LTC3526LEDC#PBF [Linear]

LTC3526L/LTC3526LB - 550mA 1MHz Synchronous Step-Up DC/DC Converters in 2mm x 2mm DFN; Package: DFN; Pins: 6; Temperature Range: -40°C to 85°C;
LTC3526LEDC#PBF
型号: LTC3526LEDC#PBF
厂家: Linear    Linear
描述:

LTC3526L/LTC3526LB - 550mA 1MHz Synchronous Step-Up DC/DC Converters in 2mm x 2mm DFN; Package: DFN; Pins: 6; Temperature Range: -40°C to 85°C

开关 光电二极管
文件: 总16页 (文件大小:317K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3526/LTC3526B  
500mA 1MHz Synchronous  
Step-Up DC/DC Converters  
in 2mm × 2mm DFN  
NOT RECOMMENDED FOR NEW DESIGNS  
Contact Linear Technology for Potential Replacement  
FeaTures  
DescripTion  
TheLTC®3526/LTC3526Baresynchronous,fixedfrequency  
step-up DC/DC converters with output disconnect. Syn-  
chronous rectification enables high efficiency in the low  
profile 2mm × 2mm DFN package. Battery life in single  
AA/AAA powered products is extended further with an  
850mV start-up voltage and operation down to 500mV  
once started.  
n
Delivers 3.3V at 100mA from a Single Alkaline/  
NiMH Cell or 3.3V at 200mA from Two Cells  
IN  
n
V Start-Up Voltage: 850mV  
n
n
n
n
n
n
n
n
1.6V to 5.25V V  
Range  
OUT  
Up to 94% Efficiency  
Output Disconnect  
1MHz Fixed Frequency Operation  
V > V  
Operation  
IN  
OUT  
A switching frequency of 1MHz minimizes solution foot-  
print by allowing the use of tiny, low profile inductors and  
ceramic capacitors. The current mode PWM design is  
internallycompensated,reducingexternalpartscount.The  
LTC3526 features automatic Burst Mode operation at light  
load conditions, while the LTC3526B features continuous  
switching at light loads. Anti-ringing control circuitry also  
reduces EMI concerns by damping the inductor in discon-  
tinuousmode. Additionalfeaturesincludealowshutdown  
current of under 1µA and thermal shutdown.  
Integrated Soft-Start  
Current Mode Control with Internal Compensation  
Automatic Burst Mode® Operation with 9µA  
Quiescent Current (LTC3526)  
n
n
n
n
n
Low Noise PWM Operation (LTC3526B)  
Internal Synchronous Rectifier  
Logic Controlled Shutdown (I < 1µA)  
Q
Anti-Ringing Control  
Low Profile (2mm × 2mm × 0.75mm) DFN Package  
The LTC3526/LTC3526B are housed in a 2mm × 2mm ×  
applicaTions  
0.75mm DFN package.  
n
Medical Instruments  
For new designs, we recommend the LTC3526L/LTC3526LB.  
L, LT, LTC, LTM, Linear Technology, the Linear logo and Burst Mode are registered trademarks  
and ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners.  
n
Flash-Based MP3 Players  
n
Noise Canceling Headphones  
Wireless Mice  
n
n
Bluetooth Headsets  
Typical applicaTion  
LTC3526 Efficiency and Power Loss vs Load Current  
100  
1000  
100  
10  
V
IN  
= 2.4V  
90  
EFFICIENCY  
4.7µH  
80  
70  
SW  
V
OUT  
60  
50  
V
IN  
3.3V  
V
IN  
V
OUT  
1.6V TO 3.2V  
200mA  
1µF  
LTC3526  
SHDN  
GND  
POWER LOSS  
1.78M  
1M  
40  
30  
20  
10  
0
1
OFF ON  
FB  
4.7µF  
0.1  
0.01  
3526 TA01a  
0.01  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
3526 TA01b  
3526bfd  
LTC3526/LTC3526B  
absoluTe maximum raTings  
pin conFiguraTion  
(Note 1)  
TOP VIEW  
V Voltage................................................... –0.3V to 6V  
IN  
SW Voltage  
SW  
1
2
3
6
5
4
V
OUT  
DC............................................................ –0.3V to 6V  
Pulsed <100ns......................................... –0.3V to 7V  
SHDN, FB Voltage ........................................ –0.3V to 6V  
GND  
7
FB  
V
IN  
SHDN  
V
............................................................. –0.3V to 6V  
DC PACKAGE  
6-LEAD (2mm × 2mm) PLASTIC DFN  
= 125°C, θ = 102°C/W (NOTE 6)  
JA  
EXPOSED PAD (PIN 7) IS GND, MUST BE SOLDERED TO PC BOARD  
OUT  
Operating Temperature Range (Note 2) ...–40°C to 85°C  
Storage Temperature Range .................. –65°C to 150°C  
T
JMAX  
orDer inFormaTion  
LEAD FREE FINISH  
LTC3526EDC#PBF  
LTC3526BEDC#PBF  
TAPE AND REEL  
PART MARKING  
LCHW  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC3526EDC#TRPBF  
LTC3526BEDC#TRPBF  
–40°C to 85°C  
–40°C to 85°C  
6-Lead (2mm × 2mm) Plastic DFN  
6-Lead (2mm × 2mm) Plastic DFN  
LCNN  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
The l denotes the specifications which apply over the specified operating  
elecTrical characTerisTics  
temperature range of –40°C to 85°C, otherwise specifications are at TA = 25°C. VIN = 1.2V, VOUT = 3.3V unless otherwise noted.  
PARAMETER  
CONDITIONS  
= 1mA  
MIN  
TYP  
MAX  
UNITS  
Minimum Start-Up Input Voltage  
Output Voltage Adjust Range  
I
0.85  
1
V
LOAD  
l
l
1.7  
1.6  
5.25  
5.25  
V
V
0°C to 85°C  
Feedback Pin Voltage  
1.165  
1.195  
1
1.225  
50  
V
nA  
µA  
µA  
µA  
µA  
µA  
Ω
Feedback Pin Input Current  
V
V
= 1.30V  
FB  
Quiescent Current—Shutdown  
Quiescent Current—Active  
= 0V, Not Including Switch Leakage, V  
= 0V  
0.01  
250  
9
1
SHDN  
OUT  
Measured on V , Nonswitching, LTC3526 Only  
500  
18  
OUT  
Quiescent Current—Burst  
Measured on V , FB > 1.230V  
OUT  
N-Channel MOSFET Switch Leakage Current  
P-Channel MOSFET Switch Leakage Current  
N-Channel MOSFET Switch On Resistance  
P-Channel MOSFET Switch On Resistance  
N-Channel MOSFET Current Limit  
Current Limit Delay to Output  
Maximum Duty Cycle  
V
V
V
V
= 5V  
0.1  
0.1  
0.4  
0.6  
700  
60  
5
SW  
= 5V, V  
= 0V  
OUT  
10  
SW  
= 3.3V  
= 3.3V  
OUT  
OUT  
Ω
l
500  
85  
mA  
ns  
%
(Note 3)  
l
l
l
V
FB  
V
FB  
= 1.15V  
= 1.3V  
90  
Minimum Duty Cycle  
0
%
Switching Frequency  
0.7  
0.9  
1
1.3  
MHz  
V
SHDN Pin Input High Voltage  
SHDN Pin Input Low Voltage  
SHDN Pin Input Current  
0.3  
V
V
SHDN  
V
SHDN  
= 1.2V  
= 3.3V  
0.3  
1
1
2
µA  
µA  
3526bfd  
LTC3526/LTC3526B  
elecTrical characTerisTics  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: Current measurements are made when the output is not switching.  
Note 5: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may result in device degradation or failure.  
Note 6: Failure to solder the exposed backside of the package to the PC  
board ground plane will result in a thermal resistance much higher than  
102°C/W.  
Note 2: The LTC3526E is guaranteed to meet performance specifications  
from 0°C to 85°C. Specifications over –40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
Note 3: Specification is guaranteed by design and not 100% tested in  
production.  
Typical perFormance characTerisTics  
Efficiency vs Load Current and VIN  
for VOUT = 1.8V (LTC3526)  
Efficiency vs Load Current and VIN  
for VOUT = 3.3V (LTC3526)  
No-Load Input Current vs VIN  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
1000  
100  
10  
100  
90  
1000  
100  
10  
80  
80  
V
OUT  
= 5V  
V
V
V
V
= 1.2V  
= 1.8V  
= 2.4V  
= 3.0V  
IN  
IN  
IN  
IN  
V
V
V
= 1.0V  
= 1.2V  
= 1.5V  
70  
70  
IN  
IN  
IN  
V
= 3.3V  
OUT  
V
60  
50  
60  
50  
= 2.5V  
OUT  
40  
30  
20  
10  
0
1
40  
30  
20  
10  
0
1
V
OUT  
= 1.8V  
PLOSS AT V = 1.2V  
IN  
0.1  
0.01  
0.1  
0.01  
PLOSS AT V = 1.0V  
PLOSS AT V = 1.8V  
IN  
IN  
PLOSS AT V = 1.2V  
IN  
PLOSS AT V = 2.4V  
IN  
PLOSS AT V = 1.5V  
IN  
PLOSS AT V = 3.0V  
IN  
2.5 3.0  
(V)  
0.5 1.0 1.5 2.0  
3.5 4.0 4.5  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
V
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
IN  
3526 G01  
3526 G02  
3526 G04  
Minimum Load Resistance  
During Start-Up vs VIN  
Efficiency vs Load Current and VIN  
for VOUT = 5V (LTC3526)  
Maximum Output Current vs VIN  
400  
350  
300  
250  
200  
150  
100  
50  
100  
90  
1000  
100  
10  
1000  
100  
10  
V
= 3.3V  
OUT  
V
= 2.5V  
OUT  
80  
V
= 1.8V  
OUT  
70  
60  
50  
V
V
V
V
= 1.2V  
= 2.4V  
= 3.6V  
= 4.2V  
IN  
IN  
IN  
IN  
V
OUT  
= 5V  
40  
30  
20  
10  
0
1
PLOSS AT V = 1.2V  
IN  
IN  
IN  
IN  
0.1  
0.01  
PLOSS AT V = 2.4V  
PLOSS AT V = 3.6V  
L = 4.7µH  
PLOSS AT V = 4.2V  
0
2.5 3.0  
0.5 1.0 1.5 2.0  
3.5 4.0 4.5  
0.01  
0.1  
1
10  
100  
1000  
0.85  
0.95  
1.05  
(V)  
1.25  
1.15  
V
IN  
(V)  
V
LOAD CURRENT (mA)  
IN  
3526 G03  
3526 G05  
3526 G06  
3526bfd  
LTC3526/LTC3526B  
Typical perFormance characTerisTics  
Burst Mode Threshold Current  
vs VIN  
Burst Mode Threshold Current  
vs VIN  
Start-Up Delay Time vs VIN  
30  
25  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
40  
35  
30  
25  
V
C
= 1.8V  
V
C
= 2.5V  
= 10µF  
OUT  
OUT  
OUT  
OUT  
= 10µF  
L = 4.7µH  
L = 4.7µH  
20  
15  
LEAVE BURST  
LEAVE BURST  
ENTER BURST  
20  
15  
10  
5
ENTER BURST  
10  
5
0
0
1
1.25  
(V)  
1.5  
1.25  
1.5  
1
1.75  
1.0  
2.0 2.5 3.0  
(V)  
3.5 4.0 4.5  
1.5  
V
V
V
IN  
(V)  
IN  
IN  
3526 G08a  
3526 G08b  
3526 G07  
Oscillator Frequency Change  
vs VOUT  
Burst Mode Threshold Current  
vs VIN  
Burst Mode Threshold Current  
vs VIN  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
60  
2
V
C
= 5V  
V
C
= 3.3V  
= 10µF  
NORMALIZED TO 3.3V  
OUT  
OUT  
OUT  
OUT  
= 10µF  
1
0
50 L = 4.7µH  
L = 4.7µH  
40  
LEAVE BURST  
–1  
–2  
–3  
–4  
–5  
LEAVE BURST  
30  
20  
10  
0
ENTER BURST  
ENTER BURST  
2.0 2.5  
–6  
0
3.0  
(V)  
4.0  
4.5  
2.0  
2.5  
3.3 4.0 4.5 5.0  
1.0 1.5  
3.5  
1.5  
3.0  
V
1.0  
1.5  
2.0  
(V)  
2.5  
3.0  
V
V
IN  
(V)  
IN  
OUT  
3526 G08d  
3526 G09  
3526 G08c  
Oscillator Frequency Change  
vs Temperature  
RDS(ON) vs VOUT  
RDS(ON) Change vs Temperature  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
10  
8
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
NORMALIZED TO 25°C  
NORMALIZED TO 25°C  
6
4
2
PMOS  
NMOS  
(V)  
0
–2  
–4  
–6  
–8  
–10  
–50 –30 –10 10  
30  
50  
70  
90  
1.5  
2.5 3.0 3.5  
4.0 4.5 5.0  
2.0  
–50 –30 –10 10  
30  
50  
70  
90  
V
OUT  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3526 G11  
3526 G10  
3526 G12  
3526bfd  
LTC3526/LTC3526B  
Typical perFormance characTerisTics  
VFB vs Temperature  
Start-Up Voltage vs Temperature  
Burst Mode Current vs VOUT  
10.0  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.50  
0.25  
LOAD = 1mA  
NORMALIZED TO 25°C  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
0
–0.25  
–0.50  
–0.75  
–1.00  
3.5  
(V)  
5.0  
1.5 2.0 2.5 3.0  
4.0 4.5  
40 60  
TEMPERATURE (°C)  
–60 –40 –20  
0
20  
80 100  
–50 –30 –10 10  
30 –50 70  
90  
V
OUT  
TEMPERATURE (°C)  
3526 G15  
3526 G13  
3526 G14  
Fixed Frequency Switching  
Waveform and VOUT Ripple  
Burst Mode Waveforms  
V
OUT and IIN During Soft-Start  
SW PIN  
2V/DIV  
V
OUT  
SW PIN  
2V/DIV  
1V/DIV  
V
OUT  
INPUT  
CURRENT  
0.2A/DIV  
SHDN PIN  
1V/DIV  
20mV/DIV  
V
OUT  
AC-COUPLED  
10mV/DIV  
INDUCTOR  
CURRENT  
0.2A/DIV  
AC-COUPLED  
3526 G16  
3526 G18  
3526 G17  
V
V
C
= 1.2V  
500ns/DIV  
V
C
= 3.3V  
OUT  
= 10μF  
OUT  
200μs/DIV  
V
V
C
= 1.2V  
10µs/DIV  
IN  
IN  
= 3.3V AT 100mA  
= 3.3V  
= 10µF  
OUT  
OUT  
OUT  
OUT  
= 10µF  
Load Step Response (from Burst  
Mode Operation)  
Load Step Response  
(Fixed Frequency)  
V
V
OUT  
OUT  
100mV/DIV  
100mV/DIV  
AC-COUPLED  
AC-COUPLED  
LOAD  
CURRENT  
50mA/DIV  
LOAD  
CURRENT  
50mA/DIV  
3526 G19  
3526 G20  
V
V
= 3.6V  
OUT  
100µs/DIV  
V
V
= 3.6V  
OUT  
100µs/DIV  
IN  
IN  
= 5V  
= 5V  
20mA TO 170mA STEP  
50mA TO 150mA STEP  
C
= 10µF  
C
= 10µF  
OUT  
OUT  
3526bfd  
LTC3526/LTC3526B  
Typical perFormance characTerisTics  
Load Step Response  
(Fixed Frequency)  
Load Step Response (from Burst  
Mode Operation)  
V
OUT  
V
OUT  
100mV/DIV  
100mV/DIV  
AC-COUPLED  
AC-COUPLED  
LOAD  
CURRENT  
50mA/DIV  
LOAD  
CURRENT  
50mA/DIV  
3526 G21  
3526 G22  
V
V
= 1.2V  
100µs/DIV  
V
V
= 1.2V  
50µs/DIV  
IN  
OUT  
IN  
OUT  
= 3.3V  
= 3.3V  
50mA TO 100mA STEP  
= 10µF  
5mA TO 100mA STEP  
= 10µF  
C
C
OUT  
OUT  
elecTrical characTerisTics  
SW(Pin1):SwitchPin.ConnectinductorbetweenSWand  
FB (Pin 5): Feedback Input to the g Error Amplifier. Con-  
m
V . Keep PCB trace lengths as short and wide as possible  
nect resistor divider tap to this pin. The top of the divider  
connects to the output capacitor, the bottom of the divider  
connectstoGND.ReferringtotheBlockDiagram,theoutput  
voltage can be adjusted from 1.6V to 5.25V by:  
IN  
to reduce EMI. If the inductor current falls to zero or SHDN  
is low, an internal anti-ringing switch is connected from  
SW to V to minimize EMI.  
IN  
GND (Pin 2): Signal and Power Ground. Provide a short  
direct PCB path between GND and the (–) side of the input  
and output capacitors.  
R2  
R1  
VOUT =1.195V • 1+  
V
(Pin6):Outputvoltagesenseanddrainoftheinternal  
OUT  
V (Pin 3): Input Supply Pin. Connect a minimum of 1µF  
IN  
synchronous rectifier. PCB trace from V  
to the output  
OUT  
ceramic decoupling capacitor from this pin to ground  
filter capacitor (4.7µF minimum) should be as short and  
wide as possible.  
using short direct PCB traces.  
SHDN (Pin 4): Logic Controlled Shutdown Input. There  
is an internal 4MΩ pull-down on this pin.  
GND (Exposed Pad Pin 7): The Exposed Pad must be sol-  
dered to the PCB ground plane. It serves as an additional  
ground connection and as a means of conducting heat  
away from the package.  
SHDN = High: Normal operation  
SHDN = Low: Shutdown, quiescent current < 1µA  
3526bfd  
LTC3526/LTC3526B  
block Diagram  
L1  
4.7µH  
V
IN  
0.85V  
TO 5V  
C
IN  
2.2µF  
3
1
V
IN  
SW  
V
OUT  
V
SEL  
WELL  
SWITCH  
V
BEST  
V
B
V
OUT  
V
OUT  
FB  
1.6V  
6
5
TO 5.25V  
ANTI-RING  
GATE DRIVERS  
AND  
R2  
R1  
ANTI-CROSS  
CONDUCTION  
SHDN  
C
OUT  
SHUTDOWN  
4
SHUTDOWN  
+
4.7µF  
I
ZERO  
COMP  
4M  
SLOPE  
COMP  
I
PK  
COMP  
V
V
REF  
REF  
+
I
PK  
UVLO  
ERROR AMP  
SLEEP COMP  
I
ZERO  
START-UP  
V
+
REF  
LOGIC  
MODE  
CLK  
TSD  
CONTROL  
1MHz  
OSC  
CLAMP  
WAKE  
THERMAL  
SHUTDOWN  
C
SS  
EXPOSED  
PAD  
GND  
2
7
3526 BD  
operaTion  
(Refer to Block Diagram)  
The LTC3526/LTC3526B are 1MHz synchronous boost  
converters housed in a 6-lead 2mm × 2mm DFN package.  
With the ability to start up and operate from inputs less  
than 1V, these devices feature fixed frequency, current  
mode PWM control for exceptional line and load regula-  
tion. The current mode architecture with adaptive slope  
compensation provides excellent transient load response,  
requiring minimal output filtering. Internal soft-start and  
internal loop compensation simplifies the design process  
while minimizing the number of external components.  
range of load currents. Automatic Burst Mode operation  
maintains high efficiency at very light loads, reducing  
the quiescent current to just 9µA. Operation can be best  
understood by referring to the Block Diagram.  
LOW VOLTAGE START-UP  
The LTC3526/LTC3526B include an independent start-up  
oscillator designed to start up at an input voltage of 0.85V  
(typical).Soft-startandinrushcurrentlimitingareprovided  
during start-up, as well as normal mode.  
With its low R  
and low gate charge internal N-chan-  
DS(ON)  
When either V or V  
exceeds 1.4V typical, the IC  
IN  
OUT  
nel MOSFET switch and P-channel MOSFET synchronous  
rectifier, the LTC3526 achieves high efficiency over a wide  
enters normal operating mode. When the output voltage  
3526bfd  
LTC3526/LTC3526B  
operaTion  
(Refer to Block Diagram)  
exceeds the input by 0.24V, the IC powers itself from  
LTC3526/LTC3526B  
4M  
LTC3526/LTC3526B  
4M  
V
IN  
V
instead of V . At this point the internal circuitry has  
OUT  
IN  
no dependency on the V input voltage, eliminating the  
30ꢀ  
30ꢀ  
IN  
SHDN  
SHDN  
requirement for a large input capacitor. The input voltage  
can drop as low as 0.5V. The limiting factor for the ap-  
plication becomes the availability of the power source to  
supply sufficient energy to the output at low voltages, and  
maximum duty cycle, which is clamped at 90% typical.  
Note that at low input voltages, small voltage drops due  
to series resistance become critical, and greatly limit the  
power delivery capability of the converter.  
V
CNTRL  
R
ZETEX ZC2811E  
1M  
V
CNTRL  
1M  
R > (V  
/(V + 0.4) – 1)MΩ  
CNTRL IN  
3526 F01  
Figure 1. Recommended Shutdown Circuits when Driving  
SHDN above VIN  
Error Amplifier  
LOW NOISE FIXED FREꢀUENCY OPERATION  
Soft-Start  
The positive input of the transconductance error amplifier  
is internally connected to the 1.195V reference and the  
negative input is connected to FB. Clamps limit the mini-  
mumandmaximumerrorampoutputvoltageforimproved  
large-signal transient response. Power converter control  
loop compensation is provided internally. An external  
TheLTC3526/LTC3526Bcontaininternalcircuitrytoprovide  
soft-start operation. The soft-start circuitry slowly ramps  
the peak inductor current from zero to its peak value of  
700mA (typical) in approximately 0.5ms, allowing start-  
up into heavy loads. The soft-start circuitry is reset in the  
event of a shutdown command or a thermal shutdown.  
resistive voltage divider from V  
to ground programs  
OUT  
the output voltage via FB from 1.6V to 5.25V.  
R2  
R1  
VOUT =1.195V • 1+  
Oscillator  
An internal oscillator sets the switching frequency to  
1MHz.  
Current Sensing  
Losslesscurrentsensingconvertsthepeakcurrentsignalof  
theN-channelMOSFETswitchintoavoltagethatissummed  
with the internal slope compensation. The summed signal  
is compared to the error amplifier output to provide a peak  
current control command for the PWM.  
Shutdown  
Shutdown is accomplished by pulling the SHDN pin  
below 0.3V and enabled by pulling the SHDN pin above  
0.8V typical. Although SHDN can be driven above V  
IN  
or V  
(up to the absolute maximum rating) without  
OUT  
Current Limit  
damage, the LTC3526/LTC3526B have a proprietary test  
The current limit comparator shuts off the N-channel  
MOSFET switch once its threshold is reached. The cur-  
rent limit comparator delay to output is typically 60ns.  
Peak switch current is limited to approximately 700mA,  
independent of input or output voltage, unless V  
below 0.7V, in which case the current limit is cut in half.  
mode that may be engaged if SHDN is held in the range  
of 0.5V to 1V higher than the greater of V or V . If  
IN  
OUT  
the test mode is engaged, normal PWM switching action  
is interrupted, which can cause undesirable operation  
in some applications. Therefore, in applications where  
falls  
OUT  
SHDN may be driven above V , a resistor divider or other  
IN  
meansmustbeemployedtokeeptheSHDNvoltagebelow  
Zero Current Comparator  
(V + 0.4V) to prevent the possibility of the test mode  
IN  
being engaged. Please refer to Figure 1 for two possible  
The zero current comparator monitors the inductor cur-  
rent to the output and shuts off the synchronous rectifier  
implementations.  
3526bfd  
LTC3526/LTC3526B  
operaTion  
when this current reduces to approximately 30mA. This  
prevents the inductor current from reversing in polarity,  
improving efficiency at light loads.  
(Refer to Block Diagram)  
Burst Mode OPERATION  
The LTC3526 will automatically enter Burst Mode opera-  
tion at light load and return to fixed frequency PWM mode  
when the load increases. Refer to the Typical Performance  
Characteristics to see the output load Burst Mode thresh-  
Synchronous Rectifier  
To control inrush current and to prevent the inductor  
old current vs V . The load current at which Burst Mode  
IN  
current from running away when V  
is close to V , the  
operation is entered can be changed by adjusting the  
inductor value. Raising the inductor value will lower the  
load current at which Burst Mode operation is entered.  
OUT  
IN  
P-channel MOSFET synchronous rectifier is only enabled  
when V > (V + 0.24V).  
OUT  
IN  
In Burst Mode operation, the LTC3526 still switches at a  
fixed frequency of 1MHz, using the same error amplifier  
and loop compensation for peak current mode control.  
This control method eliminates any output transient  
when switching between modes. In Burst Mode opera-  
tion, energy is delivered to the output until it reaches the  
nominal regulation value, then the LTC3526 transitions to  
sleep mode where the outputs are off and the LTC3526  
Anti-Ringing Control  
The anti-ringing control connects a resistor across the  
inductor to prevent high frequency ringing on the SW pin  
during discontinuous current mode operation. Although  
the ringing of the resonant circuit formed by L and C  
SW  
(capacitance on SW pin) is low energy, it can cause EMI  
radiation.  
consumes only 9µA of quiescent current from V . When  
OUT  
Output Disconnect  
the output voltage droops slightly, switching resumes.  
Thismaximizesefficiencyatverylightloadsbyminimizing  
switchingandquiescentlosses.BurstModeoutputvoltage  
ripple, which is typically 1% peak-to-peak, can be reduced  
by using more output capacitance (10µF or greater), or  
with a small capacitor (10pF to 50pF) connected between  
The LTC3526/LTC3526B are designed to allow true output  
disconnect by eliminating body diode conduction of the  
internal P-channel MOSFET rectifier. This allows for V  
OUT  
to go to zero volts during shutdown, drawing no current  
from the input source. It also allows for inrush current  
limiting at turn-on, minimizing surge currents seen by the  
input supply. Note that to obtain the advantages of output  
disconnect, there must not be an external Schottky diode  
V
OUT  
and FB.  
As the load current increases, the LTC3526 will automati-  
cally leave Burst Mode operation. Note that larger output  
capacitorvaluesmaycausethistransitiontooccuratlighter  
loads.OncetheLTC3526hasleftBurstModeoperationand  
returned to normal operation, it will remain there until the  
output load is reduced below the burst threshold.  
connected between the SW pin and V . The output dis-  
OUT  
connectfeaturealsoallowsV  
tobepulledhigh,without  
OUT  
any reverse current into a battery connected to V .  
IN  
Thermal Shutdown  
BurstModeoperationisinhibitedduringstart-upandsoft-  
If the die temperature exceeds 160°C, the LTC3526/  
LTC3526B will go into thermal shutdown. All switches  
will be off and the soft-start capacitor will be discharged.  
The device will be enabled again when the die temperature  
drops by about 15°C.  
start and until V  
is at least 0.24V greater than V .  
OUT  
IN  
The LTC3526B features continuous PWM operation at  
1MHz. At very light loads, the LTC3526B will exhibit  
pulse-skip operation.  
3526bfd  
LTC3526/LTC3526B  
applicaTions inFormaTion  
COMPONENT SELECTION  
Inductor Selection  
V > V  
OPERATION  
IN  
OUT  
The LTC3526/LTC3526B will maintain voltage regulation  
even when the input voltage is above the desired output  
voltage.Notethattheefficiencyismuchlowerinthismode,  
and the maximum output current capability will be less.  
Refer to the Typical Performance Characteristics.  
The LTC3526/LTC3526B can utilize small surface mount  
chipinductorsduetotheirfast1MHzswitchingfrequency.  
Inductor values between 3.3µH and 6.8µH are suitable for  
most applications. Larger values of inductance will allow  
slightly greater output current capability (and lower the  
BurstModethreshold)byreducingtheinductorripplecur-  
rent. Increasing the inductance above 10µH will increase  
size while providing little improvement in output current  
capability.  
SHORT-CIRCUIT PROTECTION  
The LTC3526/LTC3526B output disconnect feature allows  
output short circuit while maintaining a maximum inter-  
nally set current limit. To reduce power dissipation under  
short-circuit conditions, the peak switch current limit is  
reduced to 400mA (typical).  
The minimum inductance value is given by:  
V
• VOUT(MAX) – V  
(
)
IN(MIN)  
IN(MIN)  
L >  
SCHOTTKY DIODE  
RippleVOUT(MAX)  
where:  
Although it is not required, adding a Schottky diode from  
SW to V  
will improve efficiency by about 2%. Note  
OUT  
Ripple = Allowable inductor current ripple (amps peak-  
peak)  
that this defeats the output disconnect and short-circuit  
protection features.  
V
V
= Minimum input voltage  
IN(MIN)  
= Maximum output voltage  
PCB LAYOUT GUIDELINES  
OUT(MAX)  
The inductor current ripple is typically set for 20% to  
40% of the maximum inductor current. High frequency  
ferrite core inductor materials reduce frequency depen-  
dent power losses compared to cheaper powdered iron  
types, improving efficiency. The inductor should have  
low ESR (series resistance of the windings) to reduce the  
I2R power losses, and must be able to support the peak  
The high speed operation of the LTC3526/LTC3526B  
demands careful attention to board layout. A careless  
layout will result in reduced performance. Figure 2 shows  
the recommended component placement. A large ground  
pin copper area will help to lower the die temperature. A  
multilayer board with a separate ground plane is ideal, but  
not absolutely necessary.  
LTC3526  
SW  
V
OUT  
1
2
3
6
5
4
MINIMIZE  
TRACE ON FB  
AND SW  
GND  
FB  
V
IN  
SHDN  
+
V
IN  
MULTIPLE VIAS  
TO GROUND PLANE  
3526 F02  
Figure 2. Recommended Component Placement for Single Layer Board  
3526bfd  
ꢀ0  
LTC3526/LTC3526B  
applicaTions inFormaTion  
inductor current without saturating. Molded chokes and  
some chip inductors usually do not have enough core  
area to support the peak inductor currents of 700mA  
seen on the LTC3526/LTC3526B. To minimize radiated  
noise, use a shielded inductor. See Table 1 for suggested  
components and suppliers.  
Output and Input Capacitor Selection  
Low ESR (equivalent series resistance) capacitors should  
be used to minimize the output voltage ripple. Multilayer  
ceramic capacitors are an excellent choice as they have  
extremely low ESR and are available in small footprints.  
A 4.7µF to 10µF output capacitor is sufficient for most  
applications. Larger values up to 22µF may be used to  
obtain extremely low output voltage ripple and improve  
transient response. X5R and X7R dielectric materials are  
preferred for their ability to maintain capacitance over  
wide voltage and temperature ranges. Y5V types should  
not be used.  
Table 1. Recommended Inductors  
VENDOR  
PART/STYLE  
Coilcraft  
(847) 639-6400  
www.coilcraft.com  
LPO4815  
LPS4012, LPS4018  
MSS5131  
MSS4020  
MOS6020  
ME3220  
DS1605, DO1608  
TheinternalloopcompensationoftheLTC3526isdesigned  
tobestablewithoutputcapacitorvaluesof4.7µForgreater  
(withouttheneedforanyexternalseriesresistor).Although  
ceramic capacitors are recommended, low ESR tantalum  
capacitors may be used as well.  
Coiltronics  
www.cooperet.com  
SD10, SD12, SD14, SD18, SD20,  
SD52, SD3114, SD3118  
FDK  
(408) 432-8331  
www.fdk.com  
MIP3226D4R7M, MIP3226D3R3M  
MIPF2520D4R7  
MIPWT3226D3R0  
Murata  
LQH43C  
Asmallceramiccapacitorinparallelwithalargertantalum  
capacitormaybeusedindemandingapplicationsthathave  
large load transients. Another method of improving the  
transientresponseistoaddasmallfeed-forwardcapacitor  
(714) 852-2001  
www.murata.com  
LQH32C (-53 series)  
301015  
Sumida  
(847) 956-0666  
www.sumida.com  
CDRH5D18  
CDRH2D14  
CDRH3D16  
across the top resistor of the feedback divider (from V  
to FB). A typical value of 22pF will generally suffice.  
OUT  
CDRH3D11  
CR43  
CMD4D06-4R7MC  
CMD4D06-3R3MC  
Low ESR input capacitors reduce input switching noise  
and reduce the peak current drawn from the battery. It  
follows that ceramic capacitors are also a good choice  
for input decoupling and should be located as close as  
possible to the device. A 2.2µF input capacitor is sufficient  
for most applications, although larger values may be  
used without limitations. Table 2 shows a list of several  
ceramiccapacitormanufacturers.Consultthemanufactur-  
ers directly for detailed information on their selection of  
ceramic capacitors.  
Taiyo-Yuden  
www.t-yuden.com  
NP03SB  
NR3015T  
NR3012T  
TDK  
VLP  
VLF, VLCF  
(847) 803-6100  
www.component.tdk.com  
Toko  
(408) 432-8282  
www.tokoam.com  
D412C  
D518LC  
D52LC  
D62LCB  
Würth  
(201) 785-8800  
www.we-online.com  
WE-TPC type S, M  
Table 2. Capacitor Vendor Information  
SUPPLIER  
AVX  
PHONE  
WEBSITE  
(803) 448-9411  
(714) 852-2001  
(408) 573-4150  
(847) 803-6100  
(408) 544-5200  
www.avxcorp.com  
www.murata.com  
www.t-yuden.com  
www.component.tdk.com  
www.sem.samsung.com  
Murata  
Taiyo-Yuden  
TDK  
Samsung  
3526bfd  
ꢀꢀ  
LTC3526/LTC3526B  
Typical applicaTions  
1-Cell to 1.8V Converter with <1mm Maximum Height  
100  
90  
V
OUT  
= 1.8V  
4.7µH  
80  
SW  
V
70  
OUT  
V
IN  
3.3V  
V
IN  
V
OUT  
1.6V TO 3.2V  
60  
50  
200mA  
1µF  
LTC3526  
SHDN  
GND  
1.78M  
1M  
OFF ON  
FB  
4.7µF  
40  
30  
20  
10  
0
3526 TA01a  
V
V
V
= 1.5V  
= 1.2V  
= 0.9V  
IN  
IN  
IN  
0.01  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
3526 TA02b  
1-Cell to 2.85V Converter  
100  
V
= 2.85V  
OUT  
90  
80  
70  
4.7µH*  
SW  
V
OUT  
V
IN  
2.85V  
V
IN  
V
OUT  
60  
50  
1V TO 1.6V  
100mA  
1µF  
LTC3526  
SHDN  
GND  
1.4M  
40  
30  
20  
10  
0
OFF ON  
FB  
10µF  
1M  
3526 TA03a  
V
V
V
= 1.5V  
= 1.2V  
= 0.9V  
IN  
IN  
IN  
*SUMIDA CDRH3D16-4R7  
0.01  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
3526 TA03b  
1-Cell to 3.3V  
100  
V
OUT  
= 3.3V  
90  
80  
70  
4.7µH*  
SW  
V
OUT  
V
IN  
3.3V  
60  
50  
V
IN  
V
OUT  
1V TO 1.6V  
75mA  
1µF  
LTC3526  
SHDN  
GND  
1.78M  
22pF  
40  
30  
20  
10  
0
OFF ON  
FB  
10µF  
1M  
3526 TA04a  
V
V
V
= 1.5V  
= 1.2V  
= 0.9V  
IN  
IN  
IN  
*TAIYO-YUDEN NP03SB4R7M  
0.01  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
3526 TA04b  
3526bfd  
ꢀꢁ  
LTC3526/LTC3526B  
Typical applicaTions  
2-Cell to 3.3V  
100  
90  
V
OUT  
= 3.3V  
4.7µH*  
80  
70  
SW  
V
OUT  
V
IN  
3.3V  
V
IN  
V
OUT  
60  
50  
2V TO 3.2V  
200mA  
1µF  
LTC3526  
SHDN  
GND  
1.78M  
1M  
40  
30  
20  
10  
0
OFF ON  
FB  
4.7µF  
3526 TA05a  
V
V
V
= 3.0V  
= 2.4V  
= 1.8V  
IN  
IN  
IN  
*TAIYO-YUDEN NP03SB4R7M  
0.01  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
3526 TA05b  
2-Cell to 5V  
100  
V
OUT  
= 5V  
90  
80  
70  
6.8µH*  
SW  
V
OUT  
V
60  
50  
IN  
5V  
V
IN  
V
OUT  
2V TO 3.2V  
150mA  
1µF  
LTC3526  
SHDN  
GND  
22pF  
3.24M  
1.02M  
40  
30  
20  
10  
0
OFF ON  
FB  
10µF  
V
= 3.0V  
= 2.4V  
= 1.8V  
3526 TA06a  
IN  
V
IN  
V
IN  
*TAIYO-YUDEN NP03SB6R8M  
0.01  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
3526 TA06b  
Li-Ion to 5V  
100  
90  
V
OUT  
= 5V  
6.8µH*  
SW  
80  
70  
V
OUT  
V
IN  
5V  
60  
50  
V
IN  
V
OUT  
2.7V TO 4.3V  
200mA  
1µF  
LTC3526  
SHDN  
GND  
3.24M  
22pF  
40  
30  
20  
10  
0
OFF ON  
FB  
10µF  
1.02M  
3526 TA08a  
V
V
V
= 4.2V  
= 3.6V  
= 3.0V  
IN  
IN  
IN  
*TAIYO-YUDEN NP03SB6R8M  
0.01  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
3526 TA08b  
3526bfd  
ꢀꢂ  
LTC3526/LTC3526B  
package DescripTion  
DC Package  
6-Lead Plastic DFN (2mm × 2mm)  
(Reference LTC DWG # 05-08-1703 Rev B)  
0.70 p0.05  
2.55 p0.05  
0.61 p0.05  
1.15 p0.05  
(2 SIDES)  
PACKAGE  
OUTLINE  
0.25 p 0.05  
0.50 BSC  
1.42 p0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.125  
TYP  
0.56 p 0.05  
(2 SIDES)  
0.40 p 0.10  
4
6
2.00 p0.10  
PIN 1 NOTCH  
(4 SIDES)  
R = 0.20 OR  
0.25 s 45o  
CHAMFER  
PIN 1 BAR  
TOP MARK  
(SEE NOTE 6)  
(DC6) DFN REV B 1309  
R = 0.05  
TYP  
3
1
0.25 p 0.05  
0.50 BSC  
0.75 p0.05  
0.200 REF  
1.37 p0.05  
(2 SIDES)  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WCCD-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3526bfd  
ꢀꢃ  
LTC3526/LTC3526B  
revision hisTory (Revision history begins at Rev D)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
D
9/10  
2
3
Updated θ on Pin Configuration  
Updated Note 6  
JA  
8
Updated Shutdown section  
Updated Related Parts  
16  
3526bfd  
Information furnished by Linear Technology ꢀorporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology ꢀorporation makes no represen-  
tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
ꢀꢄ  
LTC3526/LTC3526B  
Typical applicaTion  
3.3V Converter with Output OR’d with 5V USB Input  
MBR120ESFT  
5V USB  
4.7µH  
V
OUT  
LDO  
3.3V/5V  
USB  
SW  
V
BATT  
V
IN  
V
OUT  
1.8V TO 3.2V  
1.78M  
1M  
1µF  
LTC3526  
SHDN  
GND  
DC/DC  
OFF ON  
FB  
10µF  
3526 TA07a  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
94% Efficiency VIN: 0.85V to 5V, VOUT(MAX) = 5.25V, IQ = 9µA,  
SD < 1µA, 2mm × 2mm DFN-6 Package  
LTC3526-2/LTC3526B-2  
LTC3526L/LTC3526LB  
LTC3526L-2/LTC3526LB-2  
500mA, 1MHz/2.2MHz, Synchronous Step-Up DC/DC  
Converters with Output Disconnect  
I
LTC3525L-3  
400mA Micropower Synchronous Step-Up DC/DC  
Converter with Output Disconnect  
93% Efficiency VIN: 0.88V to 4.5V, VOUT = 3V, IQ = 7µA,  
SD < 1µA, SC-70 Package  
I
LTC3525-3  
LTC3525-3.3  
LTC3525-5  
400mA Micropower Synchronous Step-Up DC/DC  
Converter with Output Disconnect  
95% Efficiency VIN: 1V to 4.5V, VOUT(MAX) = 3.3V or 5V, IQ = 7µA,  
SD < 1µA, SC-70 Package  
I
LTC3427  
500mA ISW, 1.2MHZ, Synchronous Step-Up Dꢀ/Dꢀ  
ꢀonverter with Output Disconnect  
93% Efficiency VIN: 1.8V to 4.5V, VOUT(MAX) = 5V,  
2mm × 2mm DFN Package  
LTC3400/LTC3400B  
LTC3527/LTC3527-1  
600mA ISW, 1.2MHz, Synchronous Step-Up  
DC/DC Converters  
92% Efficiency VIN: 1V to 5V, VOUT(MAX) = 5V, IQ = 19µA/300µA,  
I
SD < 1µA, ThinSOT™ Package  
Dual 600mA/400mA I , 1.2MHz/2.2MHz Synchronous 94% Efficiency VIN: 0.7V to 5V, VOUT(MAX) = 5.25V, IQ = 12µA,  
SW  
Step-Up DC/DC Converters  
ISD < 1µA, 3mm × 3mm QFN-16 Package  
3526bfd  
LT 0910 • REV D • PRINTED IN USA  
Linear Technology Corporation  
1630 Mcꢀarthy Blvd., Milpitas, ꢀA 95035-7417  
ꢀꢅ  
l
l
LINEAR TECHNOLOGY CORPORATION 2006  
(408)432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC3526LEDC#TR

IC SWITCHING CONTROLLER, 1250 kHz SWITCHING FREQ-MAX, PDSO6, 2 X 2 MM, 0.75 MM HEIGHT, PLASTIC, MO-229WCCD-2, DFN-6, Switching Regulator or Controller
Linear

LTC3526LEDC#TRM

IC SWITCHING CONTROLLER, 1250 kHz SWITCHING FREQ-MAX, PDSO6, 2 X 2 MM, 0.75 MM HEIGHT, PLASTIC, MO-229WCCD-2, DFN-6, Switching Regulator or Controller
Linear

LTC3526LEDC#TRPBF

LTC3526L/LTC3526LB - 550mA 1MHz Synchronous Step-Up DC/DC Converters in 2mm x 2mm DFN; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3526LEDC-2#PBF

IC SWITCHING REGULATOR, 2400 kHz SWITCHING FREQ-MAX, PDSO6, 2 X 2 MM, 0.75 MM HEIGHT, LEAD FREE, PLASTIC, MO-229WCCD-2, DFN-6, Switching Regulator or Controller
Linear

LTC3526LEDC-2#TRPBF

LTC3526L-2 - 550mA 2MHz Synchronous Step-Up DC/DC Converters in 2mm x 2mm DFN; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3526LEDC-PBF

550mA 1MHz Synchronous Step-Up DC/DC Converters in 2mm × 2mm DFN
Linear

LTC3526LEDC-TRPBF

550mA 1MHz Synchronous Step-Up DC/DC Converters in 2mm × 2mm DFN
Linear

LTC3526L_15

550mA 1MHz Synchronous Step-Up DC/DC Converters
Linear

LTC3526_15

500mA 1MHz Synchronous Step-Up DC/DC Converters
Linear

LTC3527

Dual 800mA/400mA, 1.2MHz/2.2MHz Synchronous Step-Up DC/DC Converters
Linear

LTC3527-1

Dual 800mA/400mA, 1.2MHz/2.2MHz Synchronous Step-Up DC/DC Converters
Linear

LTC3527-1_15

Dual 800mA/400mA, 1.2MHz/2.2MHz Synchronous Step-Up DC/DC Converters
Linear