LTC3400-1 [Linear]

600mA, 1.2MHz Micropower Synchronous Boost Converter in ThinSOT; 600毫安, 1.2MHz的微功率同步升压转换器采用ThinSOT
LTC3400-1
型号: LTC3400-1
厂家: Linear    Linear
描述:

600mA, 1.2MHz Micropower Synchronous Boost Converter in ThinSOT
600毫安, 1.2MHz的微功率同步升压转换器采用ThinSOT

转换器 升压转换器
文件: 总12页 (文件大小:291K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3400-1  
600mA, 1.2MHz Micropower  
Synchronous Boost Converter  
in ThinSOT  
U
FEATURES  
DESCRIPTIO  
Up to 92% Efficiency  
The LTC®3400-1 is a synchronous, fixed frequency, step-  
up DC/DC converter delivering high efficiency in a 6-lead  
ThinSOT™ package. Capable of supplying 3.3V at 100mA  
from a single AA cell input, the device contains an internal  
NMOS switch and PMOS synchronous rectifier.  
Generates 3.3V at 100mA from a Single AA Cell  
Low Start-Up Voltage: 0.85V  
VOUT Connected to VIN in Shutdown  
Internal Synchronous Rectifier  
2.5V to 5V Output Range  
A switching frequency of 1.2MHz minimizes solution  
footprint by allowing the use of tiny, low profile inductors  
and ceramic capacitors. The current mode PWM design is  
internally compensated, reducing external parts count.  
The LTC3400-1 features automatic shifting to power sav-  
ingBurstModeoperationatlightloads.Inshutdown,VOUT  
andVIN areconnected, whichallowstheinputbatterytobe  
used for backup power. The LTC3400-1 features low  
shutdown current of under 1µA.  
Automatic Burst Mode® Operation  
Logic Controlled Shutdown (<1µA)  
Antiringing Control Minimizes EMI  
Tiny External Components  
Low Profile (1mm) SOT-23 Package  
U
APPLICATIO S  
Pagers  
MP3 Players  
The LTC3400-1 is offered in the low profile (1mm)  
SOT-23 package.  
Digital Cameras  
LCD Bias Supplies  
Handheld Instruments  
, LTC, LT and Burst Mode are registered trademarks of Linear Technology Corporation.  
ThinSOT is a trademark of Linear Technology Corporation.  
US Patent Numbers 5,481,178; 6,580,258; 6,304,066; 6,127,815; 6,498,466; 6,611,131.  
Wireless Handsets  
GPS Receivers  
U
TYPICAL APPLICATIO  
Efficiency  
100  
Single Cell to 3.3V Synchronous Boost Converter  
90  
80  
V
= 2.4V  
IN  
4.7µH  
V
IN  
= 1.5V  
+
SINGLE  
AA CELL  
4.7µF  
SW  
V
OUT  
70  
60  
3.3V  
V
V
IN  
LTC3400-1  
SHDN FB  
GND  
OUT  
100mA  
1.02M  
1%  
OFF  
ON  
4.7µF  
604k  
1%  
FIGURE 1 CIRCUIT  
WITH OPTIONAL SCHOTTKY DIODE  
(SEE APPLICATIONS INFORMATION)  
50  
40  
34001 F01  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
34001 F01a  
34001f  
1
LTC3400-1  
W W  
U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
ORDER PART  
VIN Voltage ................................................. 0.3V to 6V  
SW Voltage  
TOP VIEW  
NUMBER  
SW 1  
GND 2  
FB 3  
6 V  
5 V  
IN  
LTC3400ES6-1  
DC .......................................................... 0.3V to 6V  
Pulsed (<100ns) ......................................0.3V to 7V  
SHDN, FB Voltage ....................................... 0.3V to 6V  
VOUT ........................................................... 0.3V to 6V  
Operating Temperature Range (Note 2) .. 30°C to 85°C  
Storage Temperature Range ................... 65°C to 125°  
Lead Temperature (Soldering, 10 sec).................. 300°C  
OUT  
4 SHDN  
S6 PART MARKING  
LTBJM  
S6 PACKAGE  
6-LEAD PLASTIC TSOT-23  
TJMAX = 125°C, θJC = 102°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 1.2V, VOUT = 3.3V, unless otherwise specified.  
PARAMETER  
CONDITIONS  
I = 1mA  
LOAD  
MIN  
TYP  
0.85  
0.5  
MAX  
1
UNITS  
V
Minimum Start-Up Voltage  
Minimum Operating Voltage  
Output Voltage Adjust Range  
Feedback Voltage  
SHDN = V (Note 4)  
0.65  
5
V
IN  
2.5  
V
1.192  
1.23  
1
1.268  
V
Feedback Input Current  
V
V
V
= 1.25V (Note 3)  
= 1.4V (Note 5)  
nA  
µA  
µA  
µA  
µA  
µA  
FB  
Quiescent Current (Burst Mode Operation)  
Quiescent Current (Shutdown)  
Quiescent Current (Active)  
NMOS Switch Leakage  
19  
30  
1
FB  
= 0V, Not Including Switch Leakage, V = V  
OUT  
0.01  
300  
0.1  
0.1  
SHDN  
IN  
Measured On V  
500  
5
OUT  
V
SW  
V
SW  
= 5V  
PMOS Switch Leakage  
= 0V (Note 3)  
NMOS Switch On Resistance  
V
OUT  
V
OUT  
= 3.3V  
= 5V  
0.35  
0.20  
PMOS Switch On Resistance  
V
OUT  
V
OUT  
= 3.3V  
= 5V  
0.45  
0.30  
NMOS Current Limit  
600  
80  
850  
3
mA  
mA  
ns  
Burst Mode Operation Current Threshold  
Current Limit Delay to Output  
Max Duty Cycle  
(Note 3)  
(Note 3)  
40  
87  
V
FB  
= 1.15V  
%
Switching Frequency  
0.95  
0.85  
1.2  
1.2  
1.5  
1.5  
MHz  
MHz  
SHDN Input High  
SHDN Input Low  
SHDN Input Current  
1
V
V
0.35  
1
V
SHDN  
= 5.5V  
0.01  
µA  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 3: Specification is guaranteed by design and not 100% tested in  
production.  
Note 2: The LTC3400-1 is guaranteed to meet performance specifications  
from 0°C to 70°C. Specifications over the 30°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
Note 4: Minimum V operation after start-up is only limited by the  
battery’s ability to provide the necessary power as it enters a deeply  
discharged state.  
IN  
Note 5: Burst Mode operation I is measured at V . Multiply this value  
Q
OUT  
by V /V to get the equivalent input (battery) current.  
OUT IN  
34001f  
2
LTC3400-1  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Load Burst Mode Threshold  
vs VIN  
Minimum Start-Up Voltage  
vs Load Current  
VOUT vs Temperature  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
FIGURE 1 CIRCUIT  
O
L = 4.7µH  
A
T
= 25°C  
A
I
= 10mA  
T
= 25°C  
20  
10  
0
V
= 3.3V  
V
= 5V  
OUT  
OUT  
–60  
0
30  
60  
90  
120  
0.1  
1
10  
100  
–30  
0.9  
1.5  
2.1  
2.7  
(V)  
3.3  
3.9  
4.5  
I
(mA) CURRENT SOURCE LOAD  
TEMPERATURE (°C)  
V
OUT  
IN  
3400 G02  
3400 G03  
3400 G01  
Normalized Oscillator Frequency  
vs Temperature  
No Load Battery Current vs VBATT  
SW Pin Antiringing Operation  
1000  
100  
10  
1.01  
1.00  
0.99  
0.98  
V
A
= 3.3V  
OUT  
T
= 25°C  
VSW  
1V/DIV  
0.97  
0.96  
0.95  
0V  
VIN = 1.3V  
100ns/DIV  
3400 G06  
VOUT = 3.3V  
IOUT = 10mA  
L = 6.8µH  
0.9 1.2 1.5  
3.0  
–50  
–30 –10  
10  
30  
50  
70  
90  
1.8 2.1 2.4  
2.7  
COUT = 4.7µF  
BATTERY VOLTAGE (V)  
TEMPERATURE (°C)  
3400 G04  
3400 G05  
SW Pin Fixed Frequency,  
Continuous Inductor Current  
Operation  
Fixed Frequency and Burst Mode  
Operation  
VOUT Transient Response  
VSW  
1V/DIV  
VOUT(AC)  
100mV/DIV  
VOUT(AC)  
100mV/DIV  
60mA  
IOUT  
100mA  
IOUT  
0V  
10µA  
40mA  
VIN = 1.3V  
100ns/DIV  
3400 G07  
V
IN = 1.3V  
10ms/DIV  
3400 G08  
V
IN = 1.3V  
100µs/DIV  
3400 G09  
VOUT = 3.3V  
IOUT = 50mA  
L = 6.8µH  
VOUT = 3.3V  
VOUT = 3.3V  
IOUT = 60mA TO 10µA  
L = 6.8µH  
COUT = 4.7µF  
IOUT = 40mA TO 100mA  
L = 6.8µH  
COUT = 4.7µF  
COUT = 4.7µF  
34001f  
3
LTC3400-1  
U
U
U
PI FU CTIO S  
SW (Pin 1): Switch Pin. Connect inductor between SW  
and VIN. Optional Schottky diode is connected between  
SW and VOUT. Keep these PCB trace lengths as short and  
wide as possible to reduce EMI and voltage overshoot. If  
the inductor current falls to zero, or SHDN is low, an  
internal 100antiringing switch is connected from SW to  
VIN to minimize EMI.  
SHDN = Low: Shutdown, quiescent current <1µA.  
100connectedbetweenSWandVIN. VIN isconnected  
to VOUT through the internal P-channel MOSFET syn-  
chronous rectifier and external inductor.  
Typically, SHDN should be connected to VIN through a 1M  
pull-up resistor.  
VOUT (Pin 5): Output Voltage Sense Input and Drain of the  
Internal Synchronous Rectifier MOSFET. Bias is derived  
from VOUT. PCB trace length from VOUT to the output filter  
capacitor(s)shouldbeasshortandwideaspossible.VOUT  
is connected to VIN in shutdown through the internal  
P-channel MOSFET synchronous rectifier.  
GND (Pin 2): Signal and Power Ground. Provide a short  
directPCBpathbetweenGNDandthe()sideoftheoutput  
capacitor(s).  
FB (Pin 3): Feedback Input to the gm Error Amplifier.  
Connect resistor divider tap to this pin. The output voltage  
can be adjusted from 2.5V to 5V by:  
VIN (Pin 6): Battery Input Voltage. The device gets its  
start-up bias from VIN. Once VOUT exceeds VIN, bias  
comes from VOUT. Thus, once started, operation is com-  
pletelyindependentfromVIN.Operationisonlylimitedby  
the output power level and the battery’s internal series  
resistance.  
VOUT = 1.23V • [1 + (R1/R2)]  
SHDN (Pin 4): Logic Controlled Shutdown Input.  
SHDN = High: Normal free running operation, 1.2MHz  
typical operating frequency.  
W
BLOCK DIAGRA  
L1  
4.7µH  
SINGLE  
+
C
IN  
1µF  
V
SW  
1
6
IN  
CELL  
OPTIONAL  
SCHOTTKY  
+
INPUT  
V
OUT  
GOOD  
2.3V  
START-UP  
OSC  
A/B  
MUX  
A
B
3.3V  
OUTPUT  
V
OUT  
0.45  
5
SYNC  
DRIVE  
CONTROL  
PWM  
CONTROL  
0.35Ω  
SHUTDOWN  
R1  
1.02M  
C
RAMP  
GEN  
1.2MHz  
FF  
CURRENT  
SENSE  
1%  
(OPTIONAL)  
Σ
SLOPE  
COMP  
(EXTERNAL)  
PWM  
COMPARATOR  
+
FB  
3
+
C
OUT  
4.7µF  
g
m
ERROR  
AMP  
1.23V  
REF  
R
C
80k  
C
P2  
2.5pF  
R2  
Burst Mode  
OPERATION  
CONTROL  
604k  
C
C
SLEEP  
1%  
(EXTERNAL)  
150pF  
SHDN  
4
2
GND  
SHUTDOWN  
CONTROL  
SHUTDOWN  
34001 BD  
34001f  
4
LTC3400-1  
U
OPERATIO  
TheLTC3400-1isa1.2MHz, synchronousboostconverter  
housed in a 6-lead ThinSOT package. Able to operate from  
an input voltage below 1V, the device features fixed  
frequency, currentmodePWMcontrolforexceptionalline  
and load regulation. With its low RDS(ON) and gate charge  
internal MOSFET switches, the device maintains high  
efficiency over a wide range of load current. Detailed  
descriptions of the three distinct operating modes follow.  
OperationcanbebestunderstoodbyreferringtotheBlock  
Diagram.  
to provide a peak current control command for the PWM.  
Peak switch current is limited to approximately 850mA  
independentofinputoroutputvoltage. Thecurrentsignal  
is blanked for 40ns to enhance noise rejection.  
Zero Current Comparator: The zero current comparator  
monitors the inductor current to the output and shuts off  
the synchronous rectifier once this current reduces to ap-  
proximately20mA.Thispreventstheinductorcurrentfrom  
reversing in polarity improving efficiency at light loads.  
Antiringing Control: The antiringing control circuitry pre-  
vents high frequency ringing of the SW pin as the inductor  
current goes to zero by damping the resonant circuit  
formed by L and CSW (capacitance on SW pin).  
Low Voltage Start-Up  
The LTC3400-1 will start up at a typical VIN voltage of  
0.85Vorhigher.Thelowvoltagestart-upcircuitrycontrols  
the internal NMOS switch up to a maximum peak inductor  
current of 850mA (typ), with an approximate 1.5µs off-  
timeduringstart-up, allowingthedevicetostartupintoan  
output load. Once VOUT exceeds 2.3V, the start-up cir-  
cuitry is disabled and normal fixed frequency PWM opera-  
tion is initiated. In this mode, the LTC3400-1 operates  
independent of VIN, allowing extended operating time as  
the battery can droop to several tenths of a volt without  
affecting output voltage regulation. The limiting factor for  
the application becomes the ability of the battery to supply  
sufficient energy to the output.  
Burst Mode Operation  
Portable devices frequently spend extended time in low  
power or standby mode, only switching to high power  
drain when specific functions are enabled. In order to  
improvebatterylifeinthesetypesofproducts,highpower  
converter efficiency needs to be maintained over a wide  
output power range. In addition to its high efficiency at  
moderate and heavy loads, the LTC3400-1 includes auto-  
matic Burst Mode operation that improves efficiency of  
the power converter at light loads. Burst mode operation  
is initiated if the output load current falls below an  
internally programmed threshold (see Typical Perfor-  
mancegraph, OutputLoadBurstModeThresholdvsVIN).  
Once initiated, the Burst Mode operation circuitry shuts  
down most of the device, only keeping alive the circuitry  
required to monitor the output voltage. This is referred to  
as the sleep state. In sleep, the LTC3400-1 draws only  
19µA from the output capacitor, greatly enhancing effi-  
ciency. When the output voltage has drooped approxi-  
mately 1% from nominal, the LTC3400-1 wakes up and  
commencesnormalPWMoperation.Theoutputcapacitor  
recharges and causes the LTC3400-1 to reenter sleep if  
the output load remains less than the sleep threshold. The  
frequency of this intermittent PWM or burst operation is  
proportional to load current; that is, as the load current  
drops further below the burst threshold, the LTC3400-1  
turns on less frequently. When the load current increases  
Low Noise Fixed Frequency Operation  
Oscillator: The frequency of operation is internally set to  
1.2MHz.  
ErrorAmp:Theerroramplifierisaninternallycompensated  
transconductancetype(currentoutput)withatransconduc-  
tance(gm)=33microsiemens.Theinternal1.23Vreference  
voltageiscomparedtothevoltageattheFBpintogenerate  
an error signal at the output of the error amplifier. A volt-  
age divider from VOUT to ground programs the output  
voltage via FB from 2.5V to 5V using the equation:  
VOUT = 1.23V • [1 + (R1/R2)]  
Current Sensing: A signal representing NMOS switch  
current is summed with the slope compensator. The  
summed signal is compared to the error amplifier output  
34001f  
5
LTC3400-1  
U
OPERATIO  
above the burst threshold, the LTC3400-1 will resume  
continuous PWM operation seamlessly. Referring to the  
Block Diagram, an optional capacitor (CFF) between VOUT  
and FB in some circumstances can reduce the peak-to-  
peak VOUT ripple and input quiescent current during Burst  
Mode operation. Typical values for CFF range from 15pF to  
220pF.  
W U U  
U
APPLICATIO S I FOR ATIO  
PCB LAYOUT GUIDELINES  
will allow greater output current capability by reducing the  
inductor ripple current. Increasing the inductance above  
10µH will increase size while providing little improvement  
in output current capability.  
The high speed operation of the LTC3400-1 demands  
careful attention to board layout. You will not get adver-  
tised performance with careless layout. Figure 1 shows  
the recommended component placement. A large ground  
pin copper area will help to lower the chip temperature. A  
multilayer board with a separate ground plane is ideal, but  
not absolutely necessary.  
TheapproximateoutputcurrentcapabilityoftheLTC3400-1  
versusinductancevalueisgivenintheequationbelowand  
illustrated graphically in Figure 2.  
V
=1.2V  
IN  
180  
160  
140  
120  
110  
80  
V
= 3V  
OUT  
(OPTIONAL)  
V
= 3.3V  
= 3.6V  
OUT  
OUT  
V
1
2
3
SW  
V
6
5
4
IN  
V
IN  
GND V  
OUT  
V
= 5V  
OUT  
FB SHDN  
SHDN  
60  
V
OUT  
3
5
7
9
11 13 15  
17 19  
21 23  
INDUCTANCE (µH)  
34001 F02  
34001 F03  
RECOMMENDED COMPONENT PLACEMENT. TRACES  
CARRYING HIGH CURRENT ARE DIRECT. TRACE AREA AT  
FB PIN IS SMALL. LEAD LENGTH TO BATTERY IS SHORT  
Figure 2. Maximum Output Current vs  
Inductance Based On 90% Efficiency  
Figure 1. Recommended Component Placement  
for Single Layer Board  
V D  
f L • 2  
IN  
IOUT(MAX) = η • I –  
• 1D  
(
)
P
COMPONENT SELECTION  
where:  
η = estimated efficiency  
Inductor Selection  
The LTC3400-1 can utilize small surface mount and chip  
inductors due to its fast 1.2MHz switching frequency. A  
minimum inductance value of 3.3µH is necessary for 3.6V  
and lower voltage applications and 4.7µH for output  
voltages greater than 3.6V. Larger values of inductance  
IP = peak current limit value (0.6A)  
VIN = input (battery) voltage  
D = steady-state duty ratio = (VOUT – VIN)/VOUT  
f = switching frequency (1.2MHz typical)  
L = inductance value  
34001f  
6
LTC3400-1  
W U U  
APPLICATIO S I FOR ATIO  
U
The inductor current ripple is typically set for 20% to 40%  
of the maximum inductor current (IP). High frequency  
ferrite core inductor materials reduce frequency depen-  
dent power losses compared to cheaper powdered iron  
types, improving efficiency. The inductor should have low  
ESR (series resistance of the windings) to reduce the I2R  
power losses, and must be able to handle the peak  
inductor current without saturating. Molded chokes and  
some chip inductors usually do not have enough core to  
support the peak inductor currents of 850mA seen on the  
LTC3400-1. To minimize radiated noise, use a toroid, pot  
core or shielded bobbin inductor. See Table 1 for some  
suggested components and suppliers.  
extremely low ESR and are available in small footprints. A  
2.2µF to 10µF output capacitor is sufficient for most  
applications. Larger values up to 22µF may be used to  
obtain extremely low output voltage ripple and improve  
transient response. An additional phase lead capacitor  
may be required with output capacitors larger than 10µF  
to maintain acceptable phase margin. X5R and X7R  
dielectric materials are preferred for their ability to main-  
taincapacitanceoverwidevoltageandtemperatureranges.  
Low ESR input capacitors reduce input switching noise  
and reduce the peak current drawn from the battery. It  
follows that ceramic capacitors are also a good choice for  
input decoupling and should be located as close as pos-  
sible to the device. A 4.7µF input capacitor is sufficient for  
virtually any application. Larger values may be used with-  
out limitations. Table 2 shows a list of several ceramic  
capacitor manufacturers. Consult the manufacturers di-  
rectly for detailed information on their entire selection of  
ceramic parts.  
Table 1. Recommended Inductors  
MAX  
L
DCR  
m  
HEIGHT  
(mm)  
PART  
(µH)  
VENDOR  
CDRH5D18-4R1  
CDRH5D18-100  
CDRH3D16-4R7  
CDRH3D16-6R8  
CR43-4R7  
CR43-100  
CMD4D06-4R7MC  
CMD4D06-3R3MC  
4.1  
10  
4.7  
57  
2.0  
2.0  
1.8  
1.8  
3.5  
3.5  
0.8  
0.8  
Sumida  
(847) 956-0666  
www.sumida.com  
124  
105  
170  
109  
182  
216  
174  
Table 2. Capacitor Vendor Information  
4.7  
10  
4.7  
3.3  
SUPPLIER  
AVX  
PHONE  
WEBSITE  
(803) 448-9411  
(714) 852-2001  
(408) 573-4150  
www.avxcorp.com  
www.murata.com  
www.t-yuden.com  
Murata  
DS1608-472  
DS1608-103  
DO1608C-472  
4.7  
10  
4.7  
60  
75  
90  
2.9  
2.9  
2.9  
Coilcraft  
(847) 639-6400  
www.coilcraft.com  
Taiyo Yuden  
D52LC-4R7M  
D52LC-100M  
4.7  
10  
84  
137  
2.0  
2.0  
Toko  
(408) 432-8282  
www.tokoam.com  
Output Diode  
UseaSchottkydiodesuchasanMBR0520L,PMEG2010EA,  
1N5817orequivalentiftheconverteroutputvoltageis4.5V  
orgreater.TheSchottkydiodecarriestheoutputcurrentfor  
the time it takes for the synchronous rectifier to turn on. Do  
not use ordinary rectifier diodes, since the slow recovery  
times will compromise efficiency. A Schottky diode is also  
strongly recommended for output voltages below 4.5V,  
and will increase converter efficiency by 2% to 3%.  
LQH3C4R7M24  
4.7  
195  
2.2  
Murata  
www.murata.com  
Output and Input Capacitor Selection  
LowESR(equivalentseriesresistance)capacitorsshould  
be used to minimize the output voltage ripple. Multilayer  
ceramic capacitors are an excellent choice as they have  
34001f  
7
LTC3400-1  
U
TYPICAL APPLICATIO S  
Single Cell to 3.3V Synchronous Boost Converter  
with Load Disconnect in Shutdown  
L1  
4.7µH  
D1  
1
+
SINGLE  
C1  
4.7µF  
M1  
AA CELL  
SW  
V
Si2305DS  
OUT  
6
5
3.3V  
V
IN  
V
OUT  
R1  
1.02M  
1%  
R3  
510k  
100mA  
LTC3400-1  
SHDN FB  
GND  
4
3
OFF  
ON  
R2  
604k  
1%  
C2  
4.7µF  
2
Q1  
2N3904  
D1: PHILLIPS PMEG2010EA  
L1: SUMIDA CDRH2D18/HP-4R7  
R3  
510k  
34001 TA01a  
34001f  
8
LTC3400-1  
U
TYPICAL APPLICATIO S  
Single Lithium Cell to 5V, 250mA  
OPTIONAL  
SNUBBER  
2  
1nF  
L1  
4.7µH  
D1  
1
+
LITHIUM  
CELL  
C1  
SW  
4.7µF  
6
5
3
V
V
IN  
LTC3400-1  
SHDN FB  
GND  
OUT  
R1  
1.02M  
1%  
C2  
4.7µF  
C3  
100pF  
4
OFF  
ON  
R2  
332k  
1%  
2
34001 TA02a  
D1: PHILIPS PMEG2010EA  
L1: SUMIDA CDRH2D18/HP-4R7  
C1, C2: TAIYO YUDEN JMK212BJ475MG  
3.6V to 5V Efficiency  
100  
90  
80  
70  
60  
50  
LTC3400-1  
= 4.7µF  
C
O
L = 4.7µH  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
34001 TA02b  
34001f  
9
LTC3400-1  
U
TYPICAL APPLICATIO S  
Single Cell AA Cell to ±3V Synchronous Boost Converter  
C3  
1µF  
L1  
4.7µH  
1
+
SINGLE  
AA CELL  
C1  
SW  
4.7µF  
V
OUT1  
6
5
3
3V  
V
V
IN  
LTC3400-1  
SHDN FB  
GND  
OUT  
R1  
1.02M  
1%  
C2  
4.7µF  
90mA  
D1 D2  
4
OFF  
ON  
R2  
715k  
1%  
C4  
10µF  
V
OUT2  
–3V  
34001 TA03a 10mA  
2
D1, D2: ZETEX FMND7000 DUAL DIODE  
L1: SUMIDA CDRH2D18/HP-4R7  
34001f  
10  
LTC3400-1  
U
PACKAGE DESCRIPTIO  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
34001f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC3400-1  
U
TYPICAL APPLICATIO  
Single AA Cell to 2.5V Synchronous Boost Converter  
L1  
3.3µH  
D1  
1
+
SINGLE  
AA CELL  
C1  
4.7µF  
SW  
V
OUT  
6
5
3
2.5V  
V
IN  
V
OUT  
R1  
1.02M  
1%  
130mA  
LTC3400-1  
SHDN FB  
GND  
4
C2  
OFF  
ON  
4.7µF  
R2  
1M  
1%  
2
D1: PHILIPS PMEG2010EA  
L1: SUMIDA CDRH2D18/HP-3R7  
34001 TA04a  
RELATED PARTS  
PART NUMBER  
LT1308A/LT1308B  
LT1613  
DESCRIPTION  
COMMENTS  
High Current, Micropower, Single Cell 600kHz DC/DC Converter  
1.4MHz, Single Cell DC/DC Converter in ThinSOT  
5V at 1A with Single Li-Ion Cell, V  
to 34V  
OUT  
V
as Low as 1.1V, 3V at 30mA from Single Cell  
IN  
LT1615  
LT®1618  
Micropower Step-Up DC/DC Converter in ThinSOT  
1.4MHz Step-Up DC/DC Converter with Current Limit  
I = 20µA, 1µA Shutdown Current, V as Low as 1V  
Q IN  
1.5A Switch, 1.6V to 18V Input Range,  
Input or Output Current Limiting  
LT1619  
High Efficiency Boost DC/DC Controller  
ThinSOT Boost DC/DC Controller  
1A Gate Drive, 1.1V to 20V Input, Separate V for Gate Drive  
CC  
LTC1872  
50kHz, 2.5V to 9.8V Input  
LT1930/LT1930A  
LT1932  
1.2MHz/2.2MHz DC/DC Converters in ThinSOT  
Constant Current Step-Up LED Driver  
1.2MHz/2.7MHz Boost DC/DC Converters  
600kHz, 1A Switch PWM DC/DC Converter  
V = 2.6V to 16V, 5V at 450mA from 3.3V Input  
IN  
Drives Up to Eight White LEDs, ThinSOT Package  
1.5A, 36V Internal Switch, 8-Pin MSOP Package  
LT1946/LT1946A  
LT1949  
1A, 0.5, 30V Internal Switch, V as Low as 1.5V,  
IN  
Low-Battery Detect Active in Shutdown  
LTC3400/LTC3400B  
600mA, 1.2MHz Synchronous Boost Converters in ThinSOT  
Up to 92% EFFiciency, 600mA Switch,  
No Burst Option (LTC3400B)  
LTC3401  
LTC3402  
LTC3421  
1A, 3MHz Micropower Synchronous Boost Converter  
2A, 3MHz Micropower Synchronous Boost Converter  
3A, 3MHz Micropower Synchronous Boost Converter  
1A Switch, Programmable Frequency, 10-Pin MSOP Package  
2A Switch, Programmable Frequency, 10-Pin MSOP Package  
Up to 96% Efficiency, 3A Switch, True Output Disconnect,  
4mm x 4mm QFN Package  
LTC3423  
LTC3424  
LTC3425  
1A, 3MHz Micropower Synchronous Boost Converter  
2A, 3MHz Micropower Synchronous Boost Converter  
5A, 8MHz, 4-Phase Micropower Synchronous Boost Converter  
1A Switch, Separate Bias Pin for Low Output Voltages  
2A Switch, Separate Bias Pin for Low Output Voltages  
Up to 95% Efficiency, 5A Switch, True Output  
Disconnect, I = 12µA, QFN Package  
Q
LTC3429  
600mA, 500kHz Synchronous Boost Converter in ThinSOT  
Up to 96% Efficiency, 600mA Switch, True Output  
Disconnect, Soft Start  
34001f  
LT/TP 0604 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

LTC3400/LTC3400B

4A, 2MHz Dual Phase Step-Up DC/DC Converter in 3mm 3mm DFN
Linear

LTC3400B

600mA, 1.2MHz Micropower Synchronous Boost Converter in ThinSOT
Linear

LTC3400BES6

600mA, 1.2MHz Micropower Synchronous Boost Converter in ThinSOT
Linear

LTC3400BES6#PBF

IC 0.85 A SWITCHING REGULATOR, 1500 kHz SWITCHING FREQ-MAX, PDSO6, PLASTIC, SOT-23, 6 PIN, Switching Regulator or Controller
Linear

LTC3400BES6#TR

LTC3400B - 600mA, 1.2MHz Micropower Synchronous Boost Converters in ThinSOT; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3400BES6#TRM

LTC3400B - 600mA, 1.2MHz Micropower Synchronous Boost Converters in ThinSOT; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3400BES6#TRPBF

600mA, 1.2MHz Micropower Synchronous Boost Converters in ThinSOT
Linear

LTC3400B_15

600mA, 1.2MHz Micropower Synchronous Boost Converter in ThinSOT
Linear

LTC3400ES6

600mA, 1.2MHz Micropower Synchronous Boost Converter in ThinSOT
Linear

LTC3400ES6#PBF

LTC3400 - 600mA, 1.2MHz Micropower Synchronous Boost Converters in ThinSOT; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3400ES6#TRMPBF

暂无描述
Linear

LTC3400ES6#TRPBF

LTC3400 - 600mA, 1.2MHz Micropower Synchronous Boost Converters in ThinSOT; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear