LTC3608 [Linear]

18V, 8A Monolithic Synchronous Step-Down DC/DC Converter; 18V , 8A单片同步降压型DC / DC转换器
LTC3608
型号: LTC3608
厂家: Linear    Linear
描述:

18V, 8A Monolithic Synchronous Step-Down DC/DC Converter
18V , 8A单片同步降压型DC / DC转换器

转换器
文件: 总24页 (文件大小:371K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3608  
18V, 8A Monolithic  
Synchronous Step-Down  
DC/DC Converter  
DESCRIPTION  
FEATURES  
TheLTC®3608isahighefficiency,monolithicsynchronous  
step-downDC/DCconverterthatcandeliverupto8Aoutput  
current from a 4V to 18V (20V maximum) input supply. It  
uses a valley current control architecture to deliver very  
low duty cycle operation at high frequency with excellent  
transient response. The operating frequency is selected  
by an external resistor and is compensated for variations  
n
8A Output Current  
n
Wide V Range = 4V to 18V  
IN  
n
Internal N-Channel MOSFETs  
True Current Mode Control  
Optimized for High Step-Down Ratios  
n
n
n
t
≤ 100nsec  
ON(MIN)  
n
n
n
n
n
n
n
n
n
n
n
Extremely Fast Transient Response  
Stable with Ceramic C  
in V and V  
.
OUT  
IN  
OUT  
1ꢀ 0ꢁ.V Voltage Reference  
Power Good Output Voltage Monitor  
Adjustable On-Time/Switching Frequency  
Adjustable Current Limit  
Programmable Soft-Start  
Output Overvoltage Protection  
Optional Short-Circuit Shutdown Timer  
The LTC3608 can be configured for discontinuous or  
forced continuous operation at light load. Forced continu-  
ous operation reduces noise and RF interference while  
discontinuous mode provides high efficiency by reducing  
switching losses at light loads.  
Fault protection is provided by internal foldback current  
limiting,anoutputovervoltagecomparatorandanoptional  
short-circuit shutdown timer. Soft-start capability for sup-  
ply sequencing is accomplished using an external timing  
capacitor.Theregulatorcurrentlimitisuserprogrammable.  
A power good output voltage monitor indicates when  
the output is in regulation. The LTC3608 is available in a  
compact 7mm × 8mm QFN package.  
Low Shutdown I : 15μA  
Available in a 7mm × 8mm 52-Lead QFN Package  
Q
APPLICATIONS  
n
Point of Load Regulation  
Distributed Power Systems  
n
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other  
trademarks are the property of their respective owners. Protected by U.S. Patents including  
5481178, 6100678, 6580258, 5847554, 6304066.  
TYPICAL APPLICATION  
High Efficiency Step-Down Converter  
187k  
Efficiency and Power Loss  
vs Load Current  
V
OUT  
V
I
0.1μF  
ON  
ON  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
10000  
1000  
100  
10  
V
IN  
4V TO 18V  
RUN/SS  
V
IN  
EFFICIENCY  
10μF  
×3  
100pF  
LTC3608  
0.8μH  
V
2.5V  
8A  
OUT  
SW  
1500pF  
11.3k  
0.22μF  
100μF  
×2  
I
TH  
BOOST  
POWER LOSS  
SGND INTV  
CC  
30.1k  
9.53k  
FCB  
V
OUT  
EXTV = 5V  
= 12V  
IN  
V
= 2.5V  
4.7μF  
V
RNG  
CC  
PGND  
1
PGOOD  
0.01  
0.1  
1
10  
EXTV  
CC  
V
FB  
LOAD CURRENT (A)  
3608 TA01b  
3608 TA01a  
3608fa  
1
LTC3608  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
Input Supply Voltage (SV , PV , I )....... 20V to –0.3V  
IN  
IN ON  
Boosted Topside Driver Supply Voltage  
(BOOST) ................................................ 26V to –0.3V  
SW Voltage............................................... 20V to –5V  
PV  
PV  
PV  
PV  
PV  
PV  
PV  
1
2
3
4
5
6
7
40 PGND  
39 PGND  
38 PGND  
37 PGND  
36 PGND  
35 PGND  
34 PGND  
33 SW  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
INTV , EXTV , (BOOST – SW), RUN/SS,  
CC  
CC  
53  
PV  
PGOOD Voltages...................................... 7V to –0.3V  
55  
SW  
IN  
FCB, V , V  
TH FB  
Operating Junction Temperature Range  
Voltages............ INTV + 0.3V to –0.3V  
ON RNG  
CC  
I , V Voltages....................................... 2.7V to –0.3V  
SW 8  
NC 9  
32 INTV  
31 INTV  
CC  
CC  
(Notes 2, 4)........................................ –40°C to 125°C  
Storage Temperature Range................... –55°C to 125°C  
SGND 10  
BOOST 11  
RUN/SS 12  
30 SV  
IN  
54  
SGND  
29 EXTV  
28 NC  
CC  
V
13  
ON  
SGND 14  
27 SGND  
WKG PACKAGE  
52-LEAD (7mm × 8mm) QFN MULTIPAD  
T
= 125°C, θ = 29°C/W  
JA  
JMAX  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC3608EWKG#PBF  
LTC3608IWKG#PBF  
TAPE AND REEL  
PART MARKING*  
LTC3608WKG  
LTC3608WKG  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
LTC3608EWKG#TRPBF  
LTC3608IWKG#TRPBF  
52-Lead (7mm × 8mm) Plastic QFN  
52-Lead (7mm × 8mm) Plastic QFN  
–40°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3608fa  
2
LTC3608  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
junction temperature range, otherwise specifications are at TA = 25°Cꢁ VIN = 15V unless otherwise notedꢁ  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Main Control Loop  
SV  
Operating Input Voltage Range  
4
18  
V
IN  
I
Input DC Supply Current  
Normal  
Q
900  
15  
2000  
30  
μA  
μA  
Shutdown Supply Current  
V
Feedback Reference Voltage  
I
TH  
I
TH  
= 1.2V, 40°C to 85°C (Note 3)  
= 1.2V, 40°C to 125°C (Note 3)  
0.594  
0.590  
0.600  
0.600  
0.606  
0.610  
V
V
FB  
l
ΔV  
ΔV  
Feedback Voltage Line Regulation  
Feedback Voltage Load Regulation  
Feedback Input Current  
V
= 4V to 18V, I = 1.2V (Note 3)  
0.002  
–0.05  
–5  
%/V  
%
FB(LINEREG)  
FB(LOADREG)  
IN  
TH  
I
TH  
= 0.5V to 1.9V (Note 3)  
= 0.6V  
–0.3  
50  
I
FB  
V
nA  
mS  
V
FB  
l
l
g
Error Amplifier Transconductance  
Forced Continuous Threshold  
Forced Continuous Pin Current  
On-Time  
I
TH  
= 1.2V (Note 3)  
1.4  
1.7  
2
m(EA)  
V
0.54  
0.6  
0.66  
–2  
FCB  
I
t
V
= 0.6V  
FCB  
–1  
μA  
FCB  
ON  
I
ON  
I
ON  
= 60μA, V = 1.5V  
220  
280  
110  
340  
ns  
ns  
ON  
= 60μA, V = 0V  
ON  
t
t
I
Minimum On-Time  
I
I
= 180μA, V = 0V  
60  
100  
500  
ns  
ns  
ON(MIN)  
ON  
ON  
ON  
Minimum Off-Time  
Maximum Valley Current  
= 30μA, V = 1.5V  
320  
OFF(MIN)  
ON  
l
l
V
V
= 0.5V, V = 0.56V, FCB = 0V  
5
8
11  
16  
A
A
VALLEY(MAX)  
RNG  
RNG  
FB  
= 0V, V = 0.56V, FCB = 0V  
FB  
I
Maximum Reverse Valley Current  
V
RNG  
V
RNG  
= 0.5V, V = 0.64V, FCB = 0V  
3.5  
5.5  
5.5  
7.5  
7.5  
9.5  
A
A
VALLEY(MIN)  
FB  
= 0V, V = 0.64V, FCB = 0V  
FB  
ΔV  
Output Overvoltage Fault Threshold  
RUN Pin Start Threshold  
7
10  
1.5  
4
13  
2
%
V
FB(OV)  
l
V
V
V
0.8  
RUN/SS(ON)  
RUN/SS(LE)  
RUN/SS(LT)  
RUN/SS(C)  
RUN/SS(D)  
RUN Pin Latchoff Enable Threshold  
RUN Pin Latchoff Threshold  
Soft-Start Charge Current  
RUN/SS Pin Rising  
RUN/SS Pin Falling  
4.5  
4.2  
–3  
3
V
3.5  
–1.2  
1.8  
3.4  
3.5  
V
I
I
V
V
= 0V  
–0.5  
0.8  
μA  
μA  
V
RUN/SS  
RUN/SS  
Soft-Start Discharge Current  
Undervoltage Lockout  
= 4.5V, V = 0V  
FB  
l
l
V
V
INTV Falling  
3.9  
4
IN(UVLO)  
CC  
Undervoltage Lockout Release  
INTV Rising  
V
IN(UVLOR)  
CC  
R
Top Switch On-Resistance  
Bottom Switch On-Resistance  
10  
8
19  
14  
mΩ  
mΩ  
DS(ON)  
Internal V Regulator  
CC  
l
l
V
Internal V Voltage  
6V < V < 18V, V = 4V  
EXTVCC  
4.7  
4.5  
5
5.5  
2
V
%
INTVCC  
CC  
IN  
ΔV  
Internal V Load Regulation  
I
CC  
I
CC  
I
CC  
= 0mA to 20mA, V = 4V  
EXTVCC  
–0.1  
4.7  
LDO(LOADREG)  
CC  
V
EXTV Switchover Voltage  
= 20mA, V  
= 20mA, V  
Rising  
= 5V  
V
EXTVCC  
CC  
EXTVCC  
EXTVCC  
ΔV  
ΔV  
EXTV Switch Drop Voltage  
150  
500  
300  
mV  
mV  
EXTVCC  
CC  
EXTV Switchover Hysteresis  
EXTVCC(HYS)  
CC  
PGOOD Output  
ΔV  
ΔV  
ΔV  
PGOOD Upper Threshold  
PGOOD Lower Threshold  
PGOOD Hysteresis  
V
V
V
Rising  
7
10  
–10  
1
13  
–13  
2.5  
0.4  
%
%
%
V
FBH  
FB  
Falling  
–7  
FBL  
FB  
Returning  
FB(HYS)  
FB  
V
PGOOD Low Voltage  
I
= 5mA  
0.15  
PGL  
PGOOD  
3608fa  
3
LTC3608  
ELECTRICAL CHARACTERISTICS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: The LTC3608 is tested in a feedback loop that adjusts V to  
FB  
achieve a specified error amplifier output voltage (I ). The specification at  
TH  
85°C is not tested in production. This specification is assured by design,  
characterization, and correlation to testing at 125°C.  
Note 2: T is calculated from the ambient temperature T and power  
Note 4: The LTC3608E is guaranteed to meet performance specifications  
from 0°C to 125°C. Specifications over the –40°C to 125°C operating  
junction temperature range are assured by design, characterization and  
correlation with statistical process controls. The LTC3608I is guaranteed  
over the full –40°C to 125°C operating junction temperature range.  
J
A
dissipation P as follows:  
D
LTC3608: T = T + (P • 29°C/W)(θ is simulated per JESD51-7 high  
J
A
D
JA  
effective thermal conductivity test board)  
= 1°C/W (θ is simulated when heat sink is applied at the bottom  
θ
JC  
JC  
of the package.)  
TYPICAL PERFORMANCE CHARACTERISTICS  
Transient Response  
Transient Response  
Start-Up  
V
V
OUT  
OUT  
200mV/DIV  
200mV/DIV  
RUN/SS  
2V/DIV  
I
L
I
L
5A/DIV  
5A/DIV  
V
OUT  
1V/DIV  
I
LOAD  
I
LOAD  
I
L
5A/DIV  
5A/DIV  
5A/DIV  
3608 G03  
3608 G01  
3610 G02  
40ms/DIV  
20μs/DIV  
20μs/DIV  
V
V
= 12V  
LOAD STEP 0A TO 8A  
IN  
OUT  
V
V
= 12V  
IN  
OUT  
= 2.5V  
= 0.5Ω  
V
V
= 12V  
= 2.5V  
IN  
OUT  
R
= 2.5V  
LOAD  
FCB = INTV  
CC  
FIGURE 6 CIRCUIT  
FCB = 0V  
FIGURE 6 CIRCUIT  
FIGURE 6 CIRCUIT  
Efficiency vs Load Current  
Efficiency vs Input Voltage  
Frequency vs Input Voltage  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
650  
600  
550  
500  
450  
400  
100  
95  
90  
85  
80  
FCB = 0V  
FCB = 5V  
FIGURE 6 CIRCUIT  
FIGURE 6 CIRCUIT  
I
= 10A  
LOAD  
I
= 10A  
= 1A  
LOAD  
V
V
V
V
V
= 5V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
I
LOAD  
= 3.3V  
= 2.5V  
= 2.5V  
= 1.8V  
= 1.2V  
= 1V  
I
= 1A  
LOAD  
V
V
V
= 12V  
IN  
FREQ = 550kHz  
0.01 0.1  
LOAD CURRENT (A)  
1
10  
5
10  
15  
20  
5
10  
15  
20  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
3608 G04  
3608 G06  
3608 G05  
3608fa  
4
LTC3608  
TYPICAL PERFORMANCE CHARACTERISTICS  
Frequency vs Load Current  
Load Regulation  
FIGURE 6 CIRCUIT  
ITH Voltage vs Load Current  
0.80  
0.60  
0.40  
0.20  
0
700  
600  
500  
400  
300  
200  
100  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
CONTINUOUS MODE  
CONTINUOUS  
MODE  
DISCONTINUOUS MODE  
–0.20  
–0.40  
–0.60  
–0.80  
DISCONTINUOUS  
MODE  
10  
0
2
4
6
8
10  
0
2
4
6
8
10  
0
5
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
3608 G07  
3608 G08  
3608 G09  
Load Current  
vs ITH Voltage and VRNG  
On-Time vs ION Current  
On-Time vs VON Voltage  
25  
20  
15  
10  
5
1000  
800  
600  
400  
200  
0
10000  
1000  
100  
I
ON  
= 30μA  
V
VON  
= 0V  
V
=
RNG  
1V  
0.7V  
0.5V  
0
–5  
–10  
10  
0
1
2
3
0
0.5  
1.0  
I
1.5  
2.0  
2.5  
3.0  
1
10  
100  
VOLTAGE (V)  
V
ON  
VOLTAGE (V)  
I
CURRENT (μA)  
TH  
ON  
3608 G11  
3608 G12  
3608 G10  
Maximum Valley Current Limit  
vs VRNG Voltage  
Maximum Valley Current Limit  
vs RUN/SS Voltage  
On-Time vs Temperature  
300  
250  
200  
150  
25  
20  
15  
10  
5
15  
12  
9
I
= 30μA  
VON  
ION  
V
= 0V  
6
100  
50  
0
3
0
–50 –25  
0
25  
50  
75  
100 125  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.65 1.90 2.15 2.40 2.65 2.90 3.15 3.40  
RUN/SS VOLTAGE (V)  
V
RNG  
VOLTAGE (V)  
TEMPERATURE (°C)  
3608 G13  
3608 G14  
3608 G15  
3608fa  
5
LTC3608  
TYPICAL PERFORMANCE CHARACTERISTICS  
Maximum Valley Current Limit  
vs Temperature  
Input Voltage  
vs Maximum Valley Current  
Maximum Valley Current Limit  
in Foldback  
20  
15  
10  
5
15  
10  
5
18  
16  
14  
12  
10  
8
6
0
0
4
0
0.1  
0.2  
0.3  
(V)  
0.4  
0.5  
0.6  
4
8
12  
16  
20  
–50 –25  
0
25  
50  
75 100 125  
V
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
FB  
3608 G16  
3608 G18  
3608 G17  
Feedback Reference Voltage  
vs Temperature  
Error Amplifier gm vs Temperature  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.62  
0.61  
0.60  
0.59  
0.58  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3608 G19  
3608 G20  
Input and Shutdown Currents  
vs Input Voltage  
INTVCC Load Regulation  
1400  
1200  
1000  
800  
600  
400  
200  
0
40  
35  
30  
25  
20  
15  
10  
5
0.30  
0.20  
0.10  
0
EXTV OPEN  
CC  
SHUTDOWN  
–0.10  
–0.20  
–0.30  
–0.40  
EXTV = 5V  
CC  
0
0
5
10  
INPUT VOLTAGE (V)  
15  
20  
0
10  
20  
30  
40  
50  
INTV LOAD CURRENT (mA)  
CC  
3608 G21  
3608 G22  
3608fa  
6
LTC3608  
TYPICAL PERFORMANCE CHARACTERISTICS  
EXTVCC Switch Resistance  
vs Temperature  
IEXTVCC vs Frequency  
10  
8
20  
18  
16  
14  
12  
10  
8
V
IN  
= 20V  
6
4
6
2
4
2
0
0
400  
500  
600  
700  
800  
900 1000  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
3608 G24  
3608 G23  
RUN/SS Pin Current  
vs Temperature  
FCB Pin Current vs Temperature  
3
2
0
–0.25  
–0.50  
–0.75  
PULL-DOWN CURRENT  
1
0
–1.00  
–1.25  
–1.50  
–1  
PULL-UP CURRENT  
0 25 50 75 100 125  
–2  
–50 –25  
–50 –25  
0
25  
50  
75  
100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3608 G25  
3608 G26  
RUN/SS Pin Current  
vs Temperature  
Undervoltage Lockout Threshold  
vs Temperature  
5.0  
4.5  
4.0  
3.5  
4.0  
3.5  
3.0  
2.5  
LATCHOFF ENABLE  
LATCHOFF THRESHOLD  
3.0  
2.0  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3608 G27  
3608 G28  
3608fa  
7
LTC3608  
PIN FUNCTIONS  
PV (Pins 1, 2, 3, 4, 5, ., 7, 48, 49, 50, 51, 52, 53):  
I (Pin18):CurrentControlThresholdandErrorAmplifier  
IN  
TH  
Main Input Supply. Decouple this pin to power PGND with  
Compensation Point. The current comparator threshold  
increases with this control voltage. The voltage ranges  
from 0V to 2.4V with 0.8V corresponding to zero sense  
voltage (zero current).  
the input capacitance C  
IN  
SW (Pins 8, 33, 41, 42, 43, 44, 45, 4., 47, 55): Switch  
Node Connection to the Inductor. The (–) terminal of the  
bootstrapcapacitorC alsoconnectshere.Thispinswings  
FCB (Pin 19): Forced Continuous Input. Tie this pin to  
B
from a diode voltage drop below ground up to V .  
ground to force continuous synchronous operation at low  
IN  
load,toINTV toenablediscontinuousmodeoperationat  
CC  
SGND(Pins10,14,15,20,2.,27,54):SignalGround.All  
small-signalcomponentsandcompensationcomponents  
should connect to this ground, which in turn connects to  
PGND at one point.  
low load or to a resistive divider from a secondary output  
when using a secondary winding.  
NC (Pins 9, 21, 24, 25, 28): No Connection.  
BOOST (Pin 11): Boosted Floating Driver Supply. The  
I
(Pin22):On-TimeCurrentInput.TiearesistorfromV  
ON IN  
(+) terminal of the bootstrap capacitor C connects here.  
to this pin to set the one-shot timer current and thereby  
set the switching frequency.  
B
This pin swings from a diode voltage drop below INTV  
CC  
up to V + INTV .  
IN  
CC  
V
(Pin 23): Error Amplifier Feedback Input. This pin  
FB  
RUN/SS (Pin 12): Run Control and Soft-Start Input. A  
capacitor to ground at this pin sets the ramp time to full  
output current (approximately 3s/μF) and the time delay  
for overcurrent latchoff (see Applications Information).  
Forcing this pin below 0.8V shuts down the device.  
connects the error amplifier input to an external resistive  
divider from V  
.
OUT  
EXTV (Pin29):ExternalV Input.WhenEXTV exceeds  
CC  
CC  
CC  
4.7V, an internal switch connects this pin to INTV and  
CC  
shuts down the internal regulator so that controller and  
V
(Pin13):On-TimeVoltageInput. Voltagetrippointfor  
gate drive power is drawn from EXTV . Do not exceed  
ON  
CC  
the on-time comparator. Tying this pin to the output volt-  
7V at this pin and ensure that EXTV < V .  
CC IN  
age or an external resistive divider from the output makes  
SV (Pin 30): Supply pin for internal PWM controller.  
IN  
the on-time proportional to V . The comparator input  
OUT  
INTV (Pins 31, 32): Internal 5V Regulator Output. The  
defaults to 0.7V when the pin is grounded and defaults to  
CC  
driver and control circuits are powered from this voltage.  
Decouple this pin to power ground with a minimum of  
4.7μF low ESR tantalum or ceramic capacitor.  
2.4V when the pin is tied to INTV . Tie this pin to INTV  
CC  
CC  
in high V  
applications to use a lower R value.  
OUT  
ON  
PGOOD (Pin 1.): Power Good Output. Open drain logic  
output that is pulled to ground when the output voltage  
is not within 10% of the regulation point.  
PGND (Pins 34, 35, 3., 37, 38, 39, 40): Power Ground.  
Connect this pin closely to the (–) terminal of C  
and  
VCC  
the (–) terminal of C .  
IN  
V
(Pin 17): Current Limit Range Input. The voltage at  
RNG  
this pin adjusts maximum valley current and can be set  
from 0.5V to 0.7V by a resistive divider from INTV . It  
defaults to 0.7V if the V  
results in a typical 19A current limit.  
CC  
pin is tied to ground which  
RNG  
3608fa  
8
LTC3608  
FUNCTIONAL DIAGRAM  
R
ON  
SV  
IN  
V
ON  
13  
I
FCB  
19  
EXTV  
29  
ON  
CC  
22  
30  
4.7V  
PV  
IN  
0.7V  
2.4V  
1μA  
+
1, 2, 3, 4, 5, 6,  
7, 48, 49, 50,  
51, 52, 53  
0.6V  
REF  
C
IN  
0.6V  
5V  
REG  
INTV  
CC  
+
31, 32  
F
BOOST  
11  
V
I
VON  
ION  
t
=
(10pF)  
R
S
ON  
C
B
Q
FCNT  
M1  
ON  
L1  
20k  
D
B
SW  
+
+
V
OUT  
8, 33, 41, 42,  
43, 44, 45,  
46, 47, 55  
SWITCH  
LOGIC  
I
I
REV  
CMP  
SHDN  
OV  
+
1.4V  
0.7V  
1
C
OUT  
M2  
C
VCC  
V
RNG  
17  
PGND  
×
34, 35, 36, 37,  
38, 39, 40  
(0.5 TO 2)  
16  
PGOOD  
R2  
0.54V  
240k  
+
1V  
Q2 Q4  
UV  
OV  
Q6  
I
THB  
V
FB  
23  
Q3 Q1  
R1  
+
SGND  
10, 14, 15,  
20, 26, 27, 54  
+
0.66V  
0.8V  
RUN  
SHDN  
SS  
+
1.2μA  
6V  
EA  
×3.3  
+
27  
NC  
9, 21, 24,  
25, 28  
0.6V  
0.4V  
18  
12  
3608 FD  
I
TH  
RUN/SS  
C
SS  
3608fa  
9
LTC3608  
OPERATION  
Main Control Loop  
Overvoltage and undervoltage comparators OV and UV  
pull the PGOOD output low if the output feedback volt-  
age exits a 10% window around the regulation point.  
Furthermore, in an overvoltage condition, M1 is turned  
off and M2 is turned on and held on until the overvoltage  
condition clears.  
The LTC3608 is a high efficiency monolithic synchronous,  
step-down DC/DC converter utilizing a constant on-time,  
current mode architecture. It operates from an input volt-  
age range of 4V to 18V (20V maximum) and provides a  
regulated output voltage at up to 8A of output current. The  
internal synchronous power switch increases efficiency  
and eliminates the need for an external Schottky diode. In  
normal operation, the top MOSFET is turned on for a fixed  
interval determined by a one-shot timer OST. When the  
top MOSFET is turned off, the bottom MOSFET is turned  
Foldback current limiting is provided if the output is  
shorted to ground. As V drops, the buffered current  
FB  
threshold voltage I  
is pulled down by clamp Q3 to  
THB  
a 1V level set by Q4 and Q6. This reduces the inductor  
valley current level to one sixth of its maximum value as  
on until the current comparator I  
trips, restarting the  
V
FB  
approaches 0V.  
CMP  
one-shottimerandinitiatingthenextcycle.Inductorcurrent  
is determined by sensing the voltage between the PGND  
and SW pins using the bottom MOSFET on-resistance.  
Pulling the RUN/SS pin low forces the controller into its  
shutdown state, turning off both M1 and M2. Releasing  
the pin allows an internal 1.2μA current source to charge  
The voltage on the I pin sets the comparator threshold  
TH  
up an external soft-start capacitor C . When this voltage  
SS  
corresponding to inductor valley current. The error am-  
reaches1.5V,thecontrollerturnsonandbeginsswitching,  
plifier EA adjusts this voltage by comparing the feedback  
but with the I voltage clamped at approximately 0.6V  
TH  
signal V from the output voltage with an internal 0.6V  
FB  
below the RUN/SS voltage. As C continues to charge,  
SS  
reference. If the load current increases, it causes a drop  
the soft-start current limit is removed.  
in the feedback voltage relative to the reference. The I  
TH  
voltage then rises until the average inductor current again  
INTV /EXTV Power  
CC  
CC  
matches the load current.  
PowerforthetopandbottomMOSFETdriversandmostof  
theinternalcontrollercircuitryisderivedfromtheINTV  
At light load, the inductor current can drop to zero and  
become negative. This is detected by current reversal  
CC  
pin. The top MOSFET driver is powered from a floating  
bootstrap capacitor C . This capacitor is recharged from  
comparator I  
which then shuts off M2 (see Func-  
REV  
B
tionalDiagram),resultingindiscontinuousoperation.Both  
INTV through an external Schottky diode D when  
CC  
B
switcheswillremainoffwiththeoutputcapacitorsupplying  
the load current until the I voltage rises above the zero  
the top MOSFET is turned off. When the EXTV pin is  
CC  
TH  
grounded, an internal 5V low dropout regulator supplies  
current level (0.8V) to initiate another cycle. Discontinu-  
ous mode operation is disabled by comparator F when  
the FCB pin is brought below 0.6V, forcing continuous  
synchronous operation.  
the INTV power from V . If EXTV rises above 4.7V,  
CC  
IN  
CC  
the internal regulator is turned off, and an internal switch  
connects EXTV to INTV . This allows a high efficiency  
CC  
CC  
sourceconnectedtoEXTV , suchasanexternal5Vsup-  
CC  
ply or a secondary output from the converter, to provide  
Theoperatingfrequencyisdeterminedimplicitlybythetop  
MOSFET on-time and the duty cycle required to maintain  
regulation.Theone-shottimergeneratesanon-timethatis  
proportionaltotheidealdutycycle,thusholdingfrequency  
the INTV power. Voltages up to 7V can be applied to  
CC  
EXTV for additional gate drive. If the input voltage is  
CC  
low and INTV drops below 3.5V, undervoltage lockout  
CC  
circuitry prevents the power switches from turning on.  
approximately constant with changes in V . The nominal  
IN  
frequency can be adjusted with an external resistor R .  
ON  
3608fa  
10  
LTC3608  
APPLICATIONS INFORMATION  
The basic LTC3608 application circuit is shown on the  
frontpageofthisdatasheet.Externalcomponentselection  
is primarily determined by the maximum load current.  
The LTC3608 uses the on-resistance of the synchronous  
powerMOSFETfordeterminingtheinductorcurrent.The  
desiredamountofripplecurrentandoperatingfrequency  
Operating Frequency  
The choice of operating frequency is a tradeoff between  
efficiency and component size. Low frequency operation  
improvesefficiencybyreducingMOSFETswitchinglosses  
but requires larger inductance and/or capacitance in order  
to maintain low output ripple voltage.  
alsodeterminestheinductorvalue.Finally,C isselected  
IN  
The operating frequency of LTC3608 applications is de-  
termined implicitly by the one-shot timer that controls the  
for its ability to handle the large RMS current into the  
converterandC ischosenwithlowenoughESRtomeet  
OUT  
on-time t of the top MOSFET switch. The on-time is set  
the output voltage ripple and transient specification.  
ON  
by the current into the I pin and the voltage at the V  
ON  
ON  
V
and PGOOD  
pin according to:  
ON  
V
The LTC3608 has an open-drain PGOOD output that  
indicates when the output voltage is within 10% of the  
tON  
=
VON (10pF)  
IION  
regulation point. The LTC3608 also has a V pin that  
ON  
Tying a resistor R from V to the I pin yields an  
allows the on-time to be adjusted. Tying the V pin high  
ON  
IN  
ON  
ON  
on-time inversely proportional to V . The current out of  
resultsinlowervaluesforR whichisusefulinhighV  
IN  
ON  
OUT  
the I pin is  
applications. The V pin also provides a means to adjust  
ON  
ON  
the on-time to maintain constant frequency operation in  
V
IN  
ION  
=
applications where V  
changes and to correct minor  
OUT  
RON  
frequency shifts with changes in load current.  
For a step-down converter, this results in approximately  
constant frequency operation as the input supply varies:  
V
Pin and I Adjust  
RNG  
LIMIT  
The V  
pin is used to adjust the maximum inductor  
RNG  
VOUT  
VVON RON(10pF)  
f =  
[HZ ]  
valley current, which in turn determines the maximum  
average output current that the LTC3608 can deliver. The  
maximum output current is given by:  
Toholdfrequencyconstantduringoutputvoltagechanges,  
tie the V pin to V or to a resistive divider from V  
I
= I  
+ 1/2 ΔI ,  
ON  
OUT  
OUT  
OUT(MAX)  
VALLEY(MAX) L  
when V  
> 2.4V. The V pin has internal clamps that  
OUT  
ON  
The I  
CurrentLimitvsV  
Characteristics.  
is shown in the figure “Maximum Valley  
RNG  
VALLEY(MAX)  
limit its input to the one-shot timer. If the pin is tied below  
0.7V,theinputtotheone-shotisclampedat0.7V.Similarly,  
if the pin is tied above 2.4V, the input is clamped at 2.4V.  
VoltageintheTypicalPerformance  
An external resistor divider from INTV can be used to  
set the voltage on the V  
In high V  
applications, tying V to INTV so that the  
CC  
OUT  
ON CC  
pin from 0.5V to 1V, or it can  
comparator input is 2.4V results in a lower value for R .  
RNG  
ON  
be simply tied to ground force a default value equivalent  
to 0.7V. When setting current limit ensure that the junc-  
tion temperature does not exceed the maximum rating of  
Figures 1a and 1b show how R relates to switching  
frequency for several common output voltages.  
ON  
125°C. Do not float the V  
pin.  
RNG  
3608fa  
11  
LTC3608  
APPLICATIONS INFORMATION  
1000  
loadcurrentincreases.Bylengtheningtheon-timeslightly  
as current increases, constant frequency operation can be  
maintained. This is accomplished with a resistive divider  
from the I pin to the V pin and V . The values  
TH  
ON  
OUT  
V
OUT  
= 3.3V  
required will depend on the parasitic resistances in the  
V
= 1.5V  
V
OUT  
= 2.5V  
OUT  
specific application. A good starting point is to feed about  
25% of the voltage change at the I pin to the V pin  
TH  
ON  
as shown in Figure 2a. Place capacitance on the V pin  
ON  
to filter out the I variations at the switching frequency.  
TH  
The resistor load on I reduces the DC gain of the error  
TH  
100  
100  
1000  
(kΩ)  
10000  
amp and degrades load regulation, which can be avoided  
R
ON  
3608 F01a  
by using the PNP emitter follower of Figure 2b.  
Figure 1aꢁ Switching Frequency vs RON (VON = 0V)  
Minimum Off-time and Dropout Operation  
The minimum off-time t  
is the smallest amount of  
OFF(MIN)  
1000  
time that the LTC3608 is capable of turning on the bottom  
MOSFET, tripping the current comparator and turning the  
MOSFET back off. This time is generally about 320ns.  
The minimum off-time limit imposes a maximum duty  
V
= 12V  
OUT  
V
= 5V  
OUT  
cycle of t /(t + t  
). If the maximum duty cycle  
ON ON  
OFF(MIN)  
V
= 3.3V  
is reached, due to a dropping input voltage for example,  
then the output will drop out of regulation. The minimum  
input voltage to avoid dropout is:  
OUT  
t
ON + tOFF(MIN)  
100  
VIN(MIN) = VOUT  
100  
1000  
(kΩ)  
10000  
tON  
R
ON  
3608 F01b  
A plot of Maximum Duty Cycle vs Frequency is shown in  
Figure 3.  
Figure 1bꢁ Switching Frequency vs RON (VON = INTVCC  
)
Because the voltage at the I pin is about 0.7V, the cur-  
ON  
Setting the Output Voltage  
rent into this pin is not exactly inversely proportional to  
V , especially in applications with lower input voltages.  
IN  
The LTC3608 develops a 0.6V reference voltage between  
To correct for this error, an additional resistor R  
con-  
ON2  
the feedback pin, V , and the signal ground as shown in  
FB  
nectedfromtheI pintothe5VINTV supplywillfurther  
ON  
CC  
Figure 6. The output voltage is set by a resistive divider  
stabilize the frequency.  
according to the following formula:  
5V  
0.7V  
R2  
R1  
RON2  
=
RON  
VOUT = 0.6V 1+  
Changes in the load current magnitude will also cause  
frequency shift. Parasitic resistance in the MOSFET  
switches and inductor reduce the effective voltage across  
the inductance, resulting in increased duty cycle as the  
Toimprovethefrequencyresponse,afeedforwardcapaci-  
tor C1 may also be used. Great care should be taken to  
route the V line away from noise sources, such as the  
FB  
inductor or the SW line.  
3608fa  
12  
LTC3608  
APPLICATIONS INFORMATION  
R
VON1  
ripple. Highest efficiency operation is obtained at low  
frequency with small ripple current. However, achieving  
this requires a large inductor. There is a tradeoff between  
component size, efficiency and operating frequency.  
30k  
V
V
ON  
OUT  
C
VON  
R
VON2  
100k  
0.01μF  
LTC3608  
TH  
R
C
I
A reasonable starting point is to choose a ripple current  
C
C
that is about 40% of I  
. The largest ripple current  
OUT(MAX)  
occurs at the highest V . To guarantee that ripple current  
IN  
(2a)  
does not exceed a specified maximum, the inductance  
should be chosen according to:  
R
VON1  
3k  
V
V
OUT  
ON  
C
ꢄ ꢁ  
R
VON  
VON2  
10k  
VOUT  
f I  
VOUT  
0.01μF  
10k  
L =  
1ꢇ  
LTC3608  
TH  
ꢆ ꢃ  
INTV  
CC  
V
R
C
ꢅ ꢂ  
L(MAX)  
IN(MAX)  
Q1  
2N5087  
I
C
C
3608 F02  
Once the value for L is known, the type of inductor must  
be selected. High efficiency converters generally cannot  
affordthecorelossfoundinlowcostpowderedironcores.  
A variety of inductors designed for high current, low volt-  
ageapplicationsareavailablefrommanufacturerssuchas  
Sumida, Panasonic, Coiltronics, Coilcraft and Toko.  
(2b)  
Figure 2ꢁ Correcting Frequency Shift with Load Current Changes  
2.0  
C and C  
Selection  
IN  
OUT  
1.5  
The input capacitance C is required to filter the square  
wavecurrentatthedrainofthetopMOSFET.UsealowESR  
capacitor sized to handle the maximum RMS current.  
IN  
DROPOUT  
REGION  
1.0  
0.5  
0
VOUT  
V
VOUT  
IN  
IRMS IOUT(MAX)  
–1  
V
IN  
This formula has a maximum at V = 2V , where  
IN  
OUT  
0
0.25  
0.50  
0.75  
1.0  
I
= I  
/2. This simple worst-case condition is  
RMS  
OUT(MAX)  
DUTY CYCLE (V /V  
)
OUT IN  
3608 F03  
commonly used for design because even significant de-  
viations do not offer much relief. Note that ripple current  
ratings from capacitor manufacturers are often based on  
only 2000 hours of life which makes it advisable to derate  
the capacitor.  
Figure 3ꢁ Maximum Switching Frequency vs Duty Cycle  
Inductor Selection  
Given the desired input and output voltages, the induc-  
tor value and operating frequency determine the ripple  
current:  
The selection of C  
is primarily determined by the  
OUT  
ESR required to minimize voltage ripple and load step  
transients. The output ripple ΔV  
bounded by:  
is approximately  
OUT  
OUT ꢄ  
V
VOUT  
f L  
I =  
1ꢇ  
L
V
IN  
1
VOUT ꢁ ꢀIL ESR+  
Lower ripple current reduces core losses in the inductor,  
ESR losses in the output capacitors and output voltage  
8fC  
OUT ꢆ  
3608fa  
13  
LTC3608  
APPLICATIONS INFORMATION  
Since ΔI increases with input voltage, the output ripple  
Discontinuous Mode Operation and FCB Pin  
L
is highest at maximum input voltage. Typically, once the  
ESR requirement is satisfied, the capacitance is adequate  
for filtering and has the necessary RMS current rating.  
The FCB pin determines whether the bottom MOSFET  
remains on when current reverses in the inductor. Tying  
this pin above its 0.6V threshold enables discontinuous  
operation where the bottom MOSFET turns off when in-  
ductor current reverses. The load current at which current  
reverses and discontinuous operation begins depends on  
the amplitude of the inductor ripple current and will vary  
Multiple capacitors placed in parallel may be needed to  
meet the ESR and RMS current handling requirements.  
Dry tantalum, special polymer, aluminum electrolytic and  
ceramiccapacitorsareallavailableinsurfacemountpack-  
ages. Special polymer capacitors offer very low ESR but  
havelowercapacitancedensitythanothertypes.Tantalum  
capacitors have the highest capacitance density but it is  
important to only use types that have been surge tested  
foruseinswitchingpowersupplies.Aluminumelectrolytic  
capacitors have significantly higher ESR, but can be used  
incost-sensitiveapplicationsprovidingthatconsideration  
is given to ripple current ratings and long term reliability.  
Ceramic capacitors have excellent low ESR characteris-  
tics but can have a high voltage coefficient and audible  
piezoelectriceffects.ThehighQofceramiccapacitorswith  
traceinductancecanalsoleadtosignificantringing. When  
used as input capacitors, care must be taken to ensure  
that ringing from inrush currents and switching does not  
pose an overvoltage hazard to the power switches and  
controller. Todampeninputvoltagetransients, addasmall  
Fto5FaluminumelectrolyticcapacitorwithanESRin  
the range of 0.5Ω to 2Ω. High performance through-hole  
capacitors may also be used, but an additional ceramic  
capacitor in parallel is recommended to reduce the effect  
of their lead inductance.  
with changes in V . Tying the FCB pin below the 0.6V  
IN  
threshold forces continuous synchronous operation, al-  
lowing current to reverse at light loads and maintaining  
high frequency operation.  
In addition to providing a logic input to force continuous  
operation, the FCB pin provides a means to maintain a  
flyback winding output when the primary is operating  
in discontinuous mode. The secondary output V  
is  
OUT2  
normally set as shown in Figure 4 by the turns ratio N  
of the transformer. However, if the controller goes into  
discontinuous mode and halts switching due to a light  
primary load current, then V  
will droop. An external  
OUT2  
resistor divider from V  
to the FCB pin sets a minimum  
OUT2  
voltage V  
below which continuous operation is  
has risen above its minimum:  
OUT2(MIN)  
forced until V  
OUT2  
R4  
R3  
VOUT2(MIN) = 0.6V 1+  
Fault Conditions: Current Limit and Foldback  
The LTC3608 has a current mode controller which inher-  
ently limits the cycle-by-cycle inductor current not only  
in steady state operation but also in transient. To further  
limit current in the event of a short circuit to ground, the  
LTC3608 includes foldback current limiting. If the output  
fallsbymorethan25%,thenthemaximumsensevoltageis  
progressively lowered to about one sixth of its full value.  
Top MOSFET Driver Supply (C , D )  
B
B
AnexternalbootstrapcapacitorC connectedtotheBOOST  
B
pinsuppliesthegatedrivevoltageforthetopsideMOSFET.  
This capacitor is charged through diode D from INTV  
B
CC  
when the switch node is low. When the top MOSFET turns  
on, the switch node rises to V and the BOOST pin rises  
IN  
to approximately V + INTV . The boost capacitor needs  
IN  
CC  
INTV Regulator and EXTV Connection  
CC  
CC  
to store about 100 times the gate charge required by the  
top MOSFET. In most applications an 0.1μF to 0.47μF, X5R  
or X7R dielectric capacitor is adequate.  
An internal P-channel low dropout regulator produces the  
5V supply that powers the drivers and internal circuitry  
3608fa  
14  
LTC3608  
APPLICATIONS INFORMATION  
SW  
GND  
IN4148  
40 39 38 37 36 35 34 33 32 31 30 29 28 27  
V
OUT2  
+
C
SEC  
1μF  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
SW  
SW  
SW  
SW  
SW  
SW  
SW  
SGND  
NC  
V
OUT1  
T1  
+
1:N  
C
OUT  
NC  
V
FB  
I
ON  
NC  
SGND  
FCB  
R4  
OPTIONAL EXTV  
LTC3608  
V
IN  
CC  
PV  
PV  
PV  
PV  
PV  
IN  
CONNECTION  
5V < V < 7V  
+
OUT2  
I
TH  
C
IN  
IN  
IN  
IN  
IN  
R3  
V
RNG  
PGOOD  
SGND  
= PGND  
= SGND  
3608 F04  
1
2
3
4
5
6
7
8
9 10 11 12 13 14  
SGND  
SW  
Figure 4ꢁ Secondary Output Loop and EXTVCC Connection  
withintheLTC3608.TheINTV pincansupplyupto50mA  
3. EXTV connected to an output derived boost network.  
CC  
CC  
RMS and must be bypassed to ground with a minimum of  
4.7μF tantalum or ceramic capacitor. Good bypassing is  
necessary to supply the high transient currents required  
by the MOSFET gate drivers.  
The low voltage output can be boosted using a charge  
pump or flyback winding to greater than 4.7V. The  
system will start-up using the internal linear regulator  
until the boosted output supply is available.  
The EXTV pin can be used to provide MOSFET gate drive  
CC  
Soft-Start and Latchoff with the RUN/SS Pin  
and control power from the output or another external  
The RUN/SS pin provides a means to shut down the  
LTC3608 as well as a timer for soft-start and overcurrent  
latchoff. Pulling the RUN/SS pin below 0.8V puts the  
source during normal operation. Whenever the EXTV  
CC  
pin is above 4.7V the internal 5V regulator is shut off and  
an internal 50mA P-channel switch connects the EXTV  
pin to INTV . INTV power is supplied from EXTV  
CC  
CC  
LTC3608 into a low quiescent current shutdown (I <  
Q
CC  
CC  
30μA). Releasing the pin allows an internal 1.2μA current  
until this pin drops below 4.5V. Do not apply more than  
7V to the EXTV pin and ensure that EXTV ≤ V . The  
source to charge up the external timing capacitor C . If  
SS  
CC  
CC  
IN  
RUN/SS has been pulled all the way to ground, there is a  
following list summarizes the possible connections for  
EXTV :  
delay before starting of about:  
CC  
1.5V  
1.2μA  
1. EXTV grounded. INTV is always powered from the  
CC  
CC  
tDELAY  
=
C = 1.3s/μF C  
SS SS  
(
)
internal 5V regulator.  
2. EXTV connectedtoanexternalsupply.Ahighefficiency  
CC  
supply compatible with the MOSFET gate drive require-  
ments (typically 5V) can improve overall efficiency.  
3608fa  
15  
LTC3608  
APPLICATIONS INFORMATION  
INTV  
When the voltage on RUN/SS reaches 1.5V, the LTC3608  
CC  
R
begins operating with a clamp on I of approximately  
TH  
*
SS  
V
IN  
0.9V. As the RUN/SS voltage rises to 3V, the clamp on I  
TH  
RUN/SS  
3.3V OR 5V  
RUN/SS  
*
D2*  
is raised until its full 2.4V range is available. This takes an  
additional 1.3s/μF, during which the load current is folded  
back until the output reaches 75% of its final value.  
R
SS  
D1  
2N7002  
C
SS  
C
SS  
3608 F05  
After the controller has been started and given adequate  
*OPTIONAL TO OVERRIDE  
OVERCURRENT LATCHOFF  
time to charge up the output capacitor, C is used as a  
SS  
short-circuittimer.AftertheRUN/SSpinchargesabove4V,  
if the output voltage falls below 75% of its regulated value,  
then a short-circuit fault is assumed. A 1.8μA current then  
(5a)  
(5b)  
Figure 5ꢁ RUN/SS Pin Interfacing with Latchoff Defeated  
beginsdischargingC . Ifthefaultconditionpersistsuntil  
SS  
Efficiency Considerations  
the RUN/SS pin drops to 3.5V, then the controller turns  
off both power MOSFETs, shutting down the converter  
permanently. The RUN/SS pin must be actively pulled  
down to ground in order to restart operation.  
The percent efficiency of a switching regulator is equal to  
the output power divided by the input power times 100%.  
It is often useful to analyze individual losses to determine  
what is limiting the efficiency and which change would  
produce the most improvement. Although all dissipative  
elements in the circuit produce losses, four main sources  
account for most of the losses in LTC3608 circuits:  
Theovercurrentprotectiontimerrequiresthatthesoft-start  
timing capacitor C be made large enough to guarantee  
SS  
that the output is in regulation by the time C has reached  
SS  
the 4V threshold. In general, this will depend upon the  
size of the output capacitance, output voltage and load  
current characteristic. A minimum soft-start capacitor  
can be estimated from:  
2
1. DC I R losses. These arise from the resistance of the  
internal resistance of the MOSFETs, inductor and PC  
board traces and cause the efficiency to drop at high  
outputcurrents.Incontinuousmodetheaverageoutput  
currentowsthroughL,butischoppedbetweenthetop  
–4  
C
SS  
> C  
V
R
(10 [F/V s])  
OUT OUT SENSE  
2
andbottomMOSFETs. TheDCI RlossforoneMOSFET  
can simply be determined by [R  
Generally 0.1μF is more than sufficient.  
+ R ] • I .  
DS(ON)  
L O  
Overcurrent latchoff operation is not always needed or de-  
sired. Loadcurrentisalreadylimitedduringashort-circuit  
bythecurrentfoldbackcircuitryandlatchoffoperationcan  
prove annoying during troubleshooting. The feature can  
be overridden by adding a pull-up current greater than  
5μA to the RUN/SS pin. The additional current prevents  
2. Transition loss. This loss arises from the brief amount  
of time the top MOSFET spends in the saturated re-  
gion during switch node transitions. It depends upon  
the input voltage, load current, driver strength and  
MOSFET capacitance, among other factors. The loss  
is significant at input voltages above 20V and can be  
estimated from:  
the discharge of C during a fault and also shortens the  
SS  
soft-start period. Using a resistor to V as shown in Fig-  
IN  
–1  
2
ure 5a is simple, but slightly increases shutdown current.  
Transition Loss (1.7A ) V  
I
C
f
IN OUT RSS  
Connecting a resistor to INTV as shown in Figure 5b  
CC  
3. INTV current. This is the sum of the MOSFET driver  
CC  
eliminates the additional shutdown current, but requires  
and control currents. This loss can be reduced by sup-  
a diode to isolate C . Any pull-up network must be able  
SS  
plying INTV current through the EXTV pin from a  
CC  
CC  
to pull RUN/SS above the 4.2V maximum threshold of the  
latchoffcircuitandovercomethe4μAmaximumdischarge  
current.  
high efficiency source, such as an output derived boost  
network or alternate supply if available.  
3608fa  
16  
LTC3608  
APPLICATIONS INFORMATION  
4. C loss. The input capacitor has the difficult job of  
Selecting a standard value of 1.2μH results in a maximum  
ripple current of:  
IN  
filtering the large RMS input current to the regulator. It  
2
must have a very low ESR to minimize the AC I R loss  
2.5V  
550kHz 1.2μH  
2.5V  
12V  
IL =  
1–  
= 3A  
and sufficient capacitance to prevent the RMS current  
from causing additional upstream losses in fuses or  
batteries.  
(
)(  
)
Next, set up V  
voltage and check the I  
. Tying V  
RNG  
LIMIT RNG  
to 0.5V will set the typical current limit to 11A, and tying  
Other losses, including C  
ESR loss, Schottky diode D1  
OUT  
V
to GND will result in a typical current around 16A.  
RNG  
conduction loss during dead time and inductor core loss  
generally account for less than 2% additional loss.  
C
IN  
is chosen for an RMS current rating of about 5A at  
85°C. The output capacitors are chosen for a low ESR  
of 0.002Ω to minimize output voltage changes due to  
inductor ripple current and load steps. The ripple voltage  
will be only:  
Whenmakingadjustmentstoimproveefficiency, theinput  
current is the best indicator of changes in efficiency. If you  
make a change and the input current decreases, then the  
efficiency has increased. If there is no change in input  
current, then there is no change in efficiency.  
ΔV  
= ΔI  
(ESR)  
L(MAX)  
OUT(RIPPLE)  
= (3A) (0.002Ω) = 6mV  
Checking Transient Response  
However, a 0A to 8A load step will cause an output change  
of up to:  
The regulator loop response can be checked by looking  
at the load transient response. Switching regulators take  
several cycles to respond to a step in load current. When  
ΔV  
= ΔI  
(ESR) = (8A) (0.002Ω) = 16mV  
LOAD  
OUT(STEP)  
An optional 22μF ceramic output capacitor is included  
to minimize the effect of ESL in the output ripple. The  
complete circuit is shown in Figure 6.  
a load step occurs, V  
immediately shifts by an amount  
OUT  
equal to ΔI  
(ESR), where ESR is the effective series  
LOAD  
resistance of C . ΔI  
also begins to charge or dis-  
OUT  
LOAD  
chargeC generatingafeedbackerrorsignalusedbythe  
OUT  
PC Board Layout Checklist  
regulator to return V  
this recovery time, V  
to its steady-state value. During  
can be monitored for overshoot  
OUT  
OUT  
When laying out a PC board follow one of the two sug-  
gested approaches. The simple PC board layout requires  
a dedicated ground plane layer. Also, for higher currents, a  
multilayerboardisrecommendedtohelpwithheatsinking  
of power components.  
or ringing that would indicate a stability problem. The I  
TH  
pin external components shown in Figure 6 will provide  
adequate compensation for most applications. For a  
detailed explanation of switching control loop theory see  
Application Note 76.  
• The ground plane layer should not have any traces and  
it should be as close as possible to the layer with the  
LTC3608.  
Design Example  
As a design example, take a supply with the following  
• Place C and C  
all in one compact area, close to  
IN  
OUT  
specifications: V = 5V to 20V (12V nominal), V  
=
IN  
OUT  
the LTC3608. It may help to have some components  
2.5V 5%, I  
= 8A, f = 550kHz. First, calculate the tim-  
OUT  
on the bottom side of the board.  
ing resistor with V = V  
:
ON  
OUT  
• Keep small-signal components close to the LTC3608.  
2.5V  
RON  
=
187k  
550kHz 10pF (2.4V)  
)(  
(
)
Ground connections (including LTC3608 SGND and  
PGND) should be made through immediate vias to  
the ground plane. Use several larger vias for power  
components.  
and choose the inductor for about 40% ripple current at  
the maximum V :  
IN  
2.5V  
550kHz 0.4 8A  
)( )(  
2.5V  
20V  
L =  
1ꢀ  
=1.24µH  
(
)
3608fa  
17  
LTC3608  
APPLICATIONS INFORMATION  
INTV  
CC  
EXTV  
CC  
C4  
0.01μF  
V
IN  
C
R
F1  
1Ω  
F
C
4.7μF  
6.3V  
VCC  
0.47μF  
25V  
SW  
PGND  
SGND  
40 39 38 37 36 35 34 33 32 31 30 29 28 27  
V
OUT  
41  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
(OPTIONAL)  
C2  
SW  
SW  
SW  
SW  
SW  
SW  
SW  
PV  
SGND  
2.5V AT  
8A  
R1  
9.5k  
1%  
R2  
30.1k  
1%  
L1  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
NC  
NC  
C1  
+
C5  
22μF  
6.3V  
C
OUT1  
0.8μH  
100μF  
R
187k  
1%  
ON  
(OPTIONAL)  
×2  
V
OUT  
V
FB  
(OPTIONAL)  
I
V
ON  
GND  
IN  
C
ON  
0.01μF  
NC  
SGND  
FCB  
(OPTIONAL)  
LTC3608  
C
V
C1  
1500pF  
IN  
V
IN  
5V TO 18V  
R5  
IN  
GND  
11.3k  
PV  
PV  
PV  
PV  
I
TH  
IN  
+
C
C6  
10μF  
35V  
IN  
V
IN  
IN  
IN  
RNG  
10μF  
35V  
3×  
PGOOD  
SGND  
R3  
0Ω  
(OPTIONAL)  
R
PG1  
100k  
C3  
C
C2  
100pF  
INTV  
CC  
(OPTIONAL)  
1
2
3
4
5
6
7
B
8
9
10 11 12 13 14  
SGND  
R
VON  
0Ω  
SW  
C
C
: TAIYO YUDEN GMK325BJ106MM-B  
: TDKC2012X5ROJ226M  
IN  
OUT  
V
OUT  
INTV  
CC  
L1: CDEP85NP-R80MC-50  
R
C
SS1  
510k  
B1  
C5: MURATA GRM31CR60J226KE19  
D
0.22μF  
CMDSH-3  
0.1μF  
V
IN  
KEEP POWER GROUND AND SIGNAL GROUND SEPARATE.  
CONNECT AT ONE POINT.  
SW  
C
SS  
0.1μF  
3608 F06  
(OPTIONAL)  
= PGND  
= SGND  
Figure .ꢁ Design Example: 5V to 18V Input to 2ꢁ5V/8A at 550kHz  
• Useacompactplanefortheswitchnode(SW)toimprove  
cooling of the MOSFETs and to keep EMI down.  
• Segregate the signal and power grounds. All small  
signal components should return to the SGND pin at  
one point, which is then tied to the PGND pin.  
• Use planes for V and V  
to maintain good voltage  
OUT  
IN  
filtering and to keep power losses low.  
Connect the input capacitor(s) C close to the IC. This  
IN  
capacitor carries the MOSFET AC current.  
• Flood all unused areas on all layers with copper. Flood-  
ing with copper reduces the temperature rise of power  
components. Connect these copper areas to any DC  
• Keep the high dV/dT SW, BOOST and TG nodes away  
from sensitive small-signal nodes.  
net (V , V , GND or to any other DC rail in your  
IN OUT  
• Connect the INTV decoupling capacitor C  
closely  
CC  
VCC  
system).  
to the INTV and PGND pins.  
CC  
When laying out a printed circuit board without a ground  
plane, use the following checklist to ensure proper opera-  
tion of the controller. These items are also illustrated in  
Figure 7.  
• Connect the top driver boost capacitor C closely to  
B
the BOOST and SW pins.  
• Connect the V pin decoupling capacitor C closely to  
IN  
F
the V and PGND pins.  
IN  
3608fa  
18  
LTC3608  
APPLICATIONS INFORMATION  
C
VCC  
SW  
40 39 38 37 36 35 34 33 32 31 30 29 28 27  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
SW  
SW  
SW  
SW  
SW  
SW  
SW  
PV  
SGND  
NC  
C
OUT  
R1  
R2  
NC  
V
FB  
R
ON  
I
ON  
V
OUT  
NC  
SGND  
FCB  
LTC3608  
C
C1  
IN  
R
C
PV  
PV  
PV  
PV  
I
TH  
IN  
V
RNG  
IN  
IN  
IN  
C
IN  
PGOOD  
SGND  
C
C2  
1
2
3
4
5
6
7
8
9 10 11 12 13 14  
V
IN  
C
B
C
SS  
D
B
3608 F07  
Figure 7ꢁ LTC3.08 Layout Diagram  
3608fa  
19  
LTC3608  
TYPICAL APPLICATIONS  
3ꢁ.V Input to 1ꢁ5V/8A at 750kHz  
V
IN2  
= 5V  
INTV  
CC  
EXTV  
CC  
C4  
0.01μF  
C
F
0.47μF  
25V  
C
4.7μF  
6.3V  
VCC  
SW  
PGND  
SGND  
40 39 38 37 36 35 34 33 32 31 30 29 28 27  
V
OUT  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
(OPTIONAL)  
C2  
SW  
SW  
SW  
SW  
SW  
SW  
SW  
PV  
SGND  
NC  
1.5V AT  
8A  
R1  
20.5k  
1%  
R2  
30.1k  
1%  
L1  
C1  
(OPTIONAL)  
+
+
C5  
22μF  
6.3V  
C
OUT1  
0.2μH  
100μF  
NC  
R
113k  
1%  
ON  
×2  
V
OUT  
V
I
FB  
(OPTIONAL)  
V
ON  
GND  
IN  
C
ON  
0.01μF  
NC  
(OPTIONAL)  
LTC3608  
SGND  
FCB  
C
V
C1  
3300pF  
IN  
V
IN  
3.6V  
R5  
IN  
GND  
6.19k  
PV  
PV  
PV  
PV  
I
TH  
IN  
C
C6  
10μF  
10V  
IN  
39.2k  
V
IN  
IN  
IN  
RNG  
10μF  
INTV  
CC  
3×  
PGOOD  
SGND  
11k  
(OPTIONAL)  
R
C
PG1  
C2  
100pF  
100k  
INTV  
CC  
1
2
3
4
5
6
7
8
9 10 11 12 13 14  
SGND  
V
OUT  
C
C
: TAIYO YUDEN TMK432BJ106MM  
: TDKC4532X5ROJ107M  
IN  
OUT1  
C
B1  
0.22μF  
V
OUT  
L1: CDEP85NP-R20MC-50  
INTV  
CC  
R
SS1  
510k  
0.1μF  
C5: TAIYO YUDEN JMK316BJ226ML-T  
V
IN  
KEEP POWER GROUND AND SIGNAL GROUND SEPARATE.  
CONNECT AT ONE POINT.  
C
SS  
0.1μF  
3608 TA02  
(OPTIONAL)  
= PGND  
= SGND  
Transient Response  
Efficiency Curve  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
DCM  
CCM  
I
L
5A/DIV  
V
OUT  
200mV/DIV  
3608 TA02a  
200mV  
V
= 3.6V  
IN  
LOAD STEP 1A-8A  
FREQ = 750kHz  
V
IN  
V
OUT  
= 3.6V  
= 1.5V  
100  
1000  
1000  
10000  
FCB = 0V  
LOAD CURRENT (A)  
3608 TA02b  
3608fa  
20  
LTC3608  
TYPICAL APPLICATIONS  
5V to 18V Input to 1ꢁ2V/8A at 550kHz  
R
F1  
1Ω  
INTV  
CC  
V
IN2  
EXTV  
CC  
C4  
0.01μF  
C
F
0.47μF  
25V  
C
4.7μF  
6.3V  
VCC  
SW  
PGND  
SGND  
40 39 38 37 36 35 34 33 32 31 30 29 28 27  
V
OUT  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
(OPTIONAL)  
R2  
SW  
SW  
SW  
SW  
SW  
SW  
SW  
PV  
SGND  
NC  
1.2V AT  
8A  
R1  
30k  
1%  
L1  
C1  
(OPTIONAL)  
30.1k  
1%  
C2  
+
+
C5  
22μF  
6.3V  
C
OUT1  
0.5μH  
100μF  
NC  
R
187k  
1%  
ON  
×2  
V
OUT  
V
I
FB  
(OPTIONAL)  
V
ON  
GND  
IN  
C
ON  
0.01μF  
NC  
(OPTIONAL)  
LTC3608  
SGND  
FCB  
C
V
C1  
IN  
V
IN  
5V TO 18V  
R5  
1500pF  
IN  
GND  
7.68k  
PV  
PV  
PV  
PV  
I
TH  
IN  
C
C6  
10μF  
35V  
IN  
V
IN  
IN  
IN  
RNG  
10μF  
25V  
3×  
PGOOD  
SGND  
(OPTIONAL)  
R
C
PG1  
100k  
C2  
100pF  
INTV  
CC  
1
2
3
4
5
6
7
8
9 10 11 12 13 14  
SGND  
V
OUT  
R
VON  
C5: TAIYO YUDEN JMK316BJ226ML-T  
C
B1  
0.22μF  
V
C
C
: TAIYO YUDEN TMK432BJ106MM  
: TDKC4532X5R107M  
OUT  
IN  
OUT1  
INTV  
CC  
R
SS1  
510k  
0.1μF (OPTIONAL)  
C
VON  
L1: CDEP85NP-R50MC-125  
D
B
V
CMDSH-3  
IN  
KEEP POWER GROUND AND SIGNAL GROUND SEPARATE.  
CONNECT AT ONE POINT.  
C
SS  
0.1μF  
3608 TA03  
(OPTIONAL)  
= PGND  
= SGND  
Transient Response  
Efficiency vs Load Current  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
= 12V  
IN  
FREQ = 550kHz  
I
L
5A/DIV  
V
OUT  
200mV/DIV  
DCM  
OCM  
3608 TA03a  
200mV  
LOAD STEP 1A-8A  
V
IN  
V
OUT  
= 12V  
100  
1000  
1000  
10000  
= 1.2V  
FCB = 0V  
LOAD CURRENT (A)  
3608 TA03b  
3608fa  
21  
LTC3608  
TYPICAL APPLICATIONS  
5V to 18V Input to 1ꢁ8V/8A All Ceramic 1MHz  
R
F1  
1Ω  
INTV  
CC  
V
IN  
EXTV  
CC  
C4  
0.01μF  
C
0.1μF  
25V  
F
C
4.7μF  
6.3V  
VCC  
SW  
PGND  
SGND  
40 39 38 37 36 35 34 33 32 31 30 29 28 27  
V
OUT  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
(OPTIONAL)  
C2  
SW  
SW  
SW  
SW  
SW  
SW  
SW  
PV  
SGND  
NC  
1.8V AT  
8A  
R1  
10k  
1%  
R2  
30.1k  
1%  
L1  
C1  
(OPTIONAL)  
+
C5  
22μF  
6.3V  
C
OUT1  
0.47μH  
100μF  
NC  
R
102k  
1%  
ON  
×2  
V
OUT  
V
I
FB  
(OPTIONAL)  
V
ON  
GND  
IN  
C
ON  
0.01μF  
NC  
(OPTIONAL)  
LTC3608  
SGND  
FCB  
C
V
C1  
1500pF  
IN  
V
IN  
5V TO 18V  
R5  
IN  
5.76k  
PV  
PV  
PV  
PV  
I
TH  
IN  
C
IN  
V
IN  
IN  
IN  
RNG  
10μF  
25V  
3×  
PGOOD  
SGND  
R
C
PG1  
C2  
100pF  
100k  
INTV  
CC  
1
2
3
4
5
6
7
8
9 10 11 12 13 14  
SGND  
V
OUT  
C
: TDKC3225XROJ107M  
OUT  
C
B1  
0.22μF  
V
L1: VISHAY IHLP2525-R47  
C5: TAIYO YUDEN JMK316BJ226ML-T  
OUT  
INTV  
CC  
R
SS1  
0.1μF  
510k  
D
B
KEEP POWER GROUND AND SIGNAL GROUND SEPARATE.  
CONNECT AT ONE POINT.  
V
CMDSH-3  
IN  
C
SS  
0.1μF  
3608 TA04  
(OPTIONAL)  
= PGND  
= SGND  
Transient Response  
Efficiency vs Load Current  
90  
80  
70  
60  
50  
40  
30  
DCM  
CCM  
I
L
5A/DIV  
V
OUT  
200mV/DIV  
3608 TA04a  
200mV  
LOAD STEP 1A-5A  
V
IN  
= 12V  
V
IN  
V
OUT  
= 12V  
100  
1000  
10000  
= 1.8V  
FCB = 0V  
LOAD CURRENT (mA)  
3608 TA04b  
3608fa  
22  
LTC3608  
PACKAGE DESCRIPTION  
WKG Package  
52-Lead QFN Multipad (7mm × 8mm)  
(Reference LTC DWG # 05-08-1768 Rev Ø)  
SEATING PLANE  
0.00 – 0.05  
A
7.00  
BSC  
2.625 REF  
2.90 REF  
0.50 BSC  
PIN 1 ID  
41  
52  
B
PAD 1  
CORNER  
4
40  
1
2.025  
± 0.10  
3.20 ± 0.10  
3.40 REF  
3.40 REF  
3.90 ± 0.10  
7
2.925 ± 0.10  
8.00  
BSC  
33  
32  
8
1.00 REF  
9
10  
NX b  
4.275 ± 0.10  
2.25 ± 0.10  
27  
14  
0.580 ± 0.10  
0.40 ± 0.10  
26  
19  
15  
aaa C 2x  
TOP VIEW  
0.90 ± 0.10  
1.35  
± 0.10  
1.775  
REF  
0.25 ± 0.05  
NX  
0.08 C  
9
// ccc C  
BOTTOM VIEW  
(BOTTOM METALLIZATION DETAILS)  
8
MLP52 QFN REV Ø 0807  
7.50 ± 0.05  
2.90 REF  
0.50 BSC  
2.625 REF  
NOTE:  
1. DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5M-1994  
2. ALL DIMENSIONS ARE IN MILLIMETERS, ANGLES ARE IN DEGREES (°)  
3. N IS THE TOTAL NUMBER OF TERMINALS  
PIN 1  
4
THE LOCATION OF THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING  
CONVENTION CONFORMS TO JEDEC PUBLICATION 95 SPP-002  
3.20 ± 0.10  
3.40 REF  
2.025  
± 0.10  
3.40 REF  
5. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY  
6. NJR REFER TO NON JEDEC REGISTERED  
2.925 ± 0.10  
3.90 ± 0.10  
7
DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED  
BETWEEN 0.20mm AND 0.30mm FROM THE TERMINAL TIP. IF THE TERMINAL  
HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE  
DIMENSION b SHOULD NOT BE MEASURED IN THAT RADIUS AREA.  
1.00 REF  
8.50 ± 0.05  
8
9
COPLANARITY APPLIES TO THE TERMINALS AND ALL OTHER SURFACE  
METALLIZATION  
DRAWING SHOWN ARE FOR ILLUSTRATION ONLY  
4.275 ± 0.10  
2.25 ± 0.10  
0.40 ± 0.10  
SYMBOL TOLERANCE  
PACKAGE  
OUTLINE  
aaa  
bbb  
ccc  
0.15  
0.10  
0.10  
1.35  
± 0.10  
0.25 ± 0.05  
1.775  
REF  
RECOMMENDED SOLDER PAD LAYOUT  
TOP VIEW  
3608fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTC3608  
TYPICAL APPLICATION  
14V to 18V Input to 12V/5A at 500kHz  
C
VCC  
4.7μF, 6.3V  
EXTV  
CC  
C4  
0.01μF  
V
IN2  
INTV  
CC  
R
C
F
F1  
1Ω  
0.1μF  
25V  
PGND  
SW  
SGND  
40 39 38 37 36 35 34 33 32 31 30 29 28 27  
V
OUT  
41  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
(OPTIONAL)  
C2  
SW  
SW  
SW  
SW  
SW  
SW  
SW  
PV  
SGND  
NC  
12V AT  
5A  
R1  
3.16k  
1%  
R2  
60.4k  
1%  
L1  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
+
C1  
(OPTIONAL)  
C5  
22μF  
25V  
C
OUT1  
4.3μH  
180μF  
16V  
NC  
R
1M  
1%  
ON  
V
OUT  
V
I
FB  
(OPTIONAL)  
V
IN  
ON  
GND  
C
ON  
0.01μF  
NC  
(OPTIONAL)  
LTC3608  
SGND  
FCB  
C
V
C1  
3300pF  
IN  
V
IN  
14V TO 18V  
R5  
IN  
GND  
24.9k  
PV  
PV  
PV  
PV  
I
TH  
IN  
+
C
C6  
10μF  
35V  
IN  
90.9k  
V
IN  
IN  
IN  
RNG  
10μF  
25V  
3×  
INTV  
CC  
PGOOD  
SGND  
10k  
(OPTIONAL)  
C
R
C2  
100pF  
PG1  
100k  
INTV  
CC  
C
C
: TAIYO YUDEN TMK432BJ106MM  
IN  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
SGND  
: SANYO 16SVP180MX  
OUT  
L1: CDEP85NP-4R3MC-88  
C
B1  
0.22μF  
INTV  
CC  
R
SS1  
510k  
KEEP POWER GROUND AND SIGNAL GROUND SEPARATE.  
CONNECT AT ONE POINT.  
(OPTIONAL)  
C
INTV  
VON  
CC  
V
IN  
D
B
C
SS  
CMDSH-3  
= PGND  
(OPTIONAL)  
0.1μF  
RUN/SS  
3608 TA05  
= SGND  
Efficiency Curve  
Transient Response  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
DCM  
I
L
CCM  
5A/DIV  
V
OUT  
200mV/DIV  
3608 TA05a  
200mV  
V
= 18V  
IN  
FREQ = 500kHz  
LOAD STEP 1A-8A  
V
IN  
V
OUT  
= 18V  
= 12V  
FCB = 0V  
100  
1000  
1000 10000  
LOAD CURRENT (A)  
3608 TA05b  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LTC1778  
No R  
Current Mode Synchronous Step-Down Controller  
Up to 97% Efficiency, V : 4V to 36V, 0.8V ≤ V  
≤ (0.9)(V ), I  
Up  
SENSE  
IN  
OUT  
IN OUT  
to 20A  
LTC3414  
4A (I ), 4MHz, Synchronous Step-Down DC/DC Converter  
95% Efficiency, V : 2.25V to 5.5V, V  
= 0.8V, I = 64μA, I  
:
SD  
OUT  
IN  
OUT(MIN)  
Q
<1μA, TSSOP20E Package  
LTC3418  
8A (I ), 4MHz, Synchronous Step-Down DC/DC Converter  
95% Efficiency, V : 2.25V to 5.5V, V  
= 0.8V, Thermally  
OUT  
IN  
OUT(MIN)  
Enhanced 38-Lead QFN Package  
LTC3610  
12A Current Mode Monolithic Synchronous Step-Down  
Converter  
Up to 24V Input (28V Maximum). Current Mode Extremely Fast  
Transient Response  
LTM4600HV  
LTM4601HV  
LTM4603HV  
10A Complete Switch Mode Power Supply  
12A Complete Switch Mode Power Supply  
6A Complete Switch Mode Power Supply  
92% Efficiency, V : 4.5V to 28V, V : 0.6V, True Current Mode  
IN OUT  
Control, Ultrafast Transient Response  
92% Efficiency, V : 4.5V to 28V, V : 0.6V, True Current Mode  
IN  
OUT  
Control, Ultrafast Transient Response  
93% Efficiency, V : 4.5V to 28V, with PLL, Output Tracking and  
IN  
Margining with Ultrafast Transient Response  
3608fa  
LT 0808 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC3608EWKG#PBF

LTC3608 - 18V, 8A Monolithic Synchronous Step-Down DC/DC Converter; Package: QFN; Pins: 52; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3608EWKG#TRPBF

LTC3608 - 18V, 8A Monolithic Synchronous Step-Down DC/DC Converter; Package: QFN; Pins: 52; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3608EWKG-PBF

18V, 8A Monolithic Synchronous Step-Down DC/DC Converter
Linear

LTC3608EWKG-TRPBF

18V, 8A Monolithic Synchronous Step-Down DC/DC Converter
Linear

LTC3608IWKG-PBF

18V, 8A Monolithic Synchronous Step-Down DC/DC Converter
Linear

LTC3608IWKG-TRPBF

18V, 8A Monolithic Synchronous Step-Down DC/DC Converter
Linear

LTC3608WKG

18V, 8A Monolithic Synchronous Step-Down DC/DC Converter
Linear

LTC3609

32V, 6A Monolithic Synchronous Step-Down DC/DC Converter
Linear

LTC3609EWKG#PBF

LTC3609 - 32V, 6A Monolithic Synchronous Step-Down DC/DC Converter; Package: QFN; Pins: 52; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3609EWKG-PBF

32V, 6A Monolithic Synchronous Step-Down DC/DC Converter
Linear

LTC3609EWKG-TRPBF

32V, 6A Monolithic Synchronous Step-Down DC/DC Converter
Linear

LTC3609IWKG-PBF

32V, 6A Monolithic Synchronous Step-Down DC/DC Converter
Linear