V  
L
L
0V  
t
t
RR232  
FR232  
t
= |t  
– t  
|
SKEWR232  
PLHR232 PHLR232  
2873 F11  
Figure 11. RS232 Receiver Timing Measurements  
V
L
R
L
½V  
½V  
RO  
SHDN  
L
L
GND  
OR V  
–3V OR +3V  
0V  
L
t
t
t
t
HZR232,  
HZSR232  
ZHR232,  
ZHSR232  
SHDN  
C
L
V
OHR  
0.5V  
0.5V  
RO  
RO  
½V  
½V  
L
L
0V  
t
t
t
LZR232,  
LZSR232  
ZLR232,  
ZLSR232  
V
t
L
V
OLR  
2873 F12  
Figure 12. RS232 Receiver Enable and Disable Times  
2873fa  
13  
For more information www.linear.com/LTC2873  
LTC2873  
TesT circuiTs  
C1  
220nF  
L1  
10µH  
V
CC  
C4  
2.2µF  
½V  
L
V
SW CAP  
CC  
SHDN  
+6.3V  
V
DI  
RO  
SHDN  
485/232  
DE485/F232  
RE485  
V
DD  
L
C2  
0V  
0V  
V
DD  
LTC2873  
1µF  
STEP  
V
V
EE  
EE  
+
C3  
1µF  
V
–5.9V  
t
VEE  
A/DO  
B/RI  
t
VDD  
TE485  
LB  
GND  
t
= MAX (t  
, t  
)
RDY  
VDD VEE  
2873 F13  
Figure 13. Timing Coming Out of Shutdown Mode  
C1  
220nF  
L1  
10µH  
V
CC  
½V  
L
½V  
485/232  
L
C4  
2.2µF  
V
SW CAP  
CC  
A
V
DI  
RO  
SHDN  
485/232  
DE485/F232  
RE485  
TE485  
LB  
V
DD  
L
3V  
C4  
LTC2873  
1µF  
B
0V  
V
EE  
STEP  
t
R232  
C3  
1µF  
+
V
½V  
½V  
L
L
RO  
A/DO  
B/RI  
CA  
50pF  
RA  
3k  
t
DR485  
t
CB  
50pF  
R232  
GND  
2873 F14  
Figure 14. Mode Change Timing  
C1  
C1  
L1  
10µH  
L1  
220nF  
220nF  
10µH  
V
V
CC  
CC  
C4  
C4  
2.2µF  
2.2µF  
V
SW CAP  
V
SW CAP  
CC  
CC  
V
V
V
V
DD  
L
DD  
L
C2  
C2  
DI  
RO  
SHDN  
485/232  
DE485/F232  
RE485  
DI  
RO  
SHDN  
485/232  
DE485/F232  
RE485  
LTC2873  
LTC2873  
1µF  
1µF  
V
V
EE  
EE  
C3  
1µF  
C3  
1µF  
HIGH FOR FAST MODE  
LOW FOR SLOW MODE  
A/DO  
B/RI  
A/DO  
B/RI  
TE485  
TE485  
LB  
GND  
LB  
GND  
2873 F15  
(a)  
(b)  
Figure 15. Testing Max Data Rate for (a) RS485 and (b) RS232. Observe that Data In Matches Data Out  
2873fa  
14  
For more information www.linear.com/LTC2873  
LTC2873  
FuncTion Table  
KEY: 0 = Logic Low; 1 = Logic High; RX = Receiver; TX = Driver; l = Enabled; LB = Receiver Output is the  
Data Input Signal (Looped Back)  
INPUTS  
RESULT  
RS232  
RS485  
DE485/  
DC/DC  
CONV.  
SHDN  
485/232  
RE485  
TE485  
LB  
MODE  
F232  
RX  
TX  
RX  
TX  
TERM  
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
X
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
X
X
X
X
X
1
1
0
0
0
0
0
0
0
0
1
1
X
0
0
1
1
0
0
0
0
0
0
1
1
1
1
1
1
X
X
X
X
X
1
0
0
0
1
1
0
0
1
1
0
1
X
0
1
0
1
X
X
0
1
0
1
0
1
0
1
X
X
SHUTDOWN  
RS232 SLOW  
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
LB  
l
l
l
l
l
RS232  
FAST  
LB  
RS485  
READY  
l
l
l
l
LB  
l
LB  
l
l
l
l
l
l
l
l
l
RS485  
LB  
l
LB  
l
2873fa  
15  
For more information www.linear.com/LTC2873  
LTC2873  
applicaTions inForMaTion  
The LTC2873 is a flexible multiprotocol transceiver sup-  
porting RS485/RS422 and RS232 protocols.  
The LTC2873 features rugged operation with ESD ratings  
of 26kV HBM on the RS232 and RS485 receiver inputs  
and driver outputs, both unpowered and powered. All  
other pins offer protection exceeding 4kV.  
Thisdevicecanbepoweredfromasingle3Vto5.5Vsupply  
withoptionallogicinterfacesupplyaslowas1.7V.Aninte-  
gratedDC/DCconverterprovidesthepositiveandnegative  
supply rails needed for RS232 operation. Automatically  
selected integrated termination resistors for both RS232  
andRS485protocolsareincluded,eliminatingtheneedfor  
external termination components and switching relays. A  
logic loopback control is included for self-test and debug.  
DC/DC Converter  
The on-chip DC/DC converter operates from the V  
CC  
input, generating a 7.0V V  
supply and a charge  
DD  
pumped –6.3V V supply, as shown in Figure 16. V  
EE  
DD  
and V power the output stage of the RS232 drivers  
EE  
and are regulated to levels that guarantee greater than  
5V output swing.  
TheLTC2873businterfaceisasingletwo-pinportthatcan  
be configured as either an RS232 driver/receiver pair or a  
differential RS485 (and RS422) transceiver depending on  
the state of the 485/232 pin. In RS485 mode, the driver  
andreceivercanbeenabledindependentlywiththeDE485/  
F232 and RE485 pins, or by tying these signals together, a  
single control selects transmit or receive modes. A 120Ω  
terminationresistorisautomaticallyengagedbetweenpins  
A/DO and B/RI in RS485 mode if TE485 is low.  
The DC/DC converter requires a 10µH inductor (L1)  
and a bypass capacitor (C4) of 2.2µF. The charge pump  
capacitor (C1) is 220nF and the storage capacitors (C2  
and C3) are 1µF. Locate C1 – C4 close to their associated  
pins shown in Figure 16. Refer to Layout Considerations  
section for guidance on circuit board layout.  
BypasscapacitorC5onthelogicsupplypincanbeomitted  
if V is connected to V . See the V Logic Supply section  
When the LTC2873 is in RS232 mode, the RS232 driver  
and receivers are both active and a 5k resistor is engaged  
at the receiver input to ground. The slew rate in RS232  
mode can be set to support 1Mbps or 250kbps operation  
using the DE485/F232 pin.  
L
CC  
L
for more details about the V logic supply.  
L
V
CC  
C1  
220nF  
L1  
10µH  
3V TO 5.5V  
C4  
2.2µF  
22  
14  
12  
9
V
L
V
SW  
CAP  
CC  
1.7V TO V  
CC  
V
DD  
V
13  
10  
L
C2  
1µF  
C5  
0.1µF  
BOOST  
REGULATOR  
V
EE  
GND  
20  
GND  
C3  
1µF  
11  
2873 F16  
NOTE: NOT ALL PINS SHOWN. IN THE CASE OF DUPLICATE PINS FOR V  
,
CC  
GND, AND V , EXTERNAL COMPONENTS SHOULD BE POSITIONED  
EE  
CLOSEST TO THE NUMBERED PIN SHOWN ABOVE.  
Figure 16. Simplified DC/DC Converter with Required External Components  
2873fa  
16  
For more information www.linear.com/LTC2873  
LTC2873  
applicaTions inForMaTion  
Powering Multiple Devices  
ESR is low and they retain their capacitance over relatively  
wide voltage and temperature ranges. Use a voltage rating  
of at least 10V.  
MultipleLTC2873devicescanbepoweredusingtheboost  
regulator from only one of the devices, requiring only  
one inductor (L1) and charge pump cap (C1). Since the  
RS232 drivers provide the primary load to the circuit, the  
following guidelines apply:  
Running with External V and V Supplies  
DD  
EE  
The inductor and charge pump cap, C1, can be omitted  
onlyifV andV areexternallysupplied.Bypasscapson  
DD  
EE  
1. No more than four RS232 drivers can be supplied from  
a single device.  
V
and V must remain in place. In this circumstance,  
DD  
EE  
groundtheSWpinandfloattheCAPpin. Externalsupplies  
must not exceed the absolute maximum levels of 7.5V.  
Ideal supply levels are 7.2V and –6.5V as these are each  
just wider than the regulation points of 7.0V and –6.3V so  
the internal feedback is satisfied and the switching stops.  
Lower voltages can be used even at –6V and +6V but the  
internal boost regulator will be switching. This may cause  
2. If more than two RS232 drivers are being supplied  
from a single device, then the inductor, L1, must be  
increased to 22µH and the charge pump cap, C1, must  
be increased to 470nH, and V and V bypass caps  
DD  
EE  
must be increased to 2.2µF.  
3. Ground the SW pin on devices with inactive boost  
converters.  
some switching noise but will not harm the part. V  
DD  
and V supplies must be present for proper operation in  
EE  
4. Connect CAP pins together for all devices.  
RS232 mode and in RS485 mode when the termination  
is enabled. It is okay to run the LTC2873 in RS485 mode  
5. Connect V pins together for all devices.  
EE  
withinternalterminationdisabled(TE485high),whenV  
DD  
6. Connect V pins together for all devices.  
DD  
and V are not present or fully settled.  
EE  
Figures 32 shows an example of how to connect four  
devices.  
Inrush Current and Supply Overshoot Precaution  
Incertainapplications,fastsupplyslewratesaregenerated  
Inductor Selection  
when power is connected. If the V voltage is greater  
CC  
than 4.5V and its rise time is faster than 10µs, the pins  
A1Hor2H( 20ꢀ)inductorwithasaturationcurrent  
V
and SW can exceed their absolute maximum values  
(I ) rating of at least 220mA and a DCR (copper wire  
DD  
SAT  
duringstart-up. WhensupplyvoltageisappliedtoV , the  
resistance) of less than 1.3Ω is required. Some very small  
CC  
voltage difference between V and V generates inrush  
inductorsmeetingtheserequirementsarelistedinTable1.  
CC  
DD  
currentflowingthroughinductorL1andcapacitorsC1and  
C2. The peak inrush current must not exceed 2A. To avoid  
this condition, add a 1Ω resistor as shown in Figure 17.  
This precaution is not relevant for supply voltages below  
4.5V or rise times longer than 10µs.  
Capacitor Selection  
The small size of ceramic capacitors makes them ideal  
for the LTC2873. Use X5R or X7R dielectric types; their  
Table 1. Recommended Inductors  
PART NUMBER  
74479888310  
L (μH)  
10  
I
(mA)  
MAX DCR ()  
SIZE (mm)  
2.5 × 2 × 1  
MANUFACTURER  
Wurth Elektronik  
SAT  
250  
0.5  
1.07  
1.0  
CBC2016T100K (or M)  
CBC2518T220K (or M)  
BRC2016T220K (or M)  
10  
380  
320  
310  
2 × 1.6 × 1.6  
2.5 × 1.8 × 1.8  
2 × 1.6 × 1.6  
Taiyo Yuden  
www.t-yuden.com  
22  
22  
1.3  
Murata  
www.murata.com  
LQH32CN220K53  
22  
250  
0.92  
3.2 × 2.5 × 1.6  
2873fa  
17  
For more information www.linear.com/LTC2873  
LTC2873  
applicaTions inForMaTion  
5V  
greater than 96kΩ (typically 125kΩ) to ground over the  
entirecommonmoderangeof7Vto+12V.Thisresistance  
is actually the RS485 receiver input resistance, which is  
connected to the same pins.  
0V  
≤10µs  
R1  
C1  
220nF  
L1  
10µH  
1Ω  
1/8W  
INRUSH  
RS232 Driver with Speed Selection  
C4  
2.2µF  
CURRENT  
SW  
CAP  
GND  
12  
13  
9
The RS232 driver provides full compatibility with the TIA/  
EIA-232-F (RS232) specification. When in RS232 mode,  
the driver is automatically enabled. Like all RS232 driv-  
ers, it is inverting, so that when the input, DI, is low, the  
output, A/DO, is high, and vice-versa.  
V
CC  
14  
2873 F17  
11  
V
DD  
C2  
1µF  
The RS232 driver slew rate can be selected to support  
data rates of up to 250kbps or 1Mbps with the DE485/  
F232 pin. Since RS232 signals are single ended and large  
amplitude,comparedwithRS485,radiatedemissionsmay  
be a concern. To minimize emissions, the speed selection  
should be set to Slow mode by setting DE485/F232 low  
for data rates of 250kbps or less. For higher data rates, up  
to 1Mbps, Fast mode must be engaged by setting DE485/  
F232high.EveninFastmodethedrivertransitionsareslew  
controlledtominimizeemissions.SeeTypicalPerformance  
Characteristics section for examples of the waveforms.  
Figure 17. Supply Current Overshoot Protection for  
Input Supplies of 4.5V or Higher and Rise Times Faster  
Than 10μs  
V Logic Supply and Logic Pins  
L
A separate logic supply pin V allows the LTC2873 to  
L
interface with any logic signal from 1.7V to 5.5V. All logic  
I/Os use V as their high supply. For proper operation, V  
L
L
L
should not be greater than V . During power-up, if V  
CC  
is higher than V , the device will not be damaged, but  
CC  
Driver Overvoltage and Overcurrent Protection  
behavior of the device is not guaranteed. In particular,  
supply currents can be somewhat higher than specified.  
The RS232 and RS485 driver outputs are protected from  
short circuits to any voltage within the absolute maximum  
range of 15V. The maximum current in this condition  
is 90mA for the RS232 driver and 250mA for the RS485  
driver. If the RS485 driver output is shorted to a voltage  
If V is not connected to V , bypass V with a 0.1µF  
L
CC  
L
capacitor to GND.  
RS232 and RS485 driver outputs are undriven and the  
RS485 termination resistors are disabled when V or V  
L
CC  
greaterthanV ,whenitisactive,positivecurrentofabout  
is grounded or V is disconnected.  
CC  
CC  
100mA can flow from the driver output back to V . If the  
CC  
Although all logic input pins reference V as their high  
L
system power supply or loading cannot sink this excess  
supply, they can be driven up to 7V, independent of V  
L
current, clamp V to GND with a Zener diode (e.g., 5.6V,  
CC  
and V , with the exception of SHDN, which must not  
CC  
1W, 1N4734) to prevent an overvoltage condition on V .  
CC  
exceed V by more than 0.3V. Logic input pins do not  
L
All devices also feature thermal shutdown protection that  
disables the drivers, receivers, and RS485 terminators in  
case of excessive power dissipation during momentary  
overloadconditions.Overtemperatureprotectionactivates  
at a junction temperature exceeding about 165°C (not  
tested in production). NOTE: Continuous operation above  
the specified maximum operating junction temperature  
may result in device degradation or failure.  
have internal biasing devices to pull them up or down.  
They must be driven high or low to establish valid logic  
levels; do not float.  
RS485 Driver  
TheRS485driverprovidesfullRS485/RS422compatibility.  
When enabled, if DI is high, (A/DO to B/RI) is positive.  
With the driver disabled, the A/DO and B/RI resistance is  
2873fa  
18  
For more information www.linear.com/LTC2873  
LTC2873  
Typical applicaTions  
RS485 Balanced Receiver with Full Failsafe Operation  
B
200mV/DIV  
A
The LTC2873 RS485 receiver has a differential threshold  
voltage that is about +110mV for signals that are rising  
and –110mV for signals that are falling, as illustrated in  
Figure18.Ifadifferentialinputsignallingersinthewindow  
between these thresholds for more than about 1.3µs, the  
rising threshold changes from +110mV to –70mV, while  
thefallingthresholdremainsat110mV.Thus,differential  
inputs that are shorted, open, or terminated but not driven  
for morethan1.3µs produce a high on thereceiveroutput,  
indicating a failsafe condition.  
(A-B)  
200mV/DIV  
RO  
5V/DIV  
2873 F19  
200ns/DIV  
Figure 19. A 3Mbps Signal Driven Down 4000ft of  
CAT-5e Cable. Top Traces: Received Signals After  
Transmission Through Cable; Middle Trace: Math  
Showing Differences of Top Two Signals; Bottom  
Trace: Receiver Output  
RA  
RISING THRESHOLD  
SHIFTS IF SIGNAL IS  
IN WINDOW > ~1.3µs  
TO SUPPORT  
FAILSAFE  
RS485 Biasing Network Not Required  
A/DO TO B/RI  
–110mV –70mV  
0V  
+110mV  
RS485 networks are often biased with a resistive divider  
to generate a differential voltage of ≥200mV on the data  
lines, which establishes a logic-high state when all the  
transmitters on the network are disabled. The values of  
the biasing resistors depend on the number and type  
of transceivers on the line and the number and value of  
terminating resistors. Therefore, the values of the biasing  
resistors must be customized to each specific network  
installation, and may change if nodes are added to or  
removed from the network.  
2873 F18  
Figure 18. RS485 Receiver Input Threshold Characteristics  
with Typical Values Shown  
The benefit of this dual threshold architecture is that  
it supports full failsafe operation yet offers a balanced  
threshold, centered on 0V, for normal data signals. This  
balance preserves duty cycle for small input signals with  
heavily slewed edges, typical of what might be seen at the  
end of a very long cable. This performance is highlighted  
in Figure 19, where a signal is driven through 4000ft of  
CAT-5e cable at 3Mbps. Even though the differential sig-  
nal peaks are at only 200mV and is heavily slewed, the  
output maintains a nearly perfect signal with almost no  
duty cycle distortion.  
The internal failsafe feature of the LTC2873 eliminates the  
need for external network biasing resistors provided they  
are used in a network of transceivers with similar internal  
failsafe features. This also allows the network to support  
a high number of nodes, up to 256, by eliminating the  
bias resistor loading. The LTC2873 transceiver operates  
correctly on biased, unbiased, or under-biased networks.  
An additional benefit of the balanced architecture is excel-  
lent noise immunity due to the wide effective differential  
input signal hysteresis of 220mV for signals transitioning  
throughthewindowregioninlessthan1.3µs.Increasingly  
slower signals will have increasingly less effective hyster-  
esis, limited by the DC failsafe hysteresis of about 40mV.  
If a twisted pair has unbalanced capacitance from its two  
conductors to AC ground, common mode transients can  
translate into small differential voltages. If the common  
mode event is large and fast enough, the resulting dif-  
ferential voltage can cause a receiver, whose inputs are  
2873fa  
19  
For more information www.linear.com/LTC2873  
LTC2873  
applicaTions inForMaTion  
Selectable RS485 Termination  
undriven, to change state momentarily. In these extreme  
conditions, high quality shielded cable is recommended.  
If necessary, biasing resistors can be used on the bus to  
pull the resting signal farther from the receivers failsafe  
threshold.  
Propercableterminationisimportantforgoodsignalfidel-  
ity. Whenthecableisnotterminatedwithitscharacteristic  
impedance, reflections cause waveform distortion.  
The LTC2873 offers an integrated switchable 120Ω ter-  
mination resistor between pins A/DO and B/RI.  
Receiver Outputs  
This termination supports communication over a twisted  
paircablewithcharacteristicimpedanceof120or100Ω,  
including CAT-5 cables. It has the advantage of being  
able to easily change, through logic control, the proper  
line termination for correct operation when configuring  
transceiver networks. Termination should be enabled on  
transceivers positioned at both ends of the network bus  
only. However, the driving end of a line does not need to  
be terminated. By turning off termination at the driver, the  
reduced load results in less power dissipation and a larger  
signal swing on the bus. TE485 can be tied to DE485/F232  
to logically switch the termination on only when the driver  
is inactive if the termination enable/disable delays can be  
toleratedintheoverallsystemleveltiming.Ifthedelaysare  
not acceptable, tie TE485 low to enable termination for all  
modes of RS485 operation, whether driving or receiving.  
The RS232 and RS485 receiver outputs are internally  
driven high (to V ) or low (to GND) with no external pull  
L
up needed. When the receivers are disabled the output pin  
becomes Hi-Z with leakage of less than 5µA for voltages  
within the V supply range.  
L
RS485 Receiver Input Resistance  
In RS485 mode, the RS485 receiver input resistance from  
A/DO or B/RI to GND is 125kΩ (typical) when the inte-  
grated termination is disabled. This permits up to a total  
of 256 receivers per system without exceeding the RS485  
receiver loading specification. The input resistance of the  
receiver is unaffected by enabling/disabling the receiver  
or whether the part is in loopback mode, or unpowered.  
The equivalent input resistance looking into the RS485  
receiver pins is shown in Figure 20.  
The termination resistance is maintained over the entire  
RS485 common mode range of –7V to 12V as shown in  
Figure 21. The voltage across pins with the terminating  
resistor enabled should not exceed 6V as indicated in the  
Absolute Maximum Ratings table.  
125k  
A/DO  
60Ω  
TE485  
60Ω  
125k  
126  
V
CC  
V
CC  
= 5.0V  
= 3.3V  
B/RI  
2873 F20  
124  
122  
120  
118  
116  
Figure 20. Equivalent RS485 Receiver Input Resistance  
Into A/DO and B/RI  
RS232 Receiver Input Resistance  
In RS232 mode, the receiver input resistance on the  
B/RI pin is always 5k to GND. In any other mode, this  
resistor is switched out. The 120Ω RS485 termination  
resistor between pins A/DO and B/RI is never engaged  
in RS232 mode, regardless of the state of TE485 pin.  
–10  
–5  
0
5
10  
15  
VOLTAGE (V)  
2873 F21  
Figure 21. Typical Resistance of the Enabled RS485  
Terminator vs Common Mode Voltage of A/DO and B/RI  
2873fa  
20  
For more information www.linear.com/LTC2873  
LTC2873  
applicaTions inForMaTion  
Logic Loopback  
Robust ESD Protection  
TheLTC2873featuresexceptionallyrobustESDprotection.  
The transceiver interface pins (A and B) are protected to  
26kV human body model with respect to GND, V , or V  
Aloopbackmodeconnectsthedriverinputstothereceiver  
outputs(non-inverting)providinganechoforself-test.This  
applies to both RS232 and RS485 transceivers. Loopback  
mode is entered when the LB pin is set to a logic-high and  
the relevant receiver is enabled. The RS485 driver output  
can be disabled in loopback mode if DE485/F232 is held  
low, or functions normally with DE485/F232 high. The  
RS232 driver output cannot be disabled when loopback  
is engaged in RS232 mode, and functions normally. The  
loopback signal traverses a path from the logic input cir-  
cuit at DI to the logic output at RO and does not exercise  
the entire driver or receiver circuit. Thus loopback, alone,  
is not a sufficient test to ensure full functionality of the  
LTC2873. Loopback does not affect the operation of the  
termination resistors.  
CC  
L
without latchup or damage. This protection holds whether  
thedeviceisunpoweredorpoweredinanymodeofopera-  
tion. To note, 26kV is an upper limit of the tester—the  
actual device protection level is higher. Every other pin on  
the device is protected to 4kV ESD (HBM) for all-around  
robustness. Figure 22 shows the LTC2873 being struck  
repeatedly with 26kV of ESD energy (air gap discharge)  
during operation with no damage or circuit latchup.  
RS485 Cable Length vs Data Rate  
Many factors contribute to the maximum cable length  
that can be used for RS485 or RS422 communication,  
including driver transition times, receiver threshold, duty  
Figure 22. LTC2873 Struck Repeatedly with 26kV of ESD Energy While Operating. No Damage or Circuit Latchup Occurs  
2873fa  
21  
For more information www.linear.com/LTC2873  
LTC2873  
applicaTions inForMaTion  
cycle distortion, cable properties and data rate. A typical  
curve of cable length versus maximum data rate is shown  
in Figure 23. Various regions of this curve reflect different  
performance limiting factors in data transmission.  
Layout Considerations  
All V pins must be connected together and all ground  
CC  
pins must be connected together on the PC board with  
very low impedance traces or dedicated planes. A 2.2µF,  
or larger, bypass capacitor should be placed less than  
At frequencies below 100kbps, the maximum cable length  
is determined by DC resistance in the cable. In this ex-  
ample, a cable longer than 4000ft will attenuate the signal  
at the far end to less than what can be reliably detected  
by the receiver.  
7mm away from V Pin 14. This V pin, as well as GND  
CC  
CC  
Pin 11, mainly service the DC/DC converter. Additional  
bypass capacitors of 0.1µF or larger, can be added from  
V
pin 18 to ground pin 16 if the traces back to the 2.2µF  
CC  
capacitor are indirect or narrow. These V and ground  
CC  
Fordataratesabove100kbps, thecapacitiveandinductive  
properties of the cable begin to dominate this relation-  
ship. The attenuation of the cable is frequency and length  
dependent, resulting in increased rise and fall times at  
the far end of the cable. At high data rates or long cable  
lengths, these transition times become a significant part  
of the signal bit time. Jitter and inter symbol interference  
aggravate this so that the time window for capturing valid  
data at the receiver becomes impossibly small.  
pins mainly service the RS485 driver. Table 2 summarizes  
the bypass capacitor requirements. The capacitors listed  
in the table should be placed closest to their respective  
supply and ground pin.  
Table 2. Bypass Capacitor Requirements  
CAPACITOR (µF)  
SUPPLY (PIN)  
RETURN (PIN)  
GND (11)  
GND (11)  
GND (11)  
GND (20)  
GND (16)  
GND (20)  
COMMENT  
Required  
Required  
Required  
Required*  
Optional  
2.2  
1.0  
1.0  
0.1  
0.1  
0.1  
V
(14)  
(13)  
(10)  
CC  
DD  
V
V
EE  
The boundary at 20Mbps in Figure 23 represents the  
guaranteed maximum operating rate of the LTC2873. The  
dashed vertical line at 10Mbps represents the specified  
maximum data rate in the RS485 standard. This boundary  
is not a limit, but reflects the maximum data rate that the  
specification was written for. It should be emphasized  
that the plot in Figure 23 shows a typical relation between  
maximum data rate and cable length. Results with the  
LTC2873 will vary, depending on cable properties such  
as conductor gauge, characteristic impedance, insulation  
material, and solid versus stranded conductors.  
V (22)  
L
V
(18)  
(21)  
.
CC  
CC  
V
Optional  
*If V is not connected to V  
L
CC  
Place the charge pump capacitor, C1, directly adjacent to  
the SW and CAP pins, with no more than one centimeter  
of total trace length to maintain low inductance. Close  
placement of the inductor, L1, is of secondary importance  
compared to the placement of C1 but should include no  
more than two centimeters of total trace length.  
10k  
The PC board traces connected to high speed bus signals  
A/DO and B/RI should be symmetrical and as short as  
possibletominimizecapacitiveimbalanceandtomaintain  
good differential signal integrity. To minimize capacitive  
loadingeffects,thedifferentialsignalsshouldbeseparated  
by more than the width of a trace and should not be routed  
on top of each other if they are on different signal planes.  
1k  
LTC2873  
MAX DATA RATE  
100  
RS485/RS422  
Care should be taken to route outputs away from any  
sensitive inputs to reduce feedback effects that might  
cause noise, jitter, or even oscillations. For example, DI,  
A/DO, and B/RI should not be routed near RO.  
MAX DATA RATE  
10  
10k  
100k  
1M  
10M  
100M  
DATA RATE (bps)  
2873 F23  
Figure 23. Cable Length vs Data Rate (RS485/RS422  
Standard Shown in Vertical Solid Line)  
2873fa  
22  
For more information www.linear.com/LTC2873  
LTC2873  
Typical applicaTions  
Supply Connections and External Components Necessary for Operation Are Not Shown.  
H = Logic High; L = Logic Low, X = Don’t Care (Logic High or Logic Low)  
RS232 SLOW  
RS232 FAST  
RS232 + LOOPBACK  
LTC2873  
LTC2873  
LTC2873  
DI  
A/DO  
DI  
A/DO  
DI  
A/DO  
RO  
B/RI  
5k  
RO  
B/RI  
5k  
RO  
B/RI  
5k  
H
L
L
X
X
L
H
L
H
X
X
L
H
L
X
X
X H  
2873 F24  
Figure 24. RS232 Configurations  
RS485 RX  
RS485 TX  
RS485 TX + RX  
LTC2873  
LTC2873  
LTC2873  
DI  
DI  
A/DO  
B/RI  
DI  
A/DO  
B/RI  
A/DO  
B/RI  
RO  
RO  
RO  
H
H
H
L
H
L
H
H
H
H
H
L
H
H
H
L
H
L
RS485 RX + TERM  
RS485 TX + TERM  
RS485 TX + RX + TERM  
LTC2873  
LTC2873  
LTC2873  
A/DO  
DI  
A/DO  
DI  
A/DO  
DI  
120Ω  
B/RI  
120Ω  
B/RI  
120Ω  
B/RI  
RO  
RO  
RO  
H
H
L
L
L
L
H
H
H
H
L
L
H
H
H
L
L
L
2873 F25  
Figure 25. RS485 Configurations  
2873fa  
23  
For more information www.linear.com/LTC2873  
LTC2873  
Typical applicaTions  
Supply Connections and External Components Necessary for Operation Are Not Shown.  
H = Logic High; L = Logic Low, X = Don’t Care (Logic High or Logic Low)  
RS485 LOOPBACK  
RS485 LOOPBACK + TX  
LTC2873  
LTC2873  
DI  
A/DO  
B/RI  
DI  
A/DO  
120Ω  
B/RI  
RO  
RO  
H
H
L
L
H
H
H
H
H
L H H  
RS485 LOOPBACK + TERM  
RS485 LOOPBACK + TX + TERM  
LTC2873  
LTC2873  
DI  
A/DO  
120Ω  
DI  
A/DO  
120Ω  
B/RI  
B/RI  
RO  
RO  
H
H
H
L
L
H
H
H
H
L
L H  
2873 F26  
Figure 26. RS485 + Loopback Configurations  
SHUTDOWN  
RS485 READY  
RS485 READY + TERM  
LTC2873  
LTC2873  
LTC2873  
DI  
A/DO  
B/RI  
DI  
A/DO  
B/RI  
DI  
A/DO  
DC/DC  
CONV  
OFF  
DC/DC  
CONV  
ON  
DC/DC  
CONV  
ON  
120Ω  
B/RI  
RO  
RO  
RO  
L
X
X
X
X
X
H
H
L
H
H
L
H
H
L
H
L
L
2873 F27  
Figure 27. Shutdown, RS485 Ready and RS485 Ready + Term Configurations  
2873fa  
24  
For more information www.linear.com/LTC2873  
LTC2873  
Typical applicaTions  
Supply Connections and External Components Necessary for Operation Are Not Shown.  
H = Logic High; L = Logic Low, X = Don’t Care (Logic High or Logic Low)  
LTC2873  
A/DO  
B/RI  
DI  
RO  
LTC2873  
LTC2873  
H
H
H
L
D R  
DI  
A/DO  
A/DO  
DI  
120Ω  
B/RI  
120Ω  
B/RI  
RO  
RO  
LTC2873  
DI  
A/DO  
H
H
L
L
H
H
L
L
B/RI  
RO  
D R  
D R  
H
H
H
L
2873 F28  
D R  
Figure 28. Typical RS485 Half Duplex Network  
LTC2873  
LTC2873  
A/DO  
B/RI  
DI  
DI  
A/DO  
RO  
RO  
B/RI  
5k  
5k  
H
L
X
X
L
H
L
X
X
L
FAST SLOW  
FAST SLOW  
2873 F29  
Figure 29. Typical RS232 Communications Link  
2873fa  
25  
For more information www.linear.com/LTC2873  
LTC2873  
Typical applicaTions  
Supply Connections and External Components Necessary for Operation Are Not Shown.  
H = Logic High; L = Logic Low, X = Don’t Care (Logic High or Logic Low)  
3V TO 5.5V  
1.7V TO V  
CC  
LTC2873  
V
V
CC  
L
µP  
LOGIC  
LEVEL  
SIGNALS  
LINE  
LEVEL  
SIGNALS  
RS232  
AND/OR  
RS485  
GND  
2873 F30  
Figure 30. Low Voltage Microprocessor Interface  
LTC2873  
A/DO  
120Ω  
DI  
RO  
B/RI  
DE485/F232  
Y
RE485  
TE485  
X
H
L
MODE  
RS485 RECEIVE TRANSMIT  
RS232 SLOW FAST  
L
H
Y
X
485/232  
2873 F31  
H
H
Figure 31. Receiver-Only RS485 Termination for Power Savings  
2873fa  
26  
For more information www.linear.com/LTC2873  
LTC2873  
Typical applicaTions  
NUMBER OF  
MINIMUM  
C4-X  
APPLICATION  
LTC2873 DEVICES  
L1  
C1  
C2  
1µF  
C3  
1µF  
SINGLE TRANSCEIVER  
DUAL TRANSCEIVER  
TRIPLE TRANSCEIVER  
QUAD TRANSCEIVER  
1
2
3
4
10µH  
10µH  
22µH  
22µH  
220nF  
220nF  
470nF  
470nF  
2.2µF  
2.2µF  
1µF  
1µF  
1µF  
2.2µF  
2.2µF  
2.2µF  
2.2µF  
1µF  
L1  
22µH  
3V TO 5.5V  
C4-A  
C1  
LTC2873  
1µF  
470nF  
V
SW  
CAP  
CC  
L
V
V
DD  
C2  
2.2µF  
SHDN  
SHDN  
V
EE  
C3  
2.2µF  
485/232-A  
DX485-A  
RX485-A  
TE485-A  
LB  
485/232  
DE485/F232  
RE485  
TE485  
GND  
LB  
A
DI-A  
RO-A  
DI  
RO  
A/DO  
B/RI  
A/DO-A  
B/RI-A  
LTC2873  
C4-B  
V
SW  
CC  
1µF  
V
L
CAP  
V
DD  
SHDN  
V
EE  
485/232-B  
DX485-B  
RX485-B  
TE485-B  
485/232  
DE485/F232  
RE485  
TE485  
GND  
LB  
B
DI-B  
RO-B  
DI  
RO  
A/DO  
B/RI  
A/DO-B  
B/RI-B  
LTC2873  
C4-C  
V
SW  
CC  
1µF  
V
L
CAP  
V
DD  
SHDN  
V
EE  
485/232-C  
DX485-C  
RX485-C  
TE485-C  
485/232  
DE485/F232  
RE485  
TE485  
GND  
LB  
C
DI-C  
RO-C  
DI  
RO  
A/DO  
B/RI  
A/DO-C  
B/RI-C  
LTC2873  
C4-D  
V
SW  
CC  
1µF  
V
L
CAP  
V
DD  
SHDN  
V
EE  
485/232-D  
DX485-D  
RX485-D  
TE485-D  
485/232  
DE485/F232  
RE485  
TE485  
GND  
LB  
D
DI-D  
RO-D  
DI  
RO  
A/DO  
B/RI  
A/DO-D  
B/RI-D  
2873 F32  
Figure 32. Quad Transceiver  
2873fa  
27  
For more information www.linear.com/LTC2873  
LTC2873  
package DescripTion  
Please refer to http://www.linear.com/product/LTC2873#packaging/ for the most recent package drawings.  
UFD Package  
24-Lead Plastic QFN (4mm × 5mm)  
(Reference LTC DWG # 05-08-ꢀ696 Rev A)  
0.70 0.05  
4.50 0.05  
3.ꢀ0 0.05  
2.65 0.05  
2.00 REF  
3.65 0.05  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
3.00 REF  
4.ꢀ0 0.05  
5.50 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.05 TYP  
PIN ꢀ NOTCH  
2.00 REF  
R = 0.20 OR C = 0.35  
R = 0.ꢀꢀ5  
TYP  
0.75 0.05  
4.00 0.ꢀ0  
(2 SIDES)  
23  
24  
0.40 0.ꢀ0  
PIN ꢀ  
TOP MARK  
(NOTE 6)  
2
5.00 0.ꢀ0  
(2 SIDES)  
3.00 REF  
3.65 0.ꢀ0  
2.65 0.ꢀ0  
(UFD24) QFN 0506 REV A  
0.25 0.05  
0.200 REF  
0.50 BSC  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
ꢀ. DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220 VARIATION (WXXX-X).  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.ꢀ5mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN ꢀ LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
2873fa  
28  
For more information www.linear.com/LTC2873  
LTC2873  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
05/16 Applied Note 7 to t  
, t  
.
6
9
ZLSR232 ZHSR232  
Added Exposed Pad soldering requirement to V pin description.  
EE  
Corrected recommended Wurth inductor part number.  
17  
2873fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
29  
LTC2873  
Typical applicaTion  
3500VRMS Isolated RS485/RS232 Transceiver  
ISOLATED  
5V IN  
LTM2892-S  
3V TO  
220nF  
10μH  
V
V
V
CC2  
CC1  
5.5V  
10k  
2.2μF  
ISO  
V
L1  
ON1  
L2  
V
CAP  
SW  
V
L
CC  
ON2  
IND  
INE  
RO  
OUTD  
OUTE  
OUTF  
INC  
V
DD  
1μF  
ISO  
1μF  
ISO  
RS485  
SHDN  
485/232  
INF  
V
LTC2873  
EE  
485/232  
DE485/F232  
OUTC  
OUTB  
OUTA  
EOUTA  
GND2  
GND2  
RS485 D R  
INB  
INA  
EOUTD  
GND1  
GND1  
RE485  
TE485  
DI  
RS232  
RS485  
(485/232 (485/232  
HIGH) LOW)  
DI  
A/DO  
B/RI  
RO  
LB  
120Ω  
5k  
RS232  
GND  
2873 TA02  
ISOLATED  
GND IN  
ISO  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC2870, LTC2871  
RS232/RS485 Multiprotocol Transceiver with  
Integrated Termination  
Two RS232 and One RS485 Transceivers. 3V to 5.5V Supply,  
Automatic Selection of Termination Resistors, Duplex Control,  
Logic Supply Pin, Up to 26kV ESD  
LTC2872  
RS232/RS485 Dual Multiprotocol Transceiver  
with Integrated Termination  
Four RS232 and Two RS485 Transceivers. 3V to 5.5V Supply,  
Automatic Selection of Termination Resistors, Duplex Control,  
Logic Supply Pin, 15kV ESD  
LTC1334  
LTC1387  
Single 5V RS232/RS485 Multiprotocol Transceiver  
Single 5V RS232/RS485 Multiprotocol Transceiver  
Dual Port, Single 5V Supply, Configurable, 10kV ESD  
Single Port, Configurable  
LTC2801/LTC2802/ 1.8V to 5.5V RS232 Single and Dual Transceivers  
LTC2803/LTC2804  
Up to 1Mbps, 10kV ESD, Logic Supply Pin, Tiny DFN Packages  
LTC2854/LTC2855  
LTC2859/LTC2861  
LTM®2881  
3.3V 20Mbps RS485 Transceiver with Integrated  
Switchable Termination  
3.3V Supply, Integrated, Switchable, 120Ω Termination Resistor,  
25kV ESD  
20Mbps RS485 Transceiver with Integrated  
Switchable Termination  
Complete Isolated RS485/RS422 µModule®  
Transceiver + Power  
5V Supply, Integrated, Switchable, 120Ω Termination Resistor,  
15kV ESD  
20Mbps, 2500V  
Isolation with Integrated DC/DC Converter,  
RMS  
Integrated Switchable 120Ω Termination Resistor, 15kV ESD  
LTM2882  
Dual Isolated RS232 µModule Transceiver + Power  
1Mbps, 2500V  
10kV ESD  
Isolation with Integrated DC/DC Converter,  
RMS  
2873fa  
LT 0516 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
30  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC2873  
LINEAR TECHNOLOGY CORPORATION 2016  

相关型号:

LTC2873HUFD#PBF

LTC2873 - Single-Bus RS485/RS232 Multiprotocol Transceiver with Switchable Termination; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC2873IUFD#PBF

LTC2873 - Single-Bus RS485/RS232 Multiprotocol Transceiver with Switchable Termination; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2876

±60V Rugged PROFIBUS RS485 Transceivers
Linear

LTC2876CDD#PBF

LTC2876 - ±60V Rugged PROFIBUS RS485 Transceivers; Package: DFN; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2876CMS8E#PBF

LTC2876 - ±60V Rugged PROFIBUS RS485 Transceivers; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2876HDD#PBF

LTC2876 - ±60V Rugged PROFIBUS RS485 Transceivers; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC2876HMS8E#PBF

LTC2876 - ±60V Rugged PROFIBUS RS485 Transceivers; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC2876IDD#PBF

LTC2876 - ±60V Rugged PROFIBUS RS485 Transceivers; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2876IMS8E#PBF

LTC2876 - ±60V Rugged PROFIBUS RS485 Transceivers; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2877

±60V Rugged PROFIBUS RS485 Transceivers
Linear

LTC2877CDD#PBF

LTC2877 - ±60V Rugged PROFIBUS RS485 Transceivers; Package: DFN; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2877CMSE#PBF

LTC2877 - ±60V Rugged PROFIBUS RS485 Transceivers; Package: MSOP; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear