LTC3406B-2ES5 [Linear]

2.25MHz, 600mA Synchronous Step-Down Regulator in ThinSOT; 2.25MHz的, 600mA同步降压型稳压器采用ThinSOT
LTC3406B-2ES5
型号: LTC3406B-2ES5
厂家: Linear    Linear
描述:

2.25MHz, 600mA Synchronous Step-Down Regulator in ThinSOT
2.25MHz的, 600mA同步降压型稳压器采用ThinSOT

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总16页 (文件大小:213K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3406B-2  
2.25MHz, 600mA  
Synchronous Step-Down  
Regulator in ThinSOTTM  
U
FEATURES  
DESCRIPTIO  
TheLTC®3406B-2isahighefficiencymonolithicsynchro-  
nous buck regulator using a constant frequency, current  
mode architecture. Supply current with no load is 350µA,  
dropping to <1µA in shutdown. The 2.5V to 5.5V input  
voltage range makes the LTC3406B-2 ideally suited for  
single Li-Ion battery-powered applications. 100% duty  
cycle capability provides low dropout operation, extend-  
ing battery life in portable systems. PWM pulse skipping  
modeoperationprovidesverylowoutputripplevoltagefor  
noise sensitive applications.  
High Efficiency: Up to 96%  
600mA Output Current at VIN = 3V  
2.5V to 5.5V Input Voltage Range  
2.25MHz Constant Frequency Operation  
No Schottky Diode Required  
Low Dropout Operation: 100% Duty Cycle  
Low Quiescent Current: 350µA  
0.6V Reference Allows Low Output Voltages  
Shutdown Mode Draws <1µA Supply Current  
Current Mode Operation for Excellent Line and  
Load Transient Response  
Theswitchingfrequencyisinternallysetat2.25MHz,allow-  
ingtheuseoftinysurfacemountinductorsandcapacitors.  
The internal synchronous switch increases efficiency and  
eliminates the need for an external Schottky diode. Low  
outputvoltagesareeasilysupportedwiththe0.6Vfeedback  
referencevoltage.TheLTC3406B-2isavailableinalowpro-  
file (1mm) SOT-23 package. Refer to LTC3406 for appli-  
cations that require Burst Mode® operation.  
Overtemperature Protected  
Low Profile (1mm) SOT-23 Package  
U
APPLICATIO S  
Cellular Telephones  
Personal Information Appliances  
Wireless and DSL Modems  
Digital Still Cameras  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Burst Mode is a registered trademark of Linear Technology Corporation.  
ThinSOT is a trademark of Linear Technology Corporation.  
MP3 Players  
Portable Instruments  
Protected by U.S. Patents, including 6580258, 5481178.  
U
TYPICAL APPLICATIO  
High Efficiency Step-Down Converter  
Efficiency vs Load Current  
100  
V
T
= 1.8V  
OUT  
A
2.2µH*  
V
V
OUT  
IN  
= 25°C  
90  
80  
70  
60  
50  
40  
30  
20  
10  
1.8V  
2.7V  
V
SW  
LTC3406B-2  
RUN  
IN  
600mA  
TO 5.5V  
10µF  
CER  
4.7µF  
CER  
22pF  
1M  
V
= 3.6V  
IN  
V
FB  
V
= 2.7V  
IN  
GND  
499k  
3406B TA01a  
V
= 4.2V  
1
IN  
0.1  
1000  
10  
100  
OUTPUT CURRENT (mA)  
3406B TA01b  
sn3406b2 3406b2fs  
1
LTC3406B-2  
W W U W  
U W  
U
ABSOLUTE AXI U RATI GS  
(Note 1)  
PACKAGE/ORDER I FOR ATIO  
Input Supply Voltage .................................. 0.3V to 6V  
RUN, VFB Voltages ..................................... 0.3V to VIN  
SW Voltage (DC) ......................... 0.3V to (VIN + 0.3V)  
P-Channel Switch Source Current (DC) ............. 800mA  
N-Channel Switch Sink Current (DC) ................. 800mA  
Peak SW Sink and Source Current ........................ 1.3A  
Operating Temperature Range (Note 2) .. 40°C to 85°C  
Maximum Junction Temperature (Notes 3, 6) ..... 125°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
ORDER PART  
TOP VIEW  
NUMBER  
RUN 1  
GND 2  
SW 3  
5 V  
4 V  
FB  
LTC3406B-2ES5  
IN  
S5 PART MARKING  
LTAGH  
S5 PACKAGE  
5-LEAD PLASTIC TSOT-23  
TJMAX = 125°C, θJA = 250°C/ W, θJC = 90°C/ W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are TA = 25°C. VIN = 3.6V unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Feedback Current  
±30  
nA  
VFB  
V
Regulated Feedback Voltage  
(Note 4) T = 25°C  
0.5880  
0.5865  
0.5850  
0.6  
0.6  
0.6  
0.6120  
0.6135  
0.6150  
V
V
V
FB  
A
(Note 4) 0°C T 85°C  
A
(Note 4) –40°C T 85°C  
A
V  
V  
Reference Voltage Line Regulation  
Output Overvoltage Lockout  
Peak Inductor Current  
V
= 2.5V to 5.5V (Note 4)  
IN  
0.04  
50  
1
0.4  
80  
%/V  
mV  
A
FB  
V  
= V  
– V , LTC3406B  
20  
OVL  
OVL  
OVL  
FB  
I
V
= 3V, V = 0.5V or V = 90%,  
OUT  
0.75  
1.25  
PK  
IN  
FB  
Duty Cycle < 35%  
V
V
Output Voltage Load Regulation  
Input Voltage Range  
0.5  
%
V
LOADREG  
IN  
2.5  
1.8  
5.5  
I
Input DC Bias Current  
(Note 5)  
S
V
V
= 0.5V or V  
= 90%  
OUT  
350  
0.1  
500  
1
µA  
µA  
FB  
Shutdown  
= 0V, V = 4.2V  
RUN  
IN  
f
Oscillator Frequency  
V
V
= 0.6V or V = 100%  
OUT  
= 0V or V  
2.25  
310  
2.7  
MHz  
kHz  
OSC  
FB  
FB  
= 0V  
OUT  
R
R
R
R
of P-Channel FET  
of N-Channel FET  
I
I
= 100mA  
0.4  
0.35  
±0.01  
1
0.5  
0.45  
±1  
PFET  
NFET  
LSW  
DS(ON)  
SW  
SW  
= –100mA  
= 0V, V = 0V or 5V, V = 5V  
DS(ON)  
I
SW Leakage  
V
µA  
V
RUN  
SW  
IN  
V
RUN Threshold  
RUN Leakage Current  
0.3  
1.5  
±1  
RUN  
I
±0.01  
µA  
RUN  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 4: The LTC3406B-2ES5 is tested in a proprietary test mode that  
connects V to the output of the error amplifier.  
FB  
Note 2: The LTC3406B-2ES5 is guaranteed to meet performance  
specifications from 0°C to 70°C. Specifications over the –40°C to 85°C  
operating temperature range are assured by design, characterization and  
correlation with statistical process controls.  
Note 5: Dynamic supply current is higher due to the gate charge being  
delivered at the switching frequency.  
Note 6: This IC includes overtemperature protection that is intended to  
protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
Note 3: T is calculated from the ambient temperature T and power  
J
A
dissipation P according to the following formula:  
D
LTC3406B-2ES5: T = T + (P )(250°C/W)  
J
A
D
sn3406b2 3406b2fs  
2
LTC3406B-2  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(From Figure 1a Except for the Resistive Divider Resistor Values)  
Efficiency vs Input Voltage  
Efficiency vs Output Current  
Efficiency vs Output Current  
100  
95  
90  
85  
80  
75  
70  
65  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
V
A
= 1.5V  
T
= 25°C  
OUT  
A
V
T
= 1.2V  
OUT  
= 25°C  
T
= 25°C  
A
I
= 100mA  
OUT  
V
= 3.6V  
IN  
V
IN  
= 3.6V  
V
= 2.7V  
IN  
I
= 600mA  
OUT  
V
IN  
= 2.7V  
V
= 4.2V  
V
IN  
= 4.2V  
IN  
I
= 10mA  
OUT  
2
3
4
INPUT VOLTAGE (V)  
5
6
0.1  
1000  
0.1  
1000  
1
10  
100  
1
10  
100  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
3406B G01  
3406B G03  
3406B G02  
Reference Voltage vs  
Temperature  
Oscillator Frequency vs  
Temperature  
Efficiency vs Output Current  
0.614  
0.609  
0.604  
0.599  
0.594  
0.589  
0.584  
2.55  
2.40  
2.25  
2.10  
1.95  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
V
A
= 2.5V  
OUT  
V
= 3.6V  
V
= 3.6V  
IN  
IN  
T
= 25°C  
V
= 2.7V  
V
= 4.2V  
IN  
IN  
V
= 3.6V  
IN  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
0.1  
1000  
1
10  
100  
OUTPUT CURRENT (mA)  
3406B G05  
3406B G06  
3406B G04  
Oscillator Frequency vs  
Supply Voltage  
RDS(ON) vs Input Voltage  
Output Voltage vs Load Current  
2.70  
2.55  
2.40  
2.25  
2.10  
1.95  
1.80  
1.844  
1.834  
1.824  
1.814  
1.804  
1.794  
1.784  
1.774  
0.7  
0.6  
T
A
= 25°C  
V
A
= 3.6V  
T
= 25°C  
A
IN  
= 25°C  
T
0.5  
0.4  
0.3  
0.2  
0.1  
MAIN  
SWITCH  
SYNCHRONOUS  
SWITCH  
0
2
3
4
5
6
5
7
0
1
2
3
4
6
0
700  
900  
800  
100 200 300 400 500 600  
LOAD CURRENT (mA)  
SUPPLY VOLTAGE (V)  
INPUT VOLTAGE (V)  
3406B G07  
3406B G08  
3406B G09  
sn3406b2 3406b2fs  
3
LTC3406B-2  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(From Figure 1a Except for the Resistive Divider Resistor Values)  
Dynamic Supply Current vs  
Supply Voltage  
Dynamic Supply Current vs  
Temperature  
RDS(ON) vs Temperature  
390  
370  
350  
330  
310  
290  
270  
250  
0.7  
0.6  
450  
430  
410  
390  
370  
350  
330  
310  
290  
270  
250  
V
V
I
= 3.6V  
V
I
A
= 1.8V  
= 0A  
IN  
OUT  
OUT  
LOAD  
= 25°C  
V
= 2.7V  
IN  
= 1.8V  
= 0A  
T
LOAD  
V
= 3.6V  
IN  
V
IN  
= 4.2V  
0.5  
0.4  
0.3  
0.2  
0.1  
MAIN SWITCH  
SYNCHRONOUS SWITCH  
0
50  
0
TEMPERATURE (°C)  
100 125  
50  
TEMPERATURE (°C)  
100 125  
–50  
–50 –25  
0
25  
75  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
SUPPLY VOLTAGE (V)  
3406B G12  
3406B G10  
3406B G11  
Switch Leakage vs Temperature  
Switch Leakage vs Input Voltage  
Discontinuous Operation  
300  
250  
200  
150  
120  
100  
80  
60  
40  
20  
0
RUN = 0V  
V
= 5.5V  
IN  
RUN = 0V  
T
= 25°C  
A
SW  
2V/DIV  
SYNCHRONOUS  
SWITCH  
V
OUT  
10mV/DIV  
AC COUPLED  
MAIN  
SWITCH  
I
L
100mA/DIV  
100  
50  
0
MAIN SWITCH  
SYNCHRONOUS SWITCH  
3406B G15  
V
V
= 3.6V  
1µs/DIV  
IN  
= 1.8V  
OUT  
I
= 50mA  
LOAD  
50  
TEMPERATURE (°C)  
100 125  
0
2
3
4
5
6
–50 –25  
0
25  
75  
1
INPUT VOLTAGE (V)  
3406B G13  
3406B G14  
Start-Up from Shutdown  
Load Step  
Load Step  
RUN  
5V/DIV  
V
V
OUT  
OUT  
100mV/DIV  
100mV/DIV  
AC COUPLED  
AC COUPLED  
V
OUT  
1V/DIV  
I
I
AC COUPLED  
L
L
500mA/DIV  
500mA/DIV  
I
L
I
I
LOAD  
LOAD  
500mA/DIV  
500mA/DIV  
500mA/DIV  
3406B G17  
3406B G16  
3406B G18  
V
V
I
= 3.6V  
V
V
I
= 3.6V  
V
V
I
= 3.6V  
20µs/DIV  
40µs/DIV  
20µs/DIV  
IN  
OUT  
IN  
OUT  
IN  
OUT  
= 1.8V  
= 1.8V  
= 1.8V  
= 0mA TO 600mA  
= 600mA (LOAD: 3RESISTOR)  
= 50mA TO 600mA  
LOAD  
LOAD  
LOAD  
sn3406b2 3406b2fs  
4
LTC3406B-2  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(From Figure 1a Except for the Resistive Divider Resistor Values)  
Load Step  
Load Step  
V
V
OUT  
OUT  
100mV/DIV  
100mV/DIV  
AC COUPLED  
AC COUPLED  
I
I
L
L
500mA/DIV  
500mA/DIV  
I
I
LOAD  
LOAD  
500mA/DIV  
500mA/DIV  
3406B G19  
3406B G20  
V
V
I
= 3.6V  
V
V
I
= 3.6V  
20µs/DIV  
20µs/DIV  
IN  
OUT  
IN  
OUT  
= 1.8V  
= 1.8V  
= 100mA TO 600mA  
= 200mA TO 600mA  
LOAD  
LOAD  
U
U
U
PI FU CTIO S  
RUN (Pin 1): Run Control Input. Forcing this pin above  
1.5V enables the part. Forcing this pin below 0.3V shuts  
down the device. In shutdown, all functions are disabled  
drawing <1µA supply current. Do not leave RUN floating.  
VIN (Pin 4): Main Supply Pin. Must be closely decoupled  
to GND, Pin 2, with a 2.2µF or greater ceramic capacitor.  
VFB (Pin 5): Feedback Pin. Receives the feedback voltage  
from an external resistive divider across the output.  
GND (Pin 2): Ground Pin.  
SW (Pin 3): Switch Node Connection to Inductor. This pin  
connects to the drains of the internal main and synchro-  
nous power MOSFET switches.  
sn3406b2 3406b2fs  
5
LTC3406B-2  
U
U
W
FU CTIO AL DIAGRA  
SLOPE  
COMP  
OSC  
V
IN  
4
OSC  
FREQ  
5  
+
+
SHIFT  
I
COMP  
Q
Q
S
R
+
0.6V  
V
FB  
EA  
5
SWITCHING  
LOGIC  
RS LATCH  
ANTI-  
SHOOT-  
THRU  
AND  
V
IN  
BLANKING  
CIRCUIT  
SW  
3
OV  
OVDET  
+
RUN  
1
0.65V  
0.6V REF  
+
SHUTDOWN  
I
RCMP  
2
GND  
3406B BD  
U
OPERATIO  
(Refer to Functional Diagram)  
Main Control Loop  
The comparator OVDET guards against transient over-  
shoots>6.25%byturningthemainswitchoffandkeeping  
it off until the fault is removed.  
TheLTC3406B-2usesaconstantfrequency,currentmode  
step-down architecture. Both the main (P-channel  
MOSFET)andsynchronous(N-channelMOSFET)switches  
areinternal.Duringnormaloperation,theinternaltoppower  
MOSFET is turned on each cycle when the oscillator sets  
the RS latch, and turned off when the current comparator,  
ICOMP, resets the RS latch. The peak inductor current at  
whichICOMP resetstheRSlatch,iscontrolledbytheoutput  
of error amplifier EA. When the load current increases, it  
causes a slight decrease in the feedback voltage, FB, rela-  
tive to the 0.6V reference, which in turn, causes the EA  
amplifier’s output voltage to increase until the average  
inductor current matches the new load current. While the  
top MOSFET is off, the bottom MOSFET is turned on until  
eithertheinductorcurrentstartstoreverse,asindicatedby  
the current reversal comparator IRCMP, or the beginning of  
the next clock cycle.  
Pulse Skipping Mode Operation  
At light loads, the inductor current may reach zero or re-  
verse on each pulse. The bottom MOSFET is turned off by  
the current reversal comparator, IRCMP, and the switch  
voltage will ring. This is discontinuous mode operation,  
and is normal behavior for the switching regulator. At very  
light loads, the LTC3406B-2 will automatically skip pulses  
inpulseskippingmodeoperationtomaintainoutputregu-  
lation. Refer to LTC3406 data sheet if Burst Mode opera-  
tion is preferred.  
Short-Circuit Protection  
Whentheoutputisshortedtoground, thefrequencyofthe  
oscillator is reduced to about 310kHz, 1/7 the nominal  
sn3406b2 3406b2fs  
6
LTC3406B-2  
U
OPERATIO  
(Refer to Functional Diagram)  
frequency. This frequency foldback ensures that the in-  
ductorcurrenthasmoretimetodecay, therebypreventing  
runaway. The oscillator’s frequency will progressively  
increase to 2.25MHz when VFB rises above 0V.  
Animportantdetailtorememberisthatatlowinputsupply  
voltages, the RDS(ON) of the P-channel switch increases  
(see Typical Performance Characteristics). Therefore, the  
user should calculate the power dissipation when the  
LTC3406B-2 is used at 100% duty cycle with low input  
voltage (See Thermal Considerations in the Applications  
Information section).  
Dropout Operation  
Astheinputsupplyvoltagedecreasestoavalueapproach-  
ing the output voltage, the duty cycle increases toward the  
maximumon-time.Furtherreductionofthesupplyvoltage  
forcesthemainswitchtoremainonformorethanonecycle  
untilitreaches100%dutycycle.Theoutputvoltagewillthen  
be determined by the input voltage minus the voltage drop  
across the P-channel MOSFET and the inductor.  
Low Supply Operation  
TheLTC3406B-2willoperatewithinputsupplyvoltagesas  
low as 2.5V, but the maximum allowable output current is  
reduced at this low voltage. Figure 2 shows the reduction  
in the maximum output current as a function of input  
voltage for various output voltages.  
2.2µH*  
V
V
OUT  
IN  
Slope Compensation and Inductor Peak Current  
1.8V  
2.7V  
V
SW  
LTC3406B-2  
RUN  
IN  
C
600mA  
C
**  
TO 5.5V  
OUT  
IN  
22pF  
10µF  
4.7µF  
Slope compensation provides stability in constant fre-  
quency architectures by preventing subharmonic oscilla-  
tions at high duty cycles. It is accomplished internally by  
adding a compensating ramp to the inductor current  
signal at duty cycles in excess of 40%. Normally, this  
results in a reduction of maximum inductor peak current  
for duty cycles >40%. However, the LTC3406B-2 uses a  
patent-pending scheme that counteracts this compensat-  
ing ramp, which allows the maximum inductor peak  
current to remain unaffected throughout all duty cycles.  
CER  
CER  
1M  
V
FB  
GND  
499k  
3406B F01a  
*MURATA LQH32CN2R2M33  
**TAIYO YUDEN JMK212BJ475MG  
TAIYO YUDEN JMK316BJ106ML  
Figure 1a. High Efficiency Step-Down Converter  
1200  
100  
V
T
= 1.8V  
OUT  
A
= 25°C  
90  
80  
70  
60  
50  
40  
30  
20  
10  
1000  
V
V
= 1.8V  
= 1.5V  
OUT  
OUT  
800  
600  
400  
200  
0
V
OUT  
= 2.5V  
V
= 3.6V  
IN  
V
IN  
= 2.7V  
V
IN  
= 4.2V  
1
2.5  
3.5  
4.0  
4.5  
5.0  
5.5  
3.0  
0.1  
1000  
10  
100  
SUPPLY VOLTAGE (V)  
OUTPUT CURRENT (mA)  
3406B F02  
3406B F01b  
Figure 2. Maximum Output Current vs Input Voltage  
Figure 1b. Efficiency vs Load Current  
sn3406b2 3406b2fs  
7
LTC3406B-2  
W U U  
U
APPLICATIO S I FOR ATIO  
The basic LTC3406B-2 application circuit is shown in  
Figure 1. External component selection is driven by the  
load requirement and begins with the selection of L fol-  
Table 1. Representative Surface Mount Inductors  
Part  
Number  
Value  
(µH)  
DCR  
(MAX)  
MAX DC  
Current (A)  
Size  
WxLxH (mm3)  
lowed by CIN and COUT  
.
Sumida  
CDRH2D11  
1.5  
2.2  
3.3  
0.068  
0.098  
0.123  
0.90  
0.78  
0.60  
3.2 x 3.2 x 1.2  
3.2 x 3.2 x 2.0  
3.5 x 4.1 x 0.8  
2.5 x 3.2 x 2.0  
1.8 x 2.5 x 1.8  
4.6 x 4.6 x 1.2  
Inductor Selection  
Sumida  
CDRH2D18/LD  
2.2  
3.3  
4.7  
0.041  
0.054  
0.078  
0.85  
0.75  
0.63  
For most applications, the value of the inductor will fall in  
the range of 1µH to 4.7µH. Its value is chosen based on the  
desired ripple current. Large value inductors lower ripple  
current and small value inductors result in higher ripple  
currents. Higher VIN or VOUT also increases the ripple  
currentasshowninequation1. Areasonablestartingpoint  
for setting ripple current is IL = 240mA (40% of 600mA).  
Sumida  
CMD4D06  
2.2  
3.3  
4.7  
0.116  
0.174  
0.216  
0.95  
0.77  
0.75  
Murata  
LQH32C  
1.0  
2.2  
4.7  
0.060  
0.097  
0.150  
1.00  
0.79  
0.65  
VOUT  
V
IN  
Taiyo Yuden  
LQLBC2518  
1.0  
1.5  
2.2  
0.080  
0.110  
0.130  
0.78  
0.66  
0.60  
1
IL =  
VOUT 1−  
(1)  
f L  
( )( )  
Toko  
D412F  
2.2  
3.3  
4.7  
0.14  
0.20  
0.22  
1.14  
0.90  
0.80  
The DC current rating of the inductor should be at least  
equal to the maximum load current plus half the ripple  
current to prevent core saturation. Thus, a 720mA rated  
inductorshouldbeenoughformostapplications(600mA  
+ 120mA). For better efficiency, choose a low DC-resis-  
tance inductor.  
This formula has a maximum at VIN = 2VOUT, where  
IRMS = IOUT/2. This simple worst-case condition is com-  
monlyusedfordesignbecauseevensignificantdeviations  
do not offer much relief. Note that the capacitor  
manufacturer’s ripple current ratings are often based on  
2000hoursoflife.Thismakesitadvisabletofurtherderate  
the capacitor, or choose a capacitor rated at a higher  
temperature than required. Always consult the manufac-  
turer if there is any question.  
Inductor Core Selection  
Different core materials and shapes will change the size/  
current and price/current relationship of an inductor.  
Toroid or shielded pot cores in ferrite or permalloy mate-  
rials are small and don’t radiate much energy, but gener-  
ally cost more than powdered iron core inductors with  
similarelectricalcharacteristics. Thechoiceofwhichstyle  
inductor to use often depends more on the price vs size  
requirements and any radiated field/EMI requirements  
than on what the LTC3406B-2 requires to operate. Table 1  
shows some typical surface mount inductors that work  
well in LTC3406B-2 applications.  
The selection of COUT is driven by the required effective  
series resistance (ESR).  
Typically, once the ESR requirement for COUT has been  
met, the RMS current rating generally far exceeds the  
IRIPPLE(P-P) requirement.TheoutputrippleVOUT isdeter-  
mined by:  
CIN and COUT Selection  
1
Incontinuousmode,thesourcecurrentofthetopMOSFET  
is a square wave of duty cycle VOUT/VIN. To prevent large  
voltage transients, a low ESR input capacitor sized for the  
maximum RMS current must be used. The maximum  
RMS capacitor current is given by:  
VOUT ≅ ∆I ESR +  
L
8fCOUT  
where f = operating frequency, COUT = output capacitance  
and IL = ripple current in the inductor. For a fixed output  
voltage, the output ripple is highest at maximum input  
voltage since IL increases with input voltage.  
1/2  
]
VOUT V VOUT  
(
IN  
)
[
CIN required IRMS IOMAX  
V
IN  
sn3406b2 3406b2fs  
8
LTC3406B-2  
W U U  
APPLICATIO S I FOR ATIO  
U
0.6V V  
5.5V  
OUT  
Aluminum electrolytic and dry tantalum capacitors are  
bothavailableinsurfacemountconfigurations.Inthecase  
oftantalum,itiscriticalthatthecapacitorsaresurgetested  
for use in switching power supplies. An excellent choice is  
the AVX TPS series of surface mount tantalum. These are  
specially constructed and tested for low ESR so they give  
the lowest ESR for a given volume. Other capacitor types  
include Sanyo POSCAP, Kemet T510 and T495 series, and  
Sprague 593D and 595D series. Consult the manufacturer  
for other specific recommendations.  
R2  
V
FB  
LTC3406B-2  
GND  
R1  
3406B F03  
Figure 3. Setting the LTC3406B-2 Output Voltage  
Efficiency Considerations  
The efficiency of a switching regulator is equal to the  
output power divided by the input power times 100%. It is  
oftenusefultoanalyzeindividuallossestodeterminewhat  
is limiting the efficiency and which change would produce  
the most improvement. Efficiency can be expressed as:  
Using Ceramic Input and Output Capacitors  
Higher values, lower cost ceramic capacitors are now  
becoming available in smaller case sizes. Their high ripple  
current, high voltage rating and low ESR make them ideal  
for switching regulator applications. Because the  
LTC3406B-2’scontrolloopdoesnotdependontheoutput  
capacitor’s ESR for stable operation, ceramic capacitors  
can be used freely to achieve very low output ripple and  
small circuit size.  
Efficiency = 100% – (L1 + L2 + L3 + ...)  
whereL1, L2, etc. aretheindividuallossesasapercentage  
of input power.  
Although all dissipative elements in the circuit produce  
losses, two main sources usually account for most of the  
losses in LTC3406B-2 circuits: VIN quiescent current and  
I2R losses. The VIN quiescent current loss dominates the  
efficiency loss at very low load currents whereas the I2R  
loss dominates the efficiency loss at medium to high load  
currents. In a typical efficiency plot, the efficiency curve at  
very low load currents can be misleading since the actual  
power lost is of no consequence as illustrated in Figure 4.  
However, care must be taken when ceramic capacitors are  
usedattheinputandtheoutput.Whenaceramiccapacitor  
is used at the input and the power is supplied by a wall  
adapter through long wires, a load step at the output can  
induce ringing at the input, VIN. At best, this ringing can  
couple to the output and be mistaken as loop instability. At  
worst, a sudden inrush of current through the long wires  
can potentially cause a voltage spike at VIN, large enough  
to damage the part.  
1
When choosing the input and output ceramic capacitors,  
choose the X5R or X7R dielectric formulations. These  
dielectrics have the best temperature and voltage charac-  
teristics of all the ceramics for a given value and size.  
V
= 3.6V  
IN  
0.1  
0.01  
V
= 2.5V  
= 1.8V  
OUT  
Output Voltage Programming  
V
OUT  
V
= 1.2V  
100  
OUT  
The output voltage is set by a resistive divider according  
to the following formula:  
0.001  
0.0001  
V
= 1.5V  
OUT  
R2  
R1  
VOUT = 0.6 1+  
(2)  
0.1  
1
10  
1000  
LOAD CURRENT (mA)  
3406B F04  
The external resistive divider is connected to the output,  
allowing remote voltage sensing as shown in Figure 3.  
Figure 4. Power Lost vs Load Current  
sn3406b2 3406b2fs  
9
LTC3406B-2  
W U U  
U
APPLICATIO S I FOR ATIO  
To avoid the LTC3406B-2 from exceeding the maximum  
junction temperature, the user will need to do some  
thermal analysis. The goal of the thermal analysis is to  
determine whether the power dissipated exceeds the  
maximum junction temperature of the part. The tempera-  
ture rise is given by:  
1. The VIN quiescent current is due to two components:  
the DC bias current as given in the electrical character-  
istics and the internal main switch and synchronous  
switch gate charge currents. The gate charge current  
results from switching the gate capacitance of the  
internal power MOSFET switches. Each time the gate is  
switched from high to low to high again, a packet of  
charge, dQ, moves from VIN to ground. The resulting  
dQ/dtisthecurrentoutofVINthatistypicallylargerthan  
TR = (PD)(θJA)  
where PD is the power dissipated by the regulator and θJA  
is the thermal resistance from the junction of the die to the  
ambient temperature.  
the DC bias current. In continuous mode, IGATECHG  
=
f(QT + QB) where QT and QB are the gate charges of the  
internal top and bottom switches. Both the DC bias and  
gate charge losses are proportional to VIN and thus  
their effects will be more pronounced at higher supply  
voltages.  
The junction temperature, TJ, is given by:  
TJ = TA + TR  
where TA is the ambient temperature.  
As an example, consider the LTC3406B-2 in dropout at an  
input voltage of 2.7V, a load current of 600mA and an  
ambient temperature of 70°C. From the typical perfor-  
mance graph of switch resistance, the RDS(ON) of the  
P-channel switch at 70°C is approximately 0.52. There-  
fore, power dissipated by the part is:  
2. I2R losses are calculated from the resistances of the  
internal switches, RSW, and external inductor RL. In  
continuous mode, the average output current flowing  
through inductor L is “chopped” between the main  
switch and the synchronous switch. Thus, the series  
resistance looking into the SW pin is a function of both  
top and bottom MOSFET RDS(ON) and the duty cycle  
(DC) as follows:  
PD = ILOAD2 • RDS(ON) = 187.2mW  
For the SOT-23 package, the θJA is 250°C/W. Thus, the  
junction temperature of the regulator is:  
RSW = (RDS(ON)TOP)(DC) + (RDS(ON)BOT)(1 – DC)  
TJ = 70°C + (0.1872)(250) = 116.8°C  
The RDS(ON) for both the top and bottom MOSFETs can  
beobtainedfromtheTypicalPerformanceCharateristics  
curves. Thus, to obtain I2R losses, simply add RSW to  
RL and multiply the result by the square of the average  
output current.  
which is below the maximum junction temperature of  
125°C.  
Note that at higher supply voltages, the junction tempera-  
ture is lower due to reduced switch resistance (RDS(ON)).  
Other losses including CIN and COUT ESR dissipative  
losses and inductor core losses generally account for less  
than 2% total additional loss.  
Checking Transient Response  
The regulator loop response can be checked by looking at  
the load transient response. Switching regulators take  
several cycles to respond to a step in load current. When  
a load step occurs, VOUT immediately shifts by an amount  
equal to (ILOAD • ESR), where ESR is the effective series  
resistance of COUT. ILOAD also begins to charge or  
discharge COUT, which generates a feedback error signal.  
The regulator loop then acts to return VOUT to its steady-  
state value. During this recovery time VOUT can be moni-  
toredforovershootorringingthatwouldindicateastability  
problem. For a detailed explanation of switching control  
loop theory, see Application Note 76.  
Thermal Considerations  
In most applications the LTC3406B-2 does not dissipate  
much heat due to its high efficiency. But, in applications  
where the LTC3406B-2 is running at high ambient tem-  
perature with low supply voltage and high duty cycles,  
such as in dropout, the heat dissipated may exceed the  
maximumjunctiontemperatureofthepart.Ifthejunction  
temperature reaches approximately 150°C, both power  
switches will be turned off and the SW node will become  
high impedance.  
sn3406b2 3406b2fs  
10  
LTC3406B-2  
W U U  
APPLICATIO S I FOR ATIO  
U
LTC3406B-2. These items are also illustrated graphically  
in Figures 5 and 6. Check the following in your layout:  
1. The power traces, consisting of the GND trace, the SW  
trace and the VIN trace should be kept short, direct and  
wide.  
2. Does the VFB pin connect directly to the feedback  
resistors? The resistive divider R1/R2 must be con-  
nected between the (+) plate of COUT and ground.  
3. Does the (+) plate of CIN connect to VIN as closely as  
possible? This capacitor provides the AC current to the  
internal power MOSFETs.  
A second, more severe transient is caused by switching in  
loads with large (>1µF) supply bypass capacitors. The  
dischargedbypasscapacitorsareeffectivelyputinparallel  
with COUT, causing a rapid drop in VOUT. No regulator can  
deliver enough current to prevent this problem if the load  
switch resistance is low and it is driven quickly. The only  
solution is to limit the rise time of the switch drive so that  
the load rise time is limited to approximately (25 • CLOAD).  
Thus, a 10µF capacitor charging to 3.3V would require a  
250µs rise time, limiting the charging current to about  
130mA.  
4. Keep the switching node, SW, away from the sensitive  
VFB node.  
5. Keepthe()platesofCIN andCOUT ascloseaspossible.  
PC Board Layout Checklist  
When laying out the printed circuit board, the following  
checklist should be used to ensure proper operation of the  
1
5
RUN  
V
FB  
LTC3406B-2  
GND  
R2  
R1  
2
3
+
C
V
OUT  
L1  
OUT  
C
FWD  
4
SW  
V
IN  
C
IN  
+
V
IN  
3406B F05  
BOLD LINES INDICATE HIGH CURRENT PATHS  
Figure 5. LTC3406B-2 Layout Diagram  
VIA TO GND  
R1  
R2  
V
IN  
VIA TO V  
IN  
VIA TO V  
OUT  
PIN 1  
C
FWD  
LTC3406B-2  
V
OUT  
SW  
L1  
C
OUT  
C
IN  
GND  
3406B F06  
Figure 6. LTC3406B-2 Suggested Layout  
sn3406b2 3406b2fs  
11  
LTC3406B-2  
W U U  
U
APPLICATIO S I FOR ATIO  
Design Example  
A 2.2µH inductor works well for this application. For best  
efficiency choose a 720mA or greater inductor with less  
than 0.2series resistance.  
CIN will require an RMS current rating of at least 0.3A ≅  
ILOAD(MAX)/2 at temperature and COUT will require an ESR  
of less than 0.25. In most cases, a ceramic capacitor will  
satisfy this requirement.  
As a design example, assume the LTC3406B-2 is used in  
a single lithium-ion battery-powered cellular phone  
application. The VIN will be operating from a maximum of  
4.2V down to about 2.7V. The load current requirement  
is a maximum of 0.6A but most of the time it will be in  
standbymode, requiringonly2mA. Efficiencyatbothlow  
and high load currents is important. Output voltage is  
2.5V. With this information we can calculate L using  
equation (1),  
For the feedback resistors, choose R1 = 316k. R2 can  
then be calculated from equation (2) to be:  
VOUT  
0.6  
1
VOUT  
V
IN  
R2 =  
1 R1= 1000k  
L =  
VOUT 1−  
(3)  
f IL  
( )(  
)
Figure 7 shows the complete circuit along with its effi-  
ciency curve.  
Substituting VOUT = 2.5V, VIN = 4.2V, IL = 240mA and  
f = 2.25MHz in equation (3) gives:  
2.5V  
1.5MHz(240mA)  
2.5V  
4.2V  
L =  
1−  
= 1.87µH  
2.2µH*  
V
IN  
4
1
3
5
V
OUT  
2.7V  
V
SW  
LTC3406B-2  
RUN  
IN  
2.5V  
22pF  
C
TO 4.2V  
IN  
C
**  
4.7µF  
CER  
OUT  
10µF  
CER  
V
FB  
1M  
GND  
2
316k  
3406B F07a  
*MURATA LQH32CN2R2M33  
**TAIYO YUDEN JHK316BJ106ML  
TAIYO YUDEN JMK212BJ475MG  
Figure 7a  
100  
V
= 2.5V  
OUT  
= 25°C  
A
T
90  
80  
70  
60  
50  
40  
30  
20  
10  
V
IN  
= 2.7V  
V
IN  
= 4.2V  
V
IN  
= 3.6V  
0.1  
1000  
1
10  
100  
OUTPUT CURRENT (mA)  
3406B G04  
Figure 7b  
sn3406b2 3406b2fs  
12  
LTC3406B-2  
U
TYPICAL APPLICATIO S  
Single Li-Ion 1.2V/600mA Regulator for  
High Efficiency and Small Footprint  
Load Step  
2.2µH*  
V
IN  
4
1
3
5
V
OUT  
2.7V  
V
SW  
LTC3406B-2  
RUN  
IN  
1.2V  
22pF  
301k  
V
C
TO 4.2V  
OUT  
IN  
100mV/DIV  
C
**  
4.7µF  
CER  
OUT  
AC COUPLED  
10µF  
CER  
I
V
L
FB  
500mA/DIV  
GND  
2
301k  
I
LOAD  
3406B TA09  
500mA/DIV  
*MURATA LQH32CN2R2M33  
**TAIYO YUDEN JHK316BJ106ML  
TAIYO YUDEN JMK212BJ475MG  
3406B TA11  
V
V
LOAD  
= 3.6V  
20µs/DIV  
IN  
= 1.2V  
OUT  
I
= 0mA TO 600mA  
Efficiency vs Output Current  
Load Step  
100  
V
T
= 1.2V  
OUT  
A
= 25°C  
90  
80  
70  
60  
50  
40  
30  
20  
10  
V
OUT  
100mV/DIV  
AC COUPLED  
I
L
V
= 3.6V  
IN  
500mA/DIV  
V
= 2.7V  
IN  
I
LOAD  
V
= 4.2V  
IN  
500mA/DIV  
3406B TA12  
V
V
LOAD  
= 3.6V  
20µs/DIV  
IN  
= 1.2V  
OUT  
I
= 100mA TO 600mA  
0.1  
1000  
1
10  
100  
OUTPUT CURRENT (mA)  
3406B G02  
sn3406b2 3406b2fs  
13  
LTC3406B-2  
U
TYPICAL APPLICATIO S  
5V Input to 3.3V/0.6A Regulator  
2.2µH*  
Load Step  
4
3
V
IN  
5V  
V
OUT  
3.3V  
V
SW  
LTC3406B-2  
RUN  
IN  
V
22pF  
1M  
OUT  
C
IN  
100mV/DIV  
C
**  
4.7µF  
CER  
OUT  
AC COUPLED  
10µF  
CER  
1
5
V
I
FB  
L
500mA/DIV  
GND  
2
221k  
I
LOAD  
3406B TA13  
500mA/DIV  
*MURATA LQH32CN2R2M33  
**TAIYO YUDEN JHK316BJ106ML  
TAIYO YUDEN JMK212BJ475MG  
3406B TA15  
V
V
LOAD  
= 3.6V  
20µs/DIV  
IN  
= 3.3V  
OUT  
I
= 0mA TO 600mA  
Efficiency vs Output Current  
Load Step  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
V
V
= 3.3V  
OUT  
IN  
= 5V  
V
OUT  
100mV/DIV  
AC COUPLED  
I
L
500mA/DIV  
I
LOAD  
500mA/DIV  
3406B TA16  
V
V
LOAD  
= 3.6V  
20µs/DIV  
IN  
= 3.3V  
OUT  
I
= 100mA TO 600mA  
0.1  
1000  
1
10  
100  
OUTPUT CURRENT (mA)  
3406B TA14  
sn3406b2 3406b2fs  
14  
LTC3406B-2  
U
PACKAGE DESCRIPTIO  
S5 Package  
5-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1635)  
0.62  
MAX  
0.95  
REF  
2.90 BSC  
(NOTE 4)  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45 TYP  
5 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
S5 TSOT-23 0302  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
sn3406b2 3406b2fs  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC3406B-2  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
90% Efficiency, V : 3.6V to 25V, V  
LT1616  
500mA (I ), 1.4MHz, High Efficiency Step-Down  
= 1.25V, I = 1.9mA,  
Q
OUT  
IN  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
DC/DC Converter  
I
< 1µA, ThinSOT Package  
SD  
LT1676  
450mA (I ), 100kHz, High Efficiency Step-Down  
90% Efficiency, V : 7.4V to 60V, V  
I
= 1.24V, I = 3.2mA,  
Q
OUT  
IN  
DC/DC Converter  
= 2.5µA, S8 Package  
SD  
LTC1877  
600mA (I ), 550kHz, Synchronous Step-Down  
95% Efficiency, V : 2.7V to 10V, V  
= 0.8V, I = 10µA,  
Q
OUT  
IN  
DC/DC Converter  
I
< 1µA, MS8 Package  
SD  
LTC1878  
600mA (I ), 550kHz, Synchronous Step-Down  
DC/DC Converter  
95% Efficiency, V : 2.7V to 6V, V  
= 0.8V, I = 10µA,  
OUT(MIN) Q  
OUT  
IN  
I
< 1µA, MS8 Package  
SD  
LTC1879  
1.2A (I ), 550kHz, Synchronous Step-Down  
DC/DC Converter  
95% Efficiency, V : 2.7V to 10V, V  
= 0.8V, I = 15µA,  
OUT  
IN  
OUT(MIN)  
Q
I
< 1µA, TSSOP-16 Package  
SD  
LTC3403  
600mA (I ), 1.5MHz, Synchronous Step-Down  
DC/DC Converter with Bypass Transistor  
96% Efficiency, V : 2.5V to 5.5V, V = Dynamically  
OUT(MIN)  
OUT  
IN  
Adjustable, I = 20µA, I < 1µA, DFN Package  
Q SD  
LTC3404  
600mA (I ), 1.4MHz, Synchronous Step-Down  
DC/DC Converter  
95% Efficiency, V : 2.7V to 6V, V  
= 0.8V, I = 10µA,  
OUT(MIN) Q  
OUT  
IN  
I
< 1µA, MS8 Package  
SD  
LTC3405/LTC3405A  
LTC3406/LTC3406B  
LTC3407  
300mA (I ), 1.5MHz, Synchronous Step-Down  
DC/DC Converter  
96% Efficiency, V : 2.5V to 5.5V, V  
= 0.8V, I = 20µA,  
Q
OUT  
IN  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
I
< 1µA, ThinSOT Package  
SD  
600mA (I ), 1.5MHz, Synchronous Step-Down  
96% Efficiency, V : 2.5V to 5.5V, V  
= 0.6V, I = 20µA,  
Q
OUT  
IN  
DC/DC Converter  
I
< 1µA, ThinSOT Package  
SD  
Dual Output (600mA × 2) 1.5MHz Synchronous  
Step-Down DC/DC Converter  
95% Efficiency V : 2.5V to 5.5V, V  
= 0.6V, I = 40µA,  
IN  
Q
MS10E Package  
LTC3408  
600mA (I ), 1.5MHz Synchronous Step-Down  
DC/DC Converter with 0.08Bypass Transistor  
96% Efficiency, V : 2.5V to 5.5V, V = Dynamically  
OUT(MIN)  
OUT  
IN  
Adjustable, I = 1.5mA, I < 1µA, DFN Package  
Q SD  
LTC3411  
1.25A (I ), 4MHz, Synchronous Step-Down  
DC/DC Converter  
95% Efficiency, V : 2.5V to 5.5V, V  
= 0.8V, I = 60µA,  
Q
OUT  
IN  
OUT(MIN)  
OUT(MIN)  
I
< 1µA, MS Package  
SD  
LTC3412  
2.5A (I ), 4MHz, Synchronous Step-Down  
95% Efficiency, V : 2.5V to 5.5V, V  
= 0.8V, I = 60µA,  
Q
OUT  
IN  
DC/DC Converter  
I
< 1µA, TSSOP-16E Package  
SD  
LTC3414  
4A (I ), 4MHz, Synchronous Step-Down  
DC/DC Converter  
95% Efficiency, V : 2.25V to 5.5V, V  
TSSOP-20E Package  
= 0.8V, I = 64µA,  
OUT(MIN) Q  
OUT  
IN  
LTC3440  
600mA (I ), 2MHz, Synchronous Buck-Boost  
DC/DC Converter  
95% Efficiency, V : 2.5V to 5.5V, V : 2.5V to 5.5V, I = 25µA,  
OUT  
IN  
OUT  
Q
I
< 1µA, MS Package  
SD  
LTC3441  
1A (I ), 1MHz, Synchronous Buck-Boost  
DC/DC Converter  
95% Efficiency, V : 2.5V to 5.5V, V : 2.4V to 5.25V, I = 25µA,  
DFN Package  
OUT  
IN  
OUT  
Q
sn3406b2 3406b2fs  
LT/TP 0204 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
©LINEAR TECHNOLOGY CORPORATION 2003  

相关型号:

LTC3406B-2ES5#TRM

LTC3406B-2 - 2.25MHz, 600mA Synchronous Step-Down Regulator in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3406BES5

1.5MHz, 600mA Synchronous Step-Down Regulator in ThinSOT
Linear

LTC3406BES5#TRPBF

暂无描述
Linear

LTC3406BES5-1.2

1.5MHz, 600mA Synchronous Step-Down Regulator in ThinSOT
Linear

LTC3406BES5-1.2#TRM

LTC3406B-1.2 - 1.5MHz, 600mA Synchronous Step-Down Regulator in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3406BES5-1.5

1.5MHz, 600mA Synchronous Step-Down Regulator in ThinSOT
Linear

LTC3406BES5-1.5#TR

LTC3406B - 1.5MHz, 600mA Synchronous Step-Down Regulator in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3406BES5-1.5#TRMPBF

LTC3406B - 1.5MHz, 600mA Synchronous Step-Down Regulator in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3406BES5-1.8

1.5MHz, 600mA Synchronous Step-Down Regulator in ThinSOT
Linear
Linear

LTC3406BES5-1.8#TRM

LTC3406B - 1.5MHz, 600mA Synchronous Step-Down Regulator in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3406BES5-1.8#TRMPBF

LTC3406B - 1.5MHz, 600mA Synchronous Step-Down Regulator in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear