LTC2900-2IMS#PBF [Linear]

LTC2900 - Programmable Quad Supply Monitor with Adjustable Reset Timer; Package: MSOP; Pins: 10; Temperature Range: -40°C to 85°C;
LTC2900-2IMS#PBF
型号: LTC2900-2IMS#PBF
厂家: Linear    Linear
描述:

LTC2900 - Programmable Quad Supply Monitor with Adjustable Reset Timer; Package: MSOP; Pins: 10; Temperature Range: -40°C to 85°C

光电二极管
文件: 总16页 (文件大小:201K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2900  
Programmable Quad Supply  
Monitor with Adjustable Reset Timer  
U
FEATURES  
DESCRIPTIO  
Simultaneously Monitors Four Supplies  
The LTC®2900 is a programmable supply monitor for  
16 User Selectable Combinations of 5V, 3.3V, 3V,  
2.5V, 1.8V, 1.5V and/or ±Adjustable Voltage  
Thresholds  
systemswithuptofoursupplyvoltages. Oneof16preset  
or adjustable voltage monitor combinations can be se-  
lected using an external resistor divider connected to the  
program pin. The preset voltage thresholds are accurate  
to ±1.5% over temperature.  
Guaranteed Threshold Accuracy: ±1.5% of  
Monitored Voltage Over Temperature  
Low Supply Current: 43µA Typ  
Adjustable Reset Time  
Small MSOP and 3mm × 3mm DFN Packages  
Manual Reset Pin  
The reset delay time is adjustable using an external  
capacitor and the manual reset input may be used with a  
momentaryswitchtoissueresetpulseswithprogrammed  
duration. Tight voltage threshold accuracy and glitch  
immunity ensure reliable reset operation without false  
triggering. The RST output is guaranteed to be in the  
correctstateforVCC downto1V.TheLTC2900-1features  
an open-drain RST output, while the LTC2900-2 has a  
push-pull RST output.  
Open-Drain RST Output (LTC2900-1)  
Push-Pull RST Output (LTC2900-2)  
Power Supply Glitch Immunity  
Guaranteed RST for VCC 1V  
U
APPLICATIO S  
The 43µA supply current makes the LTC2900 ideal for  
power conscious systems and it may be configured to  
monitor less than four inputs. The parts are available in  
the 10-lead MSOP and the 10-lead 3mm × 3mm DFN  
packages.  
Desktop and Notebook Computers  
Multivoltage Systems  
Telecom Equipment  
Portable Battery-Powered Equipment  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Network Servers  
U
TYPICAL APPLICATIO  
Quad Supply Monitor (5V, 3.3V, 2.5V, 1.8V)  
5V  
3.3V  
2.5V  
1.8V  
DC/DC  
CONVERTER  
SYSTEM  
LOGIC  
V3  
V1  
LTC2900-2  
V2  
V4  
C1  
0.1µF  
C2  
0.1µF  
V
REF  
RST  
PBR  
CRT  
R1  
59k  
1%  
V
PG  
GND  
PUSH-BUTTON  
RESET  
R2  
40.2k  
1%  
C
RT  
47nF  
2900 TA01  
t
= 216ms  
RST  
2900f  
1
LTC2900  
W W  
U W  
(Notes 1, 2, 3)  
ABSOLUTE AXI U RATI GS  
V1, V2, V3, V4, VPG, PBR............................. 0.3V to 7V  
RST (LTC2900-1)........................................ 0.3V to 7V  
RST (LTC2900-2).......................... 0.3V to (V2 + 0.3V)  
CRT ............................................. 0.3V to (VCC + 0.3V)  
VREF ............................................. 0.3V to (VCC + 0.3V)  
Reference Load Current (IVREF) ............................ ±1mA  
V4 Input Current (ADJ Mode) ............................ 1mA  
Operating Temperature Range  
LTC2900-1C/LTC2900-2C ....................... 0°C to 70°C  
LTC2900-1I/LTC2900-2I .................... –40°C to 85°C  
Storage Temperature Range .................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................... 300°C  
U W  
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
TOP VIEW  
LTC2900-1CMS  
LTC2900-2CMS  
LTC2900-1IMS  
LTC2900-2IMS  
LTC2900-1CDD  
TOP VIEW  
V3  
V1  
1
2
3
4
5
10 V2  
V3  
V1  
CRT  
RST  
PBR  
1
2
3
4
5
10 V2  
LTC2900-2CDD  
LTC2900-1IDD  
LTC2900-2IDD  
9
8
7
6
V4  
9
8
7
6
V4  
V
V
REF  
PG  
CRT  
RST  
PBR  
V
REF  
V
PG  
GND  
GND  
MS PACKAGE  
10-LEAD PLASTIC MSOP  
MS PART MARKING  
DD PART MARKING  
DD PACKAGE  
TJMAX = 125°C, θJA = 250°C/W  
10-LEAD (3mm × 3mm) PLASTIC DFN  
LTYJ  
LTYL  
LTYK  
LTYM  
LABU  
LABW  
LABV  
LABX  
TJMAX = 125°C, θJA = 43°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V, unless otherwise noted. (Note 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
4.600  
3.036  
2.760  
2.300  
1.656  
1.380  
0.492  
18  
TYP  
4.675  
3.086  
2.805  
2.338  
1.683  
1.403  
0.500  
0
MAX  
4.750  
3.135  
2.850  
2.375  
1.710  
1.425  
0.508  
18  
UNITS  
V
V
V
V
V
V
V
V
V
5V, 5% Reset Threshold  
3.3V, 5% Reset Threshold  
3V, 5% Reset Threshold  
2.5V, 5% Reset Threshold  
1.8V, 5% Reset Threshold  
1.5V, 5% Reset Threshold  
ADJ Reset Threshold  
V1 Input Threshold  
V
V
RT50  
RT33  
RT30  
RT25  
RT18  
RT15  
RTA  
V1, V2 Input Threshold  
V2 Input Threshold  
V
V2, V3 Input Threshold  
V3, V4 Input Threshold  
V3, V4 Input Threshold  
V3, V4 Input Threshold  
V4 Input Threshold  
V
V
V
V
ADJ Reset Threshold  
Minimum Internal Operating Voltage  
mV  
V
RTAN  
CC  
RST in Correct Logic State,  
1
V
V
V
V
V
Rising Prior to Program  
CC  
CC  
CC  
CC  
PG  
V
V
V
Minimum Required for Programming  
Reference Voltage  
Rising  
2.42  
V
V
CCMINP  
REF  
2.3V, I  
= ±1mA, C  
1000pF  
REF  
1.192  
0
1.210  
43  
1.228  
VREF  
Programming Voltage Range  
V  
V
REF  
V
PG  
CCMINP  
I
I
V
Input Current  
= V  
REF  
±20  
nA  
VPG  
V1  
PG  
V1 Input Current  
V1 = 5V, I  
= 12µA, (Note 4)  
75  
µA  
VREF  
2900f  
2
LTC2900  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V, unless otherwise noted. (Note 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
0.8  
MAX  
UNITS  
I
I
V2 Input Current  
V3 Input Current  
V2 = 3.3V  
2
µA  
V2  
V3  
V3 = 2.5V  
V3 = 0.55V (ADJ Mode)  
0.52  
1.2  
15  
µA  
nA  
–15  
I
V4 Input Current  
V4 = 1.8V  
V4 = 0.55V (ADJ Mode)  
V4 = –0.05V (–ADJ Mode)  
0.34  
0.8  
15  
15  
µA  
nA  
nA  
V4  
–15  
–15  
I
I
t
t
CRT Pull-Up Current  
CRT Pull-Down Current  
Reset Time-Out Period  
V
V
C
= 0V  
–1.4  
10  
–2  
20  
7
–2.6  
30  
µA  
µA  
ms  
µs  
CRT(UP)  
CRT(DN)  
RST  
CRT  
CRT  
= 1.3V  
= 1500pF  
5
9
RT  
V Undervoltage Detect to RST  
X
V Less Than Reset Threshold V  
by More Than 1%  
150  
UV  
X
RTX  
V
Output Voltage Low RST  
I
= 2.5mA; V1 = 3V, V2 = 3V;  
SINK  
0.15  
0.4  
V
OL  
OH  
V3, V4 = 0V; V = 0V  
PG  
I
I
= 100µA; V2 = 1V; V1, V3, V4 = 0V  
= 100µA; V1 = 1V; V2, V3, V4 = 0V  
0.05  
0.05  
0.3  
0.3  
V
V
SINK  
SINK  
V
Output Voltage High RST (LTC2900-1)  
(Note 5)  
I
= 1µA  
V2 – 1  
V
SOURCE  
Output Voltage High RST (LTC2900-2)  
(Note 6)  
I
= 200µA  
0.8 • V2  
V
SOURCE  
Manual Reset Pin  
V
V
PBR Input Threshold High  
PBR Input Threshold Low  
PBR Input Pulse Width  
V
V
V
V
V
= 3.3V to 5.5V  
= 3.3V to 5.5V  
= 3.3V  
1.6  
1
V
V
IH  
CC  
0.4  
IL  
CC  
t
t
I
150  
ns  
µs  
µA  
PBW  
PBD  
PBR  
CC  
Manual Reset Propagation Delay  
PBR Pull-Up Current  
= 3.3V, V  
Falling  
PBR  
0.1  
CC  
= 0V  
–10  
PBR  
Note 1: Absolute Maximum Ratings are those values beyond which the life of  
a device may be impaired.  
the quiescent current, programming (transient) current and reference load  
current.  
Note 2: All currents into pins are positive, all voltages are referenced to GND  
unless otherwise noted.  
Note 5: The RST output pin on the LTC2900-1 has an internal pull-up to V2  
of typically 6µA. However, an external pull-up resistor may be used when  
faster rise times are required or for V voltages greater than V2.  
OH  
Note 3: The greater of V1, V2 is the internal supply voltage (V ).  
CC  
Note 6: The push-pull RST output pin on the LTC2900-2 is actively pulled up  
to V2.  
Note 4: Under static no-fault conditions, V1 will necessarily supply quiescent  
current. If at any time V2 is larger than V1, V2 must be capable of supplying  
TEST CIRCUITS  
LTC2900-1  
RST  
LTC2900-1  
LTC2900-2  
RST  
V1  
V2  
V3  
V4  
V1  
V2  
V3  
V4  
I
V1  
V2  
V3  
V4  
SINK  
2.5mA,  
I
I
SOURCE  
1µA  
SOURCE  
200µA  
100µA  
RST  
2900 F01  
2900 F02  
2900 F03  
Figure 1. RST VOH Test  
Figure 2. RST VOL Test  
Figure 3. Active Pull-Up  
RST VOH Test  
2900f  
3
LTC2900  
W U  
W
TI I G DIAGRA  
Monitor Timing  
V
RTX  
V
X
t
t
t
RST  
RST  
PBD  
t
UV  
1.5V  
RST  
PBR  
2900 TD  
t
PBW  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
5V Threshold Voltage  
vs Temperature  
3.3V Threshold Voltage  
vs Temperature  
3V Threshold Voltage  
vs Temperature  
3.135  
3.125  
3.115  
3.105  
3.095  
3.085  
3.075  
3.065  
3.055  
3.045  
3.035  
2.850  
2.840  
2.830  
2.820  
2.810  
2.800  
2.790  
2.780  
2.770  
2.760  
4.750  
4.725  
4.700  
4.675  
4.650  
4.625  
4.600  
20  
–60 –40 –20  
TEMPERATURE (°C)  
–60  
80  
60  
80  
0
40 60 80 100  
20  
TEMPERATURE (°C)  
60  
20  
TEMPERATURE (°C)  
60  
–40 –20  
0
40  
100  
–40 –20  
0
40  
100  
2900 G01  
2900 G02  
2900 G03  
2.5V Threshold Voltage  
vs Temperature  
1.8V Threshold Voltage  
vs Temperature  
1.5V Threshold Voltage  
vs Temperature  
1.425  
1.420  
1.415  
1.410  
1.405  
1.400  
1.395  
1.390  
1.385  
1.380  
2.3750  
2.3675  
2.3600  
2.3525  
2.3450  
2.3375  
2.3300  
2.3225  
2.3150  
2.3075  
2.3000  
1.710  
1.705  
1.700  
1.695  
1.690  
1.685  
1.680  
1.675  
1.670  
1.665  
1.660  
1.655  
60  
20  
TEMPERATURE (°C)  
60 80  
–40 –20  
0
40  
100  
40 60  
–60 –40 –20  
TEMPERATURE (°C)  
60  
20  
TEMPERATURE (°C)  
60 80  
0
20  
80 100  
–40 –20  
0
40  
100  
2900 G06  
2900 G04  
2900 G05  
2900f  
4
LTC2900  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
ADJ Threshold Voltage  
vs Temperature  
ADJ Threshold Voltage  
vs Temperature  
VREF vs Temperature  
0.018  
0.012  
0.006  
0
1.228  
1.222  
1.216  
1.210  
1.204  
1.198  
1.192  
0.508  
0.506  
0.504  
0.502  
0.500  
0.498  
0.496  
0.494  
0.492  
–0.006  
–0.012  
–0.018  
60  
20  
TEMPERATURE (°C)  
60 80  
60  
20  
TEMPERATURE (°C)  
60 80  
60  
20  
TEMPERATURE (°C)  
60 80  
–40 –20  
0
40  
100  
–40 –20  
0
40  
100  
–40 –20  
0
40  
100  
2900 G07  
2900 G08  
2900 G21  
IV1 vs Temperature  
IV2 vs Temperature  
IV3 vs Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
V1 = 5V  
V1 = 5V  
V1 = 5V  
V2 = 3.3V  
V3 = 2.5V  
V4 = 1.8V  
V2 = 3.3V  
V3 = 2.5V  
V4 = 1.8V  
V2 = 3.3V  
V3 = 2.5V  
V4 = 1.8V  
60  
20  
TEMPERATURE (°C)  
60 80  
–40 –20  
0
40  
100  
60  
20  
TEMPERATURE (°C)  
60 80  
60  
20  
TEMPERATURE (°C)  
60 80  
–40 –20  
0
40  
100  
–40 –20  
0
40  
100  
2900 G09  
2900 G10  
2900 G11  
Typical Transient Duration  
vs Comparator Overdrive (V1, V2)  
Typical Transient Duration  
vs Comparator Overdrive (V3, V4)  
IV4 vs Temperature  
450  
400  
350  
300  
250  
200  
150  
100  
50  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
220  
200  
180  
160  
140  
120  
100  
80  
T
= 25°C  
T
= 25°C  
V1 = 5V  
A
A
V2 = 3.3V  
V3 = 2.5V  
V4 = 1.8V  
RESET OCCURS  
ABOVE CURVE  
RESET OCCURS  
ABOVE CURVE  
60  
40  
20  
0
0
0.1  
1
10  
100  
60  
20  
TEMPERATURE (°C)  
60 80  
–40 –20  
0
40  
100  
0.1  
1
10  
100  
RESET COMPARATOR OVERDRIVE VOLTAGE (% OF V  
)
RTX  
RESET COMPARATOR OVERDRIVE VOLTAGE (% OF V  
)
RTX  
2900 G13  
2900 G20  
2900 G12  
2900f  
5
LTC2900  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
RST Output Voltage  
vs V1, VPG = 0V  
Reset Time-Out Period  
vs Temperature  
Reset Time-Out Period  
vs Capacitance  
8.9  
8.4  
7.9  
7.4  
6.9  
6.4  
5.9  
5.4  
4.9  
10  
1
5
4
3
2
1
0
T
= 25°C  
C
= 1500pF  
A
RT  
V1 = V2 = V3 = V4  
10k PULL-UP FROM RST TO V1  
(SILVER MICA)  
T
= 25°C  
A
100m  
10m  
1m  
100µ  
100n  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
V1 (V)  
–60  
80  
10p  
100p  
1n  
10n  
1µ  
–40 –20  
0
20 40 60  
100  
TEMPERATURE (°C)  
C
(FARAD)  
RT  
2900 G14  
2900 G15  
2900 G16  
RST High Level Output Voltage  
vs Output Source Current  
(LTC2900-2)  
RST Voltage Output Low  
vs Output Sink Current  
RST, ISINK vs Supply Voltage  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
= 25°C  
V1 = 5V  
V2 = 3V  
V3 = 2.5V  
V4 = 1V  
V2 = 3V  
V1 = 5V  
A
25°C  
40°C  
85°C  
V
= 0.4V  
OL  
40°C  
25°C  
V
= 0.2V  
OL  
85°C  
0
0
0.5  
1
1.5  
(mA)  
2
2.5  
0
1
3
4
5
6
2
0
10 20 30  
50  
70 80 90  
40  
60  
V1 OR V2 (V)  
I
SOURCE  
I
(mA)  
SINK  
2900 G19  
2900 G17  
2900 G18  
RST Pull-Up Current vs V2  
(LTC2900-1)  
RST Pull-Up Current vs V2  
(LTC2900-2)  
6
5
4
3
2
1
0
20  
18  
16  
14  
12  
10  
8
T
A
= 25°C  
T
= 25°C  
A
V
RT33  
V
RT33  
6
V
RT30  
V
RT30  
V
RT25  
4
V
RT25  
2
0
2
2.5  
3.5  
4
4.5  
5
3
2
2.5  
3.5  
4
4.5  
5
3
V2 (V)  
V2 (V)  
2900 G22  
2900 G23  
2900f  
6
LTC2900  
U
U
U
PI FU CTIO S  
V3 (Pin 1): Voltage Input 3. Select from 2.5V, 1.8V, 1.5V  
operation. When using a switch, the switch is debounced  
through the reset circuitry using the delay provided by the  
CRT timing capacitor.  
or ADJ. See Table 1 for details.  
V1 (Pin 2): Voltage Input 1. Select from 5V or 3.3V. See  
Table 1 for details. The greater of (V1, V2) is also VCC for  
the device. Bypass this pin to ground with a 0.1µF (or  
greater) capacitor.  
GND (Pin 6): Ground.  
VPG (Pin 7): Voltage Threshold Combination Select Input.  
Connect to an external 1% resistive divider between VREF  
and GND to select 1 of 16 combinations of preset and/or  
±adjustable voltage thresholds (see Table 1). Do not add  
capacitance on the VPG pin.  
CRT (Pin 3): Reset Delay Time Programming Pin. Attach  
anexternalcapacitor(CRT)toGNDtosetaresetdelaytime  
of 4.6ms/nF. Leaving the pin open generates a minimum  
delay of approximately 50µs. A 47nF capacitor will gener-  
ate a 216ms reset delay time.  
VREF (Pin 8): Buffered Reference Voltage. A 1.210V  
nominal reference used for the programming voltage  
(VPG) and for the offset of negative adjustable applica-  
tions. The buffered reference can source and sink up to  
1mA. The reference can drive a bypass capacitor of up to  
1000pF without oscillation.  
RST (Pin 4): Reset Logic Output. Active low with weak  
pull-up to V2 (LTC2900-1) or active pull-up to V2  
(LTC2900-2). Pulls low when any voltage input is below  
theresetthresholdandheldlowfortheprogrammeddelay  
time after all voltage inputs are above threshold. May be  
pulled above V2 using an external pull-up (LTC2900-1  
only).  
V4 (Pin 9):Voltage Input 4. Select from 1.8V, 1.5V, ADJ or  
ADJ. See Table 1 for details.  
V2 (Pin 10): Voltage Input 2. Select from 3.3V, 3V or 2.5V.  
See Table 1 for details. The greater of (V1, V2) is also VCC  
for the device. Bypass this pin to ground with a 0.1µF (or  
greater) capacitor. RST is weakly pulled up to V2  
(LTC2900-1). RST is actively pulled up to V2 in the  
LTC2900-2.  
PBR (Pin 5): Manual Reset Pin. Attach a push-button  
switchbetweenthispinandground. Alogiclowonthispin  
will pull RST low. When the PBR pin returns high, RST will  
return high after the programmed reset delay assuming all  
four voltage inputs are above threshold. A weak internal  
pull-up allows the pin to be left floating for normal monitor  
2900f  
7
LTC2900  
W
BLOCK DIAGRA  
V1  
+
POWER  
DETECT  
V
CC  
V2  
+
V1  
2
V2  
10  
RESISTIVE  
DIVIDER  
MATRIX  
V3  
1
LTC2900-1  
V2  
+
V4  
9
6µA  
GND  
6
RST  
4
+
ADJUSTABLE  
RESET PULSE  
GENERATOR  
V
CC  
V
PG  
2µA  
A/D  
7
LTC2900-2  
V2  
BUFFER  
22µA  
10µA  
V
REF  
1.210V  
BANDGAP  
REFERENCE  
RST  
4
8
V
CC  
PBR  
CRT  
3
5
C
RT  
2900 DB-1  
2900f  
8
LTC2900  
W U U  
APPLICATIO S I FOR ATIO  
Power-Up  
U
Table 1. Voltage Threshold Programming  
V
PG  
The greater of V1, V2 is the internal supply voltage (VCC).  
On power-up, VCC will power the drive circuits for the RST  
pin. This ensures that the RST output will be low as soon  
asV1orV2reaches1V.TheRSToutputwillremainlowuntil  
the part is programmed. After programming, if any one of  
the VX inputs is below its programmed threshold, RST will  
bealogiclow.OncealltheVXinputsriseabovetheirthresh-  
olds, an internal timer is started and RST is released after  
theprogrammeddelaytime.IfVCC<(V31)andVCC<2.4V,  
the V3 input impedance will be low (1ktyp).  
MODE V1 (V) V2 (V) V3 (V) V4 (V) R1 (k) R2 (k)  
V
REF  
0
1
5.0  
5.0  
3.3  
3.3  
3.3  
5.0  
5.0  
5.0  
5.0  
5.0  
3.3  
3.3  
3.3  
5.0  
5.0  
5.0  
3.3  
3.3  
2.5  
2.5  
2.5  
3.3  
3.3  
3.3  
3.0  
3.0  
2.5  
2.5  
2.5  
3.3  
3.3  
3.0  
ADJ  
ADJ  
ADJ  
ADJ  
1.5  
2.5  
2.5  
2.5  
2.5  
ADJ  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
ADJ  
–ADJ  
ADJ  
–ADJ  
ADJ  
ADJ  
1.8  
Open  
93.1  
86.6  
78.7  
71.5  
66.5  
59.0  
53.6  
47.5  
40.2  
34.8  
28.0  
22.1  
16.2  
9.53  
Short  
Short  
9.53  
16.2  
22.1  
28.0  
34.8  
40.2  
47.5  
53.6  
59.0  
66.5  
71.5  
78.7  
86.6  
93.1  
Open  
0.000  
0.094  
0.156  
0.219  
0.281  
0.344  
0.406  
0.469  
0.531  
0.594  
0.656  
0.719  
0.781  
0.844  
0.906  
1.000  
2
3
4
5
6
7
1.5  
8
ADJ  
ADJ  
1.5  
9
Monitor Programming  
10  
11  
12  
13  
14  
15  
The LTC2900 input voltage combination is selected by  
placing the recommended resistive divider from VREF to  
GND and connecting the tap point to VPG, as shown in  
Figure 4. Table 1 offers recommended 1% resistor values  
ADJ  
–ADJ  
–ADJ  
ADJ  
ADJ  
R1  
1%  
LTC2900  
8
7
6
V
REF  
V
PG  
GND  
R2  
1%  
Supply Monitoring  
2900 F04  
The LTC2900 is a low power, high accuracy program-  
mable quad supply monitoring circuit with a common  
reset output and a manual reset input. Reset timing is  
adjustable using an external capacitor. Single pin pro-  
gramming selects 1 of 16 input voltage monitor combina-  
tions.Allfourvoltageinputsmustbeabovepredetermined  
thresholds for the reset not to be invoked. The LTC2900  
will assert the reset output during power-up, power-down  
and brownout conditions on any one of the voltage inputs.  
Figure 4. Monitor Programming  
forthevariousmodes. ThelastcolumninTable1specifies  
optimum VPG/VREF ratios (±0.01) to be used when pro-  
gramming with a ratiometric DAC.  
During power-up, once V1 or V2 reaches 2.4V max, the  
monitor enters a programming period of approximately  
150µs during which the voltage on the VPG pin is sampled  
and the monitor is configured to the desired input combi-  
nation.DonotaddcapacitancetotheVPG pin.Immediately  
after programming, the comparators are enabled and  
supply monitoring will begin.  
The inverting inputs on the V3 and/or V4 comparators are  
set to 0.5V when the positive adjustable modes are se-  
lected (Figure 5). The tap point on an external resistive  
divider, connected between the positive voltage being  
2900f  
9
LTC2900  
APPLICATIO S I FOR ATIO  
W U U  
U
V
TRIP  
8
9
LTC2900  
V
REF  
LTC2900  
R4  
R3  
1%  
1%  
V4  
V3 OR V4  
+
R3  
1%  
R4  
1%  
+
V
TRIP  
+
0.5V  
2900 F06  
Figure 6. Setting the Negative Adjustable Trip Point  
2900 F05  
Figure 5. Setting the Positive Adjustable Trip Point  
Table 2. Suggested 1% Resistor Values for the ADJ Inputs  
V
(V)  
V
(V)  
TRIP  
R3 (k)  
2150  
1780  
1400  
1300  
1020  
845  
R4 (k)  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
SUPPLY  
sensed and ground, is connected to the high impedance  
noninverting inputs (V3, V4). The trip voltage is calculated  
from:  
12  
11.25  
9.4  
10  
8
7.5  
7.5  
6
7
R3  
R4  
VTRIP = 0.5V 1+  
5.6  
5
4.725  
3.055  
2.82  
2.325  
1.685  
1.410  
1.120  
0.933  
0.840  
Inthenegativeadjustablemode, thenoninvertinginputon  
the V4 comparator is connected to ground (Figure 6). The  
tap point on an external resistive divider, connected be-  
tween the negative voltage being sensed and the VREF pin,  
is connected to the high impedance inverting input (V4).  
VREF provides the necessary level shift required to operate  
at ground. The trip voltage is calculated from:  
3.3  
3
511  
464  
2.5  
1.8  
1.5  
1.2  
1
365  
237  
182  
124  
86.6  
68.1  
R3  
R4  
0.9  
VTRIP = VREF  
; VREF = 1.210V Nominal  
Table 3. Suggested 1% Resistor Values for the –ADJ Input  
In a negative adjustable application, the minimum value  
forR4islimitedbythesourcingcapabilityofVREF (±1mA).  
With no other load on VREF, R4 (minimum) is:  
V
(V)  
V
(V)  
TRIP  
R3 (k)  
187  
R4 (k)  
121  
SUPPLY  
–2  
–1.87  
–4.64  
–4.87  
–9.31  
–5  
–5.2  
–10  
–12  
464  
121  
1.21V ÷ 1mA = 1.21k.  
487  
121  
931  
121  
Tables 2 and 3 offer suggested 1% resistor values for  
various adjustable applications.  
–11.30  
1130  
121  
2900f  
10  
LTC2900  
W U U  
APPLICATIO S I FOR ATIO  
Although all four supply monitor comparators have built-  
in glitch immunity, bypass capacitors on V1 and V2 are  
recommended because the greater of V1 or V2 is also the  
VCC for the device. Filter capacitors on the V3 and V4  
inputs are allowed.  
U
6 105  
V2 – 1  
RPU  
=
with V2 = 3.3V, RPU is about 260k. Using 150pF for load  
capacitance, the rise time is 86µs. If the output needs to  
pull up faster and/or to a higher voltage, a smaller  
external pull-up resistor may be used. Using a 10k pull-  
up resistor, the rise time is reduced to 3.3µs for a 150pF  
load capacitance.  
Power-Down  
On power-down, once any of the VX inputs drop below  
their threshold, RST is held at a logic low. A logic low of  
0.4V is guaranteed until both V1 and V2 drop below 1V. If  
the bandgap reference becomes invalid (VCC < 2V typ), the  
part will reprogram once VCC rises above 2.4V max.  
The LTC2900-2 has an active pull-up to V2 on the RST  
output. The typical performance curve (RST Pull-Up Cur-  
rent vs V2 curve) demonstrates that the pull-up current is  
somewhat linear versus the V2 voltage and RPU is esti-  
mated to be approximately 625. A 150pF load capaci-  
tance makes the rise time about 206ns.  
Monitor Output Rise and Fall Time Estimation  
The RST output has strong pull-down capability. If the  
external load capacitance (CLOAD) is known, output fall  
time (10% to 90%) is estimated using:  
Selecting the Reset Timing Capacitor  
The reset time-out period is adjustable in order to accom-  
modate a variety of microprocessor applications. The  
reset time-out period, tRST, is adjusted by connecting a  
capacitor,CRT,betweentheCRTpinandground.Thevalue  
of this capacitor is determined by:  
t
FALL 2.2 • RPD • CLOAD  
where RPD is the on-resistance of the internal pull-down  
transistor. The typical performance curve (VOL vs ISINK  
)
demonstrates that the pull-down current is somewhat  
linear versus output voltage. Using the 25°C curve, RPD is  
estimated to be approximately 40. Assuming a 150pF  
load capacitance, the fall time is about 13.2ns.  
CRT = tRST • 217 • 10–9  
with CRT in Farads and tRST in seconds. The CRT value per  
millisecond of delay can also be expressed as CRT/ms =  
217 (pF/ms).  
Although the RST output of the LTC2900-1 is considered  
to be “open-drain,” it does have weak pull-up capability  
(see RST Pull-Up Current vs V2 curve). Output rise time  
(10% to 90%) is estimated using:  
Leaving the CRT pin unconnected will generate a mini-  
mum reset time-out of approximately 50µs. Maximum  
reset time-out is limited by the largest available low  
leakage capacitor. The accuracy of the time-out period will  
be affected by capacitor leakage (the nominal charging  
current is 2µA) and capacitor tolerance. A low leakage  
ceramic capacitor is recommended.  
tRISE 2.2 • RPU • CLOAD  
where RPU is the on-resistance of the pull-up transistor.  
The on-resistance as a function of the V2 voltage at room  
temperature is estimated using:  
2900f  
11  
LTC2900  
W U U  
U
APPLICATIO S I FOR ATIO  
Ensuring Reset Valid for VCC Down to 0V (LTC2900-2)  
Some applications require the reset output (RST) to be  
valid with VCC down to 0V. The LTC2900-2 is designed to  
handle this requirement with the addition of an external  
resistor from RST to ground. The resistor will provide a  
path for stray charge and/or leakage currents, preventing  
the RST output from floating to undetermined voltages  
when connected to high impedance (such as CMOS logic  
inputs). The resistor value should be small enough to  
provide effective pull-down without excessively loading  
the active pull-up circuitry. Too large a value may not pull  
down well enough. A 100k resistor from RST to ground is  
satisfactory for most applications.  
U
TYPICAL APPLICATIO S  
Quad Supply Monitor with Push-Button Reset  
5V, 3V, 1.8V, 12V (ADJ)  
1
2
3
4
5
10  
9
1.8V  
5V  
3V  
V3  
V1  
V2  
V4  
R3  
2.15M  
1%  
LTC2900  
8
CRT  
RST  
PBR  
V
REF  
7
SYSTEM  
RESET  
V
12V  
PG  
6
V
= 11.25V  
TRIP  
GND  
C
RT  
R4  
100k  
1%  
NORMALLY  
OPEN  
2900 TA02  
5V, 5V Monitor and Unused V2, V3 Inputs  
Pulled Above Trip Thresholds  
R3  
464k  
1%  
1
2
3
4
5
10  
9
V3  
V1  
V2  
V4  
5V  
–5V  
LTC2900  
8
V
TRIP  
= –4.64V  
CRT  
RST  
PBR  
V
REF  
R1  
16.2k  
1%  
7
R4  
121k  
1%  
SYSTEM  
RESET  
V
PG  
6
GND  
C
RT  
R2  
86.6k  
1%  
2900 TA03  
2900f  
12  
LTC2900  
U
TYPICAL APPLICATIO S  
5V, 3.3V, 12V, –5.2V Monitor with Manual Reset and LED Indication on RST  
12V  
R5  
2.15M  
1%  
V
TRIP  
= 11.25V  
R3  
487k  
1%  
1
2
3
4
5
10  
9
3.3V  
V3  
V1  
V2  
V4  
R6  
100k  
1%  
5V  
–5.2V  
LTC2900-1  
C
8
R4  
RT  
V
TRIP  
= –4.87V  
R
L1  
CRT  
RST  
PBR  
V
REF  
121k  
1k  
7
1%  
V
PG  
LED  
10k*  
R1  
93.1k  
1%  
6
SYSTEM  
RESET  
GND  
MANUAL RESET  
BUTTON  
(NORMALLY OPEN)  
R2  
9.53k  
1%  
2900 TA05  
*OPTIONAL RESISTOR RECOMMENDED  
TO EXTEND ESD TOLERANCE  
Low Voltage Quad Supply Monitor 3.3V, 2.5V, 1V (ADJ), 0.9V (ADJ)  
R5  
86.6k  
R3  
68.1k  
1%  
1%  
1
2
3
4
5
10  
9
1V  
V3  
V1  
V2  
V4  
2.5V  
V
= 0.933V  
TRIP  
3.3V  
0.9V  
LTC2900  
8
V
TRIP  
= 0.84V  
CRT  
RST  
PBR  
V
REF  
R1  
86.6k  
1%  
7
SYSTEM  
RESET  
V
PG  
6
R4  
R6  
100k  
1%  
GND  
100k  
1%  
C
RT  
R2  
16.2k  
1%  
2900 TA04  
2900f  
13  
LTC2900  
U
PACKAGE DESCRIPTIO  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699)  
0.675 ±0.05  
3.50 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
R = 0.115  
TYP  
6
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
0.38 ± 0.10  
10  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 5)  
(DD10) DFN 0403  
5
1
0.25 ± 0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
4. EXPOSED PAD SHALL BE SOLDER PLATED  
5. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
2900f  
14  
LTC2900  
U
PACKAGE DESCRIPTIO  
MS Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1661)  
0.889 ± 0.127  
(.035 ± .005)  
5.23  
(.206)  
MIN  
3.2 – 3.45  
(.126 – .136)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.497 ± 0.076  
(.0196 ± .003)  
REF  
0.50  
0.305 ± 0.038  
(.0120 ± .0015)  
TYP  
(.0197)  
10 9  
8
7 6  
BSC  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
NOTE 4  
4.90 ± 0.15  
(1.93 ± .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4 5  
0.53 ± 0.01  
(.021 ± .006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.13 ± 0.076  
(.005 ± .003)  
MSOP (MS) 0802  
0.50  
(.0197)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
2900f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC2900  
U
TYPICAL APPLICATIO  
Monitor Eight Supplies Using Supervisory Cascade  
12V (ADJ), 5V, 3.3V, 3V, 2.5V, 1.8V, 1V (ADJ), 5V (ADJ)  
MASTER  
RESET  
R5A  
86.6k 1%  
1V  
R3B  
464k 1%  
–5V  
R3A  
2150k 1%  
12V  
3V  
5V  
2.5V  
R4B  
121k  
1%  
1
2
3
4
5
1
2
3
4
5
10  
9
10  
9
1.8V  
3.3V  
V3  
V1  
V2  
V4  
V3  
V1  
V2  
V4  
LTC2900-2  
LTC2900-2  
8
8
CRT  
RST  
PBR  
V
CRT  
RST  
PBR  
V
REF  
REF  
R4A  
100k  
1%  
R6A  
100k  
1%  
R1A  
40.2k  
1%  
R1B  
22.1k  
1%  
7
7
V
V
PG  
PG  
6
6
GND  
GND  
C
C
RTB  
RTA  
R2A  
59k  
1%  
R2B  
78.7k  
1%  
100k  
20k  
2900 TA06  
RELATED PARTS  
PART NUMBER  
LTC690  
DESCRIPTION  
COMMENTS  
5V Supply Monitor, Watchdog Timer and Battery Backup  
3.3V Supply Monitor, Watchdog Timer and Battery Backup  
5V Supply Monitor and Watchdog Timer  
4.65V Threshold  
2.9V Threshold  
4.65V Threshold  
LTC694-3.3  
LTC699  
LTC1232  
5V Supply Monitor, Watchdog Timer and Push-Button Reset  
4.37V/4.62V Threshold  
4.725V, 3.118V, 1V Thresholds (±0.75%)  
Micropower Precision Triple Supply Monitor for 2.5V, 3.3V and ADJ 2.363V, 3.118V, 1V Thresholds (±0.75%)  
LTC1326  
Micropower Precision Triple Supply Monitor for 5V, 3.3V and ADJ  
LTC1326-2.5  
LTC1536  
Precision Triple Supply Monitor for PCI Applications  
Micropower Triple Supply Monitor for 2.5V, 3.3V and ADJ  
Micropower Triple Supply Monitor for 5V, 3.3V and ADJ  
Micropower Triple Supply Monitors with Open-Drain Reset  
Meets PCI t  
Timing Specifications  
FAIL  
LTC1726-2.5  
LTC1726-5  
LTC1727-2.5/LTC1727-5  
Adjustable RESET and Watchdog Time-Outs  
Adjustable RESET and Watchdog Time-Outs  
Individual Monitor Outputs in MSOP  
5-Lead SOT-23 Package  
LTC1728-1.8/LTC1728-3.3 Micropower Triple Supply Monitors with Open-Drain Reset  
LTC1728-2.5/LTC1728-5  
LTC1985-1.8  
Micropower Triple Supply Monitors with Open-Drain Reset  
Micropower Triple Supply Monitor with Push-Pull Reset Output  
Programmable Quad Supply Monitor  
5-Lead SOT-23 Package  
5-Lead SOT-23 Package  
LTC2901  
Adjustable Reset and Watchdog Timers, 16-Lead  
Narrow SSOP Package  
LTC2902  
Programmable Quad Supply Monitor  
Adjustable Reset Timer, Supply Tolerance and  
Margining Functions, 16-Lead Narrow SSOP Package  
2900f  
LT/TP 0403 2K • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2002  

相关型号:

LTC2900-2IMS#TR

LTC2900 - Programmable Quad Supply Monitor with Adjustable Reset Timer; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2901

Programmable Quad Supply Monitor with Adjustable Reset and Watchdog Timers
Linear

LTC2901

36V Nano-Current Two Input Voltage Monitor
Linear System

LTC2901-1CGN

Programmable Quad Supply Monitor with Adjustable Reset and Watchdog Timers
Linear

LTC2901-1IGN

Programmable Quad Supply Monitor with Adjustable Reset and Watchdog Timers
Linear

LTC2901-1IGN#TR

暂无描述
Linear

LTC2901-2CGN

Programmable Quad Supply Monitor with Adjustable Reset and Watchdog Timers
Linear

LTC2901-2CGN#TR

LTC2901 - Programmable Quad Supply Monitor with Adjustable Reset and Watchdog Timers; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2901-2CGN#TRPBF

LTC2901 - Programmable Quad Supply Monitor with Adjustable Reset and Watchdog Timers; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2901-2IGN

Programmable Quad Supply Monitor with Adjustable Reset and Watchdog Timers
Linear

LTC2901-3IGN#TR

LTC2901 - Programmable Quad Supply Monitor with Adjustable Reset and Watchdog Timers; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2901-3IGN#TRPBF

LTC2901 - Programmable Quad Supply Monitor with Adjustable Reset and Watchdog Timers; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear