LTC3427 [Linear]

500mA, 1.25MHz Synchronous Step-Up DC/DC Converter in 2mm × 2mm DFN Package; 采用2mm × 2mm DFN封装500毫安, 1.25MHz的同步升压型DC / DC转换器
LTC3427
型号: LTC3427
厂家: Linear    Linear
描述:

500mA, 1.25MHz Synchronous Step-Up DC/DC Converter in 2mm × 2mm DFN Package
采用2mm × 2mm DFN封装500毫安, 1.25MHz的同步升压型DC / DC转换器

转换器
文件: 总12页 (文件大小:200K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3427  
500mA, 1.25MHz  
Synchronous Step-Up  
DC/DC Converter in  
2mm × 2mm DFN Package  
U
FEATURES  
DESCRIPTIO  
The LTC®3427 is the industry’s first high efficiency, fixed  
frequency, step-up DC/DC converter with true output  
disconnect in a 6-lead 2mm × 2mm DFN package. Requir-  
ing minimal external components, the LTC3427 operates  
from an input voltage as low as 1.8V. The LTC3427  
contains an internal 0.525N-channel MOSFET switch  
and a 0.575P-channel MOSFET synchronous rectifier,  
which enables it to supply 200mA at 3.3V from a 2-cell  
alkaline battery input.  
High Efficiency: Up to 94%  
3.3V at 200mA from Two Alkaline Cells  
5V at 200mA from a Single Li-Ion Cell  
Inrush Current Limiting and Soft-Start  
Output Disconnect in Shutdown  
1.8V to 5V VIN Range  
1.8V to 5.25V VOUT Range  
1.25MHz Fixed Frequency, Low Noise PWM  
Internal Synchronous Rectifier  
Logic Controlled Shutdown (<1µA)  
The LTC3427 limits inrush current during start-up and  
provides a soft-start of VOUT. A switching frequency of  
1.25MHz minimizes solution footprint by allowing the use  
of tiny, low profile inductors and ceramic capacitors and  
produces very low VOUT ripple. The current mode PWM  
design is internally compensated, reducing external parts  
count. Anti-ringing control reduces EMI in discontinuous  
mode operation. The LTC3427 also features low shut-  
down current of under 1µA and thermal shutdown.  
Anti-Ringing Control Minimizes EMI  
Tiny External Components  
Short-Circuit Protection  
Low Profile (0.75mm × 2mm × 2mm) DFN Package  
U
APPLICATIO S  
Handheld Instruments  
Digital Cameras  
Wireless Handsets  
GPS Receivers  
Portable Medical Devices  
MP3 Players  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
TYPICAL APPLICATIO  
2.4V to 3.3V Efficiency  
2-Cell Alkaline to 3.3V Synchronous Boost Converter  
100  
95  
90  
85  
80  
75  
70  
1000  
100  
10  
4.7µH  
V
IN  
1.8V TO 3.2V  
EFFICIENCY  
+
2-CELL  
ALKALINE  
2.2µF  
V
SW  
IN  
LTC3427  
V
OUT  
3.3V  
OFF ON  
SHDN  
V
OUT  
FB  
200mA  
1000k  
604k  
POWER LOSS  
4.7µF  
GND  
10  
100  
1000  
3427 TA01a  
LOAD CURRENT (mA)  
3427 TA01b  
3427fa  
1
LTC3427  
W W  
U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
VIN, VOUT Voltages ...................................... 0.3V to 6V  
SHDN, FB Voltages ..................................... 0.3V to 6V  
SW Voltage  
DC .......................................................... 0.3V to 6V  
Pulsed < 100ns ...................................... 0.3V to 7V  
Operating Temperature Range  
6
5
7
2
4
3
1
(Notes 2, 5) ............................................ 40°C to 85°C  
Storage Temperature Range ................ 65°C to 125°C  
DC PACKAGE  
6-LEAD (2mm × 2mm) PLASTIC DFN  
TJMAX = 125°C, θJA = 60°C/W TO 85°C/W  
EXPOSED PAD (PIN 7) IS GND, MUST BE SOLDERED TO PCB  
ORDER PART NUMBER  
DC PART MARKING  
LBSY  
LTC3427EDC  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The  
IN  
denotes specifications which apply over the full operating temperature range, otherwise specifications are T = 25°C.  
A
V
= 2.4V, V  
= 3.3V unless otherwise specified.  
OUT  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
1.8  
5.25  
1.265  
50  
UNITS  
V
Minimum Start-Up Voltage  
Output Voltage Adjust Range  
Feedback Voltage  
I
< 1mA  
1.6  
LOAD  
1.8  
V
1.215  
1.24  
1
V
Feedback Input Current  
Quiescent Current—Shutdown  
Quiescent Current—Active  
NMOS Switch Leakage  
PMOS Switch Leakage  
NMOS Switch-On Resistance  
PMOS Switch-On Resistance  
NMOS Current Limit  
V
V
V
= 1.24V  
nA  
µA  
µA  
µA  
µA  
FB  
= 0V, V  
= 0V  
0.01  
350  
0.1  
1
SHDN  
OUT  
= 1.5V (Note 3)  
550  
5
FB  
0.1  
5
0.525  
0.575  
500  
80  
mA  
ns  
%
Current Limit Delay to Output  
Maximum Duty Cycle  
Minimum Duty Cycle  
Frequency  
(Note 4)  
40  
87  
V
V
= 1V  
FB  
FB  
= 1.5V  
0
%
0.9  
1
1.25  
1.5  
MHz  
V
SHDN Input High  
SHDN Input Low  
0.35  
1
V
SHDN Input Current  
V
= 5.5V  
0.01  
2
µA  
ms  
SHDN  
Soft-Start Time  
3427fa  
2
LTC3427  
ELECTRICAL CHARACTERISTICS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: Specification is guaranteed by design and not 100% tested in  
production.  
Note 5: The LTC3427 includes an overtemperature shutdown that is  
intended to protect the device during momentary overload conditions.  
Junction temperature will exceed 125°C when the overtemperature  
shutdown is active. Continuous operation above the specified maximum  
operating junction temperature may impair device reliability.  
Note 2: The LTC3427E is guaranteed to meet performance specifications  
from 0°C to 70°C. Specifications over the –40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
Note 3: Current is measured into the V  
bootstrapped to the output. The current will reflect to the input supply by:  
pin since the supply current is  
OUT  
(V /V ) • Efficiency. The outputs are not switching.  
OUT IN  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
T = 25°C unless otherwise specified.  
A
2-Cell Alkaline to 3.3V Efficiency  
2-Cell Alkaline to 5V Efficiency  
Li-Ion to 5V Efficiency  
100  
95  
100  
95  
100  
95  
V
= 4.2V  
V
= 3.1V  
IN  
IN  
90  
90  
90  
V
= 3.6V  
V
= 3.2V  
V
= 2.4V  
IN  
IN  
IN  
85  
85  
85  
V
= 2.4V  
IN  
80  
75  
80  
75  
80  
75  
V
= 1.8V  
V
= 3.1V  
IN  
IN  
V
= 1.8V  
IN  
70  
65  
60  
55  
50  
70  
65  
60  
55  
50  
70  
65  
60  
55  
50  
1
10  
100  
1000  
1
10  
100  
1000  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
3427 G02  
3427 G03  
3427 G01  
Inrush Current Control  
Load Transient Response  
V
Ripple, AC Coupled  
OUT  
V
OUT  
I
LOAD  
100mV/DIV  
V
100mA  
OUT  
AC COUPLED  
1V/DIV  
I
LOAD  
I
OUT  
50mA  
INDUCTOR  
CURRENT  
100mA/DIV  
40mA  
I
LOAD  
TO 100mA  
10mA  
3427 G13  
SHDN  
5V/DIV  
V
V
= 2.4V  
500ns/DIV  
IN  
OUT  
= 3.3V  
3427 G05  
3427 G04  
L = 4.7µH  
V
V
C
= 1.8V  
100µs/DIV  
V
C
= 2.4V  
500µs/DIV  
IN  
IN  
OUT  
C
= 2.2µF  
= 4.7µF  
OUT  
= 3.3V  
= 22µF  
IN  
OUT  
OUT  
C
= 4.7µF  
L = 4.7µH  
L = 4.7µH  
3427fa  
3
LTC3427  
TYPICAL PERFOR A CE CHARACTERISTICS T = 25°C unless otherwise specified.  
U W  
A
FB Voltage vs Temperature  
Efficiency vs V  
IN  
Current Limit  
0.90  
0.80  
0.70  
0.60  
0.50  
100  
90  
80  
70  
60  
50  
40  
1.25  
1.24  
1.23  
V
V
= 2.4V  
V
V
= 2.4V  
IN  
OUT  
V
I
= 3.3V  
= 100mA  
IN  
OUT  
OUT  
OUT  
= 3.3V  
= 3.3V  
V
> V  
OUT  
IN  
PMOS LDO MODE  
–45 –30 –15  
0
15 30 45 60 75 90  
–45 –30 –15  
0
15 30 45 60 75 90  
1.5  
2.5  
3.5  
(V)  
4.5  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
IN  
3427 G06  
3427 G07  
3427 G08  
Frequency Accuracy  
vs Temperature  
SW Pin Anti-Ringing Operation  
1.35  
1.30  
1.25  
1.20  
1.15  
V
V
= 2.4V  
IN  
OUT  
= 3.3V  
INDUCTOR  
CURRENT  
50mA/DIV  
SW  
2V/DIV  
3427 G10  
V
V
C
= 1.8V  
200ns/DIV  
IN  
= 3.3V  
OUT  
OUT  
= 4.7µF  
L = 4.7µH  
–45 –30 –15  
0
15 30 45 60 75 90  
TEMPERATURE (°C)  
3427 G09  
R
vs Temperature  
V
Supply Current (No Load)  
DS(ON)  
IN  
0.45  
0.40  
0.35  
0.30  
0.70  
V
V
= 2.4V  
= 3.3V  
T
A
V
= 25°C  
IN  
OUT  
= V  
= V  
OUT FB  
IN  
0.65  
0.60  
PMOS  
0.55  
0.50  
NMOS  
0.45  
0.40  
0.35  
–45 –30 –15  
0
15 30 45 60 75 90  
1.5  
2.5  
3.5  
(V)  
4.5  
5.5  
TEMPERATURE (°C)  
V
IN  
3427 G11  
3427 G12  
3427fa  
4
LTC3427  
U
U
U
PI FU CTIO S  
SW (Pin 1): Switch Pin for the Inductor Connection.  
Minimize trace length between SW and the inductor. For  
discontinuous inductor current, an internal 200imped-  
ance is connected from SW to VIN to eliminate high  
frequency ringing, reducing EMI radiation.  
FB (Pin 5): Feedback Input to the Error Amplifier. Connect  
resistor divider tap to this pin. Referring to the Block  
Diagram, VOUT can be adjusted from 1.8V to 5.25V by:  
R1  
R2  
VOUT = 1.24V • 1+  
GND (Pin 2): Signal and Power Ground. Provide a short,  
direct PCB path between GND and the (–) side of the input  
and output capacitor(s).  
VOUT (Pin 6): Output Voltage Sense Input and Drain of the  
Internal Synchronous Rectifier MOSFET. Driver bias is  
derived from VOUT. PCB trace length from VOUT to the  
output filter capacitor(s) should be as short and wide as  
possible.  
VIN (Pin 3): Input Supply Voltage. Connect VIN to the input  
supply and decouple with a 2.2µF or larger ceramic  
capacitor as close to VIN as possible.  
SHDN (Pin 4): Shutdown Input. Less than 350mV on  
SHDN shuts down the LTC3427. Placing 1V or more on  
SHDN enables the LTC3427.  
Exposed Pad (Pin 7): Ground for the LTC3427. This pin  
must be soldered to the PCB ground plane for electrical  
connection and rated thermal performance.  
W
BLOCK DIAGRA  
L1  
4.7µH  
OPTIONAL  
V
IN  
1.8V TO 5V  
+
C
IN  
2.2µF  
4
3
1
V
IN  
SW  
BULK CONTROL  
SIGNALS  
SHDN  
V
IN  
ANTIRING  
V
OUT  
V
OUT  
1.8V TO 5.25V  
SHUTDOWN  
AND  
6
SHDN  
V
BIAS  
PWM  
LOGIC  
AND  
+
DRIVERS  
IZERO  
COMP  
CURRENT  
SENSE  
1.24V  
1V  
REFERENCE  
PWM  
COMP  
– +  
GAIN ERROR  
AMPLIFIER  
R1  
R2  
THERMAL  
SHUTDOWN  
FB  
C
OUT  
4.7µF  
+
5
+
1.24V  
Σ
I
LIM  
REF  
+
SLOPE COMPENSATION  
START-UP  
SOFT-START  
OSCILLATOR  
GND  
2
EXPOSED PAD  
7
3427 BD  
3427fa  
5
LTC3427  
U
(Refer to Block Diagram)  
OPERATIO  
of input or output voltage. The current signal is blanked for  
approximately 25ns to enhance noise rejection.  
LOW NOISE FIXED FREQUENCY OPERATION  
Shutdown  
Current Limit  
The LTC3427 is shut down by pulling the SHDN pin below  
0.35V, and activated by pulling the SHDN pin above 1V.  
Note that SHDN can be driven above VIN or VOUT as long  
as it is limited to less than the absolute maximum rating.  
The current limit circuitry shuts off the internal N-channel  
MOSFETswitchwhenthecurrentlimitthresholdisreached.  
The current limit comparator delay to output is typically  
40ns.  
Soft-Start  
Zero Current Comparator  
The LTC3427 provides soft-start by ramping the peak  
inductorcurrentfromzerotoitspeakvalueof500mA. The  
soft-start time is typically 2ms. A soft-start cycle is re-  
initiated in the event of a commanded shutdown or a  
thermal shutdown.  
The zero current comparator monitors the inductor cur-  
rent to the output and shuts off the synchronous rectifier  
once this current reduces to approximately 20mA.  
Anti-Ringing Control  
Oscillator  
The anti-ringing control connects a resistor across the  
inductor to damp the ringing on the SW pin in discontinu-  
ous conduction mode. The LCSW ringing (L = Inductor,  
CSW = capacitance on the SW pin) is low energy, but can  
cause EMI radiation.  
The frequency of operation is set by an internal oscillator  
to 1.25MHz for the LTC3427.  
Error Amplifier  
The error amplifier is a transconductance type with its  
positive input internally connected to the 1.24V reference  
and the negative input connected to FB. Internal clamps  
limit the minimum and maximum error amplifier output  
voltage for improved large-signal transient response.  
Power converter control loop compensation is provided  
internally by the error amplifier. A voltage divider from  
VOUT to ground programs the output voltage via FB from  
1.8V to 5.25V.  
Output Disconnect and Inrush Limiting  
The LTC3427 provides true output disconnect by elimi-  
nating body diode conduction of the internal P-channel  
MOSFET rectifier. This allows VOUT to go to zero volts  
during shutdown without drawing any current from the  
input source. It also provides inrush current limiting at  
turn-on, minimizing surge currents seen by the input  
supply. Note that to obtain the advantages of output  
disconnect,theremustnotbeanyexternalSchottkydiode  
R1  
R2  
connected between SW and VOUT  
.
VOUT = 1.24V • 1+  
Thermal Shutdown  
The error amplifier also provides a soft-start feature  
internal to the device.  
If the die temperature reaches approximately 145°C, the  
part will go into thermal shutdown. All switches will be  
turned off. The device will be enabled and initiate a soft-  
start sequence when the die temperature drops by  
approximately 10°C.  
Current Sensing  
Lossless current sensing converts the peak current signal  
of the N-channel MOSFET switch into a voltage that is  
summed with the internal slope compensation. The  
summedsignaliscomparedtotheerroramplifieroutputto  
provideapeakcurrentcontrolcommandforthePWM.Peak  
switch current is limited to 500mA minimum, independent  
Note:DuetothehighfrequencyoperationoftheLTC3427,  
board layout is extremely critical to minimize transients  
due to stray inductance. Keep the output filter capacitor as  
close as possible to the VOUT pin and use very low ESR/  
ESL ceramic capacitors tied to a good ground plane.  
3427fa  
6
LTC3427  
W U U  
APPLICATIO S I FOR ATIO  
U
LTC3427  
SW  
V
OUT  
1
2
3
6
5
4
MINIMIZE  
TRACE ON FB  
GND  
FB  
V
SHDN  
IN  
+
V
IN  
MULTIPLE VIAS  
TO GROUND PLANE  
3427 F01  
Figure 1. Recommended Component Placement for a Single Layer Board. Traces Carrying High Current are Direct (GND, SW, V ,  
IN  
V
). Trace Area at FB is Kept Low. Lead Length to Battery Should be Kept Short. V and V  
Ceramic Capacitors Should be as  
OUT  
IN  
OUT  
Close to the LTC3427 as Possible. A Multilayer Board with a Separate Ground Plane is Ideal, but not Absolutely Necessary  
The inductor current ripple is typically set for 20% to 40%  
of the maximum inductor current (IP). High frequency  
ferrite core inductor materials reduce frequency depen-  
dent power losses compared to cheaper powdered iron  
types, improving efficiency. The inductor should have low  
ESR (series resistance of the windings) to reduce the I2R  
power losses, and must be able to handle the peak  
inductor current without saturating. Molded chokes and  
some chip inductors usually do not have enough core to  
support the peak inductor currents of greater than 500mA  
seen on the LTC3427. To minimize radiated noise, use a  
toroid, pot core or shielded bobbin inductor. See Table 1  
for suggested suppliers.  
COMPONENT SELECTION  
Inductor Selection  
The LTC3427 can utilize small surface mount and chip  
inductors due to its fast 1.25MHz switching frequency. A  
minimum inductance value of 3.3µH is necessary for 3.6V  
and lower voltage applications and a 4.7µH for output  
voltages greater than 3.6V. Larger values of inductance  
will allow greater output current capability by reducing the  
inductor ripple current. Increasing the inductance above  
10µH will increase size while providing little improvement  
in output current capability.  
The approximate output current capability of the LTC3427  
vs Inductance value is given below in Equation 1 and  
illustrated graphically in Figure 2.  
Output and Input Capacitor Selection  
Low ESR (equivalent series resistance) capacitors should  
be used to minimize the output voltage ripple. Multilayer  
ceramic capacitors are an excellent choice as they have  
extremely low ESR and are available in small footprints. A  
2.2µF to 10µF output capacitor is sufficient for most  
applications. Larger values up to 22µF may be used to  
obtain extremely low output voltage ripple and improve  
transient response. An additional phase lead capacitor  
mayberequiredwithoutputcapacitorslargerthan10µFto  
maintain acceptable phase margin. X5R and X7R dielec-  
tric materials are preferred for their ability to maintain  
capacitance over wide voltage and temperature ranges.  
V D  
f L • 2  
IN  
IOUT(MAX) = n • IP –  
• 1D  
(
)
(1)  
where:  
n = estimated efficiency  
IP = peak current limit value (0.5A min)  
VIN = input (battery) voltage  
D = steady-state duty ratio = (VOUT – VIN)/VOUT  
f = switching frequency (1.25MHz typical)  
L = inductance value  
3427fa  
7
LTC3427  
W U U  
U
APPLICATIO S I FOR ATIO  
Table 1. Inductor Vendor Information  
SUPPLIER  
PHONE  
FAX  
WEBSITE  
Murata  
USA: (814) 237-1431  
(800) 831-9172  
USA: (814) 238-0490  
www.murata.com  
Sumida  
USA: (847) 956-0666  
Japan: 81-3-3607-5111  
USA: (847) 956-0702  
Japan: 81-3-3607-5144  
www.sumida.com  
Coilcraft  
(847) 639-6400  
(800) 227-7040  
(847) 639-1469  
(650) 361-2508  
www.coilcraft.com  
CoEv Magnetics  
www.circuitprotection.com/magnetics.asp  
TDK  
(847) 803-6100  
(847) 297-0070  
(201) 785-8800  
(847) 803-6296  
(847) 669-7864  
(201) 785-8810  
www.component.tdk.com  
www.toko.com  
TOKO  
Wurth  
www.we-online.com  
0.280  
Table 2. Capacitor Vendor Information  
SUPPLIER PHONE FAX  
1.8V TO 3V  
3.1V TO 5V  
0.260  
0.240  
0.220  
0.200  
0.180  
0.160  
0.140  
0.120  
0.100  
WEBSITE  
1.8V TO 3.3V  
AVX  
(803) 448-9411 (803) 448-1943 www.avxcorp.com  
(619) 661-6322 (619) 661-1055 www.sanyovideo.com  
Sanyo  
1.8V TO 3.6V  
TDK  
(847) 803-6100 (847) 803-629  
USA: USA:  
www.component.  
tdk.com  
1.8V TO 5V  
Murata  
www.murata.com  
(814) 237-1431 (814) 238-0490  
(800) 831-9172  
Taiyo  
(408) 573-4150 (408) 573-4159 www.t-yuden.com  
3
5
7
9
11 13  
23  
15 17 19 21  
Yuden  
INDUCTANCE (µH)  
3427 F02  
Figure 2. Maximum Output Current vs  
Inductance Based on 90% Efficiency  
Thermal Considerations  
To deliver the power that the LTC3427 is capable of, it is  
imperative that a good thermal path be provided to dissi-  
pate the heat generated within the package. This can be  
accomplished by taking advantage of the large thermal  
pad on the underside of the LTC3427. It is recommended  
that multiple vias in the printed circuit board be used to  
conduct heat away from the LTC3427 and into the copper  
plane with as much area as possible. In the event that the  
junction temperature gets too high, the LTC3427 will go  
into thermal shutdown and all switching will stop until the  
internaltemperaturedropsatwhichpointasoft-startcycle  
will be initiated.  
Low ESR input capacitors reduce input switching noise  
and reduce the peak current drawn from the battery. It  
follows that ceramic capacitors are also a good choice for  
input decoupling and should be located as close as pos-  
sible to the device. A 2.2µF input capacitor is sufficient for  
virtually any application. Larger values may be used with-  
out limitations. Table 2 shows a list of several ceramic  
capacitor manufacturers. Consult the manufacturers di-  
rectly for detailed information on their entire selection of  
ceramic capacitors.  
3427fa  
8
LTC3427  
W U U  
APPLICATIO S I FOR ATIO  
U
VIN > VOUT Operation  
Short-Circuit Protection  
The LTC3427 will maintain voltage regulation when the  
input voltage is above the output voltage. This is achieved  
by terminating the switching of the synchronous P-chan-  
nel MOSFET and applying VIN statically on its gate. This  
will ensure the volt • seconds across the inductor reverse  
during the time current is flowing to the output. Since this  
mode will dissipate more power in the LTC3427, the  
maximum output current is limited in order to maintain an  
acceptable junction temperature and is given by:  
The LTC3427 output disconnect feature allows output  
short circuit while maintaining a maximum internally set  
current limit. However, the LTC3427 also incorporates  
internal features such as current limit foldback and ther-  
mal shutdown for protection from an excessive overload  
or short circuit. During a prolonged short circuit the  
current limit folds back to a typical value of approximately  
400mA should VOUT drop below 950mV. This 400mA  
current limit remains in effect until VOUT exceeds approxi-  
mately 1V, at which time the nominally internally set  
current limit is restored.  
125 – TA  
IOUT(MAX)  
=
85 • V + 1.5 – V  
(
)
IN  
OUT  
where TA = ambient temperature.  
For example at VIN = 4.5V, VOUT = 3.3V, and TA = 85°C, the  
maximum output current is 145mA.  
3427fa  
9
LTC3427  
U
TYPICAL APPLICATIO S  
L1  
4.7µH  
2-Cell to 3.3V Efficiency  
V
IN  
100  
95  
1.8V TO 3.2V  
+
2-CELL  
ALKALINE  
C
IN  
2.2µF  
V
= 3.1V  
IN  
90  
V
SW  
IN  
V
= 2.4V  
IN  
85  
LTC3427  
V
OUT  
80  
75  
3.3V  
OFF ON  
SHDN  
V
OUT  
FB  
V
= 1.8V  
IN  
200mA  
1000k  
604k  
C
OUT  
4.7µF  
70  
65  
60  
55  
50  
GND  
C
: TAIYO YUDEN X5R JMK212BJ225MD  
OUT  
IN  
3427 F03a  
C
: TAIYO YUDEN X5R JMK212BJ475MD  
L1: TDK RLF7030T-4R7M3R4  
1
10  
100  
1000  
LOAD CURRENT (mA)  
Figure 3. 2-Cell Alkaline to 3.3V Synchronous Boost Converter  
3427 G01  
L1  
4.7µH  
2-Cell to 5V Efficiency  
V
IN  
100  
95  
1.8V TO 3.2V  
+
2-CELL  
C
IN  
2.2µF  
ALKALINE  
90  
V
SW  
IN  
V
= 3.2V  
IN  
85  
LTC3427  
V
= 2.4V  
V
IN  
OUT  
80  
75  
5V  
OFF ON  
SHDN  
V
OUT  
FB  
150mA  
1000k  
332k  
V
= 1.8V  
IN  
C
OUT  
4.7µF  
70  
65  
60  
55  
50  
GND  
C
OUT  
: TAIYO YUDEN X5R JMK212BJ225MD  
IN  
3427 F04a  
C
: TAIYO YUDEN X5R JMK212BJ475MD  
L1: TDK RLF7030T-4R7M3R4  
1
10  
100  
1000  
LOAD CURRENT (mA)  
Figure 4. 2-Cell Alkaline to 5V Synchronous  
Boost Converter with Output Disconnect  
3427 G03  
Li-Ion to 5V Synchronous Boost Converter  
Li-Ion to 5V Efficiency  
100  
95  
L1  
4.7µH  
V
IN  
V
= 4.2V  
IN  
3.1V TO 4.2V  
90  
+
C
V
= 3.6V  
IN  
Li-Ion  
IN  
2.2µF  
85  
V
SW  
IN  
80  
75  
V
= 3.1V  
LTC3427  
IN  
V
OUT  
5V  
OFF ON  
SHDN  
V
OUT  
FB  
70  
65  
60  
55  
50  
250mA  
1000k  
332k  
C
OUT  
GND  
C
C
: TAIYO YUDEN X5R JMK212BJ225MD  
IN  
OUT  
4.7µF  
: TAIYO YUDEN X5R JMK212BJ475MD  
L1: TDK RLF7030T-4R7M3R4  
3427 TA02a  
1
10  
100  
1000  
LOAD CURRENT (mA)  
3427 G02  
3427fa  
10  
LTC3427  
U
PACKAGE DESCRIPTIO  
DC Package  
6-Lead Plastic DFN (2mm × 2mm)  
(Reference LTC DWG # 05-08-1703)  
0.675 ±0.05  
2.50 ±0.05  
0.61 ±0.05  
1.15 ±0.05  
(2 SIDES)  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50 BSC  
1.42 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
TYP  
0.56 ± 0.05  
(2 SIDES)  
0.38 ± 0.05  
4
6
2.00 ±0.10  
(4 SIDES)  
PIN 1 BAR  
PIN 1  
TOP MARK  
CHAMFER OF  
(SEE NOTE 6)  
EXPOSED PAD  
(DC6) DFN 1103  
3
1
0.25 ± 0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
1.37 ±0.05  
(2 SIDES)  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WCCD-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3427fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC3427  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT®1613  
800mA I , 1.4MHz, Step-Up DC/DC Converter  
V : 1.1V to 10V, V  
5-Lead SOT-23 Package  
= 34V, I = 3mA, I < 1µA,  
SW  
IN  
OUT(MAX) Q SD  
LT1615  
350mA I , Micropower, Step-Up DC/DC Converter  
V : 1.2V to 15V, V  
= 34V, I = 20µA, I < 1µA,  
Q SD  
SW  
IN  
OUT(MAX)  
ThinSOTTM Package  
LT1618  
1.5A I , 1.4MHz, Constant Current/Constant Voltage  
Step-Up DC/DC Converter  
V : 1.6V to 18V, V  
DFN, MSOP Packages  
= 35V, I = 1.8mA, I < 1µA,  
Q SD  
SW  
IN  
OUT(MAX)  
LT1930/LT1930A  
1A I , 1.2MHz/2.2MHZ, Step-Up DC/DC Converters  
V : 2.6V to 16V, V  
ThinSOT Package  
= 34V, I = 4.2mA/5.5mA, I < 1µA,  
SW  
IN  
OUT(MAX)  
Q
SD  
LTC3400/LTC3400B 600mA I , 1.2MHz, Synchronous Step-Up  
92% Efficiency V : 0.85V to 5V, V  
= 5V, I = 19µA/300µA,  
OUT(MAX) Q  
SW  
IN  
DC/DC Converters  
I
< 1µA, ThinSOT Package  
SD  
LTC3401  
1A I , 3MHz, Synchronous Step-Up DC/DC Converter  
97% Efficiency V : 0.5V to 5V, V  
10-Lead MS Package  
= 6V, I = 38µA, I < 1µA,  
Q SD  
SW  
IN  
OUT(MAX)  
LTC3402  
2A I , 3MHz, Synchronous Step-Up DC/DC Converter  
97% Efficiency V : 0.5V to 5V, V  
10-Lead MS Package  
= 6V, I = 38µA, I < 1µA,  
Q SD  
SW  
IN  
OUT(MAX)  
LTC3421  
3A I , 3MHz, Synchronous Step-Up  
DC/DC Converter with Output Disconnect  
95% Efficiency V : 0.5V to 4.5V, V  
= 5.25V, I = 12µA,  
Q
SW  
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
I
< 1µA, QFN24 Package  
SD  
LTC3422  
1.5A I , 3MHz Synchronous Step-Up  
95% Efficiency V : 0.5V to 4.5V, V  
= 5.25V, I = 25µA,  
Q
SW  
IN  
DC/DC Converter with Output Disconnect  
I
< 1µA, 3mm × 3mm DFN Package  
SD  
LTC3423/LTC3424  
LTC3426  
1A/2A I , 3MHz, Synchronous Step-Up DC/DC Converter 95% Efficiency V : 0.5V to 5.5V, V  
= 5.5V, I = 38µA,  
Q
SW  
IN  
I
< 1µA, 10-Lead MS Package  
SD  
2A I , 1.2MHz, Step-Up DC/DC Converter  
92% Efficiency V : 1.6V to 4.3V, V  
= 5V, I < 1µA,  
SD  
SW  
IN  
SOT-23 Package  
LTC3428  
500mA I , 1.25MHz/2.5MHz, Synchronous Step-Up  
DC/DC Converters with Output Disconnect  
92% Efficiency V : 1.8V to 5V, V  
2mm × 2mm DFN Package  
= 5.25V, I < 1µA,  
OUT(MAX) SD  
SW  
IN  
LTC3429  
600mA I , 500kHz, Synchronous Step-Up DC/DC  
Converter with Output Disconnect and Soft-Start  
96% Efficiency V : 0.5V to 4.4V, V  
= 5V, I = 20µA/300µA,  
OUT(MAX) Q  
SW  
IN  
I
< 1µA, ThinSOT Package  
SD  
LTC3458  
1.4A I , 1.5MHz, Synchronous Step-Up DC/DC  
Converter/Output Disconnect/Burst Mode Operation  
93% Efficiency V : 1.5V to 6V, V  
= 7.5V, I = 15µA,  
OUT(MAX) Q  
SW  
IN  
I
< 1µA, DFN12 Package  
SD  
LTC3458L  
LTC3459  
1.7A I , 1.5MHz, Synchronous Step-Up DC/DC Converter 94% Efficiency V  
= 6V, I = 12µA, DFN12 Package  
SW  
OUT(MAX) Q  
with Output Disconnect, Automatic Burst Mode® Operation  
70mA I , 10V Micropower Synchronous Boost  
V : 1.5V to 5.5V, V  
ThinSOT Package  
= 10V, I = 10µA, I < 1µA,  
SW  
IN  
OUT(MAX)  
Q
SD  
Converter/Output Disconnect/Burst Mode Operation  
LTC3525-3.3  
LTC3525-5  
400mA Micropower Synchronous Step-Up  
DC/DC Converter with Output Disconnect  
95% Efficiency V : 1V to 4.5V, V  
= 3.3V or 5V, I = 7µA,  
OUT(MAX) Q  
IN  
I
< 1µA, SC-70 Package  
SD  
ThinSOT is a trademark of Linear Technology Corporation. Burst Mode is a registered trademark of Linear Technology Corporation.  
3427fa  
LT 0406 REV A • PRINTED IN THE USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2005  

相关型号:

LTC3427EDC

500mA, 1.25MHz Synchronous Step-Up DC/DC Converter in 2mm × 2mm DFN Package
Linear

LTC3427EDC#PBF

暂无描述
Linear

LTC3427EDC#TR

LTC3427 - 500mA, 1.25MHz Synchronous Step-Up DC/DC Converter in 2mm x 2mm DFN Package; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3427EDC#TRM

LTC3427 - 500mA, 1.25MHz Synchronous Step-Up DC/DC Converter in 2mm x 2mm DFN Package; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3427EDC#TRMPBF

LTC3427 - 500mA, 1.25MHz Synchronous Step-Up DC/DC Converter in 2mm x 2mm DFN Package; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3428

4A, 2MHz Dual Phase Step-Up DC/DC Converter in 3mm 3mm DFN
Linear

LTC3428EDD

4A, 2MHz Dual Phase Step-Up DC/DC Converter in 3mm 3mm DFN
Linear

LTC3428EDD#TRPBF

LTC3428 - 4A, 2MHz Dual Phase Step-Up DC/DC Converter in 3mm x 3mm DFN; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3429

4A, 2MHz Dual Phase Step-Up DC/DC Converter in 3mm 3mm DFN
Linear

LTC3429B

600mA, 500kHz Micropower Synchronous Boost Converter with Output Disconnect
Linear

LTC3429BES6

600mA, 500kHz Micropower Synchronous Boost Converter with Output Disconnect
Linear

LTC3429BES6#TRM

LTC3429 - 600mA, 500kHz Micropower Synchronous Boost Converter with Output Disconnect; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear