LTC3450EUD#TR [Linear]

LTC3450 - Triple Output Power Supply for Small TFT-LCD Displays; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C;
LTC3450EUD#TR
型号: LTC3450EUD#TR
厂家: Linear    Linear
描述:

LTC3450 - Triple Output Power Supply for Small TFT-LCD Displays; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C

CD
文件: 总12页 (文件大小:183K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3450  
Triple Output Power Supply  
for Small TFT-LCD Displays  
U
FEATURES  
DESCRIPTIO  
Generates Three Voltages:  
The LTC®3450 is a complete power converter solution for  
small thin film transistor (TFT) liquid crystal display (LCD)  
panels. ThedeviceoperatesfromasingleLithium-Ioncell,  
2- to 3-cell alkaline input or any voltage source between  
1.5V and 4.6V.  
5.1V at 10mA  
5V, –10V, or –15V at 500µA  
10V or 15V at 500µA  
Better than 90% Efficiency  
Low Output Ripple: Less than 5mVP-P  
The synchronous boost converter generates a low noise,  
highefficiency5.1V, 10mAsupply. Internalchargepumps  
are used to generate 10V, 15V, and –5V, –10V or –15V.  
Outputsequencingiscontrolledinternallytoinsureproper  
initialization of the LCD panel.  
Complete 1mm Component Profile Solution  
Controlled Power-Up Sequence: AVDD/VGL/VGH  
All Outputs Disconnected and Actively Discharged in  
Shutdown  
Low Noise Fixed Frequency Operation  
A master shutdown input reduces quiescent current to  
<2µAandquicklydischargeseachoutputforrapidturnoff  
of the LCD panel. The LTC3450 is offered in a low profile  
(0.75mm), 3mm × 3mm 16-pin QFN package, minimizing  
the solution profile and footprint.  
Frequency Reduction Input for High Efficiency in  
Blank Mode  
Ultralow Quiescent Current: 75µA (Typ) in Scan Mode  
Available in a 3mm × 3mm 16-Pin QFN Package  
U
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
APPLICATIO S  
Cellular Handsets with Color Display  
Handheld Instruments  
PDA  
U
TYPICAL APPLICATIO  
5.1V, –10V, 15V Triple Output TFT-LCD Supply  
AVDD Efficiency vs VIN  
47µH  
V
IN  
AV  
DD  
1.5V TO  
4.6V  
5.1V/10mA  
8
7
100  
2.2µF  
2.2µF  
0.1µF  
5mA LOAD  
SW  
V
OUT  
C1  
6
11  
10  
12  
14  
13  
15  
16  
+
V
IN  
95  
C1  
100µH  
4
5
9
MODE  
SHDN  
GND  
V2X  
90  
BLANK SCAN  
OFF ON  
47µH  
0.47µF  
+
C2  
LTC3450  
0.1µF  
85  
C2  
VGH (3 × AV  
15V/500µA  
)
DD  
V3X  
80  
75  
70  
V
INV  
+
V
NEG  
C3 C3  
0.1µF  
3
2
1
0.1µF  
3.5  
(V)  
4.5  
5.0  
1.5 2.0  
2.5 3.0  
V
4.0  
0.1µF  
IN  
VGL  
3450 TA01b  
–10V/500µA  
3450 TA01  
3450fa  
1
LTC3450  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1) (Referred to GND)  
TOP VIEW  
ORDER PART  
NUMBER  
VIN, SW.......................................................... 0.3 to 7V  
SHDN, MODE................................................. 0.3 to 7V  
VOUT .......................................................................... 0.3 to 5.5V  
VNEG ........................................................................ –17V to 0.3V  
Operating Temperature Range  
LTC3450E (Note 4)............................. 40°C to 85°C  
Storage Temperature Range ................. 65°C to 125°C  
16 15 14 13  
+
LTC3450EUD  
C3  
C3  
1
2
3
4
12 V2X  
+
11 C1  
17  
V
C1  
10  
9
NEG  
MODE  
GND  
UD PART MARKING  
LAAC  
5
6
7
8
UD PACKAGE  
16-LEAD (3mm × 3mm) PLASTIC QFN  
EXPOSED PAD IS V  
MUST BE SOLDERED TO PCB  
(PIN 17)  
NEG  
TJMAX = 125°C, θJA = 68°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 3.6V, VOUT = 5.2V unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
4.6  
UNITS  
V
Input Voltage Range  
1.5  
V
V
V
V
V
Quiescent Supply Current  
MODE = V  
MODE = V  
75  
80  
130  
µA  
IN  
IN  
Quiescent Supply Current  
µA  
OUT  
IN  
Quiescent Supply Current  
MODE = GND  
MODE = GND  
SHDN = GND, V  
30  
50  
2
µA  
IN  
Quiescent Supply Current  
13  
µA  
OUT  
Quiescent Current  
OPEN  
OUT  
0.01  
µA  
IN  
5V Boost Regulator  
V
V
V
Output Voltage  
Load on V  
Load on V  
= 5mA  
5.049  
90  
5.100  
90  
5.151  
V
%
OUT  
OUT  
OUT  
OUT  
Efficiency  
= 5mA, (Note 2)  
OUT  
Maximum Output Current  
L = 47µH, (Note 2)  
11  
mA  
mA  
kHz  
kHz  
Switch Current Limit  
120  
550  
15.62  
Switching Frequency—Boost  
Switching Frequency—Boost  
Charge Pumps  
MODE = V  
IN  
MODE = GND  
V2X Output Voltage  
Load on V2X = 100µA  
9.792  
10.1  
10.608  
V
3450fa  
2
LTC3450  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 3.6V, VOUT = 5.2V unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
15.2  
90  
MAX  
UNITS  
V
V3X Output Voltage  
V2X Efficiency  
Load on V3X = 100µA  
14.688  
15.912  
Load on V2X = 100µA, (Note 2)  
Load on V3X = 100µA, (Note 2)  
Flying Capacitors = 0.1µF  
%
V3X Efficiency  
80  
%
Output Impedance V2X, V3X  
1
k  
V
V
V
Output Voltage  
Efficiency  
Load on V  
Load on V  
= 100µA, V = V2X  
–10.608 –10.1  
9.792  
NEG  
NEG  
NEG  
NEG  
INV  
= 100µA (Note 2)  
80  
1
%
Output Impedance V  
Flying Capacitor = 0.1µF  
MODE = V  
kΩ  
kHz  
kHz  
ms  
NEG  
Switching Frequency Charge Pumps  
Switching Frequency Charge Pumps  
62.5  
3.75  
IN  
MODE = GND  
(Note 3)  
V
to V3X Delay  
3
4
10  
NEG  
Logic Inputs  
SHDN Pin Threshold  
MODE Pin Threshold  
0.4  
0.77  
1.6  
1.2  
V
V
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 3: Measured from point at which V  
C2 starts switching.  
crosses –5V to point at which  
NEG  
Note 2: Specification is guaranteed by design and not 100% tested in  
production.  
Note 4: The LTC3450E is guaranteed to meet performance specifications  
from 0°C to 70°C. Specifications over the 40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
3450fa  
3
LTC3450  
U W  
(TA = 25°C unless otherwise noted)  
TYPICAL PERFOR A CE CHARACTERISTICS  
AVDD Efficiency vs VIN  
AVDD Efficiency vs VIN  
100  
95  
90  
85  
80  
75  
70  
100  
95  
90  
85  
80  
75  
70  
L = 100µH  
L = 47µH  
10mA  
5mA  
10mA  
5mA  
2mA  
2mA  
3.5  
(V)  
4.5  
5.0  
1.5 2.0  
2.5 3.0  
V
4.0  
3.5  
(V)  
4.5  
5.0  
1.5 2.0  
2.5 3.0  
V
4.0  
IN  
IN  
3450 G03  
3450 G02  
AVDD vs VIN and Load  
No Load VIN Current in Blank Mode  
No Load VIN Current in Scan Mode  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
800  
700  
600  
500  
400  
300  
200  
100  
5.16  
5.14  
5.12  
5.10  
5.08  
5.06  
5.04  
0mA  
2mA  
5mA  
10mA  
3.5  
(V)  
4.5 5.0 5.5  
3.5  
(V)  
4.5 5.0 5.5  
1.5 2.0  
3.5  
(V)  
4.0  
4.5  
5.0  
1.5 2.0 2.5 3.0  
4.0  
1.5 2.0 2.5 3.0  
4.0  
2.5 3.0  
V
IN  
V
V
IN  
IN  
3450 G04  
3450 G05  
3450 G06  
AVDD vs Temperature  
Figure 1 Circuit, 1mA Load  
VGH vs Load  
VGL vs Load  
15.6  
15.4  
15.2  
15.0  
14.8  
14.6  
14.4  
5.200  
5.175  
5.150  
5.125  
5.100  
5.075  
5.050  
5.025  
5.000  
– 9.0  
– 9.2  
– 9.4  
– 9.6  
– 9.8  
– 10.0  
– 10.2  
– 10.4  
0
100 200 300 400 500 600 700 800 900 1000  
LOAD (µA)  
0
100 200 300 400 500 600 700 800 900 1000  
LOAD (µA)  
– 40 – 25 –10  
35  
65 80 95  
125  
110  
5
20  
50  
V
V
TEMPERATURE (°C)  
GL  
GH  
3450 G07  
3450 G09  
3450 G08  
3450fa  
4
LTC3450  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
AVDD Ripple Voltage  
AVDD Load = 5mA  
AVDD Transient Response  
AV  
DD  
100mV/DIV  
(AC)  
AV  
DD  
5mV/DIV  
(AC)  
5mA  
1mA  
AV LOAD  
DD  
5mA/DIV  
3450 G10  
3450 G11  
V
= 3.6V  
1µs/DIV  
100µs/DIV  
V
= 3.6V  
IN  
IN  
C2 = 2.2µF  
C2 = 2.2µF  
AVDD Turn-On Showing Inrush  
Current Limiting  
AVDD, VGL, VGH Turn-On and  
Turn-Off Sequence  
INDUCTOR  
V
0
0
CURRENT  
GH  
10V/DIV  
100mA/DIV  
0
0
AV  
DD  
5V/DIV  
AV  
DD  
2V/DIV  
V
GL  
5V/DIV  
3450 G13  
3450 G12  
20µs/DIV  
V
= 3.6V  
2ms/DIV  
V
IN  
= 3.6V  
IN  
C2 = 2.2µF  
3450fa  
5
LTC3450  
U
U
U
PI FU CTIO S  
C3+ (Pin 1): Charge Pump Inverter Flying Capacitor Posi-  
tive Node. The charge pump inverter flying capacitor is  
connected between C3+ and C3. The voltage on C3+ will  
alternate between GND and VINV at an approximate 50%  
duty cycle while the inverting charge pump is operating.  
Use a 10nF or larger X5R type ceramic capacitor for best  
results.  
SW (Pin 8): Switch Pin. Connect the inductor between SW  
and VIN. Keep PCB trace lengths as short and wide as  
possible to reduce EMI and voltage overshoot. If the  
inductor current falls to zero, the internal P-channel  
MOSFET synchronous rectifier is turned off to prevent  
reverse charging of the inductor and an internal switch  
connects SW to VIN to reduce EMI.  
C3(Pin 2): Charge Pump Inverter Flying Capacitor Nega-  
tive Node. The charge pump inverter flying capacitor is  
connected between C3+ and C3. The voltage on C3will  
alternate between GND and VNEG at an approximate 50%  
duty cycle while the inverting charge pump is operating.  
Use a 10nF or larger X5R type ceramic capacitor for best  
results.  
GND (Pin 9): Signal and Power Ground for the LTC3450.  
Provide a short direct PCB path between GND and the  
output filter capacitor(s) on VOUT, V2X, V3X and VNEG  
.
C1(Pin 10): Charge Pump Doubler Flying Capacitor  
Negative Node. The charge pump doubler flying capacitor  
isconnectedbetweenC1+ andC1.ThevoltageonC1will  
alternate between GND and VOUT at an approximate 50%  
duty cycle while the charge pump is operating. Use a 10nF  
or larger X5R type ceramic capacitor for best results.  
C1+ (Pin 11): Charge Pump Doubler Flying Capacitor  
Positive Node. The charge pump doubler flying capacitor  
isconnectedbetweenC1+ andC1. ThevoltageonC1+ will  
alternate between VOUT and V2X at an approximate 50%  
duty cycle while the charge pump is operating. Use a 10nF  
or larger X5R type ceramic capacitor for best results.  
V
NEG (Pin 3): Charge Pump Inverter Output. VNEG can be  
either 5V or –10V depending on where VINV is con-  
nected. VNEG should be bypassed to GND with at 0.1µF or  
larger X5R type ceramic capacitor. VNEG can also be  
configuredfor –15VwithtwoexternallowcurrentSchottky  
diodes (see Applications section).  
MODE (Pin 4): Drive MODE high to force the LTC3450 into  
high power (scan) mode. Drive MODE low to force the  
LTC3450 into low power (blank) mode. The output volt-  
ages remain active with the MODE pin driven low but with  
reduced output current capability. MODE must be pulled  
up to VIN or higher on initial application of power in order  
for proper initialization to occur.  
V2X (Pin 12): Charge Pump Doubler Output. This output  
is 10.2V (nom) at no load and is capable of delivering up  
to 500µA to a load. V2X should be bypassed to GND with  
a 0.47µF X5R type ceramic capacitor.  
C2(Pin 13): Charge Pump Tripler Flying Capacitor Nega-  
tive Node. The charge pump tripler flying capacitor is  
connected between C2+ and C2. The voltage on C2will  
alternate between GND and VOUT at an approximate 50%  
duty cycle while the charge pump is operating. Use a 10nF  
or larger X5R type ceramic capacitor for best results.  
C2+ (Pin 14): Charge Pump Tripler Flying Capacitor Posi-  
tive Node. The charge pump tripler flying capacitor is  
connected between C2+ and C2. The voltage on C2+ will  
alternate between V2X and V3X at an approximate 50%  
duty cycle while the charge pump is operating. Use a 10nF  
or larger X5R type ceramic capacitor for best results.  
SHDN (Pin 5): Master Shutdown Input for the LTC3450.  
Driving SHDN low disables all IC functions and reduces  
quiescent current from the battery to less than 2µA. Each  
generated output voltage is actively discharged to GND in  
shutdown through internal pull down devices. An optional  
RC network on SHDN provides a slower ramp up of the  
boostconverterinductorcurrentduringstartup(soft-start).  
VIN (Pin 6): Input Supply to the LTC3450. Connect VIN to  
a voltage source between 1.5V and 4.6V. Bypass VIN to  
GND with a 2.2µF X5R ceramic capacitor.  
VOUT (Pin7):Main5.1VOutputoftheBoostRegulatorand  
InputtotheVoltageDoublerStage.BypassVOUT withalow  
ESR,ESLceramiccapacitor(X5Rtype)between2.2µFand  
10µF.  
3450fa  
6
LTC3450  
U
U
U
PI FU CTIO S  
V3X (Pin 15): Charge Pump Tripler Output. This output is  
15.3V (nom) at no load and is capable of delivering up to  
500µA to a load. V3X should be bypassed to GND with a  
0.1µF X5R type ceramic capacitor.  
Connecting VINV to 5V or 10V will generate –5V or –10V  
respectively on VNEG. See Applications section for –15V  
generation.  
Exposed Pad (Pin 17): The exposed pad must be con-  
nected to VNEG (Pin 3) on the PCB. Do not connect the  
exposed pad to GND.  
VINV (Pin 16): Positive Voltage Input for the Charge Pump  
Inverter. The charge pump inverter will generate a nega-  
tive voltage corresponding to the voltage applied to VINV  
.
W
BLOCK DIAGRA  
L1  
47µH  
V
IN  
AV  
DD  
1.5V TO  
4.6V  
5.1V/10mA  
SW  
V
OUT  
C2  
2.2µF  
8
7
C1  
2.2µF  
SYNCHRONOUS  
PWM BOOST  
CONVERTER  
V
IN  
SHUTDOWN  
+
6
C1  
C1  
11  
10  
12  
CHARGE PUMP  
DOUBLER  
CF1  
0.1µF  
IN  
V2X  
10V  
OUT  
SHUTDOWN  
C7  
1µF  
OSCILLATOR  
550kHz  
+
69kHz  
C2  
MODE  
SHDN  
14  
13  
15  
CHARGE PUMP  
TRIPLER  
4
5
BLANK SCAN  
OFF ON  
CF2  
0.1µF  
C2  
IN  
V3X  
VGH (3 × AV  
15V/500µA  
)
DD  
OUT  
SHUTDOWN  
GLOBAL SHUTDOWN  
C8  
0.47µF  
V
INV  
+
16  
1
C3  
C3  
CHARGE PUMP  
INVERTER  
CF3  
0.1µF  
2
IN  
V
NEG  
VGL  
–10V/500µA  
3
OUT  
SHUTDOWN  
C11  
0.47µF  
3450 TA01  
9
GND  
3450fa  
7
LTC3450  
U
OPERATIO  
The LTC3450 is a highly integrated power converter in-  
tended for small TFT-LCD display modules. A fixed fre-  
quency, synchronous PWM boost regulator generates a  
low noise 5.1V, 10mA bias at greater than 90% efficiency  
from an input voltage of 1.5V to 4.6V. Three charge pump  
converters use the 5.1V output to generate 10V, 15V and  
–5V, –10V or –15V at load currents up to 500µA. Each  
converter is frequency synchronized to the main 550kHz  
(nominal) boost converter. The generated output voltages  
are internally sequenced to insure proper initialization of  
theLCDpanel.Adigitalshutdowninputrapidlydischarges  
each generated output voltage to provide a near instanta-  
neous turn-off of the LCD display.  
boost converter further reduces its quiescent current in  
this mode, delivering both lower input (battery) current  
drain and low noise operation.  
Charge Pumps  
The LTC3450 includes three separate charge pump con-  
verters which generate 10V, 15V and either –5V, –10V or  
–15V. Each output can deliver a maximum of 500µA. The  
charge pumps feature fixed frequency, open-loop opera-  
tion for high efficiency and lowest noise performance. The  
charge pump converters operate at 1/8 the boost con-  
verter frequency and include internal charge transfer  
switches.Thus,eachchargepumprequiresonlytwosmall  
external capacitors, one to transfer charge, and one for  
filtering. Similar to the boost converter, the charge pumps  
operating frequency reduces to approximately 4kHz in  
blank mode, maintaining low noise operation but at re-  
duced output current capability.  
Boost Converter  
The synchronous boost converter utilizes current mode  
control and includes internally set control loop and slope  
compensation for optimized performance and simple de-  
sign. Only three external components are required to  
complete the design of the 5.1V, 10mA boost converter.  
The high operation frequency produces very low output  
rippleandallowstheuseofsmalllowprofileinductorsand  
tiny external ceramic capacitors. The boost converter also  
disconnects its output from VIN during shutdown to avoid  
loading the input power source. Softstart produces a  
controlled ramp of the converter input current during  
startup, reducing the burden on the input power source.  
Very low operating quiescent current and synchronous  
operation allow for greater than 90% conversion effi-  
ciency.  
Output Sequencing  
Refer to the following text and Figure 1 for the LTC3450  
power-up sequence. When input power is applied, the  
boost converter initializes and charges its output towards  
the final value of 5.1V. When the boost converter output  
reaches approximately 90% of its final value (4.5V), an  
internal 5V OK signal is asserted which allows the charge  
pump doubler to begin operation toward its final goal of  
10V. Approximately 1ms later, the charge pump inverter  
begins operation toward its final goal of either  
–5V or –10V depending on the connection of the VINV  
input. When the –5V or –10V output (VNEG) reaches  
approximately 50% of its final value, a 4ms (nominal)  
timeout period begins. At the conclusion of the 4ms  
timeout period, the charge pump tripler is allowed to  
begin operation, which will eventually charge V3X to 15V  
(nominal).  
The MODE input reduces the boost converter operating  
frequency by approximately 8x when driven high and  
reduces the output power capability of the boost con-  
verter. MODE is asserted when the polysilicon TFT-LCD  
display is in its extremely low power blank condition. The  
V
3X  
15V  
10V  
5V  
V
2X  
V
OUT  
V
NEG  
1ms  
–10V  
4ms  
3450 F01  
Figure 1. Output Sequencing  
3450fa  
8
LTC3450  
U
W
U U  
APPLICATIO S I FOR ATIO  
Inductor Selection  
Soft-Start  
Inductors in the range of 47µH to 100µH with saturation  
current (ISAT) ratings of at least 150mA are recommended  
for use with the LTC3450. Ferrite core materials are  
strongly recommended for their superior high frequency  
performance characteristics. A bobbin or toroid type core  
will reduce radiated noise. Inductors meeting these re-  
quirements are listed in Table 1.  
Soft-start operation provides a gradual increase in the  
current drawn from the input power source (usually a  
battery) during initial startup of the LTC3450, eliminating  
the inrush current which is typical in most boost convert-  
ers. This reduces stress on the input power source, boost  
inductor and output capacitor, reduces voltage sag on the  
battery and increases battery life. The rate at which the  
input current will increase is set by two external compo-  
nents (RSS and CSS) connected to SHDN (refer to Figure  
2). Upon initial application of power or release of a pull  
down switch on SHDN, the voltage on SHDN will increase  
relative to the R • C time constant or RSS • CSS. After one  
time constant SHDN will rise to approximately 63.2% of  
the voltage on VIN. From 0V to approximately 0.77V on  
SHDN, no switching will occur because the shutdown  
threshold is 0.77V (typ). From 0.77V to 1V the maximum  
switch pin current capability of the LTC3450 will gradually  
increase from near zero to the maximum current limit. An  
RSS in the range of 1Mto 10Mis recommended. If  
SHDN is driven high with a logic signal, the input current  
will gradually increase to its maximum value in approxi-  
mately 50µs.  
Table 1. Recommended Inductors  
PART  
NUMBER  
L
(µH)  
MAX DCR HEIGHT  
()  
(mm) VENDOR  
CLQ4D10-470  
CLQ4D10-101  
CMD4D08-470  
47  
100  
47  
1.28  
3.15  
1.6  
1.2  
Sumida  
(847) 956-0666  
www.sumida.com  
1.0  
2.0  
DO1606-473  
DO1606-104  
DT1608-473  
DT1608-104  
47  
100  
47  
1.1  
2.3  
0.34  
1.1  
Coilcraft  
(847) 639-6400  
2.92 www.coilcraft.com  
100  
LQH43MN470J03 47  
LQH43MN101J03 100  
1.5  
2.5  
2.6  
Murata  
www.murata.com  
DU6629-470M  
DU6629-101M  
47  
100  
0.64  
1.27  
2.92 Coev Magnetics  
www.circuitprotection.com  
Capacitor Selection  
The boost converter requires two capacitors. The input  
capacitor should be an X5R type of at least 1µF. The VOUT  
capacitor should also be an X5R type between 2.2µF and  
10µF. A larger capacitor (10µF) should be used if lower  
output ripple is desired or the output load required is close  
to the 10mA maximum.  
V
IN  
R
1M  
5%  
SS  
5
SHDN  
C
SS  
6.8nF  
The charge pumps require flying capacitors of at least  
0.1µFtoobtainspecifiedperformance.CeramicX5Rtypes  
are strongly recommended for their low ESR and ESL and  
capacitance versus bias voltage stability. The filter capaci-  
tor on V2X should be at least 0.1µF. A 0.47µF or larger  
capacitor on V2X is recommended if VINV is connected to  
V2X. The filter capacitors on V3X and VNEG should be  
0.1µF or larger. Please be certain that the capacitors used  
are rated for the maximum voltage with adequate safety  
margin. Refer to Table 2 for a listing of capacitor vendors.  
1ms SOFT-START WITH 3.6V V  
IN  
3450 F02  
Figure 2. Soft-Start Component Configuration  
Printed Circuit Board Layout Guidelines  
High speed operation of the LTC3450 demands careful  
attention to PCB layout. You will not get advertised perfor-  
mance with careless layout. Figure 3 shows the recom-  
mended component placement for a single layer PCB. A  
multilayer board with a separate ground plane is ideal but  
not absolutely necessary.  
Table 2. Capacitor Vendor Information  
Supplier  
AVX  
Phone  
Website  
(803) 448-9411  
(714) 852-2001  
(408) 573-4150  
www.avxcorp.com  
www.murata.com  
www.t-yuden.com  
Murata  
Taiyo Yuden  
3450fa  
9
LTC3450  
U
W
U U  
APPLICATIO S I FOR ATIO  
V3X  
JUMPER  
V
NEG  
MODE  
SHDN  
V
OUT  
V
GND  
IN  
NOTE: QFN PACKAGE EXPOSED PAD  
IS CONNECTED TO THE V PIN.  
NEG  
DO NOT CONNECT EXPOSED PAD TO GROUND  
3450 F03  
Figure 3. Suggested Layout  
U
TYPICAL APPLICATIO  
5.1V, –15V, 15V Triple Output TFT-LCD Supply  
L1  
47µH  
V
IN  
AV  
DD  
1.5V TO  
4.6V  
5.1V/10mA  
8
7
C1  
C2  
2.2µF  
2.2µF  
SW  
V
OUT  
C1  
6
4
5
9
11  
10  
12  
14  
13  
15  
16  
+
V
IN  
CF1  
0.1µF  
C1  
MODE  
SHDN  
GND  
V2X  
BLANK SCAN  
OFF ON  
C4  
0.47µF  
+
C2  
LTC3450  
CF2  
0.1µF  
C2  
D1  
VGH  
15V/500µA  
V3X  
V
INV  
C6  
0.1µF  
+
V
C3 C3  
D2  
0.1µF  
NEG  
3
2
1
C5  
0.1µF  
CF3  
0.1µF  
VGL  
–15V/500µA  
3450 TA02  
D1, D2: DUAL SCHOTTKY DIODE, PANASONIC MA704WKCT  
L1: SUMIDA CMD4D08-470  
3450fa  
10  
LTC3450  
U
PACKAGE DESCRIPTIO  
UD Package  
16-Lead Plastic QFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1691)  
0.70 ±0.05  
3.50 ± 0.05  
2.10 ± 0.05  
1.45 ± 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.25 ±0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
0.23 TYP  
R = 0.115  
(4 SIDES)  
TYP  
0.75 ± 0.05  
3.00 ± 0.10  
(4 SIDES)  
15 16  
PIN 1  
TOP MARK  
(NOTE 6)  
0.40 ± 0.10  
1
2
1.45 ± 0.10  
(4-SIDES)  
(UD) QFN 0603  
0.200 REF  
0.25 ± 0.05  
0.50 BSC  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WEED-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3450fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC3450  
U
TYPICAL APPLICATIO  
5.1V, 5V, 15V Triple Output TFT-LCD Supply  
L1  
47µH  
V
IN  
AV  
DD  
1.5V TO  
4.6V  
5.1V/10mA  
8
7
C1  
C2  
2.2µF  
2.2µF  
SW  
V
OUT  
C1  
6
4
5
9
11  
10  
12  
14  
13  
15  
16  
+
V
IN  
CF1  
0.1µF  
C1  
MODE  
SHDN  
GND  
V2X  
BLANK SCAN  
OFF ON  
C4  
0.47µF  
+
C2  
LTC3450  
CF2  
0.1µF  
C2  
VGH (3 × AV  
15V/500µA  
)
DD  
V3X  
V
INV  
C6  
0.1µF  
+
V
C3 C3  
NEG  
3
2
1
C5  
0.1µF  
CF3  
0.1µF  
VGL  
L1: SUMIDA CMD4D08-470  
–5V/500µA  
3450 TA03  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1310  
1.5A I , 4.5MHz,  
High Efficiency Step-Up DC/DC Converter  
V : 2.75V to 18V, V  
MSE Package  
= 35V, I = 12mA, I = <1µA  
OUT Q SD  
SW  
IN  
LT1613  
550mA I , 1.4MHz,  
High Efficiency Step-Up DC/DC Converter  
V : 0.9V to 10V, V  
ThinSOT Package  
= 34V, I = 3mA, I = <1µA  
Q SD  
SW  
IN  
OUT  
OUT  
LT1615/LT1615-1  
LT1940  
300mA/80mA I , Constant Off-Time,  
V : 1.2V to 15V, V  
= 34V, I = 20µA, I = <1µA  
Q SD  
SW  
IN  
High Efficiency Step-Up DC/DC Converter  
ThinSOT Package  
Dual Output 1.4A I , Constant 1.1MHz,  
V : 3V to 25V, V  
IN  
(MIN) = 1.2V, I = 2.5mA, I = <1µA  
OUT Q SD  
OUT  
High Efficiency Step-Down DC/DC Converter  
TSSOP-16E Package  
LT1944  
Dual Output 350mA I , Constant Off-Time,  
High Efficiency Step-Up DC/DC Converter  
V : 1.2V to 15V, V  
MS Package  
= 34V, I = 20µA, I = <1µA  
Q SD  
SW  
IN  
OUT  
OUT  
OUT  
LT1944-1  
Dual Output 150mA I , Constant Off-Time,  
V : 1.2V to 15V, V  
= 34V, I = 20µA, I = <1µA  
Q SD  
SW  
IN  
High Efficiency Step-Up DC/DC Converter  
MS Package  
LT1945  
Dual Output, Pos/Neg, 350mA I , Constant Off-Time,  
V : 1.2V to 15V, V  
IN  
= ±34V, I = 20µA, I = <1µA  
Q SD  
SW  
High Efficiency Step-Up DC/DC Converter  
MS Package  
LT1946/LT1946A  
LT1947  
1.5A I , 1.2MHz/2.7MHz,  
High Efficiency Step-Up DC/DC Converter  
V : 2.45V to 16V, V  
MS8 Package  
= 34V, I = 3.2mA, I = <1µA  
OUT Q SD  
SW  
IN  
Triple Output ( for TFT-LCD) 1.1A I  
3MHz High Efficiency Step-Up DC/DC Converter  
,
V : 2.7V to 8V, V  
= 34V, I = 9.5mA, I = <1µA  
SW  
IN  
OUT Q SD  
MS Package  
LT1949/LT1949-1  
LTC3400/LTC3400B  
550mA I , 600kHz/1.1MHz,  
High Efficiency Step-Up DC/DC Converter  
V : 1.5V to 12V, V  
S8, MS8 Packages  
= 28V, I = 4.5mA, I = <25µA  
Q SD  
SW  
IN  
OUT  
OUT  
600mA I , 1.2MHz,  
V : 0.85V to 5V, V  
= 5V, I = 19µA/300µA, I = <1µA  
Q SD  
SW  
IN  
Synchronous Step-Up DC/DC Converter  
ThinSOT Package  
LTC3401  
LTC3402  
1A I , 3MHz, Synchronous Step-Up DC/DC Converter  
V : 0.5V to 5V, V  
= 5V, I = 38µA, I = <1µA, MS Package  
Q SD  
SW  
IN  
OUT  
2A I , 3MHz, Synchronous Step-Up DC/DC Converter  
V : 0.5V to 5V, V  
= 5V, I = 38µA, I = <1µA, MS Package  
Q SD  
SW  
IN  
OUT  
3450fa  
LT/TP 0205 1K REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
©LINEAR TECHNOLOGY CORPORATION 2003  

相关型号:

LTC3450EUD#TRPBF

LTC3450 - Triple Output Power Supply for Small TFT-LCD Displays; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3452

Synchronous Buck-Boost MAIN/CAMERA White LED Driver
Linear

LTC3452EUF

Synchronous Buck-Boost MAIN/CAMERA White LED Driver
Linear

LTC3452EUF#PBF

LTC3452 - Synchronous Buck-Boost MAIN/CAMERA White LED Driver; Package: QFN; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3452EUF#TR

LTC3452 - Synchronous Buck-Boost MAIN/CAMERA White LED Driver; Package: QFN; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3453

Single Cell 350mA LED Driver
Linear

LTC3453EUF

Synchronous Buck-Boost High Power White LED Driver
Linear

LTC3453EUF#PBF

LTC3453 - Synchronous Buck-Boost High Power White LED Driver; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3453EUF#TR

LTC3453 - Synchronous Buck-Boost High Power White LED Driver; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3453EUF#TRPBF

暂无描述
Linear

LTC3454

1A Synchronous Buck-Boost High Current LED Driver
Linear

LTC3454EDD

1A Synchronous Buck-Boost High Current LED Driver
Linear