LTC2939CMS#PBF [Linear]

LTC2939 - Configurable 6-Supply Monitors with Watchdog Timer; Package: MSOP; Pins: 16; Temperature Range: 0°C to 70°C;
LTC2939CMS#PBF
型号: LTC2939CMS#PBF
厂家: Linear    Linear
描述:

LTC2939 - Configurable 6-Supply Monitors with Watchdog Timer; Package: MSOP; Pins: 16; Temperature Range: 0°C to 70°C

光电二极管
文件: 总20页 (文件大小:238K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2938/LTC2939  
Configurable 4- and 6-Supply  
Monitors with Watchdog Timer  
FEATURES  
DESCRIPTION  
The LTC®2938/LTC2939 are configurable supply monitors  
forsystemswithuptofourorsixsupplyvoltagesthatneed  
n
Simultaneously Monitors Four (LTC2938) or Six  
Supplies (LTC2939)  
n
Sixteen User-Selectable Combinations of 5V, 3.3V,  
2.5V, 1.8V, 1.5V, 1.2V and/or Adꢀustable Voltage  
Thresholds  
Guaranteed Threshold Accuracy: 1.5ꢁ  
Adꢀustable Reset and Watchdog Timeout  
Low Supply Current: 80μA Typical  
Power Supply Glitch Immunity  
Guaranteed RST for V > 1V  
High Temperature Operation to 125°C  
12-Pin 4mm × 3mm DFN or 12-Lead MSOP  
(LTC2938) and 16-Lead MSOP Package (LTC2939)  
watchdog supervision. One of sixteen preset or adjustable  
voltage monitor combinations can be selected using an  
external resistive divider connected to the program input.  
The preset voltage thresholds are accurate to 1.5ꢀ over  
temperature. The LTC2938 and LTC2939 also feature ad-  
justable inputs with a 0.5V nominal threshold.  
n
n
n
n
n
n
n
The reset and watchdog timeout periods are adjustable  
usingexternalcapacitors.Tightvoltagethresholdaccuracy  
andglitchimmunityensurereliableresetoperationwithout  
false triggering. The RST output is guaranteed to be in the  
CC  
correct state for V down to 1V. Each status output has  
CC  
a weak internal pull-up and may be externally pulled up  
APPLICATIONS  
to a user-defined voltage.  
n
Desktop and Notebook Computers  
The8AsupplycurrentmakestheLTC2938andLTC2939  
ideal for power conscious systems. The LTC2939 moni-  
tors up to six supplies and the LTC2938 monitors up to  
four supplies.  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Protected by U.S. Patents, including 6967591, 7239251, 7119714.  
n
Multivoltage Systems  
n
Telecom Equipment  
Network Servers  
Automotive Control Systems  
n
n
TYPICAL APPLICATION  
6-Supply Monitor 12V (ADJ), 5V, 3.3V, 2.5V, 1.8V, 1.2V (ADJ)  
Voltage Configuration Table  
12V  
5V  
3.3V  
V1 (V) V2 (V) V3 (V) V4 (V) V5 (V) V6 (V)  
5
3.3  
3.3  
3.3  
3.3  
3.3  
2.5  
2.5  
1.8  
1.8  
1.8  
2.5  
2.5  
1.8  
1.8  
1.5  
1.2  
2.5  
2.5  
1.8  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
SYSTEM  
2.5V  
5
LOGIC  
1.8V  
1.2V  
5
1.8  
5
5
ADJ  
ADJ  
1.8  
1.8  
1.5  
2150k 124k  
ADJ  
1ꢀ  
1ꢀ  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.5  
ADJ  
1.2  
V1  
V2  
V3  
V4  
V5  
V6  
WDI  
WDO  
RST  
0.1μF  
1.5  
1.2  
ADJ  
ADJ  
ADJ  
–ADJ  
ADJ  
–ADJ  
ADJ  
ADJ  
LTC2939  
CWT  
0.1μF  
V
REF  
100k  
1ꢀ  
100k  
1ꢀ  
R1  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
59k  
1ꢀ  
V
t
t
= 94ms  
= 940ms  
PG  
RST  
WD  
CRT  
GND  
R2  
40.2k  
1ꢀ  
C
WT  
47nF  
C
RT  
47nF  
293839 TA01  
293839ff  
1
LTC2938/LTC2939  
ABSOLUTE MAXIMUM RATINGS (Notes 1, 2, 3)  
V1, V2, V3, V4, V5, V6, V ......................... –0.3V to 7V  
Operating Temperature Range  
PG  
RST.............................................................. –0.3V to 7V  
LTC2939C..................................................... 0°C to 70°C  
LTC2939I.................................................. –40°C to 85°C  
LTC2939H .............................................. –40°C to 125°C  
Storage Temperature Range................... –65°C to 150°C  
Lead Temperature (Soldering 10 sec)  
CWT, WDO.................................................... –0.3V to 7V  
CRT, V , WDI..............................0.3V to (V + 0.3V)  
REF  
CC  
Reference Load Current (I  
).............................. 1mA  
VREF  
V4 Input Current (–ADJ Mode) ..............................–1mA  
RST, WDO Currents ............................................ 10mA  
MS Package Only.............................................. 300°C  
PIN CONFIGURATION  
LTC2938  
LTC2938  
LTC2939  
TOP VIEW  
V3  
V1  
1
2
3
4
5
6
12 V2  
11 V4  
TOP VIEW  
TOP VIEW  
1
2
3
4
5
6
7
8
V5  
V3  
16 V6  
15 V2  
14 V4  
13 NC  
1
2
3
4
5
6
V3  
V1  
CRT  
RST  
WDO  
WDI  
12 V2  
11 V4  
V1  
CRT  
RST  
WDO  
WDI  
10  
9
V
REF  
V
PG  
13  
10  
9
V
V
NC  
REF  
PG  
CRT  
RST  
WDO  
WDI  
12  
11  
V
V
REF  
PG  
8
7
GND  
CWT  
8
GND  
CWT  
10 GND  
9
CWT  
7
MS PACKAGE  
12-LEAD PLASTIC MSOP  
MS PACKAGE  
16-LEAD PLASTIC MSOP  
DE PACKAGE  
12-LEAD (4mm s 3mm) PLASTIC DFN  
T
= 125°C, θ = 130°C/W  
T
= 125°C, θ = 110°C/W  
JMAX JA  
JMAX  
JA  
T
= 125°C, θ = 43°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 13) PCB GND CONNECTION OPTIONAL  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC2938CDE#PBF  
LTC2938IDE#PBF  
LTC2938HDE#PBF  
LTC2938CMS#PBF  
LTC2938IMS#PBF  
LTC2938HMS#PBF  
LTC2939CMS#PBF  
LTC2939IMS#PBF  
LTC2939HMS#PBF  
TAPE AND REEL  
PART MARKING*  
2938  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2938CDE#TRPBF  
LTC2938IDE#TRPBF  
LTC2938HDE#TRPBF  
LTC2938CMS#TRPBF  
LTC2938IMS#TRPBF  
LTC2938HMS#TRPBF  
LTC2939CMS#TRPBF  
LTC2939IMS#TRPBF  
LTC2939HMS#TRPBF  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead (4mm × 3mm) Plastic DFN  
12-Lead Plastic MSOP  
2938  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
2938  
2938  
2938  
12-Lead Plastic MSOP  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
2938  
12-Lead Plastic MSOP  
2939  
16-Lead Plastic MSOP  
2939  
16-Lead Plastic MSOP  
–40°C to 85°C  
–40°C to 125°C  
2939  
16-Lead Plastic MSOP  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
293839ff  
2
LTC2938/LTC2939  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C, VCC = 5V unless otherwise specified. (Note 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
1
UNITS  
l
l
l
l
l
l
l
l
l
l
l
V
V
V
V
V
V
V
V
V
V
V
Minimum Internal Operating Voltage  
Minimum Required for Configuration  
5V, 5ꢀ Reset Threshold  
3.3V, 5ꢀ Reset Threshold  
2.5V, 5ꢀ Reset Threshold  
1.8V, 5ꢀ Reset Threshold  
1.5V, 5ꢀ Reset Threshold  
1.2V, 5ꢀ Reset Threshold  
ADJ Reset Threshold  
RST in Correct Logic State  
V
V
CC  
V
Rising  
CC  
2.6  
CCMINP  
RT50  
RT33  
RT25  
RT18  
RT15  
RT12  
RTA  
V1 Input Threshold  
4.600  
3.036  
2.300  
1.656  
1.380  
1.104  
492.5  
–18  
4.675  
3.086  
2.338  
1.683  
1.403  
1.122  
500  
4.750  
3.135  
2.375  
1.710  
1.425  
1.140  
507.5  
18  
V
V1, V2 Input Threshold  
V2, V3 Input Threshold  
V2, V3, V4 Input Threshold  
V2, V3, V4 Input Threshold  
V2, V3, V4 Input Threshold  
V3, V4, V5, V6 Input Threshold  
V4 Input Threshold  
V
V
V
V
V
mV  
mV  
V
–ADJ Reset Threshold  
0
RTAN  
REF  
Reference Voltage  
V
C
> 2.3V, I  
REF  
=
VREF  
1mA,  
1.192  
1.210  
1.228  
CC  
< 1000pF  
l
l
l
l
V
Configuration Voltage Range  
V
V
> V  
0
V
V
nA  
μA  
μA  
PG  
VPG  
V1  
CC  
PG  
CCMINP  
REF  
I
I
I
I
V
PG  
Input Current  
= V  
20  
REF  
V1 Input Current  
V2 Input Current  
V3 Input Current  
V1 = 5V, I  
= 12μA, (Note 4)  
80  
0.8  
125  
2
VREF  
V2 = 3.3V  
V2  
l
l
V3 = 2.5V  
V3 = 0.55V (ADJ Mode)  
0.52  
1.2  
15  
μA  
nA  
V3  
l
l
l
I
V4  
V4 Input Current  
V4 = 1.8V  
V4 = 0.55V (ADJ Mode)  
V4 = -0.02V (–ADJ Mode)  
0.34  
0.8  
15  
15  
μA  
nA  
nA  
l
l
l
l
I
I
I
t
t
, I  
V5, V6 Input Current (LTC2939)  
CRT Pull-Up Current  
V5, V6 = 0.55V  
15  
–2.6  
30  
nA  
μA  
μA  
ms  
μs  
V5 V6  
V
V
C
= GND  
= 1.3V  
–1.4  
10  
2
–2  
20  
3
CRT(UP)  
CRT(DN)  
RST  
CRT  
CRT  
CRT Pull-Down Current  
Reset Timeout Period  
= 1500pF  
4
RT  
V Undervoltage Detect to RST  
n
V Less Than Reset Threshold V  
by  
150  
UV  
n
RTX  
More Than 1ꢀ  
l
l
l
l
V
Voltage Output Low RST  
I
I
I
I
= 2.5mA; V = 3V  
0.15  
0.05  
0.15  
0.4  
0.3  
0.4  
V
V
V
V
OL  
SINK  
CC  
= 100μA; V = 1V  
SINK  
CC  
V
V
Voltage Output Low WDO  
= 2.5mA; V = 3.3V  
CC  
OL  
SINK  
Voltage Output High RST, WDO  
(Note 5)  
= –1μA; V2 = 3.3V  
V2 – 1  
OH  
SOURCE  
l
l
l
I
I
t
CWT Pull-Up Current  
CWT Pull-Down Current  
Watchdog Timeout Period  
WDI Input Threshold  
V
V
C
= GND  
–1.4  
10  
–2  
20  
30  
–2.6  
30  
μA  
μA  
CWT(UP)  
CWT(DN)  
WD  
CWT  
CWT  
= 1.3V  
= 1500pF  
20  
40  
ms  
WT  
l
l
l
V
Logic Low  
Open  
Logic High  
0.4  
1.1  
V
V
V
WDI  
(V = 3.3V to 5.5V)  
0.7  
1.4  
0.9  
CC  
293839ff  
3
LTC2938/LTC2939  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C, VCC = 5V unless otherwise specified. (Note 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
I
WDI Input Current  
V
WDI  
= GND  
= 0.7V  
= 1.1V  
= 5V  
–30  
μA  
μA  
μA  
μA  
WDI  
WDI  
–10  
10  
V
V
WDI  
WDI  
V
30  
l
t
WDI Input Pulse Width  
V
= 3.3V or 5.5V  
2
μs  
WP  
CC  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
of supplying the quiescent current, programming (transient) current and  
reference load current.  
Note 5: The outputs RST and WDO have internal pull-ups to V2 of typically  
6μA. However, external pull-up resistors may be used when faster rise  
Note 2: All currents into pins are positive, all voltages are referenced to  
GND unless otherwise noted.  
times are required or for V voltages greater than V2. For V2 configured  
to monitor 1.2V, 1.5V, 1.8V and 2.5V supplies, external pull-up resistors  
OH  
are required to ensure that the output voltage, high, is above the V input  
threshold of the external circuit.  
IH  
Note 3: The greater of V1, V2 is the internal supply voltage (V ).  
Note 4: Under static no-fault conditions, V1 will necessarily supply  
CC  
quiescent current. If at any time V2 is larger than V1, V2 must be capable  
TYPICAL PERFORMANCE CHARACTERISTICS  
Normalized Threshold Voltages  
vs Temperature  
–ADJ Threshold Voltage  
vs Temperature  
VREF vs Temperature  
1.015  
1.010  
1.005  
1.000  
18  
12  
6
1.228  
1.222  
1.216  
1.210  
0
0.995  
0.990  
0.985  
–6  
–12  
–18  
1.204  
1.198  
1.192  
50  
TEMPERATURE (°C)  
100 125  
50  
TEMPERATURE (°C)  
100 125  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
–50 –25  
0
25  
75  
–50 –25  
0
25  
75  
29389 G01  
29389 G02  
29389 G03  
293839ff  
4
LTC2938/LTC2939  
TYPICAL PERFORMANCE CHARACTERISTICS  
Transient Duration  
vs Comparator Overdrive  
400  
Supply Current vs Temperature  
I(V4) vs V4 in –ADJ mode  
90  
85  
80  
75  
70  
–100μ  
–10μ  
–1μ  
V1 = 5V  
T
= 25°C  
A
V2 = 3.3V  
V3 = 2.5V  
V4 = 1.8V  
V5 = V6 = 1V  
350  
300  
250  
200  
150  
100  
50  
125°C  
RESET OCCURS  
ABOVE CURVE  
–100n  
–10n  
–1n  
85°C  
25°C  
0
–100p  
50  
TEMPERATURE (°C)  
100 125  
0.1  
1
10  
100  
)
–50 –25  
0
25  
75  
–300 –250 –200 –150 –100 –50  
V4 (mV)  
0
RESET COMPARATOR OVERDRIVE (ꢀ OF V  
RTX  
29389 G05  
29389 G04  
29389 G06  
RST Output Voltage vs V1,  
Watchdog Timeout Period  
vs Temperature  
RST Pull-Up Current vs V2  
VPG = GND  
18  
15  
12  
9
6
36  
34  
32  
30  
C
= 1500pF  
T
= 25°C  
T = 25°C  
A
WT  
A
(SILVER MICA)  
10k PULL-UP FROM RST TO V1  
5
V1 = V2  
4
3
V
RT33  
V
6
RT25  
2
1
0
28  
26  
24  
V
RT18  
3
V
RT15  
V
RT12  
0
0.5  
1
1.5  
3
3.5  
4
4.5  
5
0
1
2
3
4
5
–50  
25  
50  
75  
100 125  
2
2.5  
–25  
0
V2 (V)  
V1 (V)  
TEMPERATURE (°C)  
29389 G07  
29389 G08  
29389 G09  
Reset Timeout Period  
vs Temperature  
Watchdog Timeout Period vs CWT  
Reset Timeout Period vs CRT  
100  
10  
5
4
3
2
10  
1
T
= 25°C  
C
= 1500pF  
A
RT  
T = 25°C  
A
(SILVER MICA)  
1
100m  
10m  
1m  
100m  
10m  
1m  
100μ  
100μ  
1
10μ  
10p  
100p  
1n  
C
10n  
(F)  
100n  
1μ  
–50 –25  
0
25  
50  
75 100 125  
10p  
100p  
1n  
C
10n  
(F)  
100n  
1μ  
TEMPERATURE (°C)  
WT  
RT  
29389 G11  
29389 G12  
29389 G10  
293839ff  
5
LTC2938/LTC2939  
TYPICAL PERFORMANCE CHARACTERISTICS  
Voltage Output Low  
ISINK vs Supply Voltage (RST)  
vs Sink Current (RST, WDO)  
WDI Input Current vs Temperature  
15  
12  
9
500  
400  
300  
200  
100  
0
20  
15  
V1 = 5V  
V2 = 3V  
V
= 5V  
T
= 25°C  
WDI  
A
125°C  
V
= 1.1V  
WDI  
10  
V
= 0.4V  
OL  
85°C  
25°C  
5
0
V
= 0.2V  
OL  
6
3
0
–5  
–40°C  
–10  
–15  
–20  
V
= 0V  
WDI  
V
WDI  
= 0.7V  
0
1
2
3
4
5
0
2
4
I
6
8
10  
–50  
0
25  
50  
75 100 125  
–25  
(mA)  
TEMPERATURE (°C)  
V1 OR V2 (V)  
SINK  
29389 G15  
29389 G13  
29389 G14  
WDI Input Threshold  
vs Temperature  
WDO Pull-Up Current vs V2  
18  
15  
1.50  
1.25  
1.00  
0.75  
0.50  
T
= 25°C  
A
WDO = GND  
HIGH  
OPEN (MAXIMUM)  
12  
9
6
3
0
LOW  
OPEN (MINIMUM)  
1
2
3
4
5
–50  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
–25  
V2 (V)  
29389 G17  
29389 G16  
PIN FUNCTIONS  
CRT: Reset Timeout Capacitor. Attach an external capaci- CWT:WatchdogTimeoutCapacitor.Attachacapacitor(C  
)
WT  
tor (C ) to GND to set a reset timeout of 2ms/nF. A 47nF between CWT and GND to set a watchdog timeout period  
RT  
capacitor generates a 94ms reset delay time. Leaving CRT of20ms/nF.A47nFcapacitorgeneratesa940mswatchdog  
unconnected generates a minimum timeout period of ap- timeout period. Leaving CWT unconnected generates a  
proximately 20μs which will vary depending on parasitic minimum timeout period of approximately 200μs which  
capacitance on the pin.  
293839ff  
6
LTC2938/LTC2939  
PIN FUNCTIONS  
will vary depending on parasitic capacitance on the pin.  
Tie CWT to GND to disable the watchdog function.  
V : Threshold Select Input. Connect to an external 1ꢀ  
PG  
resistive divider between V  
and GND to select one of  
REF  
sixteen combinations of voltage thresholds (see Table 1).  
Do not add capacitance to the V input.  
GND: Device Ground.  
PG  
NC: No Internal Connection.  
V
: Buffered Reference Voltage Output. A 1.210V nomi-  
REF  
RST: Reset Output. Logic output with weak 6μA pull-up  
to V2. Pulls low when any voltage input is below the reset  
thresholdandheldlowfortheconfiguredresetdelaytime  
after all voltage inputs are above threshold. When the  
watchdog timer is enabled but not serviced prior to the  
configured watchdog timeout period, RST pulls low for  
one reset delay time. May be pulled to greater than V2  
using an external pull-up. For V2 configured to monitor  
2.5V or below, connect an external pull-up resistor to  
the interface logic supply to ensure that the output high  
nal reference used for the mode selection voltage (V )  
PG  
and for the offset of negative adjustable applications. The  
buffered reference can source and sink up to 1mA. The  
reference can drive a bypass capacitor of up to 1000pF  
without oscillation.  
WDI: Watchdog Input: A three-state input that controls  
the operation of the watchdog timer. Leaving the WDI pin  
unconnected disables the watchdog timer while tying it  
low or high enables it. While RST is high, a transition  
between low and high logic levels (rising or falling edge)  
within the watchdog timeout period is required to inhibit  
WDO from pulling low and a watchdog initiated reset. A  
capacitor attached to CWT sets the watchdog timeout  
period. A transition between the low and high logic levels  
on the WDI input clears the voltage on the CWT capacitor,  
preventing WDO from going low. Once WDO is latched  
low,WDImusttransitionbetweenlowandhighlogiclevels  
to clear WDO Transitions between open and logic low or  
logic high do not clear WDO.  
voltage is above the V of the external circuit. Leave  
open if unused.  
IH  
V1: Voltage Input 1. Select from 5V or 3.3V. See the Ap-  
plications Information section for details. The greater of  
V1 or V2 is also V for the device. Bypass this input to  
CC  
ground with a 0.1μF (or greater) capacitor.  
V2: Voltage Input 2. Select from 3.3V, 2.5V, 1.8V, 1.5V or  
1.2V. See the Applications Information section for details.  
The greater of V1, V2 is also V for the device. Bypass  
CC  
this input to ground with a 0.1μF (or greater) capacitor.  
WDO:WatchdogOutput.Logicoutputwithweak6μApull-  
up to V2. May be pulled greater than V2 using external  
pull-up. For V2 configured to monitor 2.5V or below,  
connect an external pull-up resistor to the interface logic  
supply to ensure that the output high voltage is above the  
All status outputs are weakly pulled up to V2.  
V3: Voltage Input 3. Select from 2.5V, 1.8V, 1.5V, 1.2V or  
ADJ. See the Applications Information section for details.  
Tie to V1 if unused.  
V of the external circuit. The watchdog timer is enabled  
IH  
V4: Voltage Input 4. Select from 1.8V, 1.5V, 1.2V, ADJ or  
–ADJ.SeetheApplicationsInformationsectionfordetails.  
Tie to V1 if unused and configured for positive voltage.  
when RST is high. The watchdog output pulls low if the  
watchdog timer expires and the output remains low  
until set high by the next WDI transition or anytime an  
undervoltage condition occurs. A watchdog failure also  
triggers a reset event. Leave open if unused.  
V5: Adjustable Voltage Input 5 for LTC2939. High imped-  
ance comparator input with 0.5V typical threshold. Tie to  
V1 if unused.  
ExposedPad(DE12packageonly):TheExposedPadmay  
be left open or connected to device ground.  
V6: Adjustable Voltage Input 6 for LTC2939. High imped-  
ance comparator input with 0.5V typical threshold. Tie to  
V1 if unused.  
293839ff  
7
LTC2938/LTC2939  
BLOCK DIAGRAM  
BUFFER  
V1  
V2  
VREF  
BANDGAP  
REFERENCE  
POWER  
DETECT  
V
CC  
VPG  
A/D  
V1  
V2  
V2  
4
+
6μA  
RESISTIVE  
DIVIDERS  
V3  
4
V4  
4
RST  
ADJUSTABLE  
RESET PULSE  
GENERATOR  
WDFAIL  
V5  
+
0.5V  
LTC2939  
+
V6  
2μA  
V2  
V
CC  
22μA  
CRT  
6μA  
GND  
WDO  
WDFAIL  
UV  
WATCHDOG  
TIMER  
WDI  
CWT  
TRANSITION  
DETECT  
2μA  
V
CC  
22μA  
293839 BD  
293839ff  
8
LTC2938/LTC2939  
TIMING DIAGRAM  
Vn Monitor Timing  
V
RT  
V
n
t
RST  
t
UV  
RST  
293839 TD01  
Reset and Watchdog Timing  
V
n
RST  
t
t
t
t
t
t
RST  
RST  
RST  
RST  
RST  
RST  
t
RST  
t
t
t
t
WD  
WD  
WD  
WD  
WDO  
WDI  
293839 TD02  
POWER-ON RESET  
FOLLOWED BY RESET  
CAUSED BY  
WATCHDOG INPUT NOT TOGGLED,  
WATCHDOG TIMER EXPIRES, WATCHDOG  
OUTPUT PULLS LOW. RESET OUTPUT  
PULLS LOW FOR ONE RESET TIMEOUT  
PERIOD.  
WATCHDOG INPUT NOT  
TOGGLED, WATCHDOG  
TIMER EXPIRES,  
WATCHDOG OUTPUT  
PULLS LOW. RESET  
OUTPUT PULLS LOW.  
WATCHDOG INPUT NOT  
TOGGLED, WATCHDOG  
TIMER EXPIRES, WATCHDOG  
OUTPUT PULLS LOW. RESET  
OUTPUT PULLS LOW.  
UNDERVOLTAGE EVENT.  
WATCHDOG OUTPUT SET  
HIGH, WATCHDOG INPUT =  
DON’T CARE  
WATCHDOG INPUT REMAINS UNTOGGLED,  
WATCHDOG OUTPUT REMAINS LOW,  
RESET OUTPUT PULLS LOW AGAIN AFTER  
ONE WATCHDOG TIMEOUT PERIOD.  
WATCHDOG OUTPUT CLEARED BY  
UNDERVOLTAGE EVENT.  
WATCHDOG OUTPUT NOT  
CLEARED BY WATCHDOG  
INPUT DURING RESET  
TIMEOUT. AFTER RESET  
COMPLETED, WATCHDOG  
INPUT CLEARS WATCHDOG  
OUTPUT.  
WATCHDOG OUTPUT  
LOW TIME SHORTENED  
BY UNDERVOLTAGE  
EVENT DURING RESET  
TIMEOUT.  
293839ff  
9
LTC2938/LTC2939  
APPLICATIONS INFORMATION  
Supply Monitoring  
Threshold Accuracy  
The LTC2938 and LTC2939 are low power, high accuracy  
configurable four (LTC2938) and six (LTC2939) supply  
monitoring circuits with reset output and watchdog func-  
tions. Both watchdog and reset timeouts are adjustable  
usingexternalcapacitors.Single-pinconfigurationselects  
oneofsixteeninputvoltagemonitorcombinations.Allfour  
(LTC2938) or six (LTC2939) voltage inputs must be above  
predetermined thresholds for the reset not to be invoked.  
The LTC2938/LTC2939 assert the reset during power-up,  
power-down and brownout conditions on any one of the  
voltage inputs.  
Consider a 5V system with 5ꢀ tolerance. The 5V supply  
may vary between 4.75V to 5.25V. System ICs powered by  
this supply must operate reliably within this band (and a  
littlemoreassubsequentlyexplained).Aperfectlyaccurate  
supervisor for this supply generates a reset at exactly  
4.75V. However, no supervisor is perfect. The actual reset  
threshold of a supervisor varies over a specified band.  
The LTC2938/LTC2939 varies 1.5ꢀ around its nominal  
threshold voltage (see Figure 1) over temperature.  
The reset threshold band and the power supply tolerance  
bands should not overlap. This prevents false or nuisance  
resets when the power supply is actually within its speci-  
fied tolerance band.  
Power-Up  
The greater of V1 or V2 serves as the internal supply  
The LTC2938 and LTC2939 have 1.5ꢀ reset threshold  
accuracy, so a 5ꢀ threshold is typically set to 6.5ꢀ below  
the nominal input voltage. Therefore, a typical 5V, 5ꢀ  
threshold is 4.675V.  
voltage (V ). On power-up, V powers the drive circuits  
CC  
CC  
for the RST output. This ensures that the RST output will  
be low as soon as V1 or V2 reaches 1V. The RST output  
remains low until the part is configured. After configura-  
tion, if any one of the supply monitor inputs is below its  
configured threshold, RST will be at logic low. Once all  
the monitor inputs rise above their thresholds, an internal  
timer is started and RST is released after the configured  
delay time.  
The threshold is guaranteed to lie in the band between  
4.750Vand4.600Vovertemperature.Thepoweredsystem  
must work reliably down to the low end of the threshold  
band, or risk malfunction before a reset signal is properly  
issued.  
NOMINAL  
SUPPLY  
VOLTAGE  
5V  
SUPPLY TOLERANCE  
MINIMUM  
RELIABLE  
SYSTEM  
IDEAL  
SUPERVISOR  
THRESHOLD  
VOLTAGE  
4.75V  
–5ꢀ  
1.5ꢀ  
THRESHOLD 4.675V  
BAND  
–6.5ꢀ  
4.6V  
–8ꢀ  
REGION OF POTENTIAL MALFUNCTION  
293839 F01  
Figure 1. 1.5ꢁ Threshold Accuracy Improves System Reliability  
293839ff  
10  
LTC2938/LTC2939  
APPLICATIONS INFORMATION  
A less accurate supervisor increases the required system  
voltage margin and increases the probability of system  
malfunction. The LTC2938 and LTC2939 1.5ꢀ specifica-  
tionimprovesthereliabilityofthesystemoversupervisors  
with wider threshold tolerances.  
Upon power-up, the LTC2938 or LTC2939 enters a con-  
figuration period of approximately 150μs during which  
the voltage on the V input is sampled and the monitor  
PG  
is configured to the desired input combination. Do not  
add capacitance to the V input. Immediately after  
PG  
programming, the comparators are enabled and supply  
Monitor Configuration  
monitoring begins.  
Select the LTC2938/LTC2939 input voltage combination  
LTC2938/  
by placing the recommended resistive divider from V  
R1  
1ꢀ  
LTC2939  
REF  
to GND and connect the tap point to V , as shown in  
PG  
V
REF  
V
Figure 2.  
PG  
R2  
1ꢀ  
GND  
Table 1 offers recommended 1ꢀ resistor values for the  
various modes. The rightmost column in Table 1 specifies  
PG REF  
a ratiometric DAC.  
293839 F02  
optimum V /V ratios ( 0.01), when configuring with  
Figure 2. Monitor Programming  
Table 1. Voltage Threshold Modes  
MODE  
0
V1 (V)  
5
V2 (V)  
3.3  
3.3  
2.5  
2.5  
1.8  
3.3  
3.3  
1.8  
1.8  
1.8  
2.5  
2.5  
1.8  
1.5  
3.3  
1.2  
V3 (V)  
ADJ  
ADJ  
ADJ  
ADJ  
1.5  
V4 (V)  
ADJ  
–ADJ  
ADJ  
–ADJ  
ADJ  
ADJ  
1.8  
R1 (kΩ)  
Open  
93.1  
86.6  
78.7  
71.5  
66.5  
59  
R2 (kΩ)  
Short  
9.53  
16.2  
22.1  
28  
V
/V  
PG REF  
0
1
5
0.094  
0.156  
0.219  
0.281  
0.344  
0.406  
0.469  
0.531  
0.594  
0.656  
0.719  
0.781  
0.844  
0.906  
1
2
3.3  
3.3  
3.3  
5
3
4
5
2.5  
34.8  
40.2  
47.5  
53.6  
59  
6
5
2.5  
7
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
5
1.5  
1.2  
53.6  
47.5  
40.2  
34.8  
28  
8
1.2  
ADJ  
ADJ  
1.5  
9
ADJ  
1.8  
10  
11  
12  
13  
14  
15  
66.5  
71.5  
78.7  
86.6  
93.1  
Open  
1.8  
ADJ  
–ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
ADJ  
1.8  
22.1  
16.2  
9.53  
Short  
3.3  
ADJ  
293839ff  
11  
LTC2938/LTC2939  
APPLICATIONS INFORMATION  
Using the Adꢀustable Thresholds  
Inanegativeadjustableapplication,theminimumvaluefor  
R4 is limited by the sourcing capability of V  
( 1mA).  
REF  
The reference inputs on the V3 and/or V4 comparators are  
set to 0.5V when the positive adjustable modes are se-  
lected(Figure3). TheLTC2939V5andV6comparatorsare  
always in positive adjustable mode with a 0.5V reference.  
The tap point on an external resistive divider, connected  
between the positive voltage being sensed and ground, is  
connected to the high impedance, adjustable inputs (V3,  
V4, V5 and V6). Calculate the trip voltage from:  
With no other load on V , R4 (minimum) is:  
REF  
1.210V  
= 1.210k  
1mA  
Tables 2 and 3 offer suggested 1ꢀ resistor values for  
various adjustable applications assuming 5ꢀ monitor  
thresholds.  
Table 2. Suggested 1ꢁ Resistor Values for the ADJ Inputs  
R3  
R4⎠  
VTRIP = 0.5V • 1+  
V
(V)  
V
(V)  
R3 (kΩ)  
2150  
1780  
1400  
1300  
1020  
845  
R4 (kΩ)  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
SUPPLY  
TRIP  
12  
11.25  
9.4  
V
TRIP  
10  
8
LTC2938/LTC2939  
R3  
1ꢀ  
7.5  
7.5  
6
7
V3, V4, V5 OR V6  
R4  
1ꢀ  
5.6  
5
4.725  
3.055  
2.82  
2.325  
1.685  
1.410  
1.120  
0.933  
0.840  
3.3  
3
511  
+
0.5V  
464  
2.5  
1.8  
1.5  
1.2  
1
365  
293839 F03  
237  
182  
Figure 3. Setting the Positive Adꢀustable Trip Point  
124  
86.6  
68.1  
In the negative adjustable mode, the high impedance,  
adjustable input on the V4 comparator is connected to  
ground (Figure 4). The tap point on an external resistive  
divider, connected between the negative voltage being  
0.9  
Table 3. Suggested 1ꢁ Resistor Values for the Negative  
ADJ Inputs  
sensed and the V  
output, is connected to the high  
REF  
V
(V)  
V
(V)  
R3 (kΩ)  
1.87  
464  
R4 (kΩ)  
121  
SUPPLY  
TRIP  
impedance adjustable input (V4). V provides the nec-  
REF  
–2  
–1.87  
–4.64  
–4.87  
–9.31  
–11.30  
essary level shift required to operate at ground. The nega-  
–5  
121  
tive trip voltage is calculated from:  
–5.2  
–10  
–12  
487  
121  
R3  
R4  
931  
121  
VTRIP = VREF  
; VREF = 1.210V Nominal  
1130  
121  
Although all of the supply monitor comparators have  
built-in glitch immunity, bypass capacitors on V1 and V2  
are recommended because the greater of V1 or V2 is also  
the supply for the device. Filter capacitors on the V3, V4,  
V5 and V6 inputs are allowed.  
LTC2938/LTC2839  
V
REF  
R4  
1ꢀ  
V4  
R3  
1ꢀ  
V
TRIP  
293839 F04  
Figure 4. Setting the Negative Adꢀustable Trip Point  
293839ff  
12  
LTC2938/LTC2939  
APPLICATIONS INFORMATION  
Power-Down  
impedance. The last method is to continuously drive WDI  
between the low and high thresholds.  
On power-down, once any of the monitor inputs drops  
below its threshold, RST is held at a logic low. A logic low  
of 0.4V is guaranteed until both V1 and V2 drop below  
Selecting the Watchdog Timing Capacitor  
The watchdog timeout period is adjustable and can be  
optimized for software execution. The watchdog timeout  
1V. If the bandgap reference becomes invalid (V < 2V  
CC  
typical), the LTC2938/LTC2939 will reconfigure when V  
CC  
period, t , is adjusted by connecting a capacitor, C  
,
rises above 2.4V (max).  
WD  
WT  
between CWT and ground. The value of this capacitor is  
Selecting the Reset Timing Capacitor  
determined by:  
tWD  
20MΩ  
pF  
ms⎠  
The reset timeout period is adjustable in order to accom-  
modateavarietyofmicroprocessorapplications.Thereset  
CWT  
=
= 50  
tWD  
timeout period, t , is adjusted by connecting a capacitor,  
RST  
LeavingCWTunconnectedgeneratesaminimumwatchdog  
timeout period of approximately 200μs. The maximum  
watchdog timeout period is limited by the largest available  
low leakage capacitor. The accuracy of the timeout period  
is affected by capacitor leakage (the nominal charging  
current is 2μA) and capacitor tolerance. A low leakage  
ceramic capacitor is recommended.  
C , between CRT and ground. The value of this capacitor  
RT  
is determined by:  
tRST  
2MΩ  
pF  
ms⎠  
CRT  
=
= 500  
• tRST  
Leaving CRT unconnected generates a minimum reset  
timeout period of approximately 20μs. The maximum  
reset timeout period is limited by the largest available low  
leakage capacitor. The accuracy of the timeout period is  
affectedbycapacitorleakage(thenominalchargingcurrent  
is 2μA) and capacitor tolerance. A low leakage ceramic  
capacitor is recommended.  
Pull-Up Resistors for WDO and RST  
The WDO and RST pins provide weak pull-up currents to  
V2. This current is typically greater than 6μA when V2 is  
greater than 3.3V. The magnitude of the pull-up current  
decreases as V2 decreases. For V2 configured to monitor  
2.5V,1.8V,1.5Vand1.2Vsupplies,externalpull-upresistors  
are required from both pins to the interface logic supply  
Watchdog Timer  
Thewatchdogcircuittypicallymonitorsamicroprocessor’s  
activity. The microprocessor is required to change the  
logic state of the WDI input on a periodic basis in order  
to clear the watchdog timer. Whenever an undervoltage  
condition exists, the watchdog timer is cleared and WDO  
is set high. The watchdog timer starts when RST pulls  
high. Subsequent edges received on the WDI input clear  
the watchdog timer. If uncleared, the watchdog timer  
continues to run until it times out. Once it times out,  
internal circuitry brings the WDO and RST outputs low.  
WDO remains low for at least one reset timeout period  
and can then be cleared by a new edge on the WDI input  
or anytime an undervoltage condition occurs.  
to ensure that the output high voltage is above the V  
OH  
input threshold of the external circuit. The WDO and RST  
pins can be pulled to voltages higher than V2 by external  
pull-up resistors.  
Watchdog Application  
Figure 5 shows a typical application for the LTC2938/  
LTC2939. The C timing capacitor adjusts the watch-  
WT  
dog timeout period for optimal software execution. If  
the software malfunctions and the state of the WDI pin  
is unchanged before the end of the watchdog timeout  
period (t ), the LTC2938/LTC2939 WDO pin is latched  
WD  
to a low state. At the same time, RST is pulled low to reset  
the microprocessor. While RST is low, the WDI pin does  
not affect RST or WDO. The system therefore resets for  
The watchdog timer may be disabled in three ways. One  
methodistosimplygroundCWT.WithCWTheldatground,  
any undervoltage event forces WDO high indefinitely. A  
second method is to leave the WDI input floating or in high  
at least t  
.
RST  
293839ff  
13  
LTC2938/LTC2939  
APPLICATIONS INFORMATION  
After RST returns high, the microprocessor can poll the  
state of the WDO pin to determine if the reset was caused  
by an undervoltage condition or by a watchdog timeout.  
WDO high means that the reset was caused by undervolt-  
age since this condition also resets the WDO latch (and  
the watchdog timer). If the WDO pin is low, the system  
reset was caused by watchdog timeout. The microproces-  
sor can then change the state of WDI to clear the WDO  
latch. If the microprocessor fails to do so, the LTC2938/  
pin. This affects the response of the LTC2938/LTC2939.  
When the WDI pin is floated, the watchdog timer is reset  
and C is discharged towards ground but WDO remains  
WT  
unchanged.PuttingWDIinhighimpedancedoesnotaffect  
t
. Once RST goes high again, and WDI is driven from  
RST  
high impedence to a high or low state, the watchdog timer  
starts a complete t timeout period. A high-to-low or  
WD  
low-to-high transition at WDI clears WDO if it was previ-  
ously latched low.  
LTC2939 will alternate between t  
and t  
timeout  
RST  
WD  
The RST and WDO pins should not be tied together to  
generatethemasterresetsignalsinceawatchdogtimeout  
forces RST low together with WDO and the master reset  
signal will remain low indefinitely.  
and RST will be pulled low for t  
after every watchdog  
RST  
timeout. WDO remains low until the microprocessor flips  
the state of WDI.  
Some microprocessors force their I/O pins into high  
impedance during reset which in turn, floats the WDI  
5V  
V1  
V2  
3.3V  
0.1μF  
0.1μF  
2.5V  
1.8V  
12V  
V3  
V4  
V5  
V6  
LTC2939  
RST  
2150k 1ꢀ  
WDO  
MICROPROCESSOR  
124k 1ꢀ  
1.2V  
WDI  
V
REF  
R1  
59k  
1ꢀ  
V
GND CRT  
CWT  
PG  
R2  
40.2k  
1ꢀ  
100k  
1ꢀ  
100k  
1ꢀ  
C
C
t
t
= 94ms  
= 940ms  
RT  
WT  
RST  
WD  
47nF  
47nF  
293839 F05  
Figure 5. 6-Supply Monitor, 12V (ADJ), 5V, 3.3V, 2.5V, 1.8V, 1.2V (ADJ)  
with Watchdog Enabled  
293839ff  
14  
LTC2938/LTC2939  
TYPICAL APPLICATIONS  
Quad-Supply Monitor (Mode 14) with Watchdog Disabled  
5V  
V1  
V2  
3.3V  
0.1μF  
0.1μF  
1.8V  
12V  
SYSTEM  
LOGIC  
V3  
V4  
RST  
LTC2938  
V
= 11.25V  
R3  
TRIP  
2.15MΩ  
1ꢀ  
WDO  
V
REF  
R1  
9.53k  
1ꢀ  
R4  
100k  
1ꢀ  
WDI  
CWT  
V
PG  
GND  
CRT  
R2  
93.1k  
1ꢀ  
C
RT  
47nF  
293839 TA02  
5V Supply Monitor (Mode 1) with Watchdog Disabled and Unused Inputs Tied High  
5V  
V1  
V2  
V3  
V4  
0.1μF  
R3  
464k  
1ꢀ  
LTC2938  
SYSTEM  
LOGIC  
–5V  
RST  
V
= 4.64V  
TRIP  
R4  
121k  
1ꢀ  
WDO  
V
REF  
R1  
93.1k  
1ꢀ  
V
WDI  
CWT  
PG  
GND  
CRT  
R2  
9.53k  
1ꢀ  
C
RT  
47nF  
293839 TA03  
293839ff  
15  
LTC2938/LTC2939  
TYPICAL APPLICATIONS  
Supply and Temperature Monitor (Mode 1, 5V, 3.3V, 28V, 5.2V, 12V, 100°C)  
5V  
V1  
V2  
3.3V  
10k  
1ꢀ  
0.1μF  
0.1μF  
2150k 1ꢀ  
467k 1ꢀ  
12V  
V3  
V5  
V4  
5110k 1ꢀ  
28V  
LTC2939  
–5.2V  
SYSTEM  
LOGIC  
RST  
RHYST  
280k  
1ꢀ  
121k  
1ꢀ  
WDO  
V
REF  
RBIAS  
93.1k  
1ꢀ  
R1  
93.1k  
1ꢀ  
WDI  
CWT  
V6  
V
GND CRT  
PG  
RNTC*  
470k  
R2  
9.53k  
1ꢀ  
C
RT  
47nF  
100k  
1ꢀ  
100k  
1ꢀ  
293839 TA04  
*PANASONIC ERTJOEV474J  
Buffered VREF to Power High Current Circuits  
5V  
3.3V  
V1  
RST  
V2  
0.1μF  
0.1μF  
WDO  
MICROPROCESSOR  
2.5V  
1.8V  
12V  
WDI  
V3  
V4  
V5  
V6  
LTC2939  
2150k 1ꢀ  
5V  
124k 1ꢀ  
1.2V  
V
REF  
+
R1  
59k  
1.210V  
10mA  
LT1809  
1ꢀ  
V
PG  
R2  
40.2k  
1ꢀ  
GND  
CRT  
CWT  
100k  
1ꢀ  
100k  
1ꢀ  
C
C
WT  
47nF  
RT  
47nF  
293839 TAO5  
293839ff  
16  
LTC2938/LTC2939  
PACKAGE DESCRIPTION  
UE/DE Package  
12-Lead Plastic DFN (4mm × 3mm)  
(Reference LTC DWG # 05-08-1695)  
0.70 p0.05  
3.30 p0.05  
3.60 p0.05  
2.20 p0.05  
1.70 p 0.05  
PACKAGE OUTLINE  
0.25 p 0.05  
0.50 BSC  
2.50 REF  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.40 p 0.10  
4.00 p0.10  
(2 SIDES)  
R = 0.115  
TYP  
7
12  
R = 0.05  
TYP  
3.30 p0.10  
3.00 p0.10  
(2 SIDES)  
1.70 p 0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
PIN 1 NOTCH  
R = 0.20 OR  
0.35 s 45o  
CHAMFER  
(UE12/DE12) DFN 0806 REV D  
6
1
0.25 p 0.05  
0.75 p0.05  
0.200 REF  
0.50 BSC  
2.50 REF  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING PROPOSED TO BE A VARIATION OF VERSION  
(WGED) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
293839ff  
17  
LTC2938/LTC2939  
PACKAGE DESCRIPTION  
MS Package  
12-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1668 Rev Ø)  
0.889 p 0.127  
(.035 p .005)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
4.039 p 0.102  
(.159 p .004)  
(NOTE 3)  
0.65  
(.0256)  
BSC  
0.42 p 0.038  
(.0165 p .0015)  
TYP  
0.406 p 0.076  
(.016 p .003)  
REF  
12 11 10 9 8 7  
RECOMMENDED SOLDER PAD LAYOUT  
DETAIL “A”  
0o – 6o TYP  
3.00 p 0.102  
(.118 p .004)  
(NOTE 4)  
4.90 p 0.152  
(.193 p .006)  
0.254  
(.010)  
GAUGE PLANE  
0.53 p 0.152  
(.021 p .006)  
1
2 3 4 5 6  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.1016 p 0.0508  
(.004 p .002)  
MSOP (MS12) 1107 REV Ø  
0.650  
(.0256)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
293839ff  
18  
LTC2938/LTC2939  
PACKAGE DESCRIPTION  
MS Package  
16-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1669 Rev Ø)  
0.889 p 0.127  
(.035 p .005)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
4.039 p 0.102  
(.159 p .004)  
(NOTE 3)  
0.50  
(.0197)  
BSC  
0.305 p 0.038  
(.0120 p .0015)  
TYP  
0.280 p 0.076  
(.011 p .003)  
16151413121110  
9
REF  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 p 0.102  
(.118 p .004)  
(NOTE 4)  
DETAIL “A”  
0.254  
4.90 p 0.152  
(.193 p .006)  
(.010)  
0o – 6o TYP  
GAUGE PLANE  
0.53 p 0.152  
(.021 p .006)  
1 2 3 4 5 6 7 8  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 p 0.0508  
(.004 p .002)  
MSOP (MS16) 1107 REV Ø  
0.50  
(.0197)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
293839ff  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LTC2938/LTC2939  
TYPICAL APPLICATION  
Quad-Supply Monitor (Mode 14) with Pushbutton Reset  
5V  
3.3V  
1μF  
1μF  
R3  
2.15MΩ  
1ꢀ  
V2  
V4  
V1  
V3  
1.8V  
12V  
TRIP  
V
= 11.25V  
CRT  
V
REF  
LTC2938  
R1  
9.53k  
1ꢀ  
RST  
WDO  
WDI  
SYSTEM  
LOGIC  
10k*  
V
PG  
C
RT  
47nF  
GND  
C
WT  
MANUAL RESET  
PUSHBUTTON  
R2  
93.1k  
1ꢀ  
R4  
47nF  
100k  
1ꢀ  
CWT  
293839 TAO6  
*OPTIONAL RESISTOR FOR  
ADDED ESD PROTECTION  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC2900  
Programmable Quad-Supply Monitor  
Programmable Quad-Supply Monitor  
Programmable Quad-Supply Monitor  
Adjustable Reset, 10-Lead MSOP and DFN Packages  
Adjustable Reset and Watchdog Timer  
LTC2901  
LTC2902  
Adjustable Reset and Tolerance  
LTC2908  
Precision 6-Supply Monitor (Four Fixed and Two Adjustable)  
8-Lead TSOT-23 and DFN Packages  
LTC2930  
Configurable 6-Supply Monitor with Adjustable Reset Timer,  
Manual Reset  
H-Grade Temperature Range, 3mm × 3mm DFN-12 Package  
LTC2931  
LTC2932  
Configurable 6-Supply Monitor with Adjustable Reset and  
Watchdog Timers  
H-Grade Temperature Range, Individual Supply Comparator  
Outputs, TSSOP-20 Package  
Configurable 6-Supply Monitor with Individual Comparator  
Outputs  
Adjustable Reset Timer and Tolerance, Pin-Selectable Tolerance  
(5ꢀ, 7.5ꢀ, 10ꢀ or 12.5ꢀ), Reset Disable for Margining,  
TSSOP-20 Package  
293839ff  
LT 0709 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 2009  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC2939HMS

Confi gurable 4- and 6-Supply Monitors with Watchdog Timer
Linear

LTC2939IMS

Confi gurable 4- and 6-Supply Monitors with Watchdog Timer
Linear

LTC2939IMS#PBF

LTC2939 - Configurable 6-Supply Monitors with Watchdog Timer; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2939_15

Confi gurable 4- and 6-Supply Monitors with Watchdog Timer
Linear

LTC2940

Wide Range I2C Power Monitor Rail-to-Rail Input Range: 0V to 80V
Linear

LTC2941

Battery Gas Gauge with I2C Interface
Linear

LTC2941-1

1A I2C Battery Gas Gauge with Internal Sense Resistor
Linear

LTC2941-1_15

1A I2C Battery Gas Gauge with Internal Sense Resistor
Linear

LTC2941CDCB

Battery Gas Gauge with I2C Interface
Linear

LTC2941CDCBTRMPBF

Battery Gas Gauge with I2C Interface
Linear

LTC2941CDCBTRPBF

Battery Gas Gauge with I2C Interface
Linear

LTC2941IDCB

Battery Gas Gauge with I2C Interface
Linear