LTC3523_15 [Linear]

Synchronous 600mA Step-Up and 400mA Step-Down DC/DC Converters;
LTC3523_15
型号: LTC3523_15
厂家: Linear    Linear
描述:

Synchronous 600mA Step-Up and 400mA Step-Down DC/DC Converters

文件: 总16页 (文件大小:263K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3523/LTC3523-2  
Synchronous 600mA Step-Up  
and 400mA Step-Down  
DC/DC Converters  
FEATURES  
DESCRIPTION  
The LTC®3523/LTC3523-2 combine a 600mA step-up  
DC/DC converter with a 400mA synchronous step-down  
DC/DC converter in a tiny 3mm × 3mm package. The  
1.2MHz/2.4MHz switching frequencies minimize the  
solution footprint while maintaining high efficiency. Both  
converters feature soft-start and internal compensation,  
simplifying the design.  
n
Dual High Efficiency DC/DC Converters:  
Step-Up (V  
= 1.8V to 5.25V, I = 600mA)  
OUT  
SW  
Step-Down (V  
= 0.615V to 5.5V, I  
= 400mA)  
OUT  
OUT  
n
n
n
n
n
1.8V to 5.5V Input Voltage Range  
Up to 94% Efficiency  
Pin Selectable Burst Mode® Operation  
45μA Quiescent Current in Burst Mode Operation  
1.2MHz (LTC3523) or 2.4MHz (LTC3523-2)  
Switching Frequency  
Both the step-up and step-down converters are current  
mode controlled and utilize an internal synchronous rec-  
tifier for high efficiency. The step-up supports 0% duty  
cycle operation and the step-down converter supports  
100% duty cycle operation to extend battery run time.  
If the MODE pin is held high, both converters automati-  
cally transition between Burst Mode operation and PWM  
operation improving light load efficiency. Fixed, low noise  
1.2MHz/2.4MHz PWM operation is selected when MODE  
is grounded.  
n
n
n
n
n
Independent Power Good Indicator Outputs  
Integrated Soft-Start  
Thermal and Overcurrent Protection  
<3μA Quiescent Current in Shutdown  
Small 16-Lead 3mm × 3mm × 0.75mm QFN Package  
APPLICATIONS  
n
Digital Cameras  
The LTC3523/LTC3523-2 provide a sub-3μA shutdown  
mode, overtemperature shutdown and current limit pro-  
tection on both converters. The LTC3523/LTC3523-2 are  
housedina16-lead3mm×3mm×0.75mmQFNpackage.  
n
Medical Instruments  
n
Industrial Handhelds  
GPS Navigators  
n
L, LT, LTC, LTM and Burst Mode are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
LTC3523 Efficiency and Power  
Loss vs Load Current  
V
IN  
1.8V TO 3.2V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1000  
100  
10  
+
2-CELL  
ALKALINE  
47μF  
4.7μH  
V
OUT2  
V
V
V
BAT  
IN1  
IN2  
4.7μH  
V
STEP-DOWN  
OUTPUT  
1.2V  
10μF  
EFFICIENCY  
SW1  
V
SW2  
FB2  
V
OUT1  
10pF  
511k  
511k  
STEP-UP  
OUTPUT  
3.3V  
200mA  
P0WER LOSS  
OUT  
LTC3523  
FB1  
MODE  
634k  
IN  
10μF  
200mA  
V
V
V
= 2.4V  
PGOOD1  
SHDN1  
PGOOD2  
SHDN2  
IN  
= 3.3V  
= 1.2V  
OUT1  
OUT2  
365k  
1
GND1 GND2 GND3  
f
= 1.2MHz  
OSC  
STEP-UP  
STEP-DOWN  
100  
OFF ON  
OFF ON  
3523 TA01a  
0.1  
0.1  
1
10  
1000  
LOAD CURRENT (mA)  
3523 TA01b  
3523fb  
1
LTC3523/LTC3523-2  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
V
, V , V , V  
Voltages .................... –0.3V to 6V  
TOP VIEW  
IN1 IN2 BAT OUT  
SHDN1, PGOOD1, PGOOD2, FB1 Voltages .. –0.3V to 6V  
SHDN2, FB2, MODE Voltages ......0.3V to (V + 0.3V)  
SW1 Voltage  
IN2  
16 15 14 13  
FB1  
1
2
3
4
12 FB2  
DC.............................................................. 0.3V to 6V  
Pulse < 100ns.......................................... –0.3V to 7V  
V
11 PGOOD2  
IN1  
17  
PG00D1  
MODE  
10  
9
V
V
SW2 Voltage Pulse < 100ns.........0.3V to (V + 0.3V)  
Operating Temperature Range  
OUT  
IN2  
IN2  
5
6
7
8
(Notes 2, 3).............................................. –40°C to 85°C  
Storage Temperature Range................... –65°C to 125°C  
UD PACKAGE  
16-LEAD (3mm s 3mm) PLASTIC QFN  
T
= 125°C, θ = 68°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC3523EUD#PBF  
LTC3523EUD-2#PBF  
LTC3523EUD#TRPBF  
LTC3523EUD-2#TRPBF  
LCYC  
LDDR  
–40°C to 85°C  
–40°C to 85°C  
16-Lead (3mm × 3mm) Plastic DFN  
16-Lead (3mm × 3mm) Plastic DFN  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN1 = VIN2 = VBAT = 2.4V, VOUT = 3.3V, unless otherwise specified.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
Minimum Start-Up Voltage  
Frequency  
1.6  
1.8  
V
l
l
LTC3523  
LTC3523-2  
0.9  
1.8  
1.2  
2.4  
1.5  
2.65  
MHz  
MHz  
Quiescent Current–Shutdown  
Quiescent Current –Sleep  
V
= V  
= 0V, V  
= 0V, V = V = V  
BAT  
0.5  
45  
15  
3
μA  
μA  
μA  
V
SHDN1  
SHDN2  
OUT  
IN1  
IN2  
Measured from V  
Measured from V  
, V = V = V = 2.4V  
SUPPLY IN1 IN2 BAT  
Quiescent Current V  
– Sleep  
= 3.3V (Note 4)  
OUT  
OUT  
SHDN1, SHDN2 Input High  
SHDN1, SHDN2 Input Low  
SHDN1, SHDN2 Input Current  
PGOOD1, PGOOD2 Threshold  
PGOOD1, PGOOD2 Low Voltage  
PGOOD1, PGOOD2 Leakage  
MODE Input High  
1
0.35  
2
V
V
= 5.5V  
1.4  
–9  
μA  
%
V
SHDN  
Referenced to the Feedback Voltage  
–6  
1.0  
–14  
I
= 1mA  
0.35  
0.01  
PGOOD  
V
= 5.25V  
1
μA  
V
PGOOD  
MODE Input Low  
0.35  
V
3523fb  
2
LTC3523/LTC3523-2  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN1 = VIN2 = VBAT = 2.4V, VOUT = 3.3V, unless otherwise specified.  
PARAMETER  
CONDITIONS  
= 5.5V  
MIN  
TYP  
0.01  
500  
MAX  
UNITS  
μA  
MODE Leakage Current  
Soft-Start Time  
V
1
MODE  
μs  
Step-Up Converter  
l
l
l
Input Voltage Range  
1.8  
1.8  
5.25  
5.25  
1.23  
50  
V
V
Output Voltage Adjust Range  
Feedback Voltage FB1  
Feedback Input Current FB1  
N-Channel Switch Leakage  
P-Channel Switch Leakage  
N-Channel Switch On Resistance  
(Note 6)  
1.16  
1.20  
0
V
V
FB1  
V
SW  
V
SW  
= 1.25V  
= 5.5V  
nA  
μA  
μA  
0.20  
0.20  
2
= 5.5V, V  
= 0V  
2
OUT  
V
OUT  
V
OUT  
= 3.3V  
= 5V  
0.36  
0.22  
Ω
Ω
P-Channel Switch On Resistance  
V
OUT  
V
OUT  
= 3.3V, I = 100mA  
0.33  
0.31  
Ω
Ω
SW  
= 5V, I = 100mA  
SW  
l
Peak Inductor Current  
(Note 7)  
(Note 6)  
600  
80  
1000  
40  
mA  
ns  
%
Current Limit Delay to Output  
Maximum Duty Cycle  
l
l
V
FB  
V
FB  
= 1V  
87  
Minimum Duty Cycle  
= 1.5V  
0
%
Step-Down Converter  
l
l
l
Input Voltage Range  
1.8  
0.615  
585  
5.5  
5.5  
615  
50  
V
V
Output Voltage Range  
(Note 6)  
Feedback Voltage FB2  
600  
0
mV  
nA  
%/V  
%/V  
%
Feedback Input Current FB2  
Reference Voltage Line Regulation  
Output Voltage Line Regulation  
Output Voltage Load Regulation  
Maximum Duty Cycle  
V
= 0.625V  
FB2  
OUT  
OUT  
OUT  
I
I
I
= 100mA (Notes 5, 6)  
0.04  
0.04  
1.0  
= 100mA, 1.6V < V < 5.5V (Note 6)  
IN  
= 0mA to 600mA (Note 6)  
100  
650  
0.33  
0.58  
0.20  
%
l
Peak Inductor Current  
(Note 7)  
400  
mA  
Ω
N-Channel Switch On Resistance  
P-Channel Switch On Resistance  
SW Leakage  
V
V
V
= 2.4V  
IN2  
IN2  
= 2.4V  
= 0V, V  
Ω
= 0V or 5V, V = 5.5V  
2
μA  
SHDN2  
SW2  
IN2  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: Current is measured into the V  
bootstrapped to the output for the step-up. The current will reflect to the  
pin since the supply is  
OUT  
input supply by: (V /V ) • Efficiency. The outputs are not switching in  
OUT IN  
sleep.  
Note 2: The LTC3523/LTC3523-2 are guaranteed to meet performance  
specifications from 0°C to 85°C. Specifications over the –40°C to 85°C  
operating temperature range are assured by design, characterization and  
correlation with statistical process control.  
Note 5: The LTC3523/LTC3523-2 are tested in a propriety test mode that  
connects FB2 to the output of the error amplifier.  
Note 6: Specification is guaranteed by design and not 100% tested in  
production.  
Note 3: The LTC3523/LTC3523-2 include an overtemperature  
shutdown that is intended to protect the device during momentary  
overload conditions. Junction temperature will exceed 125°C when the  
overtemperature shutdown is active. Continuous operation above the  
specified maximum operating junction temperature may impair device  
reliability.  
Note 7: Current measurements are performed when the LTC3523/  
LTC3523-2 are not switching. The current limit values in operation will be  
somewhat higher due to the propagation delay of the comparator.  
3523fb  
3
LTC3523/LTC3523-2  
(T = 25°C unless otherwise noted)  
A
TYPICAL PERFORMANCE CHARACTERISTICS  
Normalized FBx Reference vs  
Temperature  
Normalized Oscillator Frequency  
vs Temperature  
Inrush Current Control for the  
Step-Up Converter  
1.00125  
1.00000  
0.99875  
0.99750  
0.99625  
0.99500  
1.05  
1.00  
0.95  
V
OUT_BST  
2V/DIV  
I
L_BST  
200mA/DIV  
SHDN1  
2V/DIV  
3523 G03  
V
V
C
= 3.3V  
= 10μF  
200μs/DIV  
OUT  
IN  
OUT  
= 2.4V  
L1 = 4.7μH  
15  
35  
55  
–45 –25  
–5  
75  
15  
35  
55  
–45 –25  
–5  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3523 G02  
3523 G01  
Load Transient Response  
Step-Down  
Inrush Current Control for the  
Step-Down Converter  
Load Transient Response Step-Up  
OUTPUT  
RIPPLE  
20mV/DIV  
OUTPUT  
RIPPLE  
20mV/DIV  
V
OUT_BCK  
1V/DIV  
LOAD  
CURRENT  
20mA/DIV  
I
L_BCK  
200mA/DIV  
LOAD  
CURRENT  
20mA/DIV  
SHDN2  
2V/DIV  
3523 G04  
3523 G06  
3523 G05  
V
V
C
= 1.2V  
= 10μF  
200μs/DIV  
V
V
C
= 1.2V  
= 47μF  
500μs/DIV  
V
V
C
= 3.3V  
= 10μF  
500μs/DIV  
OUT  
IN  
OUT  
L1 = 4.7μH  
OUT  
IN  
OUT  
L1 = 4.7μH  
OUT  
IN  
OUT  
L1 = 4.7μH  
= 2.4V  
= 2.4V  
= 2.4V  
C = 68pF  
10mA TO 30mA STEP  
20mA TO 70mA STEP  
F
RDS(ON) vs Input Voltage for the  
Step-Down Converter  
RDS(ON) vs Output Voltage for the  
Step-Up Converter  
Current Limit vs Temperature  
1.2  
1.0  
0.8  
0.6  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0
BOOST CURRENT  
LIMIT  
PMOS  
NMOS  
PMOS  
NMOS  
BUCK CURRENT  
LIMIT  
0.4  
0.2  
0
55  
–45 –25  
–5  
15  
35  
75  
3
3.5  
1
1.5  
2
2.5  
4
4.5  
5
1
4.5  
1.5  
2
2.5  
3
3.5  
4
5
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
3523 G07  
3523 G08  
3532 G09  
3523fb  
4
LTC3523/LTC3523-2  
(T = 25°C unless otherwise noted)  
A
TYPICAL PERFORMANCE CHARACTERISTICS  
Step-Up No-Load Input Current  
vs VIN  
Normalized RDS(ON) vs  
Temperature  
Mode Transition Response  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
V
OUT_BST  
50mV/DIV  
V
= 5V  
OUT  
V
OUT_BCK  
20mV/DIV  
PMOS  
NMOS  
MODE  
2V/DIV  
V
= 3.3V  
3523 G12  
OUT  
V
V
V
= 3.3V  
= 1.2V  
200μs/DIV  
OUT1  
OUT2  
IN  
= 2.4V  
I
I
= 20mA  
= 25mA  
= C  
OUT1  
OUT2  
V
= 2.8V  
2.5  
OUT  
2
C
= 10μF  
OUT1  
OUT2  
0
L1 = L2 = 4.7μH  
–25  
–5  
35  
55  
75  
–45  
15  
1.5  
3
3.5  
4
4.5  
5
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
3523 G10  
3523 G11  
Maximum IOUT vs VIN for the  
Step-Up Converter  
Maximum IOUT vs VIN for the  
Step-Down Converter  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
450  
400  
350  
300  
250  
200  
150  
100  
50  
V
= 5V  
V
= 1.8V  
OUT  
OUT  
V
= 3.3V  
OUT  
V = 2.5V  
OUT  
V
= 2.5V  
OUT  
V
= 1.2V  
OUT  
0
0
3
3.5  
1
1.5  
2
2.5  
4
4.5  
5
1
2
3
INPUT VOLTAGE (V)  
4
5
INPUT VOLTAGE (V)  
3523 G14  
3523 G13  
PIN FUNCTIONS  
FB1 (Pin 1): Step-Up Converter Feedback Input to the Er-  
ror Amplifier. Connect resistor divider tap to this pin. The  
output voltage can be adjusted from 1.8V to 5.25V by:  
PGOOD1 (Pin 3): Step-Up Converter Power Good Com-  
parator Output. This open-drain output is pulled low when  
V
FB1  
< –9% of its regulation voltage.  
V
(Pin4):Step-UpConverterOutputVoltageSenseInput  
R1  
OUT  
VOUT(STEP-UP) = 1.2V • 1+  
and Drain of the Internal Synchronous Rectifier MOSFET.  
R2  
Driver bias is derived from V . PCB trace length from  
OUT  
V
to the output filter capacitor(s) should be as short  
See Block Diagram.  
OUT  
and wide as possible.  
V
(Pin2):Step-UpConverterPowerVoltageInput. This  
IN1  
pin can be connected to a different supply than V . This  
IN2  
pin must be connected to a valid supply voltage.  
3523fb  
5
LTC3523/LTC3523-2  
PIN FUNCTIONS  
SW1 (Pin 5): Step-Up Converter Switch Pin. Connect the  
inductor between SW1 and V . Keep these PCB trace  
If large feedback resistors, above 500k are used, then it  
will be necessary to use a lead capacitor connected to the  
output voltage and FB2.  
IN1  
lengths as short and wide as possible to reduce EMI and  
voltage overshoot. If the inductor current falls to zero or  
SHDN1 is low, an internal 150Ω anti-ringing resistor is  
SHDN2 (Pin 13): Step-Down Converter Logic Controlled  
Shutdown Input. Do not leave this pin floating.  
connected from SW1 to V to minimize EMI.  
IN1  
SHDN2 = High: Normal free-running operation,  
GND1(Pin6):Step-UpConverterPowerGround. Connect  
this pin to the ground plane.  
1.2MHz/2.4MHz typical operating frequency.  
SHDN2 = Low: Shutdown, quiescent current < 1μA.  
GND2 (Pin 7): Step-Down Converter Power Ground. Con-  
nect this pin to the ground plane.  
This pin cannot exceed the voltage on V  
.
IN2  
GND3 (Pin 14): Analog Ground. The feedback voltage  
dividers for each converter must be returned to GND3  
for best performance.  
SW2 (Pin 8): Step-Down Converter Switch Pin. Connect  
one end of the inductor to SW2. Keep these PCB trace  
lengths as short and wide as possible to reduce EMI and  
voltage overshoot.  
Note: When laying out your PCB provide a short direct  
pathbetweenGND1andthe()sideofthestep-upoutput  
capacitor(s)andGND2andthestep-downoutputcapaci-  
tor.These pins are not connected together internally.  
V
IN2  
(Pin 9): Step-Down Converter Power Voltage Input.  
This pin can be connected to a different supply than V  
.
IN1  
This pin must be connected to a valid supply voltage.  
V
(Pin 15): Analog Voltage Input. Connect this pin to  
MODE (Pin 10): Step-Up and Step-Down Converter Mode  
Selection Pin. Do not leave this pin floating.  
BAT  
the higher of V or V .  
IN1  
IN2  
SHDN1 (Pin 16): Step-Up Converter Logic Controlled  
• MODE = Low: PWM mode  
Shutdown Input.  
• MODE = High: Automatic Burst Mode operation  
SHDN1 = High: Normal free-running operation,  
PGOOD2 (Pin 11): Step-Down Converter Power Good  
1.2MHz/2.4MHz typical operating frequency.  
Comparator Output. This open-drain output is pulled low  
SHDN1 = Low: Shutdown, quiescent current < 1μA.  
when V < –9% of its regulation voltage.  
FB2  
This pin cannot exceed the voltage on V  
.
FB2 (Pin 12): Step-Down Converter Feedback Input to the  
Erroramplifier. Connectresistordividertaptothispin. The  
output voltage can be adjusted from 0.6V to 5.5V by:  
IN1  
Exposed Pad (Pin 17): Die attach pad must be soldered  
to PCB ground for electrical contact and optimum thermal  
performance.  
R3  
R4  
VOUT(STEP-DOWN) = 0.6V • 1+  
See Block Diagram.  
3523fb  
6
LTC3523/LTC3523-2  
BLOCK DIAGRAM  
L1  
4.7μH  
V
IN  
1.8V TO 5.5V  
+
16  
SHDN1  
2
5
C
IN  
47μF  
V
SW1  
BULK CONTROL  
SIGNALS  
IN1  
V
V
OUT  
OUT  
ANTI-RING  
SHUTDOWN  
AND  
STEP-UP  
4
SHDN  
1.8V TO 5.25V  
V
BIAS  
PWM  
LOGIC  
AND  
MODE  
OSC  
DRIVERS  
+
CURRENT  
SENSE  
I
ZERO  
COMP  
PWM/I  
COMP  
LIM  
MODE  
MODE  
R1  
R2  
+
FB1  
C
OUT  
10μF  
+
1
1.2V  
g
ERROR  
m
+
+
AMPLIFIER  
C
C1  
I
LIM  
REF  
R
C
C2  
Z
START-UP  
SLOPE COMPENSATION  
SOFT-START  
AND  
PGOOD1  
3
THERM REG  
FB1  
SLP  
+
1.2V  
–9%  
STEP-UP  
0.6V  
1.2V  
1V  
OSC  
SLP  
OSCILLATOR  
REFERENCE  
V
V
BAT  
MODE  
10  
15  
9
THERMAL SHDN  
SHARED  
STEP-DOWN  
IN2  
+
+
SLOPE COMPENSATION  
ZERO CURRENT  
COMP  
+
SLP  
0A  
PWM/I  
LIM  
COMP  
I
LIM  
REF  
L2  
+
PWM  
LOGIC  
AND  
4.7μH  
V
OUT  
SW2  
8
STEP-DOWN  
MODE  
0.615V TO 5.5V  
PGOOD2  
DRIVERS  
OSC  
11  
13  
FB2  
+
V
OUT  
GND2  
0.6V  
–9%  
LIMIT  
COMP  
+
0.66V  
SHUTDOWN  
AND  
MODE  
MODE  
SHDN2  
R3  
SHDN  
FB2  
C
OUT  
10μF  
12  
+
V
BIAS  
R4  
0.6V  
g
m
ERROR  
AMPLIFIER  
C
C1  
R
Z
START-UP  
SOFT-START  
AND  
THERM REG  
GND1  
GND2  
GND3  
14  
6
7
3523 BD  
3523fb  
7
LTC3523/LTC3523-2  
OPERATION  
TheLTC3523andLTC3523-2aresynchronousstep-upand  
step-down converters housed in a 16-pin QFN package.  
Operating from inputs down to 1.8V, the devices feature  
fixedfrequency,currentmodePWMcontrolforexceptional  
line and load regulation and transient response. With  
PWM Comparators  
ThePWMcomparatorsareusedtocomparetheconverters  
external inductor current to the current commanded by  
the error amplifiers. When the inductor current reaches  
the current commanded by the error amplifier the induc-  
tor charging cycle is terminated and the rectification cycle  
commences.  
low R  
and internal MOSFET switches, the devices  
DS(ON)  
maintain high efficiency over a wide range of load cur-  
rent. Operation can be best understood by referring to  
the Block Diagram.  
Current Limit  
ThecurrentlimitcomparatorshutsofftheN-channelswitch  
for the step-up and P-channel switch for the step-down  
once its current limit threshold is reached. The current  
limit comparator delay to output is typically 40ns. Peak  
switch current is limited to approximately 1000mA for  
the step-up and 650mA for the step-down independent  
of input or output voltage.  
Soft-Start  
Boththestep-upandstep-downconvertersontheLTC3523  
/LTC3523-2 provide soft-start. The soft-start time is typi-  
cally 500μs. The soft-start function resets in the event of  
a commanded shutdown or thermal shutdown.  
Oscillator  
The frequency of operation is set by an internal oscilla-  
tor to a nominal 1.2MHz for the LTC3523 and nominal  
2.4MHz for the LTC3523-2. The oscillator is shared by  
both converters.  
Zero Current Comparator  
The zero current comparator monitors the inductor cur-  
rent to the output and shuts off the synchronous rectifier  
once this current reduces to approximately 20mA. This  
prevents the inductor current from reversing in polarity  
improving efficiency at light loads.  
Shutdown  
The step-up and the step-down converters have inde-  
pendent shutdown pins. To shut down a converter, pull  
SHDNx below 0.35V. To enable a converter, pull SHDNx  
above 1.0V.  
Power Good Comparator  
Both converters have independent open drain power good  
comparators which monitor the output voltage via their  
respective FBx pins. The comparator output will allow the  
PGOODx to be pulled up high when the output voltage  
Error Amplifiers  
Power converter control loop compensation is provided  
internally for each converter. The noninverting input is  
internally connected to the 1.2V reference for the step-up  
and0.6Vforthestep-down.Theinvertinginputisconnected  
to the respective FBx for both converters. Internal clamps  
limittheminimumandmaximumerrorampoutputvoltage  
for improved large signal transient response. A voltage  
(V ) has exceeded 91% of it final value. If the output  
OUT  
voltage decreases below 91%, the comparator will pull  
the PGOODx pin to ground. The step-up comparator has  
3.3% of hysteresis and the step-down has 6.6% relative  
to FBx voltage for added noise immunity.  
Step-Down Overvoltage Comparator  
divider from V  
to ground programs the output voltage  
The step-down overvoltage comparator guards against  
transient overshoots greater than 10% of the output volt-  
age by turning the P-channel switch off until the transient  
has subsided.  
OUT  
viatherespectiveFBxpinsfrom1.8Vto5.25Vforthestep-  
up and 0.615V to 5.5V for the step-down. From the Block  
Diagram the design equation for programming the output  
voltages is V  
OUT  
= 1.2V • [1 + (R1/R2)] for the step-up and  
OUT  
V
= 0.6V • [1 + (R3/R4)] for the step-down.  
3523fb  
8
LTC3523/LTC3523-2  
OPERATION  
Step-Up Anti-Ringing Control  
MOSFET body diode also enables inrush current limiting  
at turn-on, minimizing surge currents seen by the input  
supply. Note that to obtain the advantages of output dis-  
connect, an external Schottky diode cannot be connected  
The anti-ring circuitry connects a resistor across the in-  
ductor to prevent high frequency ringing on the SW1 pin  
duringdiscontinuouscurrentmodeoperation.Theringing  
of the resonant circuit formed by L and C (capacitance  
on SW pin) is low energy, but can cause EMI radiation.  
between SW1 and V  
.
OUT  
SW  
Thermal Shutdown  
If the die temperature reaches 160°C, the part will go into  
thermal shutdown. All switches will be turned off and  
the soft-start capacitor will be discharged. The device  
will be enabled again when the die temperature drops by  
approximately 15°C.  
Step-Up Output Disconnect  
The LTC3523/LTC3523-2 step-up is designed to provide  
true output disconnect by eliminating body diode conduc-  
tionoftheinternalP-channelMOSFETrectifier.Thisallows  
for V  
to go to zero volts during shutdown, drawing no  
OUT  
current from the input source. Controlling the P-channel  
APPLICATIONS INFORMATION  
PCB LAYOUT GUIDELINES  
COMPONENT SELECTION  
Inductor Selection  
The high speed operation of the LTC3523/LTC3523-2  
demands careful attention to board layout. You will not  
get advertised performance with careless layout. Figure 1  
shows the recommended component placement. A large  
ground pin copper area will help to lower the chip tem-  
perature. A multilayer board with a separate ground plane  
is ideal, but not absolutely necessary.  
The LTC3523/LTC3523-2 can utilize small surface mount  
and chip inductors due to its fast 1.2MHz switching  
frequency and for the 2.4MHz version, the values are  
halved. The Inductor current ripple is typically set for  
20% to 40% of the peak inductor current (I ). High  
P
Figure 1. Recommended Component Placement for Double Layer Board  
3523fb  
9
LTC3523/LTC3523-2  
APPLICATIONS INFORMATION  
frequencyferritecoreinductormaterialsreducefrequency  
dependent power losses compared to cheaper powdered  
iron types, improving efficiency. The inductor should have  
low ESR (series resistance of the windings) to reduce the  
current.Increasingtheinductanceabove1Hwillincrease  
size while providing little improvement in output current  
capability. A 4.7μH inductor will work well for most Li-Ion  
or 2-cell alkaline/NiMH cell applications  
2
I R power losses, and must be able to handle the peak  
Output and Input Capacitor Selection  
inductor current without saturating. Molded chokes and  
some chip inductors usually do not have enough core to  
support the peak inductor currents of 1000mA seen on  
the LTC3523/LTC3523-2. To minimize radiated noise, use  
a toroid, pot core or shielded bobbin inductor. See Table  
1 for suggested inductors and suppliers.  
Low ESR (equivalent series resistance) capacitors should  
be used to minimize the output voltage ripple. Multilayer  
ceramic capacitors are an excellent choice as they have  
extremely low ESR and are available in small footprints.  
Step-Up: A 2.2μF to 10μF output capacitor is sufficient for  
most applications. Larger values up to 22μF may be used  
to obtain extremely low output voltage ripple and improve  
transientresponse.Anadditionalphaseleadcapacitorcon-  
Step-Up:Forthestep-upconverteraminimuminductance  
value of 3.3μH is recommended for 3.6V and lower output  
voltage applications, and a 4.7μH for output voltages  
greater than 3.6V. Larger values of inductance will allow  
greater output current capability by reducing the inductor  
ripple current. Increasing the inductance above 10μH will  
increase size while providing little improvement in output  
current capability.  
nectedbetweenV  
andFB1mayberequiredwithoutput  
OUT  
capacitors larger than 10μF to maintain acceptable phase  
margin. X5R and X7R dielectric materials are preferred  
for their ability to maintain capacitance over wide voltage  
and temperature ranges.  
Step-Down:Formostapplications,thevalueoftheinductor  
will fall in the range of 3.3μH to 10μH, depending upon  
the amount of current ripple desired. A reasonable point  
to start is to set the current ripple at 30% of the output  
current.  
Step-Down: Low ESR input capacitors reduce input  
switching noise and reduce the peak current drawn from  
the battery. It follows that ceramic capacitors are also a  
good choice for input decoupling and should be located  
as close as possible to the device. Table 2 shows the  
range of acceptable capacitors for a given programmed  
output voltage. Minimum capacitance values in the table  
Note that larger values of inductance will allow greater  
output current capability by reducing the inductor ripple  
Table 1. Recommended Inductors  
MAXIMUM CURRENT  
DIMENSIONS (mm)  
PART  
L (μH)  
(mA)  
DCR (Ω)  
0.19 to 0.52  
0.3 to 0.54  
0.8 to 1.84  
0.25 to 0.65  
(L × W × H)  
3.2 × 2.5 × 2.0  
3.0 × 3.0 × 1.0  
2.0 × 2.0 × 1.0  
3.1 × 3.1 × 1.2  
MANUFACTURER  
ME3220  
LPS3010  
DO2010  
SD3112  
4.7 to 15  
4.7 to 10  
4.7 to 15  
4.7 to 15  
1200 to 700  
720 to 510  
800 to 510  
740 to 405  
Coil Craft  
www.coilcraft.com  
Cooper  
www.cooperet.com  
MIP3226D  
4.7 to 10  
600 to 200  
0.1 to 0.16  
FDK  
www.fdk.com  
3.2 × 2.6 × 1.0  
LQH32CN  
LQH2MC  
CDRH3D16  
CDRH2D14  
NR3010  
4.7 to 15  
4.7 to 15  
4.7 to 15  
4.7 to 12  
4.7 to 15  
4.7 to 15  
650 to 300  
300 to 200  
900 to 450  
680 to 420  
750 to 400  
1000 to 560  
0.15 to 0.58  
0.8 to 1.6  
Murata  
3.2 × 2.5 × 1.5  
2 × 1.6 × 0.9  
www.murata.com  
0.11 to 0.29  
0.12 to 0.32  
0.19 to 0.74  
0.12 to 0.36  
Sumida  
www.sumida.com  
3.8 × 3.8 × 1.8  
3.2 × 3.2 × 1.5  
3.0 × 3.0 × 1.0  
3.0 × 3.0 × 1.5  
Taiyo Yuden  
www.t-yuden.com  
NR3015  
3523fb  
10  
LTC3523/LTC3523-2  
APPLICATIONS INFORMATION  
SHORT-CIRCUIT PROTECTION  
will increase loop bandwidth resulting in a faster transient  
response.Maximumcapacitancevalueswillproducelower  
ripple. Table 3 shows a list of several ceramic capacitor  
manufacturers. Consult the manufacturers directly for  
detailed information on their entire selection of ceramic  
parts.  
The LTC3523/LTC3523-2’s step-up output disconnect  
feature allows output short circuit while maintaining  
a maximum internally set current limit. However, the  
LTC3523/LTC3523-2 also incorporate internal features  
such as current limit foldback and thermal shutdown for  
protection from an excessive overload or short circuit.  
During a prolonged short circuit of V  
the current limit folds back to 2/3 the normal current limit.  
This 2/3 current limit remains in effect until V exceeds  
Table 2. Step-Down Output Capacitor Range vs Programmed  
Output Voltage  
less than 950mV,  
OUT  
V
MINIMUM CAPACITANCE (μF) MAXIMUM CAPACITANCE (μF)  
OUT  
0.8  
1.2  
1.5  
1.8  
2.5  
5
8.4  
5.6  
4.5  
3.7  
2.7  
1.3  
33.6  
22.4  
17.9  
14.9  
10.7  
5.4  
OUT  
1V, at which time the normal internal set current limit is  
restored.  
WhentheLTC3523/LTC3523-2step-downconvertersout-  
putisshortedtoground,thestep-downusesacomparator  
to limit the current through the synchronous rectifying  
N-channel switch to 650mA. If this limit is exceeded, the  
P-channel switch is inhibited from turning on until the  
current through the synchronous rectifying N-channel  
switch falls below 650mA.  
Table 3. Capacitor Vendor Information  
SUPPLIER  
AVX  
PHONE  
WEBSITE  
(803) 448-9411  
(714) 852-2001  
(408) 573-4150  
www.avxcorp.com  
www.murata.com  
www.t-yuden.com  
Murata  
Taiyo-Yuden  
THERMAL CONSIDERATIONS  
To deliver the LTC3523/LTC3523-2’s full-rated power, it is  
imperative that a good thermal path be provided to dis-  
sipate the heat generated within the package. This can be  
accomplishedbytakingadvantageofthelargethermalpad  
on the underside of the LTC3523/LTC3523-2. It is recom-  
mended that multiple vias in the printed circuit board be  
used to conduct heat away from the LTC3523/LTC3523-2  
and into the copper plane with as much area as possible.  
In the event that the junction temperature gets too high,  
the LTC3523/LTC3523-2 will go into thermal shutdown  
and all switching will cease until the internal temperature  
drops to a safe level at which point the soft-start cycle  
will be initiated.  
STEP-UP V > V  
OPERATION  
IN  
OUT  
The LTC3523/LTC3523-2 step-up converters will maintain  
voltage regulation when the input voltage is above the  
output voltage. Since this mode will dissipate more power,  
themaximumoutputcurrentislimitedinordertomaintain  
an acceptable junction temperature and is given by:  
250 – TA  
IOUT(MAX)  
=
T
OUT  
136 • V + 1.5 – V  
(
)
IN  
where T = ambient temperature.  
A
For example, at V = 4.5V, V  
= 3.3V and T = 85°C, the  
A
IN  
OUT  
maximum output current is limited to 449mA.  
3523fb  
11  
LTC3523/LTC3523-2  
APPLICATIONS INFORMATION  
DUAL BUCK-BOOST AND STEP-UP CONVERTER  
OPERATION  
into the step-down’s SHDN2 pin. Note that the overall  
3.3V converter efficiency is the product of the individual  
efficiencies.  
The LTC3523/LTC3523-2 can be operated in a cascaded  
configuration as shown in Figure 2, allowing buck-boost  
and step-up converter operation. Supply rail sequencing  
is achieved by feeding the step-up converter PGOOD1  
V
IN  
1.8V TO 5.25V  
4.7μF  
10μH  
V
OUT2  
V
V
V
BAT  
4.7μH  
IN1  
IN2  
STEP-DOWN  
OUTPUT  
3.3V  
SW1  
SW2  
FB2  
V
OUT1  
825k  
182k  
10pF  
10μF  
STEP-UP  
OUTPUT  
5V  
50mA  
V
OUT  
LTC3523  
V
768k  
FB1  
MODE  
10μF  
IN  
100mA  
PGOOD1  
PGOOD2  
SHDN1  
SHDN2  
243k  
GND1 GND2 GND3  
100k  
V
IN  
3523 F02a  
OFF ON  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5V OUTPUT  
3.3V OUTPUT  
V
V
V
f
= 2.4V  
IN  
= 5V  
OUT1  
OUT2  
= 3.3V  
= 1.2MHz  
OSC  
BURST ENABLED  
1000  
100  
OUTPUT CURRENT (mA)  
0.1  
1
10  
3523 F02b  
Figure 2. Dual Converter Efficiency (Load Applied  
to Step-Down Output)  
3523fb  
12  
LTC3523/LTC3523-2  
TYPICAL APPLICATIONS  
Power Sequence Operation  
V
IN  
1.8V TO 3.2V  
+
2-CELL  
4.7μF  
ALKALINE  
4.7μH  
V
OUT2  
V
V
IN2  
V
BAT  
IN1  
4.7μH  
STEP-DOWN  
OUTPUT  
1.2V  
SW1  
SW2  
FB2  
V
OUT1  
10pF  
511k  
511k  
10μF  
STEP-UP  
OUTPUT  
3.3V  
200mA  
V
OUT  
LTC3523  
FB1  
MODE  
634k  
4.7μF  
200mA  
PGOOD1  
PGOOD2  
SHDN1  
SHDN2  
365k  
GND1 GND2 GND3  
100k  
V
IN  
OFF ON  
3523 TA02a  
V
OUT1  
2V/DIV  
PGOOD2  
V
OUT2  
1V/DIV  
SHDN2  
3523 TA02b  
500μs/DIV  
3523fb  
13  
LTC3523/LTC3523-2  
TYPICAL APPLICATIONS  
Li-Ion to 5V/150mA, 2.5V/200mA  
V
IN  
2.5V TO 4.2V  
+
4.7μF  
Li-Ion  
10μH  
V
OUT2  
V
V
IN2  
V
BAT  
IN1  
4.7μH  
STEP-DOWN  
OUTPUT  
2.5V  
SW1  
SW2  
FB2  
V
OUT1  
10pF  
768k  
243k  
10μF  
STEP-UP  
OUTPUT  
5V  
200mA  
V
OUT  
LTC3523  
FB1  
MODE  
V
768k  
10μF  
IN  
150mA  
PGOOD1  
PGOOD2  
SHDN1  
SHDN2  
243k  
GND1 GND2 GND3  
OFF ON  
OFF ON  
3523 TA03  
Efficiency and Power Loss  
vs Load Current  
100  
1000  
100  
10  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
EFFICIENCY  
P0WER  
LOSS  
V
V
V
f
= 3.6V  
IN  
= 5V  
OUT1  
OUT2  
= 2.5V  
1
= 1.2MHz  
OSC  
STEP-UP  
STEP-DOWN  
0
0
1
10  
100  
1000  
LOAD CURRENT (mA)  
3523 TA03b  
3523fb  
14  
LTC3523/LTC3523-2  
PACKAGE DESCRIPTION  
UD Package  
16-Lead Plastic QFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1691)  
0.70 p0.05  
3.50 p 0.05  
2.10 p 0.05  
1.45 p 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.25 p0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.20 TYP  
OR 0.25 s 45o CHAMFER  
R = 0.115  
TYP  
0.75 p 0.05  
3.00 p 0.10  
(4 SIDES)  
15 16  
PIN 1  
TOP MARK  
(NOTE 6)  
0.40 p 0.10  
1
2
1.45 p 0.10  
(4-SIDES)  
(UD16) QFN 0904  
0.25 p 0.05  
0.50 BSC  
0.200 REF  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WEED-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3523fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LTC3523/LTC3523-2  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
92% Efficiency, V : 0.85V to 5V, V  
LTC3400/LTC3400B  
600mA (I ), 1.2MHz, Synchronous Step-Up DC/DC Converters  
= 5V,  
OUT(MAX)  
SW  
IN  
I = 19μA/300μA, I < 1μA, ThinSOTTM Package  
Q
SD  
LTC3401  
1A (I ), 3MHz, Synchronous Step-Up DC/DC Converter  
97% Efficiency, V : 0.85V to 5V, V  
OUT(MAX)  
= 5.5V,  
SW  
IN  
I = 38μA, I < 1μA, 10-Pin MS Package  
Q
SD  
LTC3402  
2A (I ), 3MHz, Synchronous Step-Up DC/DC Converter  
97% Efficiency, V : 0.85V to 5V, V  
IN OUT(MAX)  
= 5.5V,  
SW  
I = 38μA, I < 1μA, 10-Pin MS Package  
Q
SD  
LTC3421  
3A (I ), 3MHz, Synchronous Step-Up DC/DC Converter  
94% Efficiency, V : 0.85V to 4.5V, V  
= 5.25V,  
SW  
IN  
OUT(MAX)  
with Output Disconnect Converter  
I = 12μA, I < 1μA, 24-Pin (4mm × 4mm) QFN Package  
Q SD  
LTC3422  
1.5A (I ), 3MHz, Synchronous Step-Up DC/DC with Output  
94% Efficiency, V : 0.85V to 4.5V, V  
= 5.25V,  
SW  
IN  
OUT(MAX)  
Disconnect Converter  
I = 25μA, I < 1μA, 10-Pin (3mm × 3mm) DFN Package  
Q SD  
LTC3426  
2A (I ), 1.5MHz, Step-Up DC/DC Converter  
92% Efficiency, V : 1.6V to 5.5V, V = 5V,  
OUT(MAX)  
SW  
IN  
I = 600μA, I < 1μA, ThinSOT Package  
Q
SD  
LTC3427  
500mA (I ), 1.25MHz, Synchronous Step-Up DC/DC with Output 94% Efficiency, V : 1.8V to 5V, V = 5.25V,  
OUT(MAX)  
SW  
IN  
Disconnect Converter  
I = 350μA, I < 1μA, 6-Pin (2mm × 2mm) DFN Package  
Q SD  
LTC3429/LTC3429B  
LTC3459  
600mA (I ), 550kHz, Synchronous Step-Up DC/DC Converters  
96% Efficiency, V : 0.85V to 4.3V, V  
Q SD  
= 5V,  
= 10V,  
= 5V,  
SW  
IN  
OUT(MAX)  
Soft-Start/Output Disconnect  
I = 20μA, I < 1μA, ThinSOT Package  
80mA (I ), Synchronous Step-Up DC/DC Converter  
92% Efficiency, V : 1.5V to 5.5V, V  
IN OUT(MAX)  
SW  
I = 10μA, I < 1μA, ThinSOT Package  
Q
SD  
LTC3525-3  
LTC3525-3.3  
LTC3525-5  
400mA (I ), Synchronous Step-Up DC/DC Converters with Output 94% Efficiency, V : 0.85V to 4V, V  
SW IN OUT(MAX)  
Disconnect  
I = 7μA, I < 1μA, SC-70 Package  
Q SD  
LTC3526/LTC3526L  
LTC3526B  
500mA (I ), 1MHz Synchronous Step-Up DC/DC Converters with 94% Efficiency, V : 0.85V to 5V, V = 5.25V,  
OUT(MAX)  
SW  
IN  
Output Disconnect  
I = 9μA, I < 1μA, 6-Pin (2mm × 2mm) DFN Package  
Q SD  
LTC3528/LTC3528B  
1A (I ), 1MHz Synchronous Step-Up DC/DC Converters with  
94% Efficiency, V : 0.85V to 5V, V  
= 5.25V,  
SW  
IN  
OUT(MAX)  
Output Disconnect  
I = 10μA, I < 1μA, 8-Pin (2mm × 3mm) DFN Package  
Q SD  
ThinSOT is a trademark of Linear Technology Corporation.  
3523fb  
LT 1108 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC3524

Adjustable TFT Bias Supply with WLED Driver
Linear

LTC3524EUF

Adjustable TFT Bias Supply with WLED Driver
Linear

LTC3524EUF#PBF

LTC3524 - Adjustable TFT Bias Supply with WLED Driver; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3524EUF#TRPBF

LTC3524 - Adjustable TFT Bias Supply with WLED Driver; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3524EUF-PBF

Adjustable TFT Bias Supply with WLED Driver
Linear

LTC3524EUF-TR

Adjustable TFT Bias Supply with WLED Driver
Linear

LTC3524EUF-TRPBF

Adjustable TFT Bias Supply with WLED Driver
Linear

LTC3525-3

400mA Micropower Synchronous Step-Up DC/DC Converter with Output Disconnect
Linear

LTC3525-3.3

400mA Micropower Synchronous Step-Up DC/DC Converter with Output Disconnect
Linear

LTC3525-3.3_15

400mA Micropower Synchronous Step-Up DC/DC Converter with Output Disconnect
Linear

LTC3525-3_15

400mA Micropower Synchronous Step-Up DC/DC Converter with Output Disconnect
Linear

LTC3525-5

400mA Micropower Synchronous Step-Up DC/DC Converter with Output Disconnect
Linear