LTC3454EDD#TR [Linear]

LTC3454 - 1A Synchronous Buck-Boost High Current LED Driver; Package: DFN; Pins: 10; Temperature Range: -40°C to 85°C;
LTC3454EDD#TR
型号: LTC3454EDD#TR
厂家: Linear    Linear
描述:

LTC3454 - 1A Synchronous Buck-Boost High Current LED Driver; Package: DFN; Pins: 10; Temperature Range: -40°C to 85°C

驱动器
文件: 总12页 (文件大小:206K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3454  
1A Synchronous Buck-Boost  
High Current LED Driver  
U
DESCRIPTIO  
FEATURES  
High Efficiency: >90% Typical in Torch Mode,  
The LTC®3454 is a synchronous buck-boost DC/DC  
converter optimized for driving a single high power LED  
at currents up to 1A from a single cell Li-Ion battery in-  
put. The regulator operates in either synchronous buck,  
synchronous boost, or buck-boost mode depending on  
>80% in Flash Mode  
Wide V Range: 2.7V to 5.5V  
IN  
Up to 1A Continuous Output Current  
3.5% LED Current Programming Accuracy  
Internal Soft-Start  
Open/Shorted LED Protection  
Constant Frequency 1MHz Operation  
Zero Shutdown Current  
Overtemperature Protection  
Small Thermally Enhanced 10-Lead (3mm × 3mm)  
DFN Package  
inputvoltageandLEDforwardvoltage.P /P efficiency  
LED IN  
greater than 90% can be achieved over the entire usable  
range of a Li-Ion battery (2.7V to 4.2V).  
LED current is programmable to one of four levels, includ-  
ingshutdown, withdualexternalresistorsanddualenable  
inputs. In shutdown no supply current is drawn.  
A high constant operating frequency of 1MHz allows the  
use of small external components. The LTC3454 is offered  
in a low profile (0.75mm) thermally enhanced 10-lead  
(3mm × 3mm) DFN package.  
U
APPLICATIO S  
Cell Phone Camera Flash  
Cell Phone Torch Lighting  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Digital Cameras  
PDAs  
Misc Li-Ion LED Drivers  
U
TYPICAL APPLICATIO  
High Efficiency Torch/Flash LED Driver  
L1  
5 H  
V
IN  
1-CELL  
Li-Ion  
LED Power Efficiency vs V  
IN  
10 F  
10 F  
I
2.7V-4.2V  
V
SW1  
SW2  
V
OUT  
IN  
LED  
100  
95  
A
D
C
I
= 150mA  
LED  
LED  
90  
EN2 EN1  
I
LED  
0 (SHUTDOWN)  
150mA  
850mA  
1A  
LED  
B
0
0
1
1
0
1
0
1
85  
I
= 1A  
LED  
EN1 (TORCH)  
EN2 (FLASH)  
80  
75  
1MHz  
BUCK-BOOST  
V
I
C
SET1  
70  
65  
60  
R
20.5k  
1%  
I
ISET1  
0.1 F  
SET2  
T
= 25°C  
A
LTC3454  
EFFICIENCY = (V  
– V )I /V I  
LED LED IN IN  
R
3.65k  
1%  
OUT  
ISET2  
GND (EXPOSED PAD)  
LED: LUMILEDS LXL-PWF1  
L1: SUMIDA CDRH6D28-5RONC  
3453 TA01a  
3.1 3.5 3.9  
4.7  
2.7  
5.1 5.5  
4.3  
(V)  
V
IN  
3454 TA01b  
3454f  
1
LTC3454  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
V , SW1, SW2, V  
Voltage......................0.3V to 6V  
IN  
OUT  
, I  
EN1  
EN2  
1
2
3
4
5
10 SW1  
V , EN1, EN2, I  
C
SET1 SET2  
9
8
7
6
V
V
V
IN  
Voltage.............................0.3V to (V + 0.3V) or 6V  
IN  
I
I
11  
SET1  
C
LED Peak Current...................................................1.25A  
Storage Temperature Range...................65°C to 125°C  
Operating Temperature Range (Note 2) ...40°C to 85°C  
Junction Temperature (Note 3) ............................. 125°C  
SET2  
LED  
OUT  
SW2  
DD PACKAGE  
10-LEAD (3mm × 3mm) PLASTIC DFN  
T
= 125°C, θ = 40°C/W  
EXPOSED PAD (PIN 11) IS GND, MUST BE SOLDERED TO PCB  
JMAX  
JA  
ORDER PART NUMBER  
LTC3454EDD  
DD PART MARKING  
LBQX  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
The  
denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at T = 25°C, V = 3.6V, R  
= 20.5k unless otherwise noted. (Note 2)  
A
IN  
ISET  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Supply Voltage (V )  
2.7  
5.5  
V
IN  
Input DC Supply Current  
Normal Operation  
Shutdown  
(Typicals at V = 3.6V, R  
= R = 20.5k)  
ISET2  
IN  
ISET1  
2.7V ≤ V ≤ 5.5V (Note 4)  
825  
0
5
1200  
1
10  
µA  
µA  
µA  
IN  
IN  
2.7V ≤ V ≤ 5.5V; V  
= V  
= 0V  
EN2  
EN1  
UVLO  
V
< UVLO Threshold; V = V = V  
IN  
EN1  
EN2  
IN  
Undervoltage Lockout Threshold  
V
V
Rising  
Falling  
2.05  
1.90  
0.68  
0.66  
2.3  
1.2  
V
V
V
V
µA  
mV  
mV  
IN  
IN  
1.75  
V
V
V
, V  
DC Threshold for Normal Operation (V )  
DC Threshold for Shutdown (V )  
Input Current  
EN1 EN2  
IH  
, V  
0.2  
–1  
780  
788  
EN1 EN2  
IL  
, V  
EN1 EN2  
1
812  
812  
I
and I  
Servo Voltage  
3.08k ≤ R ||R ≤ 20.5k  
ISET1 ISET2  
800  
800  
SET1  
SET2  
LED Output Current to Programming Current Ratio  
LED Pin Voltage  
I
I
/(I  
+ I  
), I = 500mA (Note 5)  
3725  
3775  
3850  
3850  
3975  
3925  
mA/mA  
mA/mA  
LED ISET1  
ISET2 LED  
= 1A  
105  
5.15  
170  
130  
3.4  
mV  
V
mΩ  
mΩ  
A
mA  
µA  
µA  
LED  
Regulated Maximum V  
LED Pin Open, Programmed I  
= 1A  
LED  
4.95  
2.5  
5.35  
OUT  
PMOS Switch R  
Switches A and D (V  
Switches B and C  
Switch A  
Switch D (V  
Switches A, D  
Switches B, C  
= 3.6V)  
ON  
OUT  
NMOS Switch R  
ON  
Forward Current Limit  
Reverse Current Limit  
PMOS Switch Leakage  
NMOS Switch Leakage  
Oscillator Frequency  
Soft-Start Time  
= 3.6V)  
275  
OUT  
–1  
–1  
0.9  
1
1
1.15  
1.0  
200  
MHz  
µs  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 3: T is calculated from the ambient temperature T and power  
dissipation PD according to the following formula:  
J
A
Note 2: The LTC3454 is guaranteed to meet specifications from 0°C to  
70°C. Specifications over the 40°C to 85°C operating temperature range  
are assured by design, characterization and correlation with statistical  
process controls.  
T = T + (PD • θ °C/W).  
J A JA  
Note 4: Dynamic supply current is higher due to the gate charge being  
delivered at the switching frequency.  
Note 5: This parameter is tested using a feedback loop which servos V  
C
to 1.8V.  
3454f  
2
LTC3454  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Undervoltage Lockout Threshold  
vs Temperature  
Enable Thresholds  
vs Temperature  
Enable Thresholds vs V  
IN  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
T
= 25°C  
V
= 3.6V  
A
IN  
V
RISING  
IN  
V
IH  
V
IH  
V
IL  
V
IL  
V
FALLING  
IN  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
(V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
IN  
3454 G01  
3454 G02  
3454 G03  
I
Servo Voltage  
SET1,2  
vs Temperature  
I
Servo Voltage vs V  
I
Servo Voltage vs R  
SET1,2 ISET  
SET1,2  
IN  
812  
808  
812  
808  
804  
800  
812  
808  
804  
800  
V
= 3.6V  
ISET1,2  
T
= 25°C  
ISET1  
IN  
V
T
= 3.6V  
IN  
A
A
R
= 15k  
R
= R  
= 15k  
ISET2  
= 25°C  
804  
800  
796  
796  
792  
788  
796  
792  
788  
792  
788  
4.3  
(V)  
5.1  
5.5  
2.7 3.1  
3.5 3.9  
V
4.7  
–55 –35 –15  
5
25 45 65 85 105 125  
19  
27  
31  
3
7
11  
15  
23  
TEMPERATURE (°C)  
R
(k)  
IN  
ISET  
3454 G05  
3454 G04  
3454 G06  
LED Current Programming Ratio  
vs Temperature  
LED Current Programming Ratio  
vs V  
V
vs Temperature  
IN  
LED  
4050  
4000  
3950  
3900  
3850  
3800  
3750  
3700  
3650  
150  
120  
90  
4050  
4000  
3950  
3900  
3850  
3800  
3750  
3700  
3650  
V
= 3.6V  
PROGRAMMED I  
A
= 500mA  
V
= 3.6V  
IN  
IN  
LED  
T
= 25°C  
PROGRAMMED  
I
= 1A  
LED  
PROGRAMMED  
= 500mA  
I
LED  
60  
30  
0
PROGRAMMED  
= 100mA  
PROGRAMMED I  
PROGRAMMED I  
PROGRAMMED I  
= 1A  
= 500mA  
= 150mA  
LED  
LED  
LED  
I
LED  
25 45  
TEMPERATURE (°C)  
–55 –35 –15  
5
65 85 105 125  
4.3  
(V)  
25  
5
TEMPERATURE (°C)  
2.7 3.1 3.5 3.9  
4.7 5.1 5.5  
–55 –35 –15  
45 65 85 105 125  
V
IN  
3454 G07  
3454 G08  
3454 G09  
3454f  
3
LTC3454  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Maximum Regulated V  
vs Temperature  
Maximum Regulated V  
OUT  
OUT  
V
vs V  
IN  
vs V  
LED  
IN  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
5.40  
5.35  
5.30  
5.25  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
5.40  
5.35  
5.30  
5.25  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
PROGRAMMED I  
T
= 500mA  
LED  
PROGRAMMED I  
A
= 1A  
PROGRAMMED I  
IN  
= 1A  
LED  
LED  
= 25°C  
A
T
= 25°C  
V
= 3.6V  
2.7  
3.5 3.9 4.3  
(V)  
4.7 5.1 5.5  
3.1  
3.5 3.9  
V
2.7 3.1  
4.3 4.7 5.1 5.5  
(V)  
25 45  
–55 –35 –15  
5
65 85 105 125  
V
IN  
TEMPERATURE (°C)  
IN  
3454 G10  
3454 G12  
3454 G11  
Maximum Regulated V  
OUT  
PMOS R  
vs Temperature  
NMOS R  
vs Temperature  
DS(ON)  
vs Programmed LED Current  
DS(ON)  
300  
270  
240  
210  
180  
150  
120  
90  
200  
180  
160  
140  
120  
100  
80  
5.40  
5.35  
5.30  
5.25  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
MEASURED AT 500mA  
MEASURED AT 500mA  
V
A
= 3.6V  
IN  
= 25°C  
T
V
= 2.7V  
IN  
V
= 3.6V  
IN  
V
= 2.7V  
V
IN  
V
= 5.5V  
IN  
V
= 3.6V  
IN  
V
= 4.2V  
IN  
= 5.5V  
IN  
V
= 4.2V  
IN  
60  
40  
500 600  
100 200 300 400  
700 800 900 1000  
(mA)  
–55 –35 –15  
5
25 45  
125  
–55 –35 –15  
5
25 45  
125  
65 85 105  
65 85 105  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
PROGRAMMED I  
LED  
3454 G13  
3454 G14  
3454 G15  
Oscillator Frequency  
vs Temperature  
LED Power Efficiency  
vs LED Current  
1100  
1080  
1060  
1040  
1020  
1000  
980  
100  
V
= 3V  
OUT  
95  
90  
85  
80  
75  
70  
65  
60  
V
V
= 5.5V  
= 2.7V  
IN  
IN  
V
= 4.2V  
= 3.6V  
IN  
V
IN  
5
960  
V
A
= 3.6V  
IN  
940  
T
= 25°C  
EFFICIENCY = (V  
– V )I /V I  
LED LED IN IN  
920  
OUT  
FRONT PAGE APPLICATION  
900  
500 600  
100 200 300 400  
700 800 900 1000  
–55 –35 –15  
25 45 65 85 105 125  
TEMPERATURE (°C)  
I
(mA)  
LED  
3454 G17  
3454 G16  
3454f  
4
LTC3454  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Voltage Ripple  
Back Page Application  
Start-Up Transient  
Back Page Application  
CH1, V  
1V/DIV  
OUT  
CH2, I  
LED  
500mA  
FINAL VALUE  
20mV/DIV  
0V, 0A  
0V  
CH3, V  
1V/DIV  
EN1  
3454 G19  
3454 G19  
V
I
= 3.6V  
LED  
5ms/DIV  
V
I
= 3.6V  
LED  
500ns/DIV  
IN  
IN  
= 500mA  
= 500mA  
U
U
U
PI FU CTIO S  
V
(Pin7):Buck-BoostOutputRail. BypasstoGNDwith  
EN1 (Pin 1): Enable Input Pin for I  
Current.  
OUT  
SET1  
SET2  
a ceramic capacitor. Recommended value is 10µF.  
EN2 (Pin 2): Enable Input Pin for I  
Current.  
V (Pin 8): Compensation Point for the Internal Error  
C
I
(Pin 3): LED Current Programming Pin. A resistor  
SET1  
Amplifier Output. Connect a ceramic capacitor from V  
C
to ground programs the current through the LED to I  
LED  
to GND. Recommended value is 0.1µF.  
= 3850(0.8V/R  
amount set by EN2/I  
). This amount of current adds to any  
ISET1  
V (Pin 9): Voltage Input Supply Pin (2.7V ≤ V ≤ 5.5V).  
if used.  
IN  
IN  
SET2  
Bypass to GND with a ceramic capacitor. Recommended  
I
(Pin 4): LED Current Programming Pin. A resistor  
SET2  
value is 10µF.  
to ground programs the current through the LED to I  
LED  
SW1 (Pin 10): Switching Node. External inductor con-  
nects between SW1 and SW2. Recommended value is  
4.7µH/5µH.  
= 3850(0.8V/R  
amount set by EN1/I  
). This amount of current adds to any  
ISET2  
if used.  
SET1  
LED (Pin 5): Low Dropout Output for LED Current Biasing.  
Connect the LED between V and the LED pin.  
Exposed Pad (Pin 11): Ground Pin. Solder to PCB ground  
for electrical contact and optimal thermal performance.  
OUT  
SW2 (Pin 6): Switching Node. External inductor con-  
nects between SW1 and SW2. Recommended value is  
4.7µH/5µH.  
3454f  
5
LTC3454  
W
BLOCK DIAGRA  
OPTIONAL  
OPTIONAL  
10  
6
V
7
SW1  
SW2  
OUT  
V
SWITCH A  
SWITCH D  
IN  
9
V
IN  
2.7V TO 5.5V  
GATE  
DRIVERS  
AND  
ANTICROSS-  
CONDUCTION  
SWITCH B  
SWITCH C  
UNDERVOLTAGE  
LOCKOUT  
UV  
FORWARD  
CURRENT  
LIMIT  
REVERSE  
CURRENT  
LIMIT  
+
+
OVERTEMP  
PROTECTION  
OT  
3.4A  
275mA  
BANDGAP  
REFERENCE  
1.23V  
+
LOGIC  
+
AB PWM  
COMPARATOR  
CD PWM  
COMPARATOR  
UV  
OT  
1MHz  
OSCILLATOR  
V
C
8
SAFETY  
ERROR AMP  
AUTOZEROING  
ERROR AMP  
V
LED  
OUT  
1.23V  
+
+
5
377k  
123k  
R
SOFT  
1.23V  
START  
CLAMP  
LED CURRENT  
SETTING AMP 1  
800mV  
800mV  
+
CURRENT  
MIRROR  
I
I
ISET1  
I
I
SET1  
3
I
3850 I  
R
R
R
ISET1  
LED CURRENT  
SETTING AMP 2  
+
ISET2  
SET2  
4
1
EN1  
EN2  
ISET2  
SHUTDOWN  
2
EXPOSED PAD (GND)  
11  
3454 BD  
3454f  
6
LTC3454  
U
OPERATIO  
Buck-Boost DC-DC Converter  
each cycle. During the off time of switch A, synchronous  
rectifier switch B turns on for the remainder of the cycle.  
Switches A and B will alternate conducting similar to a  
typical synchronous buck regulator. As the control volt-  
age increases, the duty cycle of switch A increases until  
the maximum duty cycle of the converter in buck mode  
The LTC3454 employs an LTC proprietary buck-boost  
DC/DCconvertertogeneratetheoutputvoltagerequiredto  
drive a high current LED. This architecture permits high-  
efficiency, low noise operation at input voltages above,  
below or equal to the output voltage by properly phasing  
fourinternalpowerswitches.Theerrorampoutputvoltage  
reaches DC  
|max given by:  
BUCK  
on the V pin determines the duty cycle of the switches.  
DC  
|max = 100% – DC  
BUCK 4SW  
C
Since the V pin is a filtered signal, it provides rejection  
C
where DC  
equals the duty cycle in % of the “four  
4SW  
switch” range.  
of frequencies well below the factory trimmed switching  
frequency of 1MHz. The low R  
, low gate charge  
DS(ON)  
DC = (150ns • f) • 100%  
synchronousswitchesprovidehighfrequencypulsewidth  
modulation control at high efficiency. Schottky diodes  
across synchronous rectifier switch B and synchronous  
rectifier switch D are not required, but if used do provide  
a lower voltage drop during the break-before-make time  
(typically 20ns), which improves peak efficiency by typi-  
cally 1% to 2% at higher loads.  
4SW  
where f is the operating frequency in Hz.  
Beyond this point the “four switch” or buck-boost region  
is reached.  
Buck-Boost or Four-Switch Mode (V ≈ V  
)
IN  
OUT  
Referring to Figure 2, when the control voltage V is above  
C
Figure1showsasimplifieddiagramofhowthefourinternal  
voltage V2, switch pair AD continue to operate for duty  
power switches are connected to the inductor, V , V  
IN OUT  
cycle DC  
|max, and the switch pair AC begins to phase  
BUCK  
and GND. Figure 2 shows the regions of operation of the  
in. As switch pair AC phases in, switch pair BD phases out  
buck-boost as a function of the control voltage V . The  
C
accordingly. When the V voltage reaches the edge of the  
C
outputswitchesareproperlyphasedsotransitionsbetween  
regionsofoperationarecontinuous, filteredandtranspar-  
buck-boostrangeatvoltageV3, switchpairACcompletely  
phases out switch pair BD and the boost region begins at  
enttotheuser.WhenV approachesV ,thebuck-boost  
IN  
OUT  
duty cycle DC . The input voltage V where the four  
4SW  
IN  
region is reached where the conduction time of the four  
switch region is typically 150ns. Referring to Figures 1  
switch region begins is given by:  
and 2, the various regions of operation encountered as V  
V = V /[1 – (150ns • f)]  
C
IN  
OUT  
increaseswillnowbedescribed.  
and the input voltage V where the four switch region  
IN  
ends is given by  
Buck Mode (V > V  
)
OUT  
IN  
V = V  
• (1 – DC  
) = V • [1 – (150ns • f)]  
OUT  
IN  
OUT  
4SW  
In buck mode, switch D is always on and switch C is  
always off. Referring to Figure 2, when the control  
75%  
voltage V is above voltage V1, switch A begins to turn on  
C
D
MAX  
V4 (2.1V)  
BOOST  
A ON, B OFF  
BOOST REGION  
BUCK REGION  
V
V
IN  
OUT  
7
PWM CD SWITCHES  
D
9
MIN  
V3 (1.65V)  
BOOST  
BUCK/BOOST REGION  
FOUR SWITCH PWM  
D
MAX  
PMOS A  
PMOS D  
NMOS C  
V2 (1.55V)  
BUCK  
0%  
SW1  
10  
SW2  
6
D ON, C OFF  
PWM AB SWITCHES  
V1 (0.9V)  
NMOS B  
DUTY  
CYCLE  
CONTROL  
VOLTAGE, V  
3454 F02  
3454 F01  
C
Figure 2. Switch Control vs Control Voltage, V  
Figure 1. Simplified Diagram of Internal Power Switches  
C
3454f  
7
LTC3454  
U
W U U  
APPLICATIO S I FOR ATIO  
Boost Mode (V < V  
)
limiting the rate of duty cycle change as V transitions  
IN  
OUT  
C
from the buck region through the buck-boost region into  
the boost region. Once the soft-start times out, it can only  
be reset by entering shutdown, or by an undervoltage or  
overtemperature condition.  
Inboostmode,switchAisalwaysonandswitchBisalways  
off. Referring to Figure 2, when the control voltage V is  
C
above voltage V3, switches C and D will alternate conduct-  
ing similar to a typical synchronous boost regulator. The  
maximum duty cycle of the converter is limited to 88%  
Autozero Error Amp  
typical and is reached when V is above V4.  
C
The error amplifier is an autozeroing transconductance  
amp with source and sink capability. The output of this  
Forward Current Limit  
amplifier drives a capacitor to GND at the V pin. This  
C
If the current delivered from V through PMOS switch A  
IN  
capacitor sets the dominant pole for the regulation loop.  
(See the Applications Information section for selecting  
the capacitor value). The feedback signal to the error  
amp is developed across a resistor through which LED  
current flows.  
exceeds 3.4A (typical), switch A is shut off immediately.  
Switches B and D are turned on for the remainder of the  
cycle in order to safely discharge the forward inductor  
current at the maximum rate possible.  
Reverse Current Limit  
Safety Error Amp  
If the current delivered from V  
backwards through  
OUT  
The safety error amplifier is a transconductance amplifier  
with sink only capability. In normal operation, it has no  
effectontheloopregulation.However,iftheLEDpinopen-  
circuits, the output voltage will keep rising, and the safety  
errorampwilleventuallytakeovercontroloftheregulation  
PMOS switch D exceeds 275mA (typical), switch D is  
shut off immediately. Switches A and C are turned on for  
the remainder of the cycle in order to safely discharge the  
reverse inductor current at the maximum rate possible.  
looptopreventV runaway.TheV thresholdatwhich  
OUT  
OUT  
Undervoltage Lockout  
this occurs is approximately 5.15V.  
TopreventoperationofthepowerswitchesathighR  
,
DS(ON)  
an undervoltage lockout is incorporated on the LTC3454.  
Whentheinputsupplyvoltagedropsbelowapproximately  
1.90V, the four power switches and all control circuitry  
are turned off except for the undervoltage block, which  
draws a few microamperes.  
LED Current Programming and Enable Circuit  
Two enable pins work in conjunction with dual external  
resistors to program LED current to one of three nonzero  
settings. The table below explains how the current can  
be set.  
Overtemperature Protection  
EN1  
EN2  
GND  
GND  
I
(A)  
LOAD  
GND  
0 (SHUTDOWN)  
If the junction temperature of the LTC3454 exceeds 130°C  
for any reason, all four switches are shut off immediately.  
The overtemperature protection circuit has a typical hys-  
teresis of 11°C.  
V
3850 • 0.8V/R  
3850 • 0.8V/R  
IN  
ISET1  
ISET2  
GND  
V
IN  
V
V
3850 • (0.8V/R  
+ 0.8V/R  
)
IN  
IN  
ISET1  
ISET2  
Soft-Start  
With either enable pin pulled high, the buck-boost will  
regulate the output voltage at the current programmed  
The LTC3454 includes an internally fixed soft-start which  
is active when powering up or coming out of shutdown.  
by R  
and/or R  
.
ISET1  
ISET2  
The soft-start works by clamping the voltage on the V  
C
With both enable pins pulled to GND, the LTC3454 is in  
shutdown and draws zero current. The enable pins are  
high impedance inputs and should not be floated.  
node and gradually releasing it such that it requires 200µs  
to linearly slew from 0.9V to 2.1V. This has the effect of  
3454f  
8
LTC3454  
U
W U U  
APPLICATIO S I FOR ATIO  
Input Capacitor Selection  
COMPONENT SELECTION  
SincetheV pinisthesupplyvoltagefortheICitisrecom-  
IN  
mendedtoplaceatleasta2.2µF,lowESRbypasscapacitor  
Inductor Selection  
toground.SeeTable2foralistofcomponentsuppliers.  
The high frequency operation of the LTC3454 allows the  
use of small surface mount inductors. The inductor cur-  
rent ripple is typically set to 20% to 40% of the maximum  
averageinductorcurrent. Foragivenrippletheinductance  
term in Boost mode is:  
Table 2. Capacitor Vendor Information  
SUPPLIER  
AVX  
Sanyo  
Taiyo Yuden  
TDK  
WEB SITE  
www.avxcorp.com  
www.sanyovideo.com  
www.t-yuden.com  
www.component.tdk.com  
V
2 • VOUT – V  
100%  
(
)
IN(MIN)  
IN(MIN)  
L >  
2
f •IOUT(MAX) %RippleVOUT  
Output Capacitor Selection  
The bulk value of the capacitor is set to reduce the ripple  
due to charge into the capacitor each cycle. The steady  
state ripple due to charge is given by:  
and in Buck mode is:  
V
IN(MAX) – VOUT • VOUT 100%  
(
)
L >  
f • VIN(MAX) %Ripple •I OUT  
IOUT(MAX) VOUT – V  
100%  
(
)
IN(MIN)  
COUT • VOUT2 • f  
%Ripple_Boost =  
where f = operating frequency, Hz  
%Ripple = allowable inductor current ripple, %  
V
IN(MAX) – VOUT 100%  
(
)
V
V
V
= minimum input voltage, V  
= maximum input voltage, V  
IN(MIN)  
IN(MAX)  
%Ripple_Buck =  
8• VIN(MAX) • f2 •L •COUT  
where C  
= output filter capacitor, F  
= output voltage, V  
OUT  
OUT  
The output capacitance is usually many times larger in  
ordertohandlethetransientresponseoftheconverter.For  
a rule of thumb, the ratio of operating frequency to unity-  
gain bandwidth of the converter is the amount the output  
capacitance will have to increase from the above calcula-  
tions in order to maintain desired transient response.  
I
= maximum output load current  
OUT(MAX)  
For high efficiency, choose an inductor with a high fre-  
quencycorematerial, suchasferrite, toreducecoreloses.  
The inductor should have low ESR (equivalent series  
2
resistance) to reduce the I R losses, and must be able  
to handle the peak inductor current without saturating.  
Molded chokes or chip inductors usually do not have  
enough core to support peak inductor currents >1A. To  
minimize radiated noise, use a toroid, pot core or shielded  
bobbin inductor. For white LED application, a 4.7µH/5µH  
inductor value is recommended. See Table 1 for a list of  
component suppliers.  
The other component of ripple is due to ESR (equivalent  
series resistance) of the output capacitor. Low ESR ca-  
pacitors should be used to minimize output voltage ripple.  
For surface mount applications, Taiyo Yuden, TDK, AVX  
ceramic capacitors, AVX TPS series tantalum capacitors  
or Sanyo POSCAP are recommended. For the white LED  
application, a 10µF capacitor value is recommended. See  
Table 2 for a list of component suppliers.  
Table 1. Inductor Vendor Information  
SUPPLIER  
WEB SITE  
Coilcraft  
www.coilcraft.com  
Optional Schottky Diodes  
Cooper/Coiltronics www.cooperet.com  
Murata  
Sumida  
Toko  
www.murata.com  
www.japanlink.com/sumida  
www.toko.com  
Schottky diodes across the synchronous switches B and  
D are not required, but provide a lower drop during the  
break-before-make time (typically 20ns) of the NMOS to  
PMOS transition, improving efficiency. Use a Schottky  
Vishay-Dale  
www.vishay.com  
diode such as an MBRM120T3 or equivalent. Do not use  
3454f  
9
LTC3454  
U
W U U  
APPLICATIO S I FOR ATIO  
ordinary rectifier diodes, since the slow recovery times where g is the error amp transconductance (typically  
m
will compromise efficiency.  
1/5.2k) and C is the external capacitor to GND at the  
VC  
V pin. For the white LED application, a 0.1µF or greater  
C
In applications in which V is greater than 4V and V  
to  
OUT  
IN  
capacitor value is recommended.  
GND short-circuit protection is needed, a Schottky diode  
such as MBRM12OT3 or equivalent may be used from  
SW1 to GND and/or a 2Ω/1nF series snubber from SW1  
to GND. The Schottky diode should be added as close  
to the pins as possible. Neither of these is required for  
shorted LED protection.  
Maximum LED Current  
As described in the Operation section, the output LED  
current with both enable pins logic high is equal to  
I
= 3850 [0.8V/(R  
|| R )]  
ISET2  
LED  
ISET1  
Sincethemaximumcontinuousoutputcurrentislimitedto  
1A, this sets a minimum limit on the parallel combination  
Closing the Feedback Loop  
The LTC3454 incorporates voltage mode PWM control.  
The control to output gain varies with operation region  
(Buck, Boost, Buck/Boost), but is usually no greater  
than 15. The output filter exhibits a double pole response  
givenby:  
of R  
and R  
equal to  
ISET1  
ISET2  
R
MIN  
= (R  
|| R  
)|  
= 3850(0.8V/1A)  
ISET1  
= 3080Ω  
ISET2 MIN  
Although the LTC3454 can safely provide this current  
continuously, the external LED may not be rated for this  
high a level of continuous current. Higher current levels  
are generally reserved for pulsed applications, such as  
LED camera flash. This is accomplished by programming  
1
fFILTER_POLE  
=
Hz  
2 • π • L COUT  
where C  
is the output filter capacitor.  
OUT  
a high current with one of the R  
the appropriate enable pin.  
resistors and pulsing  
ISET  
The output filter zero is given by:  
1
fFILTER_ZERO  
=
Hz  
Varying LED Brightness  
2 • π RESR COUT  
Continuously variable LED brightness control can be  
achieved by interfacing directly to one or both of the I  
whereR isthecapacitorequivalentseriesresistance.  
ESR  
SET  
A troublesome feature in Boost mode is the right-half  
plane zero (RHP), and is given by:  
pins. Figure 3 shows four such methods employing a  
voltage DAC, a current DAC, a simple potentiometer or a  
PWM input. It is not recommended to control brightness  
by PWMing the enable pins directly as this will toggle  
the LTC3454 in and out of shutdown and result in erratic  
operation.  
2
V
IN  
fRHPZ  
=
Hz  
2• π IOUT L•VOUT  
The loop gain is typically rolled off before the RHP zero  
frequency.  
LED Failure Modes  
AsimpleTypeIcompensationnetworkcanbeincorporated  
to stabilize the loop but at a cost of reduced bandwidth  
and slower transient response. To ensure proper phase  
margin, the loop is required to be crossed over a decade  
before the LC double pole.  
IftheLEDfailsasanopencircuit, thesafetyamplifiertakes  
control of the regulation loop to prevent V  
runaway.  
OUT  
The V  
threshold at which this occurs is about 5.15V.  
OUT  
The safety amplifier has no effect on loop regulation at  
less than 5.15V.  
V
OUT  
The unity-gain frequency of the error amplifier with the  
Type I compensation is given by:  
If the LED fails as a short-circuit, the current limiting  
circuitry detects this condition and limits the peak input  
current to a safe level.  
gm  
2 • π CVC  
fUG  
=
3454f  
10  
LTC3454  
U
W U U  
APPLICATIO S I FOR ATIO  
V
IN  
V
V
V
OUT  
OUT  
IN  
ENx  
ENx  
LTC3454  
LTC3454  
I
I
SETx  
LED  
SETx  
LED  
0.8V – V  
DAC  
I
= 3850  
I
= 3850 • IDAC  
LED  
LED  
0.8V  
R
R  
R
SET  
MIN  
SET  
IDAC ≤  
R
MIN  
VOLTAGE  
DAC  
CURRENT  
DAC  
V
DAC  
(3a)  
(3b)  
V
IN  
V
V
V
OUT  
OUT  
IN  
ENx  
ENx  
LTC3454  
LTC3454  
I
I
SETx  
LED  
SETx  
LED  
0.8V  
+ R  
0.8V – V  
PWM  
R
SET  
R
100  
R
SET  
MIN  
POT  
I
= 3850  
I
= 3850  
= 3850  
R
R  
MIN  
LED  
LED  
SET  
R
MIN  
POT  
V
PWM  
0.8V – (DC% • V  
)
R
DVCC  
R
SET  
DV  
CC  
f
10kHz  
PWM  
(3c)  
(3d)  
3454 F03  
Figure 3. Brightness control Methods: (a) Using Voltage DAC, (b) Using Current DAC, (c) Using Potentiometer, (d) Using PWM Input  
U
PACKAGE DESCRIPTIO  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699)  
R = 0.115  
0.38 0.10  
TYP  
6
10  
0.675 0.05  
3.50 0.05  
2.15 0.05 (2 SIDES)  
1.65 0.05  
3.00 0.10  
(4 SIDES)  
1.65 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
PACKAGE  
OUTLINE  
(DD10) DFN 1103  
5
1
0.25 0.05  
0.50 BSC  
0.75 0.05  
0.200 REF  
0.25 0.05  
0.50  
BSC  
2.38 0.10  
(2 SIDES)  
2.38 0.05  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT 5. EXPOSED PAD SHALL BE SOLDER PLATED  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3454f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
11  
LTC3454  
U
TYPICAL APPLICATIO  
500mA LED Flashlight Driver  
L1  
4.7 H  
LED Power Efficiency vs V  
IN  
100  
95  
90  
85  
80  
75  
70  
65  
60  
I
= 500mA  
LED  
V
SW1  
SW2  
SWD  
V
OUT  
2.2 F  
4.7 F  
LED  
IN  
3-CELL  
ALKALINE  
4.5V  
SWA  
SWB  
EN1  
LED  
EN2  
SWC  
1MHz  
BUCK-BOOST  
I
= 500mA  
V
C
I
LED  
A
SET1  
T
= 25°C  
R
6.19k  
1%  
I
ISET1  
0.1 F  
EFFICIENCY = (V  
– V )I /V  
I
SET2  
OUT  
LED LED IN IN  
LTC3454  
4.3 4.7  
(V)  
2.7 3.1 3.5 3.9  
5.1 5.5  
GND (EXPOSED PAD)  
3453 TA02  
V
IN  
3454 TA02b  
LED: LUMILEDS, LXCL LW3C  
L1: TOKO A997AS-4R7M  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
V : 1.6V to 18V, V  
MS10 Package/EDD Package  
LT1618  
Constant Current, Constant Voltage 1.4MHz, High Efficiency  
Boost Regulator  
= 34V, I = 1.8mA, I = <1µA,  
OUT(MAX) Q SD  
IN  
LT1930/LT1930A 1A (I ), 1.2MHz/2.2MHz, High Efficiency Step-Up  
V : 2.6V to 16V, V  
ThinSOT Package  
= 34V, I = 4.2mA/5.5mA, I = <1µA,  
OUT(MAX) Q SD  
SW  
IN  
DC/DC Converter  
LT1932  
Constant Current, 1.2MHz, High Efficiency White LED  
Boost Regulator  
V : 1V to 10V, V  
ThinSOT Package  
= 34V, I = 1.2mA, I = <1µA,  
OUT(MAX) Q SD  
IN  
LT1937  
Constant Current, 1.2MHz, High Efficiency White LED  
Boost Regulator  
V : 2.5V to 10V, V  
ThinSOT Package/SC70 Package  
= 34V, I = 1.9mA, I = <1µA,  
OUT(MAX) Q SD  
IN  
LTC3205  
LTC3215  
LTC3216  
High Efficiency, Multi-Display LED Controller  
V : 2.8V to 4.5V, V  
QFN-24 Package  
= 6V, I = 50µA, I = <1µA,  
Q SD  
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
700mA Low Noise Charge Pump LED Driver  
V : 2.9V to 4.4V, V  
= 5.5V, I = 300µA, I = <2.5µA,  
Q SD  
IN  
DFN Package  
1A Low Noise High Current Charge Pump LED  
Driver with Independent Flash/Torch Current  
V : 2.9V to 4.4V, V  
= 5.5V, I = 300µA, I = <2.5µA,  
Q SD  
IN  
DFN Package  
LTC3440/  
LTC3441  
600mA/1.2A I , 2MHz/1MHz, Synchronous Buck-Boost  
V : 2.4V to 5.5V, V  
= 5.25V, I = 25µA/50µA, I = <1µA,  
Q SD  
OUT  
IN  
DC/DC Converter  
MS-10 Package/DFN Package  
LTC3443  
LTC3490  
LTC3453  
600mA/1.2A I , 600kHz, Synchronous Buck-Boost  
DC/DC Converter  
V : 2.4V to 5.5V, V  
DFN Package  
= 5.25V, I = 28µA, I = <1µA,  
OUT(MAX) Q SD  
OUT  
IN  
Single Cell 350mA LED Driver  
V : 1V to 3.2V, V  
IN  
= 4V, I = 20µA, I = 20µA,  
OUT(MAX) Q SD  
DFN Package  
Synchronous Buck-Boost High Power White LED Driver  
V : 2.7V to 5.5V, Up to 500mA Continuous Output Current,  
IN  
QFN-16 Package  
LT3465/LT3465A Constant Current, 1.2MHz/2.7MHz, High Efficiency White LED  
Boost Regulator with Integrated Schottky Diode  
V : 2.7V to 16V, V  
ThinSOT Package  
= 34V, I = 1.9mA, I = <1µA,  
Q SD  
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
LT3466  
Dual Constant Current, 2MHz, High Efficiency White LED  
Boost Regulator with Integrated Schottky Diode  
V : 2.7V to 24V, V  
= 40V, I = 5mA, I = <16µA,  
Q SD  
IN  
DFN Package  
LT3479  
3A, Full Featured DC/DC Converter with Soft-Start and  
Inrush Current Protection  
V : 2.5V to 24V, V  
= 40V, I = 6.5mA, I = <1µA,  
Q SD  
IN  
DFN Package/TSOPP Package  
3454f  
LT 1105 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2005  

相关型号:

LTC3454EDD#TRPBF

LTC3454 - 1A Synchronous Buck-Boost High Current LED Driver; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3455

Dual DC/DC Converter with USB Power Manager and Li-Ion Battery Charger
Linear

LTC3455-1_15

Dual DC/DC Converter with USB Power Manager and Li-Ion Battery Charger
Linear

LTC3455EUF

Dual DC/DC Converter with USB Power Manager and Li-Ion Battery Charger
Linear

LTC3455EUF#PBF

LTC3455/LTC3455-1 - Dual DC/DC Converter with USB Power Manager and Li-Ion Battery Charger; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3455EUF#TR

LTC3455/LTC3455-1 - Dual DC/DC Converter with USB Power Manager and Li-Ion Battery Charger; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3455EUF-1#PBF

LTC3455/LTC3455-1 - Dual DC/DC Converter with USB Power Manager and Li-Ion Battery Charger; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3455_15

Dual DC/DC Converter with USB Power Manager and Li-Ion Battery Charger
Linear

LTC3456

2-Cell, Multi-Output DC/DC Converter with USB Power Manager
Linear

LTC3456EUF

2-Cell, Multi-Output DC/DC Converter with USB Power Manager
Linear

LTC3456EUF#PBF

LTC3456 - 2-Cell, Multi-Output DC/DC Converter with USB Power Manager; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3456EUF#TR

LTC3456 - 2-Cell, Multi-Output DC/DC Converter with USB Power Manager; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear