LTC3535EDD-TRPBF [Linear]

Dual Channel 550mA 1MHz Synchronous Step-Up DC/DC Converter; 双通道550毫安1MHz同步升压型DC / DC转换器
LTC3535EDD-TRPBF
型号: LTC3535EDD-TRPBF
厂家: Linear    Linear
描述:

Dual Channel 550mA 1MHz Synchronous Step-Up DC/DC Converter
双通道550毫安1MHz同步升压型DC / DC转换器

转换器
文件: 总16页 (文件大小:248K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3535  
Dual Channel 550mA 1MHz  
Synchronous Step-Up  
DC/DC Converter  
DESCRIPTION  
The LTC®3535 is a dual channel, synchronous, fixed fre-  
quency step-up DC/DC converter with output disconnect.  
Extended battery life in single AA/AAA powered products  
is realized with a 680mV start-up voltage and operation  
down to 500mV once started.  
FEATURES  
n
Two Independent Step-Up Converters  
n
Each Channel Delivers 3.3V at 100mA from a Single  
Alkaline/NiMH Cell or 3.3V at 200mA from Two Cells  
n
V Start-Up Voltage: 680mV  
IN  
n
1.5V to 5.25V V  
Range  
OUT  
n
n
n
n
n
n
n
n
n
n
n
Up to 94% Efficiency  
A switching frequency of 1MHz minimizes solution foot-  
print by allowing the use of tiny, low profile inductors  
and ceramic capacitors. The current mode PWM design  
is internally compensated, reducing external parts count.  
The LTC3535 features Burst Mode operation at light load  
conditions allowing it to maintain high efficiency over a  
wide range of load. Anti-ring circuitry reduces EMI by  
damping the inductor in discontinuous mode. Additional  
features include a low shutdown current of under 1μA and  
thermal shutdown.  
Output Disconnect  
1MHz Fixed Frequency Operation  
V > V  
Operation  
IN  
OUT  
Integrated Soft-Start  
Current Mode Control with Internal Compensation  
Burst Mode® Operation with 9μA I Each Channel  
Q
Internal Synchronous Rectifier  
Logic Controlled Shutdown (I < 1μA)  
Q
Anti-Ring Control  
Low Profile (3mm × 3mm × 0.75mm)  
12-Lead DFN Package  
The LTC3535 is housed in a 3mm × 3mm × 0.75mm  
DFN package.  
, LT, LTC, LTM and Burst Mode are registered trademarks of Linear Technology  
Corporation. All other trademarks are the property of their respective owners.  
APPLICATIONS  
n
Medical Instruments  
n
Noise Canceling Headphones  
n
Wireless Mice  
Bluetooth Headsets  
n
TYPICAL APPLICATION  
Efficiency vs Load Current  
4.7μH  
100  
V
SW1  
OUT1  
V
V
= 1.8V  
= 3.3V  
OUT  
OUT  
V
V
V
1.8V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IN1  
OUT1  
OUT2  
100mA  
10μF  
OFF ON  
OFF ON  
SHDN1  
V
IN  
511k  
V
0.8V  
OUT2  
10μF  
3.3V  
TO 1.5V  
LTC3535  
50mA  
2.2μF  
V
IN2  
FB1  
FB2  
1.78M  
1M  
SHDN2  
1M  
GND SW2 GND  
4.7μH  
3535 TA01  
V
IN  
= 1.2V  
10  
100  
0.01  
1000  
0.1  
1
LOAD CURRENT (mA)  
3535 TA01b  
3535f  
1
LTC3535  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
V
Voltage............................................... –0.3V to 6V  
IN1,2  
SW1,2 Voltage  
1
2
3
4
5
6
12 FB1  
V
OUT1  
SHDN1  
SW1  
11  
10  
9
DC............................................................ –0.3V to 6V  
Pulsed <100ns......................................... –0.3V to 7V  
SHDN1,2, FB1,2 Voltage .............................. –0.3V to 6V  
V
IN1  
GND  
13  
FB2  
V
OUT2  
SHDN2  
8
SW2  
7
V
IN2  
GND  
V
......................................................... –0.3V to 6V  
OUT1,2  
DD PACKAGE  
12-LEAD (3mm s 3mm) PLASTIC DFN  
Operating Temperature Range  
(Notes 2, 5).............................................. –40°C to 85°C  
Junction Temperature ........................................... 125°C  
Storage Temperature Range................... –65°C to 150°C  
θ
= 45°C/W, θ  
= 10°C/W,  
JC(PAD)  
JA  
EXPOSED PAD (PIN 13) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
12-Lead (3mm × 3mm) Plastic DFN  
TEMPERATURE RANGE  
–40°C to 85°C  
LTC3535EDD#PBF  
LTC3535EDD#TRPBF  
LDWV  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS (For each channel) The l denotes the specifications which apply over the specified  
operating temperature range of –40°C to 85°C, otherwise specifications are at TA = 25°C. VIN = 1.2V, VOUT = 3.3V unless otherwise noted.  
PARAMETER  
CONDITIONS  
= 1mA  
MIN  
TYP  
MAX  
0.8  
5
UNITS  
V
Minimum Start-Up Input Voltage  
Input Voltage Range  
I
0.68  
LOAD  
l
l
l
After Start-Up. (Minimum Voltage is Load Dependent)  
0.5  
1.5  
V
Output Voltage Adjust Range  
Feedback Pin Voltage  
5.25  
1.225  
50  
V
1.165  
1.195  
1
V
Feedback Pin Input Current  
V
V
= 1.30V  
nA  
μA  
μA  
μA  
μA  
μA  
Ω
FB  
Quiescent Current—Shutdown  
Quiescent Current—Active  
= 0V, Not Including Switch Leakage, V  
SHDN  
= 0V  
0.01  
250  
9
1
OUT  
Measured on V , Non-Switching  
500  
18  
OUT  
Quiescent Current—Burst  
Measured on V , FB > 1.230V  
OUT  
N-Channel MOSFET Switch Leakage Current  
P-Channel MOSFET Switch Leakage Current  
N-Channel MOSFET Switch On Resistance  
P-Channel MOSFET Switch On Resistance  
N-Channel MOSFET Current Limit  
Current Limit Delay to Output  
Maximum Duty Cycle  
V
V
V
V
= 5V  
0.1  
0.1  
0.4  
0.6  
750  
60  
5
SW  
= 5V, V  
= 0V  
10  
SW  
OUT  
= 3.3V  
= 3.3V  
OUT  
OUT  
Ω
l
l
550  
87  
mA  
ns  
%
(Note 3)  
= 1.15V  
V
FB  
90  
3535f  
2
LTC3535  
ELECTRICAL CHARACTERISTICS (For each channel) The l denotes the specifications which apply over the specified  
operating temperature range of –40°C to 85°C, otherwise specifications are at TA = 25°C. VIN = 1.2V, VOUT = 3.3V unless otherwise noted.  
PARAMETER  
CONDITIONS  
V = 1.3V  
FB  
MIN  
TYP  
MAX  
0
UNITS  
%
l
l
Minimum Duty Cycle  
Switching Frequency  
SHDN Pin Input High Voltage  
SHDN Pin Input Low Voltage  
0.75  
0.8  
1
1.25  
MHz  
V
0.3  
V
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTC3535 is guaranteed to meet performance specifications  
from 0°C to 85°C. Specifications over the –40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
Note 4: Current measurements are made when the output is not switching.  
Note 5: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may result in device degradation or failure.  
Note 6: Failure to solder the exposed backside of the package to the PC  
board ground plane will result in a thermal resistance much higher than  
60°C/W.  
Note 3: Specification is guaranteed by design and not 100% tested in  
production.  
TYPICAL PERFORMANCE CHARACTERISTICS (Each Channel) TA = 25°C, unless otherwise noted.  
Efficiency vs Load Current  
and VIN for VOUT = 1.8V  
Efficiency vs Load Current  
and VIN for VOUT = 3.3V  
No-Load Input Current vs VIN  
100  
90  
1000  
100  
10  
100  
90  
1000  
100  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
EFFICIENCY  
EFFICIENCY  
V
OUT  
= 5V  
80  
80  
70  
70  
V
= 3.3V  
OUT  
V
60  
50  
60  
50  
= 2.5V  
OUT  
POWER LOSS  
POWER LOSS  
V
OUT  
= 1.8V  
40  
30  
20  
10  
0
1
40  
30  
20  
10  
0
1
V
= 1.2V  
= 1.8V  
= 2.4V  
= 3.0V  
IN  
IN  
IN  
IN  
0.1  
0.01  
0.1  
0.01  
V
V
V
= 1.0V  
= 1.2V  
= 1.5V  
IN  
IN  
IN  
V
V
V
2.5 3.0  
(V)  
0.5 1.0 1.5 2.0  
3.5 4.0 4.5  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
V
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
IN  
3535 G01  
3535 G02  
3535 G04  
3535f  
3
LTC3535  
TYPICAL PERFORMANCE CHARACTERISTICS (Each Channel) TA = 25°C, unless otherwise noted.  
Minimum Load Resistance  
During Start-Up vs VIN  
Efficiency vs Load Current  
and VIN for VOUT = 5V  
Maximum Output Current vs VIN  
10000  
1000  
100  
90  
1000  
100  
10  
400  
350  
300  
250  
200  
150  
100  
50  
V
OUT  
= 3.3V  
V
OUT  
= 3.3V  
EFFICIENCY  
V
OUT  
= 2.5V  
80  
V
OUT  
= 1.8V  
70  
60  
50  
POWER LOSS  
V
OUT  
= 5V  
40  
30  
20  
10  
0
1
100  
V
= 1.2V  
= 2.4V  
= 3.6V  
= 4.2V  
IN  
IN  
IN  
IN  
0.1  
0.01  
V
V
V
L = 4.7μH  
10  
0
2.5 3.0  
0.65  
0.75  
0.85  
0.95  
(V)  
1.05  
1.15  
0.5 1.0 1.5 2.0  
3.5 4.0 4.5  
0.01  
0.1  
1
10  
100  
1000  
V
IN  
(V)  
LOAD CURRENT (mA)  
V
IN  
3535 G03  
3526 G06  
3535 G05  
Burst Mode Threshold Current  
vs VIN  
Burst Mode Threshold Current  
vs VIN  
Start-Up Delay Time vs VIN  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
30  
25  
40  
35  
30  
25  
V
= 1.8V  
V
= 2.5V  
OUT  
OUT  
LEAVE BURST  
L = 4.7μH  
LEAVE BURST  
L = 4.7μH  
20  
15  
ENTER BURST  
ENTER BURST  
20  
15  
10  
5
10  
5
0
0
1.0  
2.0 2.5 3.0  
(V)  
3.5 4.0 4.5  
1
1.25  
(V)  
1.5  
1.5  
1.25  
1.5  
(V)  
1.75  
1
2
V
IN  
V
IN  
V
IN  
3535 G07  
3535 G08a  
3535 G08b  
Burst Mode Threshold Current  
vs VIN  
Burst Mode Threshold Current  
vs VIN  
Oscillator Frequency Change  
vs VOUT  
40  
35  
30  
25  
20  
15  
10  
5
3
2
1
0
50  
NORMALIZED TO V  
= 3.3V  
OUT  
V
= 3.3V  
OUT  
V
= 5V  
OUT  
LEAVE BURST  
L = 4.7μH  
L = 4.7μH  
LEAVE BURST  
40  
30  
ENTER BURST  
ENTER BURST  
20  
10  
0
–1  
–2  
–3  
0
3.5  
(V)  
4.5  
5.0  
1.5 2.0  
2.5 3.0  
V
4.0  
1.0  
1.5  
2.0  
(V)  
2.5  
3.0  
3.0  
(V)  
4.0  
4.5  
1.0 1.5  
2.0 2.5  
V
3.5  
V
IN  
OUT  
IN  
3535 G09  
3535 G08c  
3535 G08d  
3535f  
4
LTC3535  
TYPICAL PERFORMANCE CHARACTERISTICS (Each Channel) TA = 25°C, unless otherwise noted.  
Oscillator Frequency Change  
RDS(ON) vs VOUT  
vs Temperature  
RDS(ON) Change vs Temperature  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
10  
8
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
NORMALIZED TO 25°C  
NORMALIZED TO 25°C  
6
4
2
PMOS  
NMOS  
(V)  
0
–2  
–4  
–6  
–8  
–10  
–50 –30 –10 10  
30  
50  
70  
90  
1.5  
2.5 3.0 3.5  
4.0 4.5 5.0  
2.0  
–50 –30 –10 10  
30  
50  
70  
90  
V
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUT  
3535 G11  
3535 G10  
3535 G12  
Burst Mode Quiescent Current  
vs VOUT  
Start-Up Voltage vs Temperature  
VFB vs Temperature  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
0.50  
0.25  
NORMALIZED TO 25°C  
MEASURED ON V  
OUT  
1mA LOAD  
0
–0.25  
–0.50  
–0.75  
–1.00  
NO LOAD  
40 60  
TEMPERATURE (°C)  
–50  
25  
0
25  
50  
75  
100  
1.5  
3.0 3.5 4.0 4.5 5.0  
(V)  
–60 –40 –20  
0
20  
80 100  
2.0 2.5  
TEMPERATURE (°C)  
V
OUT  
3526 G14  
3535 G13  
3535 G15  
Fixed Frequency Switching  
Waveform and VOUT Ripple  
VOUT and IIN During Soft-Start  
Burst Mode Waveforms  
V
SW PIN  
2V/DIV  
OUT  
SW PIN  
2V/DIV  
1V/DIV  
V
OUT  
INPUT  
CURRENT  
0.2A/DIV  
SHDN PIN  
1V/DIV  
20mV/DIV  
V
OUT  
AC COUPLED  
10mV/DIV  
INDUCTOR  
CURRENT  
0.2A/DIV  
AC COUPLED  
3535 G18  
3535 G16  
3535 G17  
V
OUT  
C
OUT  
= 3.3V  
= 10μF  
200μs/DIV  
V
V
C
= 1.2V  
500ns/DIV  
V
V
C
= 1.2V  
10μs/DIV  
IN  
IN  
= 3.3V AT 100mA  
= 3.3V  
= 10μF  
OUT  
OUT  
OUT  
OUT  
= 10μF  
3535f  
5
LTC3535  
TYPICAL PERFORMANCE CHARACTERISTICS (Each Channel) TA = 25°C, unless otherwise noted.  
Load Step Response  
(from Burst Mode Operation)  
Load Step Response  
(Fixed Frequency)  
V
V
OUT  
OUT  
100mV/DIV  
100mV/DIV  
AC COUPLED  
AC COUPLED  
LOAD  
CURRENT  
50mA/DIV  
LOAD  
CURRENT  
50mA/DIV  
3535 G19  
3535 G20  
V
V
= 3.6V  
= 5V  
100μs/DIV  
V
V
= 3.6V  
= 5V  
100μs/DIV  
IN  
OUT  
IN  
OUT  
20mA TO 170mA STEP  
= 10μF  
50mA TO 150mA STEP  
C
C
= 10μF  
OUT  
OUT  
Load Step Response  
(Fixed Frequency)  
Load Step Response  
(from Burst Mode Operation)  
V
OUT  
V
OUT  
100mV/DIV  
100mV/DIV  
AC COUPLED  
AC COUPLED  
LOAD  
CURRENT  
50mA/DIV  
LOAD  
CURRENT  
50mA/DIV  
3535 G22  
3535 G21  
V
V
= 1.2V  
50μs/DIV  
V
V
= 1.2V  
100μs/DIV  
IN  
OUT  
IN  
OUT  
= 3.3V  
= 3.3V  
5mA TO 100mA STEP  
= 10μF  
50mA TO 100mA STEP  
= 10μF  
C
C
OUT  
OUT  
3535f  
6
LTC3535  
PIN FUNCTIONS  
V
(Pin 1): Output Voltage Sense and Drain of the  
SHDN2(Pin8):LogicControlledShutdownInputforChan-  
OUT1  
Internal Synchronous Rectifier for Channel 1. PCB trace  
nel 2. There is an internal 4MegΩ pull-down on this pin.  
length from V  
minimum) should be as short and wide as possible.  
to the output filter capacitor (4.7μF  
OUT1  
SHDN = High: Normal operation.  
SHDN = Low: Shutdown, quiescent current < 1μA.  
SW1 (Pin 2): Switch Pin for Channel 1. Connect inductor  
FB2 (Pin 9): Feedback Input to the g Error Amplifier of  
between SW1 and V . Keep PCB trace lengths as short  
m
IN1  
Channel 2. Connect resistor divider tap to this pin. The  
and wide as possible to reduce EMI. If the inductor current  
output voltage can be adjusted from 1.5V to 5.25V by:  
fallstozero,orSHDN1islow,aninternalanti-ringingswitch  
V
OUT  
= 1.195V × [1 + (R4/R3)]  
is connected from SW1 to V to minimize EMI.  
IN1  
V
(Pin10):BatteryInputVoltageforChannel1.Connect  
GND (Pins 3, 6): Signal and Power Ground. Provide a  
short direct PCB path between GND and the (-) side of  
the input and output capacitors.  
IN1  
a minimum of 1μF ceramic decoupling capacitor from this  
pin to ground.  
SHDN1(Pin11):LogicControlledShutdownInputforChan-  
V
(Pin 4): Output Voltage Sense and Drain of the  
OUT2  
nel 1. There is an internal 4MegΩ pull-down on this pin.  
Internal Synchronous Rectifier for Channel 2. PCB trace  
length from V  
minimum) should be as short and wide as possible.  
to the output filter capacitor (4.7μF  
OUT2  
SHDN = High: Normal operation.  
SHDN = Low: Shutdown, quiescent current < 1μA.  
SW2 (Pin 5): Switch Pin for Channel 2. Connect inductor  
FB1 (Pin 12): Feedback Input to the g Error Amplifier  
m
between SW2 and V . Keep PCB trace lengths as short  
IN2  
of Channel 1. Connect resistor divider tap to this pin. The  
and wide as possible to reduce EMI. If the inductor current  
output voltage can be adjusted from 1.5V to 5.25V by:  
fallstozero,orSHDN2islow,aninternalanti-ringingswitch  
V
OUT  
= 1.195V × [1 + (R2/R1)]  
is connected from SW2 to V to minimize EMI.  
IN2  
ExposedPad(Pin13):TheExposedPadmustbesoldered  
to the PCB ground plane. It serves as another ground  
connection and as a means of conducting heat away  
from the die.  
V
(Pin 7): Battery Input Voltage for Channel 2. Connect  
IN2  
a minimum of 1μF ceramic decoupling capacitor from this  
pin to ground.  
3535f  
7
LTC3535  
BLOCK DIAGRAM  
L1  
4.7μH  
V
IN1  
0.8V  
TO 5V  
C
IN  
10  
2
2.2μF  
V
SW1  
IN1  
V
OUT  
V
SEL  
WELL  
SWITCH  
V
BEST  
V
B
V
OUT1  
V
OUT1  
1.5V  
1
TO 5.25V  
ANTI-RING  
GATE DRIVERS  
AND  
ANTI-CROSS  
CONDUCTION  
R2  
R1  
FB1  
C
OUT1  
10μF  
12  
SHDN1  
4M  
SHUTDOWN  
11  
SHUTDOWN  
+
I
ZERO  
COMP  
3
SLOPE  
COMP  
I
PK  
COMP  
V
REF  
V
REF1  
+
I
PK  
UVLO  
ERROR AMP  
SLEEP COMP  
I
ZERO  
START-UP  
V
+
REF  
LOGIC  
MODE  
CLK1  
TSD  
CONTROL  
1MHz  
OSC  
CLAMP  
WAKE  
THERMAL  
SHUTDOWN  
L2  
C
SS  
4.7μH  
SW2  
5
7
V
IN2  
V
IN2  
0.8V  
TO 5V  
V
IN2  
C
IN2  
2.2μF  
V
OUT2  
V
SEL  
WELL  
SWITCH  
V
BEST  
V
B
V
OUT2  
V
OUT2  
1.5V  
4
9
TO 5.25V  
ANTI-RING  
GATE DRIVERS  
AND  
R4  
R3  
FB2  
C
OUT2  
10μF  
ANTI-CROSS  
CONDUCTION  
SHDN2  
4M  
SHUTDOWN  
8
SHUTDOWN  
+
I
ZERO  
COMP  
3
SLOPE  
COMP  
I
PK  
COMP  
V
REF  
V
REF2  
+
I
PK  
UVLO  
ERROR AMP  
SLEEP COMP  
I
ZERO  
START-UP  
V
+
REF  
LOGIC  
MODE  
CLK2  
TSD  
CONTROL  
1MHz  
OSC  
CLAMP  
WAKE  
THERMAL  
SHUTDOWN  
C
SS  
EXPOSED  
PAD  
GND  
3
GND  
6
13  
3535 BD  
3535f  
8
LTC3535  
(Refer to Block Diagram)  
OPERATION  
The LTC3535 is a dual channel 1MHz synchronous boost  
converter housed in a 12-lead 3mm × 3mm DFN package.  
Each channel is identical and fully independent. They can  
operate from the same source, or from different voltage  
sources.  
LOW VOLTAGE START-UP  
The LTC3535 includes an independent start-up oscillator  
designed to start up at an input voltage of 0.68V (typical).  
Soft-start and inrush current limiting are provided during  
start-up, as well as normal mode.  
In addition, their output voltages can be tied together  
to allow operation of a single output from two different  
input sources. However, note that the two channels are  
not designed to current share, so if both input voltages  
are present either one may be supplying the load.  
When either V or V  
for a given channel exceeds 1.3V  
OUT  
IN  
typical, the channel enters normal operating mode. When  
the output voltage exceeds the input by 0.24V, the channel  
powers itself from V  
instead of V . At this point the  
IN  
OUT  
internal circuitry has no dependency on the V input volt-  
IN  
The following description of operation applies to each  
age,eliminatingtherequirementforalargeinputcapacitor.  
The input voltage can drop as low as 0.5V. The limiting  
factor for the application becomes the availability of the  
power source to supply sufficient energy to the output at  
lowvoltages,andmaximumdutycycle,whichisclampedat  
90% typical. Note that at low input voltages, small voltage  
drops due to series resistance become critical, and greatly  
limit the power delivery capability of the converter.  
channel. Note that references to V or V  
apply to the  
IN  
OUT  
corresponding channel.  
With a guaranteed ability to start up and operate from  
inputs less than 0.8V, each channel features fixed fre-  
quency, current mode PWM control for exceptional line  
and load regulation. The current mode architecture with  
adaptive slope compensation provides excellent transient  
load response, requiring minimal output filtering. Internal  
soft-start and internal loop compensation simplifies the  
design process while minimizing the number of external  
components.  
LOW NOISE FIXED FREQUENCY OPERATION  
Soft-Start  
The LTC3535 contains internal circuitry to provide soft-  
start operation. The soft-start circuitry slowly ramps the  
peakinductorcurrentfromzerotoitspeakvalueof750mA  
(typical) in approximately 0.5ms, allowing start-up into  
heavy loads. The soft-start circuitry is reset in the event  
of a shutdown command or a thermal shutdown.  
WithitslowR  
andlowgatechargeinternalN-channel  
DS(ON)  
MOSFET switch and P-channel MOSFET synchronous  
rectifier, the LTC3535 achieves high efficiency over a wide  
range of load currents. Burst Mode operation maintains  
high efficiency at very light loads, reducing the quiescent  
current to just 9μA per channel. Operation can be best  
understood by referring to the Block Diagram.  
3535f  
9
LTC3535  
(Refer to Block Diagram)  
OPERATION  
Oscillator  
Current Limit  
An internal oscillator (independent for each channel) sets  
the switching frequency to 1MHz.  
The current limit comparator shuts off the N-channel  
MOSFET switch once its threshold is reached. The cur-  
rent limit comparator delay to output is typically 60ns.  
Peak switch current is limited to approximately 750mA,  
Shutdown  
independent of input or output voltage, unless V  
falls  
OUT  
Shutdown is accomplished by pulling the SHDN pin below  
0.3VandenabledbypullingtheSHDNpinabove0.8V.Note  
below 0.7V, in which case the current limit is cut in half.  
that SHDN can be driven above V or V , as long as it  
IN  
OUT  
Zero Current Comparator  
is limited to less than the absolute maximum rating.  
The zero current comparator monitors the inductor cur-  
rent to the output and shuts off the synchronous rectifier  
when this current reduces to approximately 30mA. This  
prevents the inductor current from reversing in polarity,  
improving efficiency at light loads.  
Error Amplifier  
The positive input of the transconductance error amplifier  
is internally connected to the 1.195V reference and the  
negative input is connected to FB. Clamps limit the mini-  
mumandmaximumerrorampoutputvoltageforimproved  
large-signal transient response. Power converter control  
loop compensation is provided internally. An external  
Synchronous Rectifier  
To control inrush current and to prevent the inductor  
resistive voltage divider from V  
the output voltage via FB from 1.5V to 5.25V.  
to ground programs  
current from running away when V is close to V , the  
OUT IN  
OUT  
P-channel MOSFET synchronous rectifier is only enabled  
when V > (V + 0.24V).  
OUT  
IN  
R2  
R1  
VOUT =1.195V • 1+  
Anti-Ringing Control  
The anti-ring circuit connects a resistor across the in-  
ductor to prevent high frequency ringing on the SW pin  
during discontinuous current mode operation. Although  
Current Sensing  
Losslesscurrentsensingconvertsthepeakcurrentsignalof  
theN-channelMOSFETswitchintoavoltagethatissummed  
with the internal slope compensation. The summed signal  
is compared to the error amplifier output to provide a peak  
current control command for the PWM.  
the ringing of the resonant circuit formed by L and C  
SW  
(capacitance on SW pin) is low energy, it can cause EMI  
radiation.  
3535f  
10  
LTC3535  
(Refer to Block Diagram)  
OPERATION  
Output Disconnect  
In Burst Mode operation, the LTC3535 still switches at a  
fixed frequency of 1MHz, using the same error amplifier  
and loop compensation for peak current mode control.  
This control method eliminates any output transient when  
switching between modes. In Burst Mode operation,  
energy is delivered to the output until it reaches the  
nominal regulation value, then the LTC3535 transitions  
to sleep mode where the outputs are off and the LTC3535  
The LTC3535 is designed to allow true output disconnect  
by eliminating body diode conduction of the internal P-  
channelMOSFETrectifier.ThisallowsforV togotozero  
OUT  
volts during shutdown, drawing no current from the input  
source. It also allows for inrush current limiting at turn-  
on, minimizing surge currents seen by the input supply.  
Note that to obtain the advantages of output disconnect,  
there must not be an external Schottky diode connected  
consumes only 9μA of quiescent current from V  
for  
OUT  
each channel. When the output voltage droops slightly,  
switchingresumes. Thismaximizesefficiencyatverylight  
loadsbyminimizingswitchingandquiescentlosses.Burst  
Modeoutputvoltageripple, whichistypically1%peak-to-  
peak, can be reduced by using more output capacitance  
(10μF or greater), or with a small capacitor (10pF to 50pF)  
between SW and V . The output disconnect feature also  
OUT  
allows V  
to be pulled high, without any reverse current  
into a battery connected to V .  
OUT  
IN  
Thermal Shutdown  
If the die temperature exceeds 160°C, the LTC3535 will  
go into thermal shutdown. All switches will be off and  
the soft-start capacitor will be discharged. The device  
will be enabled again when the die temperature drops by  
about 15°C.  
connected between V  
and FB.  
OUT  
As the load current increases, the LTC3535 will automati-  
cally leave Burst Mode operation. Note that larger output  
capacitor values may cause this transition to occur at  
lighter loads. Once the LTC3535 has left Burst Mode op-  
eration and returned to normal operation, it will remain  
there until the output load is reduced below the burst  
threshold current.  
Burst Mode OPERATION  
Each channel of the LTC3535 will enter Burst Mode  
operationatlightloadcurrentandreturntoxedfrequency  
PWM mode when the load increases. Refer to the Typical  
Performance Characteristics to see the output load Burst  
Burst Mode operation is inhibited during start-up and  
soft-start and until V  
is at least 0.24V greater than V .  
OUT  
IN  
Note that each channel can enter or leave Burst Mode  
operation independent of the other channel.  
Mode threshold current vs V . The load current at which  
IN  
Burst Mode operation is entered can be changed by  
adjusting the inductor value. Raising the inductor value  
will lower the load current at which Burst Mode operation  
is entered.  
3535f  
11  
LTC3535  
APPLICATIONS INFORMATION  
V > V  
OPERATION  
COMPONENT SELECTION  
Inductor Selection  
IN  
OUT  
The LTC3535 will maintain voltage regulation even when  
the input voltage is above the desired output voltage. Note  
that the efficiency is much lower in this mode, and the  
maximum output current capability will be less. Refer to  
the Typical Performance Characteristics.  
The LTC3535 can utilize small surface mount chip induc-  
tors due to their fast 1MHz switching frequency. Inductor  
values between 3.3μH and 6.8μH are suitable for most  
applications.Largervaluesofinductancewillallowslightly  
greater output current capability (and lower the Burst  
Mode threshold) by reducing the inductor ripple current.  
Increasing the inductance above 10μH will increase com-  
ponent size while providing little improvement in output  
current capability.  
SHORT-CIRCUIT PROTECTION  
The LTC3535 output disconnect feature allows output  
short circuit while maintaining a maximum internally set  
current limit. To reduce power dissipation under short-  
circuit conditions, the peak switch current limit is reduced  
to 400mA (typical per channel).  
The minimum inductance value is given by:  
V
• VOUT(MAX) – V  
(
)
IN(MIN)  
IN(MIN)  
L >  
SCHOTTKY DIODE  
RippleVOUT(MAX)  
Althoughnotrecommended,addingaSchottkydiodefrom  
where:  
SW to V  
will improve efficiency by about 2%. Note  
OUT  
that this defeats the output disconnect and short-circuit  
Ripple = Allowable inductor current ripple (amps peak-  
peak)  
protection features.  
V
V
= Minimum input voltage  
IN(MIN)  
PCB LAYOUT GUIDELINES  
= Maximum output voltage  
OUT(MAX)  
ThehighspeedoperationoftheLTC3535demandscareful  
attention to board layout. A careless layout will result in  
reduced performance. Figure 1 shows the recommended  
component placement. A large ground pin copper area  
will help to lower the die temperature. A multilayer board  
with a separate ground plane is ideal, but not absolutely  
necessary.  
The inductor current ripple is typically set for 20% to  
40% of the maximum inductor current. High frequency  
ferritecoreinductormaterialsreducefrequencydependent  
power losses compared to cheaper powdered iron types,  
improving efficiency. The inductor should have low ESR  
(seriesresistanceofthewindings)toreducetheI2Rpower  
losses, and must be able to support the peak inductor  
currentwithoutsaturating.Moldedchokesandsomechip  
inductorsusuallydonothaveenoughcoreareatosupport  
the peak inductor current of 750mA seen on the LTC3535.  
To minimize radiated noise, use a shielded inductor. See  
Table 1 for suggested components and suppliers.  
SHDN  
V
OUT1  
V
IN1  
GND  
GND  
V
OUT2  
V
IN2  
SHDN  
Figure 1. Recommended Component Placement  
3535f  
12  
LTC3535  
APPLICATIONS INFORMATION  
Table 1. Recommended Inductors  
4.7μF to 10μF output capacitor is sufficient for most ap-  
plications. Larger values may be used to obtain extremely  
low output voltage ripple and improve transient response.  
X5R and X7R dielectric materials are preferred for their  
ability to maintain capacitance over wide voltage and  
temperature ranges. Y5V types should not be used.  
VENDOR  
PART/STYLE  
Coilcraft  
(847) 639-6400  
www.coilcraft.com  
LPO4815  
LPS4012, LPS4018  
MSS5131  
MSS4020  
MOS6020  
ME3220  
TheinternalloopcompensationoftheLTC3535isdesigned  
tobestablewithoutputcapacitorvaluesof4.7μForgreater  
(withouttheneedforanyexternalseriesresistor).Although  
ceramic capacitors are recommended, low ESR tantalum  
capacitors may be used as well.  
DS1605, DO1608  
Coiltronics  
www.cooperet.com  
SD10, SD12, SD14, SD18, SD20,  
SD52, SD3114, SD3118  
FDK  
(408) 432-8331  
www.fdk.com  
MIP3226D4R7M, MIP3226D3R3M  
MIPF2520D4R7  
MIPWT3226D3R0  
Murata  
LQH43C  
Asmallceramiccapacitorinparallelwithalargertantalum  
capacitormaybeusedindemandingapplicationsthathave  
large load transients. Another method of improving the  
transientresponseistoaddasmallfeed-forwardcapacitor  
(714) 852-2001  
www.murata.com  
LQH32C (-53 series)  
301015  
Sumida  
(847) 956-0666  
www.sumida.com  
CDRH5D18  
CDRH2D14  
CDRH3D16  
across the top resistor of the feedback divider (from V  
to FB). A typical value of 22pF will generally suffice.  
OUT  
CDRH3D11  
CR43  
CMD4D06-4R7MC  
CMD4D06-3R3MC  
Low ESR input capacitors reduce input switching noise  
and reduce the peak current drawn from the battery. It  
follows that ceramic capacitors are also a good choice  
for input decoupling and should be located as close as  
possible to the device. A 2.2μF input capacitor is sufficient  
for most applications, although larger values may be  
used without limitations. Table 2 shows a list of several  
ceramiccapacitormanufacturers.Consultthemanufactur-  
ers directly for detailed information on their selection of  
ceramic capacitors.  
Taiyo-Yuden  
www.t-yuden.com  
NP03SB  
NR3015T  
NR3012T  
TDK  
VLP  
VLF, VLCF  
(847) 803-6100  
www.component.tdk.com  
Toko  
(408) 432-8282  
www.tokoam.com  
D412C  
D518LC  
D52LC  
D62LCB  
Wurth  
(201) 785-8800  
www.we-online.com  
WE-TPC type S, M  
Table 2. Capacitor Vendor Information  
SUPPLIER  
AVX  
PHONE  
WEBSITE  
(803) 448-9411  
(714) 852-2001  
(408) 573-4150  
(847) 803-6100  
(408) 544-5200  
www.avxcorp.com  
www.murata.com  
www.t-yuden.com  
www.component.tdk.com  
www.sem.samsung.com  
Output and Input Capacitor Selection  
Murata  
Low ESR (equivalent series resistance) capacitors should  
be used to minimize the output voltage ripple. Multilayer  
ceramic capacitors are an excellent choice as they have  
extremely low ESR and are available in small footprints. A  
Taiyo-Yuden  
TDK  
Samsung  
3535f  
13  
LTC3535  
TYPICAL APPLICATION  
Single Cell to 3.3V Converter with 20 Seconds of Holdup with 30mA Load  
V
OUT  
4.7μH  
3.3V  
499k  
30mA  
V
SW  
IN  
V
HOLDUP  
4.25V  
1M  
V
V
V
0.8V  
IN1  
OUT1  
OUT2  
+
TO 1.5V  
C
HOLD  
*
SHDN1  
2.2μF  
0.47μF  
10μF  
LTC3535  
1.78M  
V
FB1  
FB2  
IN2  
SHDN2  
392k  
2.2μF  
GND SW2 GND  
1M  
1.5M  
4.7μH  
3535 TA02  
*POWERSTOR PA-5R0H474-R  
V
IN  
1V/DIV  
V
HOLDUP  
2V/DIV  
V
OUT  
2V/DIV  
3535 TA02b  
5s/DIV  
3535f  
14  
LTC3535  
PACKAGE DESCRIPTION  
DC Package  
12-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1725 Rev A)  
0.70 p 0.05  
2.38 p 0.05  
1.65 p 0.05  
3.50 p 0.05  
2.10 p 0.05  
PACKAGE  
OUTLINE  
0.25 p 0.05  
0.45 BSC  
2.25 REF  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.115  
0.40 p 0.10  
TYP  
7
12  
2.38 p 0.10  
3.00 p 0.10  
(4 SIDES)  
1.65 p 0.10  
PIN 1 NOTCH  
PIN 1  
TOP MARK  
R = 0.20 OR  
0.25 s 45o  
CHAMFER  
(SEE NOTE 6)  
6
1
0.23 p 0.05  
0.45 BSC  
0.75 p 0.05  
0.200 REF  
2.25 REF  
(DD12) DFN 0106 REV A  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD AND TIE BARS SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3535f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LTC3535  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
92% Efficiency V : 1V to 5V, V  
LTC3400/LTC3400B  
600mA I , 1.2MHz, Synchronous Step-Up  
= 5V, I = 19μA/300μA,  
OUT(MAX) Q  
SW  
IN  
DC/DC Converters  
I
< 1μA, ThinSOT Package  
SD  
LTC3421  
3A I , 3MHz, Synchronous Step-Up DC/DC Converter 95% Efficiency V : 1V to 4.5V, V  
= 5.25V, I = 12μA,  
Q
SW  
IN  
OUT(MAX)  
OUT(MAX)  
with Output Disconnect  
I
< 1μA, QFN24 Package  
SD  
LTC3422  
1.5A I , 3MHz Synchronous Step-Up DC/DC  
95% Efficiency V : 1V to 4.5V, V  
SD  
= 5.25V, I = 25μA,  
Q
SW  
IN  
Converter with Output Disconnect  
I
< 1μA, 3mm × 3mm DFN Package  
LTC3426  
2A I , 1.2MHz, Step-Up DC/DC Converter  
92% Efficiency V : 1.6V to 4.3V, V  
= 5V, I < 1μA,  
SW  
IN  
OUT(MAX)  
OUT(MAX)  
SD  
SOT-23 Package  
LTC3427  
500mA I , 1.2MHZ, Synchronous Step-Up DC/DC  
93% Efficiency V : 1.8V to 4.5V, V  
= 5V,  
SW  
IN  
Converter with Output Disconnect  
2mm × 2mm DFN Package  
LTC3428  
500mA I , 1.25MHz/2.5MHz, Synchronous Step-Up  
92% Efficiency V : 1.8V to 5V, V  
= 5.25V, I < 1μA,  
SD  
SW  
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
DC/DC Converters with Output Disconnect  
2mm × 2mm DFN Package  
LTC3429  
600mA I , 500kHz, Synchronous Step-Up DC/DC  
96% Efficiency V : 1V to 4.4V, V  
= 5V, I = 20μA/300μA,  
Q
SW  
IN  
Converter with Output Disconnect and Soft-Start  
I
< 1μA, ThinSOT Package  
SD  
LTC3458/LTC3458L  
LTC3459  
1.4A I , 1.5MHz, Synchronous Step-Up DC/DC  
93% Efficiency V : 1.5V to 6V, V  
= 7.5V, I = 15μA,  
Q
SW  
IN  
Converter/Output Disconnect/Burst Mode Operation  
I
< 1μA, DFN12 Package  
SD  
70mA I , 10V Micropower Synchronous Boost  
V : 1.5V to 5.5V, V  
= 10V, I = 10μA, I < 1μA,  
SW  
IN  
OUT(MAX)  
Q
SD  
Converter/Output Disconnect/Burst Mode Operation  
ThinSOT Package  
LTC3499  
750mA (I ), 1.2MHz, Step-Up DC/DC Converter with 92% Efficiency V : 1.8V to 5.5V, V  
= 6V, I = 20μA,  
OUT(MAX) Q  
SW  
IN  
Reverse Battery Protection and Output Disconnect  
I
< 1μA, 3mm × 3mm DFN-8 Package, MSOP-8 Package  
SD  
LTC3525-3  
LTC3525-3.3  
LTC3525-5  
400mA Micropower Synchronous Step-Up DC/DC  
Converter with Output Disconnect  
95% Efficiency V : 1V to 4.5V, V  
SD  
= 3.3V or 5V, I = 7μA,  
OUT(MAX) Q  
IN  
I
< 1μA, SC-70 Package  
LTC3525L-3  
400mA Micropower Synchronous Step-Up DC/DC  
Converter with Output Disconnect  
93% Efficiency V : 0.88V to 4.5V, V  
SD  
= 3V, I = 7μA,  
OUT Q  
IN  
I
< 1μA, SC-70 Package  
LTC3526/LTC3526B  
LTC3526-2  
LTC3526B-2  
500mA, 1MHz/2.2MHz, Synchronous Step-Up DC/DC  
Converters with Output Disconnect  
94% Efficiency V : 0.85V to 5V, V  
SD  
= 5.25V, I = 9μA,  
OUT(MAX) Q  
IN  
I
< 1μA, 2mm × 2mm DFN-6 Package  
LTC3526L  
550mA, 1MHz, Synchronous Step-Up DC/DC  
Converters with Output Disconnect  
94% Efficiency V : 0.7V to 5V, V  
SD  
= 5.25V, I = 9μA,  
Q
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
LTC3526LB  
I
< 1μA, 2mm × 2mm DFN-6 Package  
LTC3526/LTC3526B  
500mA (I ), 1MHz Synchronous Step-Up DC/DC  
94% Efficiency V : 0.8V to 5V, V  
= 5.25V, I = 9μA,  
Q
SW  
IN  
Converter with Output Disconnect  
I
< 1μA, 2mm × 2mm DFN-6 Package  
SD  
LTC3527/LTC3527-1  
Dual 800mA and 400mA (ISW), 2.2MHz, Synchronous 94% Efficiency V : 0.7V to 5V, V  
Step-Up DC/DC Converter with Output Disconnect  
= 5.25V, I = 12μA,  
Q
IN  
I
< 1μA, 3mm × 3mm QFN-16 Package  
SD  
LTC3528  
1A (I ), 1MHz Synchronous Step-Up DC/DC with  
94% Efficiency V : 0.7V to 5V, V  
SD  
= 5.25V, I = 12μA,  
Q
SW  
IN  
OUT(MAX)  
OUT(MAX)  
LTC3528-2  
Output DisconnectConverter  
I
< 1μA, 2mm × 3mm DFN-8 Package  
LTC3537  
600mA , 2.2MHz, Synchronous Step-Up DC/DC  
Converter with Output Disconnect and 100mA LDO  
94% Efficiency V : 0.7V to 5V, V  
= 5.25V, I = 30μA,  
Q
IN  
I
< 1μA, 3mm × 3mm QFN-16 Package  
SD  
LTC3539  
LTC3539-2  
2A (I ), 1/2MHz, Synchronous Step-Up DC/DC  
94% Efficiency V : 0.7V to 5V, V  
= 5.25V, I = 10μA,  
OUT(MAX) Q  
SW  
IN  
Converter with Output Disconnect  
I
< 1μA, 2mm × 3mm DFN-8 Package  
SD  
ThinSOT is a trademark of Linear Technology Corporation.  
3535f  
LT 0109 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2009  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC3536EDD#PBF

LTC3536 - 1A Low Noise, Buck-Boost DC/DC Converter; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3536IMSE#PBF

暂无描述
Linear

LTC3536IMSE#TRPBF

暂无描述
Linear

LTC3537

2.2 MHz, 600mA Synchronous Step-Up DC/DC Converter and 100mA LDO
Linear

LTC3537EUD#PBF

LTC3537 - 2.2 MHz, 600mA Synchronous Step-Up DC/DC Converter and 100mA LDO; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3537EUD-PBF

2.2 MHz, 600mA Synchronous Step-Up DC/DC Converter and 100mA LDO
Linear

LTC3537EUD-TRPBF

2.2 MHz, 600mA Synchronous Step-Up DC/DC Converter and 100mA LDO
Linear

LTC3538

800mA Synchronous Buck-Boost DC/DC Converter
Linear

LTC3538EDCB

800mA Synchronous Buck-Boost DC/DC Converter
Linear

LTC3538EDCB#PBF

LTC3538 - 800mA Synchronous Buck-Boost DC/DC Converter; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3538EDCB#TR

暂无描述
Linear

LTC3538EDCB#TRM

IC 0.8 A SWITCHING REGULATOR, 1200 kHz SWITCHING FREQ-MAX, PDSO8, 2 X 3 MM, PLASTIC, DFN-8, Switching Regulator or Controller
Linear