LTC3202EMS#TR [Linear]

LTC3202 - Low Noise, High Efficiency Charge Pump for White LEDs; Package: MSOP; Pins: 10; Temperature Range: -40°C to 85°C;
LTC3202EMS#TR
型号: LTC3202EMS#TR
厂家: Linear    Linear
描述:

LTC3202 - Low Noise, High Efficiency Charge Pump for White LEDs; Package: MSOP; Pins: 10; Temperature Range: -40°C to 85°C

转换器
文件: 总20页 (文件大小:2648K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3486  
Dual 1.3A White LED  
Step-Up Converters with  
Wide Dimming  
FEATURES  
DESCRIPTION  
The LT®3486 is a dual step-up DC/DC converter  
specifically designed to drive up to 16 White LEDs (8 in  
series per converter) at constant current from a single  
Li-Ion cell. Series connection of the LEDs provides identi-  
cal LED currents resulting in uniform brightness. The two  
independentconvertersarecapableofdrivingasymmetric  
LED strings.  
n
Wide (1000:1) PWM Dimming Range with No  
ColorShift  
n
Independent Dimming and Shutdown Control of the  
LED Drivers  
n
Drives Up to 16 White LEDs at 25mA (8 per Driver)  
from a Single Li-Ion Cell  
n
Drives Up to 16 White LEDs at 100mA (8 per Driver)  
from 12V Supply  
The dimming of the two LED strings can be controlled  
independently via the respective CTRL pins. An internal  
dimmingsystemallowsthedimmingrangetobeextended  
up to 1000:1 by feeding a PWM signal to the respective  
PWMpins.TheLT3486operatingfrequencycanbesetwith  
an external resistor over a 200kHz to 2.5MHz range. A low  
200mVfeedbackvoltage( 3accuracy)minimizespower  
loss in the current setting resistor for better efficiency.  
Additional features include output voltage limiting when  
LEDs are disconnected and overtemperature protection.  
n
±±3 LED Current Programming Aꢀꢀuraꢀy  
n
Open LED Proteꢀtion: ±6V Clamp Voltage  
n
Fixed Frequency Operation: Up to 2.5MHz  
n
Wide Input Voltage Range: 2.5V to 24V  
n
Low Shutdown Current: ICC < 1µA  
n
Overtemperature Protection  
n
Available in (5mm × 3mm × 0.75mm) 16-Pin DFN  
and 16-Pin Thermally Enhanced TSSOP Packages  
APPLICATIONS  
The LT3486 is available in a space saving 16-pin DFN  
(5mm × 3mm × 0.75mm) and 16-pin thermally enhanced  
TSSOP packages.  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the property  
of their respective owners.  
n
Notebook PC Display  
n
LED Camera Light for Cell Phones  
n
Car Dashboard Lighting  
Avionics Displays  
n
TYPICAL APPLICATION  
Li-Ion Powered Driver for Camera Flash and LCD Baꢀklighting  
V
IN  
3V TO 4.2V  
Effiꢀienꢀy vs VIN  
10µF  
90  
85  
80  
75  
MOVIE MODE  
LED1  
L1  
10µH  
L2  
10µH  
2.2µF  
LED1  
I
= 175mA  
2.2µF  
8 LEDs  
25mA  
SW1  
SW2  
V
IN  
FLASH MODE  
= 320mA  
AOT3218  
OVP2  
OVP1  
I
LED1  
DIMMING 1  
CTRL1  
CTRL2  
REF  
DIMMING 2  
OFF ON  
SHDN  
PWM1  
FB1  
LT3486  
0.1µF  
PWM2  
70  
65  
FB2  
OFF ON  
V
C1  
GND R  
V
C2  
T
8 LEDS/25mA  
3.4  
R
R
FB2  
FB1  
0.62Ω  
2.8k  
4.7nF  
63.4k  
3
3.6  
(V)  
3.8  
4
4.2  
100k  
3.2  
8.06Ω  
3486 TA01a  
V
IN  
0.1µF  
3486 TA01b  
3486fe  
1
LT3486  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
Input Voltage (V )....................................................25V  
Operating Junction Temperature Range (Note 2)  
LT3486E...............................................40°C to 85°C  
LT3486I..............................................40°C to 125°C  
Storage Temperature Range  
DFN ...................................................65°C to 125°C  
TSSOP ...............................................65°C to 150°C  
Maximum Junction Temperature........................... 125°C  
Lead Temperature (Soldering, 10 sec, TSSOP)..... 300°C  
IN  
SHDN Voltage ...........................................................25V  
SW1, SW2 Voltages .................................................40V  
OVP1, OVP2 Voltages ...............................................40V  
CTRL1, CTRL2 Voltages............................................10V  
PWM1, PWM2 Voltages............................................10V  
FB1, FB2 Voltages.....................................................10V  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
SW1  
1
2
3
4
5
6
7
8
16 SW2  
15 REF  
1
2
3
4
5
6
7
8
SW1  
16 SW2  
15 REF  
V
IN  
V
IN  
OVP1  
14 OVP2  
13 SHDN  
OVP1  
14 OVP2  
13 SHDN  
R
T
17  
R
T
17  
V
12 V  
C2  
C1  
V
12  
V
C2  
C1  
FB1  
11 FB2  
FB1  
11 FB2  
CTRL1  
PWM1  
10 CTRL2  
CTRL1  
PWM1  
CTRL2  
10  
9
9
PWM2  
PWM2  
DHC PACKAGE  
FE PACKAGE  
16-LEAD (5mm × 3mm) PLASTIC DFN  
EXPOSED PAD (PIN 17) IS GND  
MUST BE SOLDERED TO PCB  
16-LEAD PLASTIC TSSOP  
EXPOSED PAD IS GND (PIN 17)  
MUST BE SOLDERED TO PCB  
T
= 125°C, θ = 43°C/W, θ = 4°C/W  
JA JC  
JMAX  
T
= 125°C, θ = 38°C/W, θ = 10°C/W  
JMAX JA JC  
ORDER INFORMATION  
LEAD FREE FINISH  
LT3486EDHC#PBF  
LT3486EFE#PBF  
LT3486IFE#PBF  
LEAD BASED FINISH  
LT3486EDHC  
TAPE AND REEL  
LT3486EDHC#TRPBF  
LT3486EFE#TRPBF  
LT3486IFE#TRPBF  
TAPE AND REEL  
LT3486EDHC#TR  
LT3486EFE#TR  
PART MARKING  
3486  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 85°C  
16-Lead (5mm × 3mm) Plastic DFN  
16-Lead Plastic TSSOP  
3486EFE  
3486IFE  
–40°C to 85°C  
16-Lead Plastic TSSOP  
–40°C to 125°C  
TEMPERATURE RANGE  
–40°C to 85°C  
PART MARKING  
3486  
PACKAGE DESCRIPTION  
16-Lead (5mm × 3mm) Plastic DFN  
16-Lead Plastic TSSOP  
LT3486EFE  
3486EFE  
3486IFE  
–40°C to 85°C  
LT3486IFE  
LT3486IFE#TR  
16-Lead Plastic TSSOP  
–40°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3486fe  
2
LT3486  
ELECTRICAL CHARACTERISTICS The l denotes the speꢀifiꢀations whiꢀh apply over the full operating  
temperature range, otherwise speꢀifiꢀations are at TA = 25°C. VIN = ±V, VCTRL1 = ±V, VCTRL2 = ±V, VPWM1 = ±V, VPWM2 = ±V,  
VSHDN = ±V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Minimum Operating Voltage  
Maximum Operating Voltage  
Feedback Voltage (FB1, FB2)  
Offset between FB1 and FB2  
Feedback Pin Bias Current (FB1, FB2)  
Quiescent Current  
2.5  
24  
206  
6
V
l
194  
0
200  
3
mV  
mV  
nA  
V
V
V
= |FB1-FB2|  
OS  
= V = 0.2V (Note 3)  
10  
45  
100  
FB1  
FB2  
= V = 1V  
9
0.1  
14  
1
mA  
µA  
FB1  
FB2  
SHDN = 0V, CTRL1 = CTRL2 = 0V  
Switching Frequency  
R = 53.6k  
T
0.75  
1.7  
1
1.25  
2.7  
MHz  
MHz  
T
l
l
R = 20.5k  
2.2  
Oscillator Frequency Range (Typical Value)  
(Note 4)  
200  
2500  
kHz  
V
Nominal R Pin Voltage  
R = 53.6k  
T
0.54  
T
Maximum Duty Cycle  
R = 53.6k  
90  
96  
90  
98  
T
R = 20.5k  
T
R = 309k  
T
Switch Current Limit (SW1, SW2)  
1
1.3  
300  
0.1  
220  
120  
0.85  
1.5  
25  
1.6  
5
A
mV  
Switch V  
I
= I  
= 0.75A  
SW2  
CESAT  
SW1  
Switch Leakage Current  
V
= V  
= 10V  
SW2  
µA  
SW1  
Error Amplifier Transconductance  
Error Amplifier Voltage Gain  
∆I = 5µA  
µA/V  
V
V
V
V
V
, V Switching Threshold  
V
V
C1 C2  
, V Clamp Voltage  
C1 C2  
, V Source Current  
C1 C2  
V
V
V
= V = 0V  
µA  
µA  
nA  
V
FB1  
FB1  
FB2  
, V Sink Current  
C1 C2  
= V = 1V  
25  
FB2  
, V Pin Leakage Current  
C1 C2  
= V = 1V, V  
= V = 0V  
PWM2  
1
10  
36  
75  
C1  
C2  
PWM1  
OVP1, OVP2 Overvoltage Threshold Voltage  
CTRL1, CTRL2 Voltages to Turn Off LED1, 2 Currents  
CTRL1, CTRL2 Voltages to Turn On LED1, 2 Currents  
CTRL1, CTRL2 Voltages for Full LED1, 2 Currents  
CTRL1, CTRL2 Pin Bias Current  
PWM1, PWM2 Voltage High  
34  
35  
l
mV  
mV  
V
150  
1.8  
20  
l
l
l
V
V
V
= V  
= V  
= 3V  
= 3V  
30  
40  
µA  
V
CTRL1  
PWM1  
SHDN  
CTRL2  
0.9  
PWM1, PWM2 Voltage Low  
0.4  
1
V
PWM1, PWM2 Pin Bias Current  
SHDN Voltage High  
0.1  
µA  
V
PWM2  
1.6  
SHDN Voltage Low  
0.4  
1.3  
V
SHDN Pin Bias Current  
= 3V  
= 10µA  
20  
1.25  
80  
µA  
V
REF Voltage  
I
1.2  
50  
REF  
l
REF Source Current  
µA  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
these extended temperature limits, but is not tested at 40°C and 85°C.  
The LT3486I specifications are guaranteed over the 40°C to 125°C  
temperature range.  
Note ±: Current flows out of the pin.  
Note 2: The LT3486E is guaranteed to meet specified performance  
from 0°C to 85°C and is designed, characterized and expected to meet  
Note 4: Guaranteed by design and test correlation, not production tested.  
3486fe  
3
LT3486  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C unless otherwise speꢀified.  
Switꢀhing Waveforms  
PWM Dimming Wavforms  
I
V
LED  
SW2  
200mA/DIV  
50V/DIV  
I
L2  
500mA/DIV  
I
L
500mA/DIV  
V
SW1  
10V/DIV  
PWM  
5V/DIV  
I
L1  
1A/DIV  
3486 G17  
3486 G18  
V
= 3.6V  
0.5µs/DIV  
V
= 12V  
IN  
0.2ms/DIV  
IN  
8 LEDs/25mA  
2 LEDs/320mA  
8/8 LEDs  
PWM FREQ = 1kHz  
CIRCUIT OF FRONT PAGE APPLICATION  
LED Current vs PWM Duty Cyꢀle  
Wide Dimming Range (1000:1)  
VFB vs VCTRL  
(Temperature Variation)  
VFB vs VCTRL  
100  
10  
1
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
V
= 12V  
IN  
V
= 3.6V  
= 25°C  
IN  
A
T = 85°C  
A
8/8 LEDs  
5mV  
T
PWM FREQ = 100Hz  
T
= 25°C  
A
T
= –50°C  
A
0.1  
0.01  
0
0
0.01  
0.1  
1
10  
100  
1
0
0.5  
1.5  
2
0
0.5  
1
1.5  
2
PWM DUTY CYCLE (%)  
CONTROL VOLTAGE (V)  
CONTROL VOLTAGE (V)  
3486 G01  
3486 G04  
3486 G03  
Open-Cirꢀuit Output Clamp  
Voltage vs Temperature  
Open-Cirꢀuit Output Clamp  
Voltage vs VIN  
SHDN Pin Bias Current  
(CTRL1 = CTRL2 = ±V)  
140  
120  
100  
80  
37  
36  
35  
34  
33  
37  
36  
35  
34  
V
R
= 3.6V  
V
= 3.6V  
= 63.4k  
V
= 3.6V  
IN  
T
IN  
T
IN  
= 63.4k  
R
T
T
= 50°C  
= 25°C  
A
A
V
OUT2  
V
OUT1  
V
OUT1  
V
T
= 100°C  
OUT2  
A
60  
40  
20  
0
33  
16  
SHDN PIN VOLTAGE (V)  
24  
0
4
8
12  
20  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
2
4
6
8
10  
12 14 16 18 20 22 24  
V
(V)  
IN  
3486 G05  
3486 G06  
3486 G07  
3486fe  
4
LT3486  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C unless otherwise speꢀified.  
Input Current with Output 1 and  
Output 2 Open Cirꢀuit  
RT vs Osꢀillator Frequenꢀy  
Osꢀillator Frequenꢀy vs VIN  
1000  
100  
10  
1100  
1050  
1000  
950  
20  
15  
10  
5
R
T
= 53.6k  
T
= 25°C  
= 63.4k  
A
T
R
900  
0
0
500  
1000  
1500  
2000  
2500  
2
4
6
8
10 12 14 16 18 20 22 24  
(V)  
2
4
6
8
10 12 14 16 18 20 22 24  
(V)  
OSCILLATOR FREQUENCY (kHz)  
V
V
IN  
IN  
3486 G09  
3486 G10  
3486 G08  
Osꢀillator Frequenꢀy  
vs Temperature  
Quiesꢀent Current vs VIN  
PWM Pin Input Bias Current  
12  
10  
8
1.0  
0.5  
10000  
1000  
V
IN  
= 3.6V  
UVLO  
R
R
= 22.1k  
= 53.6k  
T
PWM 1  
PWM 2  
T
6
0
4
–0.5  
–1.0  
R
= 309k  
T
2
SHDN = 3V  
CTRL1 = CTRL2 = 3V  
0
100  
0
2
8
10 12 14 16 18 20 22 24  
(V)  
4
6
–50 –25  
0
25  
50  
75 100 125  
0
2
4
6
8
10  
V
TEMPERATURE (°C)  
IN  
PWM PIN VOLTAGE (V)  
3486 G12  
3486 G11  
3486 G13  
Switꢀh Current Limit  
vs Duty Cyꢀle  
REF Voltage vs Temperature  
REF Voltage Load Regulation  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
1400  
1300  
1200  
1100  
1000  
900  
V
IN  
= 3.6V  
V
IN  
= 3.6V  
T
= –50°C  
A
T
= 85°C  
= 25°C  
A
T
A
V
A
= 3.6V  
IN  
T
= 25°C  
800  
70 80  
20 30 40 50 60  
DUTY CYCLE (%)  
90 100  
–50 –25  
0
25  
50  
75 100 125  
0
20 40 60 80 100 120 140 160 180 200  
TEMPERATURE (°C)  
REF LOAD CURRENT (µA)  
3468 G16  
3486 G14  
3486 G15  
3486fe  
5
LT3486  
PIN FUNCTIONS  
SW1, SW2 (Pins 1, 16): The SW Pins are the Collectors  
of the Internal Power Transistors. Connect the inductors  
and Schottky diodes to these pins. Minimize trace area at  
these pins to minimize EMI.  
CTRL1, CTRL2 (Pins 7, 10): The CTRL pins are used to  
provide dimming and shutdown control for the individual  
switching converters. Connecting these to ground shuts  
down the respective converter. As the voltages on these  
pins is ramped from 0V to 1.8V, the LED current in each  
V
(Pin 2): Input Supply Pin. Must be locally bypassed  
IN  
converter ramps from 0 to I  
= (200mV/R ). Any volt-  
LED  
FB  
with an X5R or X7R type ceramic capacitor.  
age above 1.8V does not affect the LED current.  
OVP1, OVP2 (Pins ±, 14): Output Overvoltage Protection  
Pins. Connect these pins to the output capacitors. The  
on-chip voltage detectors monitor the voltages at these  
pins and limit it to 36V (typ) by turning off the respective  
PWM1, PWM2 (Pins 8, 9): The PWM control pins can  
be used to extend the dimming range for the individual  
switching converter. The LED current in each string can  
be controlled down to µA levels by feeding a PWM signal  
to these pins. When the PWM pin voltage is taken below  
switcher and pulling its V pin low.  
C
R (Pin 4): Timing Resistor to Program the Switching  
0.4V, the respective converter is turned off and its V pin  
T
C
Frequency. The switching frequency can be programmed  
is disconnected from the internal circuitry. Taking it higher  
than 0.9V resumes normal operation. Connect these pins  
to 0.9V supply or higher, if not in use.  
from 200kHz to 2.5MHz.  
V , V (Pins 5, 12): The V Pins are the Outputs of the  
C1 C2  
C
Internal Error Amplifier. The voltages at these pins control  
the peak switch currents. Connect a resistor and capacitor  
compensation network from these pin to ground.  
SHDN (Pin 1±): Shutdown Pin for the Device. Connect it  
to 1.6V or higher to enable device; 0.4V or less to disable  
device.  
FB1, FB2 (Pins 6, 11): The LT3486 regulates the voltage  
REF (Pin 15): The internal bandgap reference (1.25V)  
is available at this pin. Bypass with a 0.1µF X5R or X7R  
ceramic capacitor. Draw no more than 50µA from this pin.  
at each feedback pin to 200mV. Connect the cathode of the  
lowest LED in the string and the feedback resistor (R )  
FB  
to the respective feedback pin. The LED current in each  
Exposed Pad (Pin 17): Ground. The exposed pad of the  
package providesanelectricalcontacttogroundandgood  
thermal connection to the printed circuit board (PCB).  
Solder the exposed pad to the PCB system ground.  
string can be programmed by:  
I
I
@ 200mV/R , when V  
> 1.8V  
LED  
FB  
CTRL  
@ V  
/(5R ), when V  
< 1V  
LED  
CTRL  
FB  
CTRL  
3486fe  
6
LT3486  
BLOCK DIAGRAM  
R
V
IN  
T
SW1  
1
SW2  
16  
4
2
OVP2  
14  
OVP1  
3
OVERVOLT  
DETECTION  
OVERVOLT  
DETECTION  
CONVERTER1  
CONVERTER2  
OSC  
OV2  
DRIVER  
OSC  
OV1  
EN1  
PWM  
PWM  
Q1  
Q2  
LOGIC  
LOGIC  
EN2  
RAMP  
GEN  
+
+
OSC  
OSC  
A3  
A3  
R
SNS1  
R
SNS2  
PWM  
COMP  
PWM  
COMP  
+
+
+
+
A2  
A2  
0.2V  
0.2V  
EA  
EA  
+
REF 1.25V  
+
A1  
A1  
+
+
V
C1  
5
12  
V
C2  
OV1  
OV2  
EN1  
EN2  
SHDN  
START-UP  
CONTROL  
CONVERTER1  
CONTROL  
80k  
20k  
80k  
20k  
CONVERTER 2  
CONTROL  
3486 F01  
8
7
6
13  
15  
11  
FB2  
10  
9
17  
EXPOSED  
PAD  
PWM1 CTRL1  
FB1  
SHDN  
REF  
CTRL2 PWM2  
Figure 1. LT±486 Bloꢀk Diagram  
3486fe  
7
LT3486  
OPERATION  
Main Control Loop  
Ifonlyoneoftheconvertersisturnedon,theotherconverter  
will stay off and its output will remain charged up to V  
(input supply voltage).  
IN  
The LT3486 uses a constant frequency, current mode  
controlschemetoprovideexcellentlineandloadregulation.  
It incorporates two identical, but fully independent PWM  
converters. Operationcanbebestunderstoodbyreferring  
to the block diagram in Figure 1. The oscillator, start-up  
biasandthebandgapreferencearesharedbetweenthetwo  
converters. The control circuitry, power switch, dimming  
control etc., are all identical for both converters.  
Minimum Output Current  
The LT3486 can drive an 8-LED string at 4mA LED current  
without pulse skipping. As current is further reduced, the  
device may begin skipping pulses. This will result in some  
low frequency ripple, although the LED current remains  
regulated on an average basis down to zero. The photo  
in Figure 2 shows circuit operation with 8 white LEDs  
at 4mA current driven from 3.6V supply. Peak inductor  
current is less than 200mA and the regulator operates in  
discontinuous mode implying that the inductor current  
reachedzeroduringthedischargephase.Aftertheinductor  
currentreacheszero, theswitchpinexhibitsringingdueto  
the LC tank circuit formed by the inductor in combination  
with switch and diode capacitance. This ringing is not  
harmful;farlessspectralenergyiscontainedintheringing  
than in the switch transitions. The ringing can be damped  
by application of a 300Ω resistor across the inductors,  
although this will degrade efficiency.  
At power-up, the output capacitors of both converters are  
chargeduptoV (inputsupplyvoltage)viatheirrespective  
IN  
inductor and the Schottky diode. If the SHDN pin is taken  
above 1.6V, the bandgap reference, start-up bias and the  
oscillator are turned on. Grounding the SHDN pin shuts  
down the part.  
TheCTRL1andCTRL2pinsperformindependentdimming  
and shutdown control for the two converters. Taking  
the CTRL pins high, enables the respective converters.  
Connecting these pins to ground, shuts down each  
converter by pulling their respective V pin low.  
C
Working of the main control loop can be understood by  
following the operation of converter 1. At the start of  
each oscillator cycle, the power switch Q1 is turned on.  
A voltage proportional to the switch current is added to  
a stabilizing ramp and the resulting sum is fed into the  
positive terminal of the PWM comparator A2. When this  
voltage exceeds the level at the negative input of A2, the  
PWM logic turns off the power switch. The level at the  
negative input of A2 is set by the error amplifier A1, and  
is simply an amplified version of the difference between  
the feedback voltage and the 200mV reference voltage. In  
this manner, the error amplifier A1 regulates the feedback  
voltage to 200mV reference voltage. The output of the  
error amplifier A1 sets the correct peak current level in  
inductor L1 to keep the output in regulation. The CTRL1  
pin voltage is used to adjust the reference voltage.  
V
OUT2  
10mV/DIV  
V
SW2  
20V/DIV  
I
L2  
200mA/DIV  
3486 F0  
V
LED2  
= 3.6V  
0.5µs/DIV  
IN  
I
= 4mA (8 LEDs)  
CIRCUIT OF FRONT PAGE APPLICATION  
Figure 2. Switꢀhing Waveforms  
Open-Cirꢀuit Proteꢀtion  
The LT3486 has internal open-circuit protection for both  
the converters. Connect the overvoltage protection pins  
(OVP1, OVP2) to the output of the respective converter.  
When the LEDs are disconnected from the circuit or fail  
open,theon-chipvoltagedetectorsmonitorthevoltagesat  
the OVP1 and OVP2 pins and limits these voltages to 36V  
(typ) by turning off the respective switcher. The converter  
will then switch at a very low frequency to minimize the  
The PWM1, 2 control pins are used to extend the dimming  
range for the individual converter. The LED current in each  
string can be controlled down to µA levels by feeding  
a PWM signal to these pins. Refer to the Applications  
Information section for more detail.  
input current. Output voltage and input current during  
3486fe  
8
LT3486  
OPERATION  
output open circuit are shown in the Typical Performance  
Characteristics graphs.  
Soft-Start  
The LT3486 has a separate internal soft-start circuitry for  
each converter. Soft-start helps to limit the inrush current  
during start-up. Soft-start is achieved by clamping the  
output of the error amplifier during the soft-start period.  
This limits the peak inductor current and ramps up the  
output voltage in a controlled manner.  
Figure 3a shows the transient response of switcher 1 with  
the LEDs disconnected from the output. When the LED1  
string is disconnected from the output, the voltage at the  
feedback pin (FB1) drops to 0V. As a result, the error  
amplifier charges up the V node to the clamp voltage  
C
level of 1.5V (typ). The converter starts switching at peak  
current limit and ramps up the output voltage. When the  
outputvoltagereachestheOVPclampvoltagelevelof36V  
The converter enters into soft-start mode whenever  
the respective CTRL pin is pulled from low to high.  
Figure 4 shows the start-up waveforms with con-  
verter 2 driving eight LEDs at 25mA. The filtered input  
current, as shown in Figure 4, is well controlled. The  
soft-start circuit is more effective when driving a smaller  
number of LEDs.  
(typ), the LT3486 shuts off the converter by pulling the V  
C
node to ground. The converter then regulates the output  
voltage at 36V (typ) by switching at a very low frequency.  
In the event one of the converters has an output open-  
circuit, its output voltage will be clamped at 36V (typ).  
However, the other converter will continue functioning  
properly. The photo in Figure 3b shows circuit operation  
with converter 1 output open-circuit and converter 2  
driving eight LEDs at 25mA. Converter 1 starts switching  
at a very low frequency, reducing its input current.  
Undervoltage Loꢀkout  
The LT3486 has an undervoltage lockout circuit which  
shuts down both the converters when the input voltage  
drops below 2.1V (typ). This prevents the converter  
to operate in an erratic mode when powered from low  
supply voltages.  
I
L1  
1A/DIV  
Overtemperature Proteꢀtion  
The maximum allowable junction temperature for  
LT3486 is 125°C. In normal operation, the IC’s junction  
temperature should be kept below 125°C at an ambient  
temperature of 85°C or less. If the junction tempera-  
ture exceeds 150°C, the internal thermal shutdown  
circuitry kicks in and turns off both the converters.  
The converters will remain off until the die temperature  
falls below 150°C.  
V
OUT1  
20V/DIV  
V
C1  
2V/DIV  
3486 F03  
V
= 3.6V  
100µs/DIV  
IN  
CIRCUIT OF  
FRONT PAGE  
APPLICATION  
LED1 DISCONNECTED  
AT THIS INSTANT  
Figure ±a. Transient Response of Switꢀher 1 with LED1  
Disꢀonneꢀted from the Output  
I
IN  
I
L1  
200mA/DIV  
1A/DIV  
V
OUT2  
10V/DIV  
V
OUT1  
1V/DIV  
AC COUPLED  
V
FB2  
200mV/DIV  
I
L2  
CTRL2  
5V/DIV  
500mA/DIV  
3486 F03b  
3486 F0  
V
= 3.6V  
V
= 3.6V  
IN  
0.5ms/DIV  
2ms/DIV  
IN  
CIRCUIT OF FRONT PAGE APPLICATION  
LED1 DISCONNECTED  
8 LEDs, 25mA  
CIRCUIT OF FRONT PAGE APPLICATION  
Figure ±b. Switꢀhing Waveforms with Output 1 Open Cirꢀuit  
Figure 4. Start-Up Waveforms  
3486fe  
9
LT3486  
APPLICATIONS INFORMATION  
Duty Cyꢀle  
Operating Frequenꢀy Seleꢀtion  
The duty cycle for a step-up converter is given by:  
The choice of operating frequency is determined by sev-  
eral factors. There is a trade-off between efficiency and  
component size. Higher switching frequency allows the  
use of smaller inductors albeit at the cost of increased  
switching losses and decreased efficiency.  
VOUT + VD – V  
VOUT + VD VCESAT  
IN  
D =  
where:  
Another consideration is the maximum duty cycle achiev-  
able.Incertainapplicationstheconverterneedstooperate  
atthemaximumdutycycleinordertolightupthemaximum  
numberofLEDs.TheLT3486hasafixedoscillatoroff-time  
and a variable on-time. As a result, the maximum duty  
cycle increases as the switching frequency is decreased.  
V
= Output voltage  
OUT  
V = Schottky forward voltage drop  
D
V
CESAT  
= Saturation voltage of the switch  
V = Input battery voltage  
IN  
The maximum duty cycle achievable for LT3486 is 96ꢀ  
(typ) when running at 1MHz switching frequency. It in-  
creases to 98ꢀ (typ) when run at 200kHz and drops to  
90ꢀ (typ) at 2MHz. Always ensure that the converter is  
not duty-cycle limited when powering the LEDs at a given  
switching frequency.  
The circuit of Figure 6a is operated with different values  
of timing resistor (R ). R is chosen so as to run the con-  
T
T
verters at 800kHz (R = 63.4k), 1.25MHz (R = 39.1k) and  
T
T
2MHz (R = 21.5k). The CTRL pins are used to provide  
T
dimming for the respective LED strings. The efficiency  
comparison for different R values is shown in Figure 6b.  
T
Setting the Switꢀhing Frequenꢀy  
C
10µF  
5V  
IN  
The LT3486 uses a constant frequency architecture that  
can be programmed over a 200kHz to 2.5MHz range  
D1  
D2  
with a single external timing resistor from the R pin to  
T
L1  
10µH  
L2  
10µH  
C
C
OUT1  
OUT2  
2.2µF  
ground.ThenominalvoltageontheR pinis0.54V,andthe  
T
2.2µF  
currentthatflowsintothetimingresistorisusedtocharge  
SW1  
OVP1  
CTRL1  
SHDN  
PWM1  
FB1  
V
SW2  
IN  
and discharge an internal oscillator capacitor. A graph for  
OVP2  
25mA  
25mA  
1.25V  
selecting the value of R for a given operating frequency  
T
CTRL2  
REF  
is shown in the Figure 5.  
OFF ON  
REF  
LT3486  
GND  
PWM2  
FB2  
C
REF  
0.1µF  
1000  
V
C1  
R
V
C2  
T
2.8k  
4.7nF  
R
T
2.8k  
4.7nF  
8.06Ω  
8.06Ω  
C
C
: 10V, X7R  
IN  
3486 F06a  
100  
, C  
: 35V, X5R  
OUT1 OUT2  
D1, D2: ZETEX ZHCS400  
L1, L2: TOKO D53LC TYPE A  
Figure 6a. 5V to 8/8 White LEDs  
10  
0
500  
1000  
1500  
2000  
2500  
OSCILLATOR FREQUENCY (kHz)  
3486 G09  
Figure 5. Timing Resistor (RT) Value  
3486fe  
10  
LT3486  
APPLICATIONS INFORMATION  
90  
Several inductors that work well with the LT3486 are listed  
in Table 1. Consult each manufacturer for more detailed  
information and for their entire selection of related parts.  
V
= 5V  
IN  
8/8 LEDs  
80  
R
T
= 63.4k  
70  
60  
Table 1. Reꢀommended Induꢀtors  
R
= 21.5k  
T
R
T
= 39.1k  
MAX  
DCR  
(Ω)  
CURRENT  
RATING  
(A)  
L
(µH)  
PART  
VENDOR  
50  
40  
30  
LQH55DN150M  
LQH55DN220M  
15  
22  
0.150  
0.190  
1.40  
1.20  
Murata  
(814) 237-1431  
www.murata.com  
A915AY-4R7M  
A915AY-6R8M  
A915AY-100M  
A918CY-100M  
A918CY-150M  
4.7  
6.8  
10  
10  
15  
0.045  
0.068  
0.090  
0.098  
0.149  
2.49  
2.01  
1.77  
1.22  
0.94  
Toko  
(847) 297-0070  
www.toko.com  
0
5
10  
15  
20  
25  
LED CURRENT (mA)  
3486 F06b  
Figure 6b. Effiꢀienꢀy Comparison for Different RT Resistors  
CDRH4D28-100  
CDRH5D18-150  
10  
15  
0.048  
0.145  
1.30  
0.97  
Sumida  
(847) 956-0666  
www.sumida.com  
Induꢀtor Seleꢀtion  
The choice of the inductor will depend on the selection of  
switching frequency of LT3486. The switching frequency  
can be programmed from 200kHz to 2.5MHz. Higher  
switching frequency allows the use of smaller inductors  
albeit at the cost of increased switching losses.  
Capaꢀitor Seleꢀtion  
The small size of ceramic capacitors make them ideal  
for LT3486 applications. Use only X5R and X7R types  
because they retain their capacitance over wider voltage  
and temperature ranges than other types such as Y5V  
or Z5U. A 4.7µF or larger input capacitor is sufficient for  
most applications. Always use a capacitor with sufficient  
voltage rating.  
The inductor current ripple (∆I ), neglecting the drop  
L
across the Schottky diode and the switch, is given by:  
V
VOUT(MAX) V  
(
)
IN(MIN)  
IN(MIN)  
IL =  
Table 2 shows a list of several ceramic capacitor manufac-  
turers. Consultthemanufacturersfordetailedinformation  
on their entire selection of ceramic parts.  
VOUT(MAX) f L  
where:  
L = Inductor  
f = Operating frequency  
Table 2. Ceramiꢀ Capaꢀitor Manufaꢀturers  
Taiyo Yuden  
(408) 573-4150  
www.t-yuden.com  
AVX  
(803) 448-9411  
www.avxcorp.com  
V
V
= Minimum input voltage  
IN(MIN)  
= Maximum output voltage  
OUT(MAX)  
Murata  
(714) 852-2001  
www.murata.com  
The ∆I is typically set to 20ꢀ to 40ꢀ of the maximum  
inductor current.  
L
Diode Seleꢀtion  
Theinductorshouldhaveasaturationcurrentratinggreater  
thanthepeakinductorcurrentrequiredfortheapplication.  
Also, ensure that the inductor has a low DCR (copper wire  
resistance) to minimize I R power losses. Recommended  
inductor values range from 4.7µH to 22µH.  
Schottky diodes with their low forward voltage drop and  
fast reverse recovery, are the ideal choices for LT3486  
applications. The diode conducts current only during the  
switch off time. The peak reverse voltage that the diode  
must withstand is equal to the regulator output voltage.  
2
3486fe  
11  
LT3486  
APPLICATIONS INFORMATION  
The average forward current in normal operation is equal  
to the output current, and the peak current is equal to the  
peak inductor current. A Schottky diode rated at 1A is suf-  
ficientformostLT3486applications.Somerecommended  
Schottky diodes are listed in Table 3.  
200mV  
ILED1  
200mV  
ILED2  
RFB1  
RFB2  
=
=
Table ±. Reꢀommended Sꢀhottky Diodes  
Table 4. RFB Value Seleꢀtion  
(mA)  
PART NUMBER  
V (V)  
R
I
(A)  
MANUFACTURER  
I
R
FB  
(Ω)  
AVG  
LED  
MBR0530  
MBRM120E  
30  
20  
0.5  
1
On Semiconductor  
www.onsemi.com  
5
40.2  
20.0  
13.3  
10.0  
8.06  
10  
15  
20  
25  
ZLLS400  
ZLLS1000  
ZHCS400  
ZHCS1000  
40  
40  
40  
40  
0.4  
1
0.4  
1
Zetex  
www.zetex.com  
Most low power white LEDs are driven at maximum cur-  
rents of 15mA to 25mA. The LT3486 can be used to power  
high power LEDs as well. Refer to the Typical Applications  
for more detail.  
When the LT3486 is set up for PWM dimming operation,  
choose a Schottky diode with low reverse leakage current.  
During PWM dimming operation, the output capacitor is  
required to hold up the charge in the PWM “off” period.  
A low reverse leakage Schottky helps in that mode of op-  
eration. The Zetex ZLLS400 and ZLLS1000 are available  
in a small surface mount package and are a good fit for  
this application.  
Dimming Control  
The dimming of the two LED strings can be controlled  
independently by modulating the respective CTRL and  
PWM pins. There are two ways to control the intensity  
of the LEDs.  
MOSFET Seleꢀtion  
ThepowerMOSFETusedinLT3486applicationswithwide  
dimming range requirements should be chosen based on  
the maximum drain-source voltage. The maximum drain  
Adjusting the LED Current Value  
Controlling the current flowing through the LEDs controls  
the intensity of the LEDs.This is the easiest way to control  
the intensity of the LEDs. The LED forward current can be  
controlled by modulating the DC voltage at the respective  
CRTL pin. The PWM pins are not in use when appying  
this scheme. They must be connected to a 0.9V supply or  
higher. The DC voltage at the CTRL pin can be modulated  
in two ways.  
current I  
and gate-to-source voltages should also  
D(MAX)  
be considered when choosing the FET.  
ChooseaMOSFETwithmaximumV (drainsource)volt-  
DS  
age greater than the output clamp voltage i.e., 36V (typ).  
Fairchild Semiconductor’s FDN5630 (60V, 1.7A N-channel  
FET) is a good fit for most LT3486 applications. For dim-  
ming low current LEDs (~25mA), Fairchild 2N7002 is a  
good alternative.  
(a) Using a DC Voltage Sourꢀe  
Forsomeapplications,thepreferredmethodofbrightness  
control is a variable DC voltage fed to the CTRL pins. The  
CTRL1, CTRL2 pin voltage can be modulated to set the  
dimming of the respective LED string. As the voltage on  
the CTRL1, CTRL2 pin increases from 0V to 1.8V, the LED  
Programming LED Current  
The current in each LED string can be set independently  
by the choice of resistors R  
(see front page application). The feedback reference is  
200mV. In order to have accurate LED current, precision  
resistors are preferred (1ꢀ is recommended).  
and R  
respectively  
FB1  
FB2  
current increases from 0 to I . As the CTRL1, CTRL2  
LED  
pin voltage increases beyond 1.8V, it has no effect on the  
LED current.  
3486fe  
12  
LT3486  
APPLICATIONS INFORMATION  
The LED current can be set by:  
Pulse-Width Modulation (PWM)  
I
I
≈ (200mV/R ), when V  
> 1.8V  
AdjustingtheforwardcurrentflowingintheLEDschanges  
the intensity of the LEDs, as explained in the previous sec-  
tion.However,achangeinforwardcurrentalsochangesthe  
color of the LEDs. The chromaticity of the LEDs changes  
with the change in forward current. Many applications  
cannot tolerate any shift in the color of the LEDs. Control-  
ling the intensity of the LEDs via applying a PWM signal  
allows dimming of the LEDs without changing the color.  
LED  
LED  
FB  
CTRL  
≈ (V  
/5 • R ), when V  
< 1V  
CTRL  
FB  
CTRL  
Feedback voltage variation versus control voltage is given  
in the Typical Performance Characteristics graphs.  
(b) Using a Filtered PWM Signal  
AvariabledutycyclePWMcanbeusedtocontrolthebright-  
ness of the LED string. The PWM signal is filtered (Figure  
7) by an RC network and fed to the CTRL1, CTRL2 pins.  
Dimming the LEDs via a PWM signal essentially involves  
turning the LEDs on and off at the PWM frequency. The  
human eye has a limit of 60 frames per second. By in-  
creasing the PWM frequency to say, 80Hz, the eye can  
be deceived into believing that the pulsed light source is  
continously on. Additionally by modulating the duty cycle  
(amount of “on-time”), the intensity of the LEDs can be  
controlled. The color of the LEDs remains unchanged in  
this scheme since the LED current value is either zero or  
a constant value.  
The corner frequency of R1, C1 should be much lower  
than the frequency of the PWM signal. R1 needs to be  
much smaller than the internal impedance in the CTRL  
pins, which is 100kΩ.  
LT3486  
R1  
10k  
PWM  
CTRL1,2  
10kHz TYP  
C1  
1µF  
3486 F07  
Figure 8(a) shows a 12V to 8/8 white LED driver. The PWM  
dimming control method requires an external NMOS tied  
to the cathode of the lowest LED in the string, as shown in  
Figure 7. Dimming Control Using a Filtered PWM Signal  
12V (TYP)  
9V TO 15V 10µF  
C
IN  
L1  
10µH  
L2  
10µH  
C
5V  
C
OUT1  
2.2µF  
OUT2  
2.2µF  
D1  
D2  
C1 1µF  
SW1  
SW2  
V
IN  
LUXEON  
LEDs  
LXCL-PWF1  
LUXEON  
LEDs  
LXCL-PWF1  
I
LED  
OVP2  
CTRL2  
REF  
OVP1  
200mA/DIV  
V
IN  
V
CTRL1  
IN  
I
L
OFF ON  
SHDN  
PWM1  
FB1  
LT3486  
C
REF  
0.1µF  
100mA  
500mA/DIV  
100mA  
PWM2  
PWM  
FB2  
5V/DIV  
V
C1  
R
V
C2  
T
3486 G18  
V
= 12V  
0.2ms/DIV  
IN  
22pF  
DIMMING  
INPUT 1  
DIMMING  
8/8 LEDs  
PWM FREQ = 1kHz  
3.65k  
2.2nF  
3.65k  
2.2nF  
INPUT 2  
21.5k  
PWM  
FREQ  
1kHz  
PWM  
FREQ  
1kHz  
Q1  
R
Q2  
Figure 8b. PWM Dimming Waveforms  
100k  
100k  
R
FB2  
2Ω  
D1, D2: ZETEX ZLLS1000  
L1, L2: TOKO D53LC (TYPE A)  
Q1, Q2: FAIRCHILD FDN5630  
FB1 C  
, C  
OUT1 OUT2  
: 35V, X5R OR X7R  
: 25V, X5R OR X7R  
2Ω  
C
IN  
C1: 10V, X5R OR X7R  
: 6.3V, X5R OR X7R  
3486 TA10a  
C
REF  
Figure 8a. 12V to 8/8 White LEDs  
3486fe  
13  
LT3486  
APPLICATIONS INFORMATION  
the figure. A PWM logic input is applied to the gate of the  
Figure 9 shows the LED current variation vs PWM duty  
cycle. The LED current is controlled by applying a PWM of  
frequency100Hz,1kHzand25kHztothecircuitofFigure 8a.  
As seen in the curves, the LED string is able to get a wide  
(1000:1) dimming range with PWM frequency of 100Hz.  
ThedimmingrangedecreasesasPWMfrequencygoesup.  
NMOS and the PWM pin of the LT3486. When the PWM  
input is taken high, the LEDs are connected to the R  
FB  
resistor and a current I  
= 200mV/R flows through  
LED  
FB  
the LEDs. When the PWM input is taken low, the LEDs are  
disconnected and turn off. The low PWM input applied to  
the LT3486 ensures that the respective converter turns  
off and its V pin goes high impedance. This ensures that  
Board Layout Consideration  
C
the capacitor connected to the V pin retains its voltage  
C
As with all switching regulators, careful attention must be  
paid to the PCB board layout and component placement.  
To prevent electromagnetic interference (EMI) problems,  
properlayoutofhighfrequencyswitchingpathsisessential.  
Minimize the length and area of all traces connected to the  
switching node pins (SW1 and SW2). Keep the feedback  
pins (FB1 and FB2) away from the switching nodes.  
which in turn allows the LEDs to turn on faster, as shown  
in Figure 8(b). The CTRL pin is not used to modulate the  
LED current in the scheme. It can be connected to a sup-  
ply voltage greater than 1.8V.  
The dimming control pins (PWM1, PWM2) can be used  
to extend the dimming range for the individual switching  
converters. The LED current can be controlled down to  
µA levels by feeding a PWM signal with frequencies in the  
rangeof80Hzto50kHz.TheLEDcurrentcanbecontrolled  
by PWM frequencies above 50kHz but the controllable  
current decreases with increasing frequency. Pulling the  
PWM pins below 0.4V disables the respective switcher.  
Taking it higher than 0.9V resumes normal operation.  
Connect these pins to 0.9V or higher if not in use.  
The DFN and FE packages both have an exposed paddle  
that must be connected to the system ground. The  
ground connection for the feedback resistors should  
be tied directly to the ground plane and not shared with  
any other component, except the R resistor, ensuring a  
T
clean, noise-free connection. Recommended component  
placement for the DFN package is shown in the Figure 10.  
VIAs TO V PLANE  
IN  
V
V
OUT1  
OUT2  
OVP1  
REF  
100  
10  
1
R
T
OVP2  
SHDN  
V
V
C2  
V
C1  
SW1  
SW2  
IN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
IN  
17  
FB1  
LED2  
FB2  
CTRL1  
CTRL2  
0.1  
LED1  
PWM FREQ = 100Hz  
PWM FREQ = 1kHz  
PWM FREQ = 25kHz  
0.01  
0.01  
0.1  
1
10  
100  
V
PWM1  
VIAs TO V PLANE  
IN  
PWM2  
VIAs TO GROUND PLANE  
3486 F10  
PWM DUTY CYCLE (%)  
3486 F09  
IN  
Figure 9. LED Current Variation vs PWM Duty Cyꢀle  
Figure 10. Reꢀommended Layout for LT±486  
3486fe  
14  
LT3486  
TYPICAL APPLICATIONS  
Li-Ion Cell Powered Driver for Camera Flash and LCD Baꢀklighting  
V
IN  
3V TO 5V  
C
IN  
10µF  
D1  
D2  
L1  
10µH  
L2  
10µH  
C
2.2µF  
C
2.2µF  
OUT2  
OUT1  
LED1  
AOT3218  
SW1  
SW2  
V
IN  
OVP2  
OVP1  
25mA  
320mA  
CTRL1  
DIMMING 1  
OFF ON  
CTRL2  
REF  
DIMMING 2  
SHDN  
PWM1  
FB1  
LT3486  
C
REF  
0.1µF  
PWM2  
FB2  
V
C1  
R
T
V
5V  
C2  
Q1  
OFF ON  
0V  
63.4k  
2.8k  
4.7nF  
R
R
FB2  
8.06Ω  
FB1  
100k  
0.1µF  
0.62Ω  
3486 TA02a  
L1, L2: TOKO D53LC (TYPE A)  
Q1: FAIRCHILD FDN5630  
C
C
: 6.3V, X5R OR X7R DIELECTRIC  
IN  
OUT1 OUT2  
, C  
: 35V, X5R OR X7R  
D1: ZETEX ZHCS1000  
D2: ZETEX ZHCS400  
Effiꢀienꢀy vs VIN  
90  
85  
80  
75  
70  
MOVIE MODE  
= 175mA  
I
LED1  
FLASH MODE  
= 320mA  
I
LED1  
8 LEDS/25mA  
3.4  
65  
3
3.6  
(V)  
3.8  
4
4.2  
3.2  
V
IN  
3486 TA01b  
3486fe  
15  
LT3486  
TYPICAL APPLICATIONS  
1 Li-Ion Cell to 8/8 White LEDs  
3V TO 5V  
C
IN  
10µF  
D1  
D2  
L1  
10µH  
L2  
10µH  
C
C
OUT1  
OUT2  
2.2µF  
2.2µF  
SW1  
SW2  
V
IN  
8 LEDs  
25mA  
8 LEDs  
25mA  
OVP2  
CTRL2  
REF  
OVP1  
V
V
CTRL1  
IN  
IN  
OFF ON  
SHDN  
PWM1  
FB1  
LT3486  
C
REF  
0.1µF  
PWM2  
FB2  
V
C1  
R
V
C2  
T
2.8k  
4.7nF  
2.8k  
4.7nF  
5V  
63.4k  
PWM2  
100Hz  
PWM1  
100Hz  
Q1  
Q2  
100k  
C
C
, C : 35V, X5R OR X7R D1, D2: ZETEX ZLLS400  
OUT1 OUT2  
100k  
8.06Ω  
8.06Ω  
: 10V, X5R OR X7R  
L1, L2: TOKO D53LC (TYPE A)  
Q1, Q2: FAIRCHILD 2N7002  
IN  
3486 TA05A  
Wide (250:1) Dimming Range  
(LED Current 0.1mA to 25mA)  
LED Current and Effiꢀienꢀy vs PWM Duty Cyꢀle  
100  
10  
85  
35  
V
= 3.6V  
V
= 3.6V  
IN  
8/8 LEDs  
IN  
8/8 LEDs  
80  
30  
PWM FREQ = 100Hz  
75  
70  
65  
60  
55  
50  
25  
20  
15  
10  
5
EFFICIENCY  
1
LED CURRENT  
0.10  
0.01  
0
100  
0.1  
1
10  
100  
20  
40  
60  
0
80  
DUTY CYCLE (%)  
PWM DUTY CYCLE (%)  
3486 TA05d  
3486 TA05b  
PWM Dimming Waveforms  
LED CURRENT  
20mA/DIV  
I
L
200mA/DIV  
PWM  
5V/DIV  
3486 TA05c  
V
= 3.6V  
2ms/DIV  
IN  
CTRL1 = 3.6V  
8 LEDs/25mA  
PWM FREQ = 100Hz  
3486fe  
16  
LT3486  
TYPICAL APPLICATIONS  
5V to 16/16 White LEDs  
5V  
D5  
D3  
D6  
D4  
C
IN  
C3  
1µF  
C4  
1µF  
1µF  
16 LEDs  
16 LEDs  
L1  
15µH  
L2  
15µH  
C1  
0.1µF  
C2  
0.1µF  
D1  
C
D2  
C
OUT2  
2.2µF  
OUT1  
2.2µF  
SW1  
SW2  
V
IN  
OVP2  
CTRL2  
REF  
OVP1  
CTRL1  
V
V
25mA  
IN  
IN  
25mA  
OFF ON  
SHDN  
PWM1  
FB1  
LT3486  
C
REF  
0.1µF  
PWM2  
FB2  
V
C1  
R
V
C2  
T
4.02k  
4.7nF  
4.02k  
4.7nF  
63.4k  
22pF  
PWM FREQ  
200Hz  
PWM FREQ  
200Hz  
Q1  
Q2  
100k  
100k  
8.06Ω  
8.06Ω  
C
C
: 6.3V, X5R OR X7R  
D1, D2: ZETEX ZLLS400  
D3-D6: PHILIPS BAV99W  
L1, L2: TOKO D53LC (TYPE A)  
Q1, Q2: FAIRCHILD 2N7002  
IN  
OUT1 OUT2  
, C  
: 35V, X5R OR X7R  
3486 TA08a  
C1-C4: 50V, X5R OR X7R  
: 6.3V, X5R OR X7R  
C
REF  
LED Current and Effiꢀienꢀy vs PWM Duty Cyꢀle  
PWM Dimming Waveforms  
85  
35  
V
= 5V  
I
IN  
LED  
16/16 LEDs  
50mA/DIV  
80  
30  
75  
70  
65  
60  
55  
50  
25  
20  
15  
10  
5
I
L
EFFICIENCY  
500mA/DIV  
PWM  
5V/DIV  
LED CURRENT  
3486 TA08c  
L = 15µH  
PWM FREQ = 200Hz  
1ms/DIV  
0
100  
20  
40  
60  
0
80  
PWM DUTY CYCLE (%)  
3486 TA08b  
3486fe  
17  
LT3486  
PACKAGE DESCRIPTION  
DHC Paꢀkage  
16-Lead Plastiꢀ DFN (5mm × ±mm)  
(Reference LTC DWG # 05-08-1706)  
R = 0.115  
TYP  
0.40 ± 0.10  
5.00 ±0.10  
(2 SIDES)  
9
16  
R = 0.20  
TYP  
0.65 ±0.05  
1.65 ±0.05  
(2 SIDES)  
3.00 ±0.10 1.65 ± 0.10  
3.50 ±0.05  
2.20 ±0.05  
PACKAGE  
OUTLINE  
(2 SIDES)  
(2 SIDES)  
PIN 1  
PIN 1  
NOTCH  
TOP MARK  
(SEE NOTE 6)  
(DHC16) DFN 1103  
8
1
0.25 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.25 ± 0.05  
0.50 BSC  
0.50 BSC  
4.40 ±0.10  
4.40 ±0.05  
(2 SIDES)  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING PROPOSED TO BE MADE VARIATION OF VERSION (WJED-1) IN JEDEC  
PACKAGE OUTLINE MO-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
FE Paꢀkage  
16-Lead Plastiꢀ TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663 Rev I)  
Exposed Pad Variation BC  
4.90 – 5.10*  
(.193 – .201)  
3.58  
(.141)  
0.48  
(.019)  
REF  
3.58  
(.141)  
16 1514 13 12 11 109  
6.60 ±0.10  
4.50 ±0.10  
0.51  
(.020)  
REF  
2.94  
DETAIL B  
(.116)  
6.40  
(.252)  
BSC  
SEE NOTE 4  
2.94  
(.116)  
DETAIL B IS THE PART OF  
0.45 ±0.05  
THE LEAD FRAME FEATURE  
FOR REFERENCE ONLY  
1.05 ±0.10  
NO MEASUREMENT PURPOSE  
0.65 BSC  
5
7
8
1
2
3
4
6
RECOMMENDED SOLDER PAD LAYOUT  
1.10  
(.0433)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
0.195 – 0.30  
FE16 (BC) TSSOP REV I 1210  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
3. DRAWING NOT TO SCALE  
3486fe  
18  
LT3486  
REVISION HISTORY (Revision history begins at Rev D)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
D
03/10 Corrected the Part Number in Description Section and Order Information  
Updated Typical Value for Switching Frequency Parameter in Electrical Characteristics  
01/11 Updated FE package drawing  
1, 2  
3
E
18  
3486fe  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LT3486  
TYPICAL APPLICATION  
12V to 8/8 White LEDs  
12V (TYP)  
9V TO 15V 10µF  
C
IN  
L1  
10µH  
L2  
10µH  
LED Current and Effiꢀienꢀy  
vs PWM Duty Cyꢀle  
C
5V  
C
OUT1  
2.2µF  
OUT2  
2.2µF  
D1  
D2  
90  
85  
120  
100  
C1 1µF  
EFFICIENCY  
SW1  
SW2  
V
IN  
80  
75  
80  
60  
LUXEON  
LEDs  
LXCL-PWF1  
LUXEON  
LEDs  
LXCL-PWF1  
OVP2  
CTRL2  
REF  
OVP1  
LED CURRENT  
V
IN  
V
CTRL1  
IN  
OFF ON  
SHDN  
PWM1  
FB1  
LT3486  
C
100mA  
REF  
0.1µF  
70  
65  
60  
40  
20  
0
100mA  
PWM2  
FB2  
V
= 12V  
IN  
V
C1  
R
V
C2  
T
8/8 LEDs  
22pF  
DIMMING  
INPUT 1  
DIMMING  
INPUT 2  
0
20  
40  
60  
80  
100  
3.65k  
2.2nF  
3.65k  
2.2nF  
PWM DUTY CYCLE (%)  
21.5k  
PWM  
FREQ  
1kHz  
PWM  
FREQ  
1kHz  
Q1  
R
Q2  
3486 TA10b  
100k  
100k  
R
FB2  
2Ω  
D1, D2: ZETEX ZLLS1000  
L1, L2: TOKO D53LC (TYPE A)  
Q1, Q2: FAIRCHILD FDN5630  
FB1 C  
, C  
: 35V, X5R OR X7R  
: 25V, X5R OR X7R  
OUT1 OUT2  
2Ω  
C
IN  
C1: 10V, X5R OR X7R  
: 6.3V, X5R OR X7R  
3486 TA10a  
C
REF  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1618  
Constant Current, Constant Voltage 1.24MHz, High Efficiency  
Boost Regulator  
Up to 16 White LEDs, VIN: 1.6V to 18V, VOUT(MAX) = 34V,  
IQ = 1.8mA, ISD < 1µA, MS Package  
LT1932  
Constant Current, 1.2MHz, High Efficiency White LED Boost  
Regulator  
Up to 8 White LEDs, VIN: 1V to 10V, VOUT(MAX) = 34V,  
IQ = 1.2mA, ISD < 1µA, ThinSOTTM Package  
LT1937  
Constant Current, 1.2MHz, High Efficiency White LED Boost  
Regulator  
Up to 4 White LEDs, VIN: 2.5V to 10V, VOUT(MAX) = 34V,  
IQ = 1.9mA, ISD < 1µA, ThinSOT, SC70 Packages  
LTC3200  
LTC3200-5  
LTC3201  
LTC3202  
LTC3205  
LT3465/LT3465A  
LT3466  
Low Noise, 2MHz, Regulated Charge Pump White LED Driver  
MS Package  
Up to 6 White LEDs, VIN: 2.7V to 4.5V, IQ = 8mA, ISD < 1µA,  
Up to 6 White LEDs, VIN: 2.7V to 4.5V, IQ = 8mA, ISD < 1µA,  
Up to 6 White LEDs, VIN: 2.7V to 4.5V, IQ = 6.5mA, ISD < 1µA,  
Up to 8 White LEDs, VIN: 2.7V to 4.5V, IQ = 5mA, ISD < 1µA,  
Low Noise, 2MHz, Regulated Charge Pump White LED Driver  
ThinSOT Package  
Low Noise, 1.7MHz, Regulated Charge Pump White LED Driver  
MS Package  
Low Noise, 1.5MHz, Regulated Charge Pump White LED Driver  
MS Package  
High Efficiency, Multidisplay LED Controller  
Up to 4 (Main), 2 (Sub) and RGB, VIN: 2.8V to 4.5V,  
IQ = 50µA, ISD < 1µA, QFN-24 Package  
Constant Current, 1.2MHz/2.7MHz, High Efficiency White LED  
Boost Regulator with Integrated Schottky Diode  
Up to Six White LEDs, VIN: 2.7V to 16V, VOUT(MAX) = 34V,  
IQ = 1.9mA, ISD < 1µA, ThinSOT Package  
Dual Full Function White LED Boost Regulator with Integrated  
Schottky Diode  
Drives Up to 20 LEDs, V : 2.7V to 24V, V  
= 40V,  
IN  
OUT(MAX)  
I = 5mA, I < 16µA, DFN Package  
Q
SD  
3486fe  
LT 0111 REV E • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC3202EMS#TRPBF

暂无描述
Linear

LTC3203

500mA Output Current Low Noise Dual Mode Step-Up Charge Pumps
Linear

LTC3203-1

500mA Output Current Low Noise Dual Mode Step-Up Charge Pumps
Linear

LTC3203-1_15

500mA Output Current Low Noise Dual Mode Step-Up Charge Pumps
Linear

LTC3203B

500mA Output Current Low Noise Dual Mode Step-Up Charge Pumps
Linear

LTC3203B-1

500mA Output Current Low Noise Dual Mode Step-Up Charge Pumps
Linear

LTC3203B-1_15

500mA Output Current Low Noise Dual Mode Step-Up Charge Pumps
Linear

LTC3203BEDD

500mA Output Current Low Noise Dual Mode Step-Up Charge Pumps
Linear

LTC3203BEDD#TRPBF

LTC3203/LTC3203-1/LTC3203B/LTC3203B-1 - 500mA Output Current Low Noise Dual Mode Step-Up Charge Pumps; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3203BEDD-1

500mA Output Current Low Noise Dual Mode Step-Up Charge Pumps
Linear

LTC3203BEDD-1#TR

LTC3203/LTC3203-1/LTC3203B/LTC3203B-1 - 500mA Output Current Low Noise Dual Mode Step-Up Charge Pumps; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3203BEDD-1#TRPBF

LTC3203/LTC3203-1/LTC3203B/LTC3203B-1 - 500mA Output Current Low Noise Dual Mode Step-Up Charge Pumps; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear