LTC3620EDCPBF [Linear]

Ultralow Power 15mA Synchronous Step-Down Switching Regulator; 超低功耗15毫安同步降压型开关稳压器
LTC3620EDCPBF
型号: LTC3620EDCPBF
厂家: Linear    Linear
描述:

Ultralow Power 15mA Synchronous Step-Down Switching Regulator
超低功耗15毫安同步降压型开关稳压器

稳压器 开关
文件: 总16页 (文件大小:305K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3620  
Ultralow Power 15mA  
Synchronous Step-Down  
Switching Regulator  
DESCRIPTION  
FEATURES  
The LTC®3620 is a high efficiency, synchronous buck  
regulator, suitable for very low power, very small footprint  
applications powered by a single Li-Ion battery.  
n
High Efficiency: Up to 95%  
n
Maximum Current Output: 15mA  
n
Externally Programmable Frequency Clamp with  
Internal 50kHz Default Minimizes Audio Noise  
The internal synchronous switches increase efficiency  
and eliminate the need for external Schottky diodes. Low  
output voltages are easily supported by the 0.6V feedback  
reference voltage. The LTC3620-1 option is internally  
programmed to provide a 1.1V output.  
n
18μA I Current  
Q
n
n
n
n
n
n
n
n
n
n
2.9V to 5.5V Input Voltage Range  
Low-Battery Detection  
0.6V Reference Allows Low Output Voltages  
Shutdown Mode Draws <1μA Supply Current  
2.8V Undervoltage Lockout  
TheLTC3620usesauniquevariablefrequencyarchitecture  
to minimize power loss and achieve high efficiency. The  
switchingfrequencyisproportionaltotheloadcurrent,and  
an internal frequency clamp forces a minimum switching  
frequency at light loads to minimize noise in the audio  
range. The user can program the frequency of this clamp  
by applying an external clock to the FMIN/MODE pin.  
Unique Low Noise Control Architecture  
Internal Power MOSFETs  
No Schottky Diodes Required  
Internal Soft-Start  
Tiny 2mm × 2mm 8-Lead DFN Package  
The battery status output, LOBATB, indicates when the  
input voltage drops below 3V. To help prevent damage to  
the battery, an undervoltage lockout (UVLO) circuit shuts  
down the part if the input voltage falls below 2.8V.  
APPLICATIONS  
n
Hearing Aids  
n
Wireless Headsets  
n
Li-Ion Cell Applications  
The LTC3620 is available in a low profile, 2mm × 2mm  
8-lead DFN package.  
n
Button Cell Replacement  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Protected by U.S. Patents including 7528587.  
TYPICAL APPLICATION  
Output Voltage Ripple  
vs Load Current  
High Efficiency Low Power  
Step-Down Converter  
25  
Efficiency vs Load Current  
100  
90  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 1.1V  
OUT  
V
IN  
2.9V TO 5.5V  
FMIN/MODE = 0V  
L = 22μH  
EFFICIENCY  
80  
20  
15  
10  
5
V
IN  
70  
V
= 5.5V  
IN  
22μH  
22pF  
RUN  
LOBATB  
SW  
V
60  
50  
OUT  
1.1V  
LTC3620  
1μF  
CER  
V
= 3.6V  
IN  
V
= 3V  
IN  
FMIN/MODE = 0V  
40  
30  
20  
10  
0
FMIN/MODE V  
GND  
FB  
V
V
V
= 1.1V  
= 1.8V  
= 2.5V  
OUT  
OUT  
OUT  
432k  
523k  
1μF  
CER  
LOSS  
3620 TA01a  
0
0.1  
1
10  
0
5
10  
15  
3620 TA01c  
LOAD CURRENT (mA)  
OUTPUT CURRENT (mA)  
3620 TA01b  
3620f  
1
LTC3620  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Notes 1, 2)  
Input Supply Voltage.................................... –0.3V to 6V  
TOP VIEW  
RUN Voltage ................................. –0.3V to (V + 0.3V)  
IN  
1
2
3
4
8
7
6
5
V
IN  
SW  
GND  
V
FB  
Voltage ................................... –0.3V to (V + 0.3V)  
RUN  
IN  
9
LOBATB Voltage........................................... –0.3V to 6V  
FMIN/MODE  
LOBATB  
V
FB  
FMIN/MODE Voltage ..................... –0.3V to (V + 0.3V)  
NC  
IN  
SW Voltage .................................. –0.3V to (V + 0.3V)  
IN  
DC PACKAGE  
8-LEAD (2mm s 2mm) PLASTIC DFN  
P-channel Switch Source Current (DC)..................50mA  
N-channel Switch Sink Current (DC)......................50mA  
Operating Junction Temperature Range  
T
= 125°C, θ = 88.5°C/W  
JA  
EXPOSED PAD (PIN 9) IS GND, MUST BE SOLDERED TO PCB  
JMAX  
(Notes 2, 4)............................................–40°C to 125°C  
Storage Temperature Range...................–65°C to 150°C  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC3620EDC#PBF  
LTC3620EDC-1#PBF  
TAPE AND REEL  
PART MARKING  
LFJJ  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC3620EDC#TRPBF  
LTC3620EDC-1#TRPBF  
–40°C to 85°C  
–40°C to 85°C  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
LFJK  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
junction temperature range, otherwise specifications are at TA = 25°C. VIN = 3.6V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
V
V
Input Voltage Range  
2.9  
5.5  
V
IN  
Regulated Feedback Voltage (Note 3)  
LTC3620  
0.594  
0.588  
1.089  
1.078  
0.6  
0.6  
1.1  
1.1  
0.606  
0.612  
1.111  
1.122  
V
V
V
V
FB  
l
l
LTC3620  
LTC3620-1  
LTC3620-1  
Reference Voltage Line Regulation  
Output Voltage Load Regulation  
Quiescent Current, No Switching  
Quiescent Current in Shutdown  
Quiescent Current in UVLO Condition  
Peak Inductor Current  
V
= 3V to 5.5V (Note 3)  
0.05  
0.5  
18  
0.15  
%/V  
%
ΔV  
IN  
FB  
V
(Note 3)  
= 0.65V, FMIN/MODE = V  
IN  
LOADREG  
I
I
I
I
f
V
FB  
25  
1
μA  
μA  
μA  
mA  
kHz  
V
Q
RUN = 0V  
RUN = V , V = 2.5V  
0.01  
0.5  
35  
QSD  
QU  
IN IN  
PK  
l
Minimum Switching Frequency (Internal) V = 0.65V, FIN/MODE = 0  
40  
50  
SW  
FB  
V
RUN  
RUN Input Voltage High  
RUN Input Voltage Low  
RUN Leakage Current  
0.8  
0.3  
1
V
I
0.01  
μA  
RUN  
3620f  
2
LTC3620  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
junction temperature range, otherwise specifications are at TA = 25°C. VIN = 3.6V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
FMIN/MODE Input Voltage High  
FMIN/MODE Input Voltage Low  
FMIN/MODE Input Frequency  
FMIN/MODE Pin Leakage Current  
Switch Leakage Current  
0.9  
FMIN  
0.7  
300  
1
V
f
I
I
I
20  
kHz  
μA  
EXT  
0.01  
0.01  
FMIN/MODE  
V
RUN  
= 0V, V = 0V or 5.5V, V = 5.5V  
1
μA  
SW  
FB  
SW  
IN  
V
Pin Current  
LTC3620, V = 0.6V  
0
1.2  
30  
2.0  
nA  
μA  
FB  
FB  
LTC3620-1, V = 1.1V  
FB  
V
V
Undervoltage Lockout (UVLO)  
LOBATB Threshold  
V
V
Decreasing  
Decreasing  
2.7  
2.8  
3.0  
15  
2.9  
V
V
UVLO  
IN  
IN  
2.93  
3.08  
LOBATB  
R
LOBATB Pull-Down On-Resistance  
LOBATB Hysteresis  
Ω
LOBATB  
V
100  
2.0  
1.0  
mV  
Ω
HLOBATB  
R
R
R
R
of P-channel FET (Note 5)  
of N-channel FET (Note 5)  
I
I
= 50mA, V = 3.6V  
IN  
PFET  
DS(ON)  
DS(ON)  
SW  
= –50mA, V = 3.6V  
Ω
NFET  
SW  
IN  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: The LTC3620E is guaranteed to meet performance specifications  
from 0°C to 85°C junction temperature. Specifications over the –40°C  
to 85°C operating junction temperature range are assured by design,  
characterization and correlation with statistical process controls.  
Note 2: T is calculated from the ambient temperature, T , and power  
Note 5: The DFN switch-on resistance is guaranteed by correlation to  
wafer level measurements.  
J
A
dissipation, P , according to the following formula:  
D
T = T + (P )(88.5°C/W)  
J
A
D
Note 3: The LTC3620 is tested in a proprietary test mode that connects V  
FB  
to the output of the error amplifier.  
3620f  
3
LTC3620  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC3620 Feedback Voltage  
vs Temperature  
Switching Frequency  
Load Regulation  
vs Load Current, FMIN/MODE  
1000  
100  
10  
620  
615  
610  
605  
600  
595  
590  
585  
580  
0.5  
0.3  
200kHz, EXTERNAL  
FMIN/MODE = 0V  
V
V
= 3.6V  
V
V
= 3.6V  
IN  
OUT  
IN  
OUT  
= 1.1V  
= 1.1V  
FMIN/MODE = V  
FMIN/MODE = 0V  
IN  
FMIN/MODE = 0V  
= 25°C  
T
A
0.1  
–0.1  
–0.3  
–0.5  
T
= 25°C  
= 3.6V  
A
V
V
IN  
OUT  
= 1.1V  
50  
0
TEMPERATURE (°C)  
–50  
100  
130  
0
5
10  
LOAD CURRENT (mA)  
15  
0.01  
0.1  
1
10 20  
LOAD CURRENT (mA)  
3620 G01  
3620 G03  
3620 G02  
LTC3620-1 Feedback Voltage  
vs Temperature  
Quiescent Current vs Temperature  
UVLO Threshold vs Temperature  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
2.85  
2.84  
2.83  
2.82  
2.81  
2.80  
2.79  
2.78  
2.77  
2.76  
2.75  
1.125  
1.120  
1.115  
1.110  
1.105  
1.100  
1.095  
1.090  
1.085  
1.080  
V
= 3.6V  
V
= 1.1V  
V
= 1.1V  
IN  
OUT  
OUT  
FMIN/MODE = 0V  
FMIN/MODE = V  
FMIN/MODE = 0V  
IN  
V
= 5V  
IN  
V
= 3.6V  
IN  
50  
0
TEMPERATURE (°C)  
–50  
0
50  
–50  
100  
130  
100  
130  
–50  
0
50  
100  
130  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3620 G04  
3620 G05  
3620 G06  
LOBATB Threshold  
vs Temperature  
Peak Inductor Current  
vs Temperature  
Switching Waveforms at 250μA  
Load, FMIN/MODE = 0V  
3.05  
3.04  
3.03  
3.02  
3.01  
3.00  
2.99  
2.98  
2.97  
2.96  
2.95  
40  
39  
V
= 1.1V  
V
= 1.1V  
OUT  
OUT  
L = 22μH  
FMIN/MODE = 0V  
V
(AC)  
OUT  
20mV/DIV  
V
= 5.5V  
IN  
38  
37  
V
SW  
2V/DIV  
V
= 3.6V  
IN  
36  
35  
34  
I
L
25mA/DIV  
3620 G09  
V
V
= 1.1V  
4μs/DIV  
OUT  
IN  
= 3.6V  
T
= 25°C  
A
–50  
0
50  
100  
130  
–50  
0
50  
100  
130  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3620 G08  
3620 G07  
3620f  
4
LTC3620  
TYPICAL PERFORMANCE CHARACTERISTICS  
Switching Waveforms at 1mA  
Load, FMIN/MODE = 0V  
Switching Waveforms at 12mA  
Load, FMIN/MODE = 0V  
Switching Waveforms at 250μA  
Load, FMIN/MODE = 200kHz Clock  
V
FMIN/MODE  
1V/DIV  
V
(AC)  
V
(AC)  
OUT  
OUT  
20mV/DIV  
20mV/DIV  
V
(AC)  
OUT  
20mV/DIV  
V
SW  
V
SW  
2V/DIV  
2mV/DIV  
V
SW  
2V/DIV  
I
L
I
L
25mA/DIV  
I
25mA/DIV  
L
25mA/DIV  
3620 G10  
3620 G12  
3620 G11  
V
V
T
= 1.1V  
4μs/DIV  
V
V
T
= 1.1V  
2μs/DIV  
V
V
T
= 1.1V  
400ns/DIV  
OUT  
IN  
A
OUT  
OUT  
IN  
A
= 3.6V  
= 3.6V  
IN  
= 3.6V  
= 25°C  
= 25°C  
A
= 25°C  
Switching Waveforms at 1mA  
Load, FMIN/MODE = 200kHz Clock  
Switching Waveforms at 12mA  
Load, FMIN/MODE = 200kHz  
Start-Up Waveforms  
V
FMIN/MODE  
1V/DIV  
V
FMIN/MODE  
1V/DIV  
V
(AC)  
OUT  
V
(AC)  
V
OUT  
OUT  
20mV/DIV  
20mV/DIV  
200mV/DIV  
V
SW  
V
SW  
2V/DIV  
2V/DIV  
I
I
L
L
25mA/DIV  
I
L
25mA/DIV  
25mA/DIV  
3620 G13  
3620 G14  
3620 G15  
V
V
T
= 1.1V  
2μs/DIV  
V
V
T
= 1.1V  
400ns/DIV  
V
V
I
= 1.1V  
= 0mA  
200μs/DIV  
OUT  
IN  
A
OUT  
IN  
A
OUT  
IN  
OUT  
= 3.6V  
= 3.6V  
= 3.6V  
= 25°C  
= 25°C  
FMIN/MODE = 0V  
= 25°C  
T
A
Transient Response, 250μA to 3mA  
Step, FMIN/MODE = 0V  
Transient Response, 1mA to 10mA  
Step, FMIN/MODE = 0V  
PFET RDS(ON) vs Temperature  
2.3  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
I
= 35mA  
SW  
V
(AC)  
V
(AC)  
OUT  
OUT  
V
= 3.6V  
IN  
20mV/DIV  
10mV/DIV  
V
= 5V  
IN  
I
LOAD  
5mA/DIV  
I
LOAD  
5mA/DIV  
3620 G17  
3620 G16  
V
V
T
= 3.6V  
4ms/DIV  
V
V
T
= 3.6V  
4ms/DIV  
IN  
OUT  
IN  
OUT  
= 1.1V  
= 25°C  
= 1.1V  
= 25°C  
A
A
50  
0
TEMPERATURE (°C)  
–50  
100  
130  
3620 G18  
3620f  
5
LTC3620  
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency vs Load Current,  
FMIN/MODE Frequency  
NFET RDS(ON) vs Temperature  
Efficiency vs Load Current, VOUT  
100  
90  
100  
90  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
I
= 35mA  
SW  
80  
80  
70  
70  
60  
50  
60  
50  
V
= 3.6V  
IN  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
T
V
V
= 25°C  
IN  
OUT  
T
= 25°C  
= 3V  
A
A
IN  
V
= 5V  
IN  
= 3V  
V
= 1.1V  
FMIN/MODE = 0V  
FMIN = 20kHz  
FMIN = 100kHz  
FMIN = 200kHz  
V
V
V
= 1.1V  
= 1.8V  
= 2.5V  
OUT  
OUT  
OUT  
0.1  
1
10  
50  
0
TEMPERATURE (°C)  
0.1  
1
10  
–50  
100  
130  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
3620 G20  
3620 G21  
3620 G19  
Efficiency vs Load Current, VIN  
Efficiency vs fMIN, 1mA Load  
Internal fMIN vs Temperature  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
100  
90  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
80  
70  
60  
50  
V
= 3.6V  
= 5V  
IN  
V
40  
30  
20  
10  
0
IN  
T
= 25°C  
OUT  
A
V
= 1.1V  
FMIN/MODE = V  
IN  
T
V
V
= 25°C  
A
V
V
V
= 3V  
= 3.6V  
= 5.5V  
IN  
IN  
IN  
= 3.6V  
IN  
OUT  
= 1.1V  
FMIN/MODE = EXTERNAL CLOCK  
100  
200  
(kHz)  
–50  
0
50  
100  
0.1  
1
10  
0
300  
TEMPERATURE (°C)  
f
LOAD CURRENT (mA)  
MIN  
3620 G22  
3620 G24  
3620 G23  
Spectral Content, 500μA Load  
Spectral Content, 5mA Load  
–60  
–80  
–40  
52.5kHz  
–81.4dBm  
–60  
–80  
355.6kHz  
–80.2dBm  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
12.5kHz  
= 1.1V  
92.5kHz  
1kHz  
400kHz  
3620 G26  
3620 G25  
8kHz/DIV  
V
V
39.9kHz/DIV  
V
= 1.1V  
OUT  
OUT  
IN  
= 3.6V  
V
= 3.6V  
IN  
FMIN/MODE = 0V  
= 25°C  
FMIN/MODE = 0V  
= 25°C  
T
T
A
A
3620f  
6
LTC3620  
PIN FUNCTIONS  
SW (Pin 1): Switch Node Connection to Inductor. This pin  
NC (Pin 5): No Connect.  
(Pin 6): Regulator Feedback Pin. This pin receives  
connects to the internal power MOSFET Switches.  
V
FB  
GND (Pin 2): Ground Connection for Internal Circuitry and  
Power Path Return. Tie directly to local ground plane.  
the feedback voltage from the resistive divider across the  
output. For the LTC3620-1, this pin must be connected  
directlytoV .V  
isinternallydividedfromV  
tothe  
OUT OUT  
OUT  
FMIN/MODE (Pin 3): Frequency Clamp Select Input. Driv-  
ing this pin with a 20kHz to 300kHz external clock sets the  
minimum switching frequency. Pulling this pin low sets  
the minimum switching frequency to the internally set  
50kHz.Pullingthispinhighdefeatstheminimumswitching  
frequency and allows the part to switch at arbitrarily low  
frequencies dependent on the load current.  
reference voltage of 0.6V as seen in the Block Diagram.  
RUN(Pin7):RegulatorEnablePin. Applyavoltagegreater  
than 0.8V to enable the regulator. Do not float this pin.  
V (Pin 8): Input Supply Pin. Must be locally bypassed.  
IN  
Exposed Pad (Pin 9): GND. Must be soldered to PCB.  
LOBATB (Pin 4): Low-Battery Status Output. This open-  
drain output pulls low when V falls below 3V.  
IN  
BLOCK DIAGRAM  
LOBATB  
V
IN  
V
IN  
4
8
PEAK INDUCTOR  
CURRENT ADJUST  
8
LOBAT  
3V  
RUN  
7
ICMP  
SHUTDOWN  
UVLO  
FMIN/MODE  
3
SELECT  
50kHz  
SW  
1
PFD  
SWITCH  
DRIVER  
0.6V  
V
FB  
EAMP  
RCMP  
(LTC3620)  
6
V
2
FB  
3620 BD  
(LTC3620-1)  
GND  
6
3620f  
7
LTC3620  
OPERATION  
switching frequency will be clamped is dependent on the  
externallysetfrequencyandthevalueoftheinductorused.  
A higher externally set minimum frequency will result in  
a higher load current threshold below which the part will  
lock to this minimum frequency. The relationship between  
load current and minimum frequency is described by the  
following equation:  
The LTC3620 is a variable frequency buck switching regu-  
lator with a maximum output current of 15mA. At high  
loadstheLTC3620willsupplyconstantpeakcurrentpulses  
through the output inductor at a frequency dependent on  
the load current.  
A switching cycle is initiated by a pulse from the error  
amplifier, EAMP. The top FET is turned on and remains on  
until the peak current threshold is sensed by ICMP (35mA  
at full loads). When this occurs, the top FET it is turned off  
and the bottom FET is turned on. The bottom FET remains  
on until the inductor current drops to 0A, as sensed by the  
reverse-currentcomparator,RCMP.Thetimeintervalbefore  
another switching cycle is initiated is adjusted based on  
the output voltage error, measured by the EAMP to be the  
2
V
f
L 35mA  
( )(  
)
)
(
=
IN )(  
MIN  
IMAX(LOCK)  
2VOUT V – V  
(
)
IN  
OUT  
The LTC3620 will switch at this externally set frequency  
at load currents below this threshold; though in general,  
neither this minimum nor this synchronization will be  
maintained during load transients.  
difference between V and the 0.6V reference.  
FB  
At very light loads, the minimum PFET on time will be  
reached and the peak inductor current can no longer  
be reduced. In this situation, the LTC3620 will resume  
decreasing the regulator switching frequency to prevent  
the output voltage from climbing uncontrollably.  
As the load current decreases, the EAMP will decrease  
the switching frequency to match the load, until the mini-  
mum switching frequency (internally or externally set) is  
reached.WiththeFMIN/MODEpinpulledlow,theminimum  
frequency is internally set to 50kHz. Further decreasing  
the load will cause the phase frequency detector (PFD) to  
decrease the peak inductor current in order to maintain  
the switching frequency at 50kHz.  
Forthoseapplicationswhicharenotsensitivetothespectral  
contentoftheoutputripple,theminimumfrequencyclamp  
canbedefeatedbypullingtheFMIN/MODEpinhigh.Inthis  
mode the inductor current peaks will be held at 35mA and  
the switching frequency will decrease without limit.  
The minimum switching frequency can be externally set  
by clocking the FMIN/MODE pin at the desired minimum  
switching frequency. The load current below which the  
1000  
200kHz, EXTERNAL  
FMIN/MODE = 0V  
FMIN/MODE = V  
IN  
100  
T
V
V
= 25°C  
A
= 3.6V  
IN  
OUT  
= 1.1V  
10  
0.01  
0.1  
1
10 20  
LOAD CURRENT (mA)  
3620 F01  
Figure 1. Switching Frequency vs Load Current, FMIN/MODE  
3620f  
8
LTC3620  
APPLICATIONS INFORMATION  
Choosing an Inductor  
The part is optimized to get 35mA peaks for V = 3.6V and  
OUT  
IN  
V
= 1.1V with an 18μH inductor. If the falling slope is  
There are a number of different values, sizes and brands  
of inductors that will work well with this part. Table 1 has a  
numberofrecommendedinductors,thoughtherearemany  
othermanufacturersanddevicesthatmayalsobesuitable.  
Consult each manufacturer for more detailed information  
and for their entire selection of related parts.  
too steep the NFET will continue to conduct shortly after  
the inductor current reaches zero, causing a small reverse  
current. This means the net power delivered with every  
pulse will decrease. To mitigate this problem the inductor  
canberesized.Table2showsrecommendedinductorsand  
output capacitors for commonly used output voltages.  
Table 1: Representative Surface Mount Inductors  
MAX DC  
Table 2. Recommended Inductor and Output Capacitor Sizes for  
Different VOUT  
PART  
VALUE  
(ꢀH)  
CURRENT  
(mA)  
W×L×H  
(mm )  
3
V
(V)  
L (μH)  
15  
C
(μF)  
OUT  
OUT  
VENDOR  
NUMBER  
DCR (Ω)  
0.9  
1.1  
2.2  
Taiyo  
CBMF1608T 22 10% 1.3 Max  
70  
0.8×1.6×0.8  
1.6×2×0.9  
Yuden  
22  
1
1.1 (LTC3620-1)  
22  
2.2  
2.2  
4.7  
Murata  
LQH2MC_02 18 20% 1.8 30%  
22 20% 2.1 30%  
190  
185  
1.8  
2.5  
33  
Würth  
744028220 22 30% 1.48 Max  
270  
2.8×2.8×1.1  
2.95×2.95×0.9  
47  
Electronics  
Coilcraft  
LPS3010 18 20% 1.0 Max  
22 20% 1.2 Max  
380  
320  
Because the rising dI/dt decreases for increased V  
OUT  
and increased L, the inductor current peaks will decrease,  
causing the maximum load current to decrease as well.  
Figure 2 shows typical maximum load current versus  
output voltage.  
There is a trade-off between physical size and efficiency;  
The inductors in Table 1 are shown because of their small  
footprints, choose larger sized inductors with less core  
loss and lower DCR to maximize efficiency.  
20  
T
= 25°C  
A
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
The ideal inductor value will vary depending on which  
characteristics are most critical to the designer. Use the  
equationsandrecommendationsinthenextsectionstohelp  
you find the correct inductance value for your design.  
Avoiding Audio Range Switching  
In order to best avoid switching in the audio range at the  
lowest possible load current, the minimum frequency  
should be set as low as is acceptable, and the inductor  
value should be minimized. For a 1.1V output the smallest  
recommended inductor value is 15μH.  
0.6  
1.1  
1.6  
2.1  
2.6  
3620 F02  
OUTPUT VOLTAGE (V)  
Figure 2. Maximum Output Current vs VOUT, VIN = 3.6V  
Adjusting for V  
OUT  
Output Voltage Ripple  
Theinductorcurrentpeakandzerocrossingaredependent  
on the dI/dt. The equations for the rising and falling slopes  
are as follows:  
The quantity of charge transferred from V to V  
per  
IN  
OUT  
switching cycle is directly proportional to the inductor  
value. Consequently, the output voltage ripple is directly  
proportional to the inductor value, and the switching  
frequency for a given load is inversely proportional to the  
inductor value. For a given load current, higher switching  
frequency will typically lower the efficiency because of the  
3620f  
Rising dI/dt = (V -V )/L  
IN OUT  
Falling dI/dt = V /L  
OUT  
9
LTC3620  
APPLICATIONS INFORMATION  
increase in switching losses internal to the part. This can  
be partially offset by using inductors with lower loss.  
from V to ground. The resulting dQ/dt is the current out  
IN  
of V that is typically larger than the DC bias current and  
IN  
proportionaltofrequency.BoththeDCbiasandgatecharge  
The peak-to-peak output voltage ripple can be approxi-  
mated by:  
losses are proportional to V and thus their effects will  
IN  
be more pronounced at higher supply voltages.  
2
I
L V  
( )  
(
)
(
)
PK  
IN  
The R  
for both the top and bottom MOSFETS can  
DS(ON)  
ΔV =  
be obtained from the Typical Performance Characteristics  
2 C  
(
V
V – V  
IN  
OUT  
OUT )( OUT )(  
)
2
curves. The I R losses per pulse will be proportional to  
The output ripple is a strong function of the peak inductor  
the peak current squared times the sum of the switch  
resistance and the inductor resistance:  
current, I . When the LTC3620 is locked to the minimum  
PK  
switching frequency, I is decreased to maintain regula-  
PK  
2
Loss IPK  
I2R  
=
REFF  
tion. Consequently, ΔV  
is reduced in and below the  
OUT  
Pulse  
3
lock range.  
where R = R + R  
D + R (1 – D), and D is the  
NFET  
EFF  
L
PFET  
Efficiency  
ratioofthetopswitchon-timetothetotaltimeofthepulse.  
AdditionallossesincurredfromtheinductorDCresistance  
and core loss may be significant in smaller inductors.  
Theefficiencyofaswitchingregulatorisequaltotheoutput  
power divided by the input power times 100%. It is often  
useful to analyze individual losses to determine what is  
limiting the efficiency and which change would produce  
the most improvement. Efficiency can be expressed as:  
Capacitor Selection  
Higher value, lower cost, ceramic capacitors are now  
widely available in smaller case sizes. Their high ripple  
current, high voltage rating and low ESR make them  
ideal for switching regulator applications. Because the  
LTC3620’s control loop does not depend on the output  
capacitor’s ESR for stable operation, ceramic capacitors  
can be used freely to achieve very low output ripple and  
small circuit size.  
Efficiency = 100% – (L1 + L2 + L3 + ...)  
where L1, L2, etc. are the individual losses as a percent-  
age of input power.  
Although all dissipative elements in the circuit produce  
losses, two main sources usually account for most of the  
losses in the LTC3620’s circuits: V quiescent current  
IN  
2
and I R losses. V quiescent current loss dominates the  
efficiency loss at low load currents, whereas the I R loss  
IN  
2
When choosing the input and output ceramic capacitors,  
choose the X5R or X7R dielectric formulations. These  
dielectrics have the best temperature and voltage charac-  
teristics of all the ceramics for a given value and size.  
dominates the efficiency loss at medium to high load cur-  
rents. In a typical efficiency plot, the efficiency curve at  
very low load currents can be misleading since the actual  
power lost is of little consequence, as illustrated on the  
front page of this data sheet.  
The output voltage ripple is inversely proportional to the  
output capacitor. The larger the capacitor, the smaller the  
ripple, and vice versa. However, the transient response  
The quiescent current is due to two components: the DC  
time is directly proportional to C , so a larger C  
OUT  
OUT  
bias current, I , as given in the Electrical Characteristics,  
Q
means slower response time.  
and the internal main switch and synchronous switch  
gate charge currents. The gate charge current results  
from switching the gate capacitance of the internal power  
MOSFET switches. Each time the gate is switched from  
high to low to high again, a packet of charge, dQ, moves  
To maintain stability and an acceptable output voltage  
ripple, values for C should range from 1μF to 5μF.  
OUT  
3620f  
10  
LTC3620  
APPLICATIONS INFORMATION  
Setting Output Voltage  
the frequency clamp loop in returning the peak inductor  
current to its maximum.  
The output voltage is set by tying V to a resistive divider  
FB  
using the following formula (refer to Figure 3):  
Thermal Considerations  
0.6V R1+R2  
(
)
The LTC3620 requires the package backplane metal to be  
well soldered to the PC board. This gives the DFN package  
exceptionalthermalproperties,makingitdifficultinnormal  
operation to exceed the maximum junction temperature  
of the part. In most applications the LTC3620 does not  
dissipate much heat due to its high efficiency and low  
current. In applications where the LTC3620 is running at  
highambienttemperaturesandhighloadcurrents,theheat  
dissipatedmayexceedthemaximumjunctiontemperature  
of the part if it is not well thermally grounded.  
VOUT  
=
R2  
R1 and R2 should be large to minimize standing load  
current and improve efficiency.  
The fixed output version, the LTC3620-1, includes an  
internal resistive divider, eliminating the need for external  
resistors. The resistor divider is chosen such that the V  
FB  
input current is approximately 1μA. For this version, the  
V
pin should be connected directly to V  
.
FB  
OUT  
Maximum Load Current and Maximum Frequency  
Design Example  
The maximum current that the LTC3620 can provide is  
calculated to be just slightly less than half the maximum  
peak current.  
This example designs a 1.1V output using a Li-Ion bat-  
tery with voltages between 2.8V to 4.2V, and an average  
of 3.6V. The internally provided 50kHz clock will be used  
for the minimum switching frequency, so the FMIN/MODE  
pin will be pulled low. For a 1.1V output, an 18μH inductor  
should be used (refer to Table 2).  
The inductor value will determine how much energy is  
delivered to the output for each switching cycle, and thus  
the duration of each pulse and the maximum frequency.  
Largerinductorswillhaveslowerramprates,longerpulses,  
andthuslowermaximumfrequencies.Conversely,smaller  
inductors will result in higher maximum frequencies.  
C
can be chosen from Table 2 or can be based on a  
OUT  
desired maximum output voltage ripple, ΔV . For this  
OUT  
case let’s use a maximum ΔV  
or 11mV.  
equal to 1% of V  
,
OUT  
OUT  
When using a frequency clamp, large abrupt increasing  
load steps from levels below the locking range to levels  
near the maximum output may result in a large drop in  
the output voltage. This is due to the low bandwidth of  
35mA2 22µH 3.6V  
(
)(  
)
(
)
COUT  
=
=1.6µF 1.5µF  
2ΔVOUT 1.1V 3.6V 1.1V  
(
)(  
)
V
IN  
2.9V TO 5.5V  
LOBATB  
V
IN  
1M  
L
RUN  
LOBATB  
LTC3620  
V
OUT  
SW  
1μF  
CER  
1.1V  
22pF  
FMIN/MODE V  
GND  
FB  
R1  
C
R2  
OUT  
3620 F03  
Figure 3. Design Example Schematic  
3620f  
11  
LTC3620  
APPLICATIONS INFORMATION  
A larger capacitor could be used to reduce this number.  
Keep in mind that while a larger output capacitor will  
decrease voltage ripple, it will also increase the transient  
Board Layout Checklist  
When laying out the printed circuit board, the following  
checklist should be used to ensure proper operation of  
the LTC3620:  
settling time. The optimal range for C  
tween 1ꢀF and 5ꢀF.  
should be be-  
OUT  
1. ThepowertracesconsistingofGND,SWandV should  
IN  
The best way to select the feedback resistors is to select  
a target combined resistance, and try different standard  
1% resistor sizes to see which combination will give the  
least error. For this example a target combined resistance  
ofaround1Mwillbeused. BycheckingR1valuesbetween  
422k and 475k, and calculating R2 using the formula:  
be kept short, direct and wide.  
2. The V pin should connect directly to the respective  
FB  
feedbackresistors,whichshouldalsohaveshort,direct  
paths to V  
and GND respectively.  
OUT  
3. Keep C  
and C as close to the LTC3620 as  
IN  
OUT  
possible.  
0.6V R1  
VOUT – 0.6V  
(
)
R2=  
4. Allpartsconnectingtogroundshouldhavetheirground  
terminals in close proximity to the LTC3620 GND  
connection.  
it can be found that a value of R2 = 523k and R1 = 432k  
minimizes the error in this range.  
5. KeeptheSWnodeandexternalclock,ifused,awayfrom  
The error can be checked by solving for V  
and find-  
the sensitive V node. Also, minimize the length and  
OUT  
FB  
ing the percent error from the desired 1.1V. Using these  
resistor values will result in V = 1.096V, and an error  
area of all traces connected to the SW pin, and always  
use a ground plane under the switching regulator to  
minimize interplane coupling.  
OUT  
of around 0.4%. Using different target resistor sums is  
acceptable, but a smaller sum will decrease efficiency at  
lower loads, and a larger sum will increase noise sensitiv-  
ity at the V pin.  
FB  
+
+
C
OUT  
L
C
OUT  
L
V
IN  
V
IN  
C
IN  
C
IN  
SW  
V
1
2
3
4
8
7
6
5
IN  
SW  
V
IN  
1
2
3
4
8
7
6
5
• • •  
• • •  
• • •  
GND  
RUN  
• • •  
• • •  
• • •  
GND  
RUN  
V
FMIN/MODE  
LOBATB  
FB  
V
FMIN/MODE  
LOBATB  
FB  
NC  
NC  
R2 R1  
C *  
FF  
V
OUT  
V
OUT  
3620 F05  
3620 F04  
*C = 22pF FEEDFORWARD CAPACITOR  
FF  
LTC3620 Layout Diagram  
LTC3620-1 Layout Diagram  
3620f  
12  
LTC3620  
TYPICAL APPLICATIONS  
High Efficiency Low Power Step-Down Converter, FMIN/MODE = 0  
V
IN  
2.9V TO 5.5V  
LOBATB  
V
IN  
1M  
RUN  
LOBATB  
22μH  
V
OUT  
SW  
1μF  
CER  
1.1V  
22pF  
LTC3620  
FMIN/MODE V  
GND  
FB  
432k  
523k  
1μF  
CER  
3620 TA02a  
Efficiency vs Load Current  
Efficiency vs VIN  
100  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
T
= 25°C  
OUT  
A
T
= 25°C  
OUT  
V
= 1.1V  
A
V
= 1.1V  
FMIN/MODE = 0V  
I
I
I
= 500μA  
= 1mA  
= 10mA  
V
V
V
= 3V  
= 3.6V  
= 5.5V  
OUT  
OUT  
OUT  
IN  
IN  
IN  
0.1  
1
10  
4.5  
(V)  
6.5  
2.5  
3.5  
5.5  
V
LOAD CURRENT (mA)  
IN  
3620 TA02b  
3620 TA02c  
3620f  
13  
LTC3620  
TYPICAL APPLICATIONS  
High Efficiency Low Power Step-Down Converter,  
Externally Programmed fMIN  
V
IN  
2.9V TO 5.5V  
LOBATB  
1μF  
CER  
V
IN  
1M  
RUN  
LOBATB  
22μH  
V
OUT  
SW  
1.1V  
22pF  
LTC3620  
FMIN/MODE  
FMIN/MODE V  
GND  
FB  
432k  
523k  
1μF  
CER  
3620 TA03a  
Efficiency vs Load Current  
Efficiency vs VIN  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
V
V
= 25°C  
= 3.6V  
A
IN  
= 1.1V  
OUT  
I
I
I
= 500μA  
= 1mA  
f
f
f
= 20kHz  
= 100kHz  
= 200kHz  
OUT  
OUT  
OUT  
T
= 25°C  
MIN  
MIN  
MIN  
A
V
f
= 1.1V  
OUT  
= 200kHz  
= 10mA  
MIN  
2.5  
3.5  
4.5  
(V)  
5.5  
6.5  
0.1  
1
10  
V
LOAD CURRENT (mA)  
IN  
3620 TA03b  
3620 TA03c  
Spectral Content,  
FMIN/MODE = 20kHz Clock  
Spectral Content,  
FMIN/MODE = 100kHz Clock  
Spectral Content,  
FMIN/MODE = 200kHz Clock  
–40  
–40  
–40  
–60  
99.9kHz  
–59.9dBm  
–60  
–80  
–60  
–80  
199.7kHz  
20.0kHz  
–64.9dBm  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
–100  
–120  
–140  
1kHz  
150kHz  
3620 TA03e  
1kHz  
220kHz  
3620 TA03f  
1kHz  
30kHz  
3620 TA03d  
14.9kHz/DIV  
21.9kHz/DIV  
V
= 1.1V  
V
V
I
= 1.1V  
2.99kHz/DIV  
RBW = 3Hz  
OUT  
OUT  
V
I
= 3.6V  
= 3.6V  
V
V
I
= 1.1V  
IN  
IN  
OUT  
= 1mA  
= 1mA  
= 3.6V  
OUT  
OUT  
IN  
T
= 25°C  
T = 25°C  
A
= 500μA  
A
OUT  
T
= 25°C  
A
3620f  
14  
LTC3620  
PACKAGE DESCRIPTION  
DC Package  
8-Lead Plastic DFN (2mm × 2mm)  
(Reference LTC DWG # 05-08-1719 Rev A)  
0.70 p0.05  
2.55 p0.05  
0.64 p0.05  
1.15 p0.05  
(2 SIDES)  
PACKAGE  
OUTLINE  
0.25 p 0.05  
0.45 BSC  
1.37 p0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.115  
TYP  
5
8
R = 0.05  
TYP  
0.40 p 0.10  
PIN 1 NOTCH  
2.00 p0.10 0.64 p 0.10  
(4 SIDES)  
(2 SIDES)  
R = 0.20 OR  
0.25 s 45o  
CHAMFER  
PIN 1 BAR  
TOP MARK  
(SEE NOTE 6)  
(DC8) DFN 0106 REVØ  
4
1
0.23 p 0.05  
0.45 BSC  
0.75 p0.05  
0.200 REF  
1.37 p0.10  
(2 SIDES)  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3620f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LTC3620  
TYPICAL APPLICATIONS  
High Efficiency Low Power Step-Down Converter,  
LTC3620-1 Internally Programmed, 1.1VOUT  
Efficiency vs VIN  
Efficiency vs Load Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
V
IN  
2.9V TO 5.5V  
80  
LOBATB  
70  
V
IN  
1M  
60  
50  
RUN  
LTC3620-1  
SW  
LOBATB  
22μH  
1μF  
CER  
V
OUT  
1.1V  
40  
30  
20  
10  
0
T = 25°C  
A
T
= 25°C  
A
FMIN/MODE V  
GND  
V
= 1.1V  
FB  
V
= 1.1V  
OUT  
FMIN/MODE = 0V  
OUT  
FMIN/MODE = 0V  
2.2μF  
CER  
I
I
I
= 500μA  
= 1mA  
OUT  
OUT  
OUT  
V
IN  
V
IN  
V
IN  
= 3V  
= 3.6V  
= 5.5V  
3620 TA04a  
= 10mA  
2.5  
3.5  
4.5  
(V)  
5.5  
6.5  
0.1  
1
10  
V
LOAD CURRENT (mA)  
IN  
3620 G21  
3620 TA04c  
RELATED PARTS  
PART NUMBER  
LTC3405A/LTC3405AB 300mA I , 1.5MHz, Synchronous Step-Down DC/DC Converter 95% Efficiency, V : 2.5V to 5.5V, V  
OUT(MIN)  
DESCRIPTION  
COMMENTS  
= 0.8V, I  
= 0.6V,  
= 0.6V,  
OUT  
IN  
= 20ꢀA, I < 1ꢀA, ThinSOT Package  
Q
SD  
LTC3406A/LTC3406AB 600mA I , 1.5MHz, Synchronous Step-Down DC/DC Converter 96% Efficiency, V : 2.5V to 5.5V, V  
OUT(MIN)  
OUT  
IN  
I = 20ꢀA, I < 1ꢀA, ThinSOT Package  
Q
SD  
LTC3407A/LTC3407A-2 Dual 600mA/800mA I , 1.5MHz/2.25MHz, Synchronous  
95% Efficiency, V : 2.5V to 5.5V, V  
IN OUT(MIN)  
I = 40ꢀA, I < 1ꢀA, MS10E, DFN Packages  
Q SD  
OUT  
Step-Down DC/DC Converter  
LTC3409  
600mA I , 2.25MHz, Synchronous Step-Down DC/DC Converter 96% Efficiency, V : 1.6V to 5.5V, V  
= 0.6V,  
= 0.8V,  
= 0.8V,  
= 0.6V,  
= 0.8V,  
OUT  
IN  
OUT(MIN)  
I = 65ꢀA, I < 1ꢀA, DFN Package  
Q
SD  
LTC3410/LTC3410B  
LTC3411A  
300mA I , 2.25MHz, Synchronous Step-Down DC/DC Converter 95% Efficiency, V : 2.5V to 5.5V, V  
OUT IN  
OUT(MIN)  
I = 26ꢀA, I < 1ꢀA, SC70 Package  
Q
SD  
1.25A I , 4MHz, Synchronous Step-Down DC/DC Converter  
95% Efficiency, V : 2.5V to 5.5V, V  
IN OUT(MIN)  
OUT  
I = 60ꢀA, I < 1ꢀA, MS10, DFN Packages  
Q
SD  
LTC3548  
Dual 400mA/800mA I , 2.25MHz, Synchronous Step-Down  
95% Efficiency, V : 2.5V to 5.5V, V  
IN OUT(MIN)  
I = 40ꢀA, I < 1ꢀA, MS10, DFN Packages  
Q SD  
OUT  
DC/DC Converter  
LTC3561A  
1A I , 4MHz, Synchronous Step-Down DC/DC Converter  
95% Efficiency, V : 2.5V to 5.5V, V  
IN OUT(MIN)  
OUT  
I = 240ꢀA, I < 1ꢀA, 3mm × 3mm DFN Package  
Q
SD  
LTC3631/LTC3631-3.3/ 45V, 100mA (I ), Ultralow Quiescent Current Synchronous  
V : 4.5V to 45V (60V  
), V  
= 0.8V,  
OUT  
IN  
MAX  
OUT(MIN)  
LTC3631-5  
Step-Down DC/DC Converter  
I = 12ꢀA, I < 1ꢀA, 3mm × 3mm DFN Package, MSOP-8E  
Q SD  
LTC3632  
50V, 20mA (I ), Ultralow Quiescent Current Synchronous  
V : 4.5V to 50V (60V  
), V  
= 0.8V,  
OUT  
IN  
MAX  
OUT(MIN)  
Step-Down DC/DC Converter  
I = 12ꢀA, I < 1ꢀA, 3mm × 3mm DFN Package, MSOP-8E  
Q SD  
LTC3642/LTC3642-3.3/ 45V, 50mA (I ), Ultralow Quiescent Current Synchronous  
V : 4.5V to 45V (60V  
), V  
= 0.8V,  
OUT  
IN  
MAX  
OUT(MIN)  
LTC3642-5  
Step-Down DC/DC Converter  
I = 12ꢀA, I < 1ꢀA, 3mm × 3mm DFN Package, MSOP-8E  
Q SD  
3620f  
LT 0809 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2009  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC3620EDCTRPBF

Ultralow Power 15mA Synchronous Step-Down Switching Regulator
Linear

LTC3621

17V, 1A Synchronous Step-Down Regulator with 3.5μA Quiescent Current
Linear

LTC3621-2

17V, 1A Synchronous Step-Down Regulator with 3.5μA Quiescent Current
Linear

LTC3621-2_15

17V, 1A Synchronous Step-Down Regulator with 3.5A Quiescent Current
Linear

LTC3621EDCB#TRMPBF

LTC3621 - 17V, 1A Synchronous Step-Down Regulator with 3.5&#181;A Quiescent Current; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3621EDCB-2#TRMPBF

LTC3621 - 17V, 1A Synchronous Step-Down Regulator with 3.5&#181;A Quiescent Current; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3621EMS8E#PBF

LTC3621 - 17V, 1A Synchronous Step-Down Regulator with 3.5&#181;A Quiescent Current; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3621EMS8E-2#PBF

LTC3621 - 17V, 1A Synchronous Step-Down Regulator with 3.5&#181;A Quiescent Current; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3621EMS8E-3.3#PBF

LTC3621 - 17V, 1A Synchronous Step-Down Regulator with 3.5&#181;A Quiescent Current; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3621IDCB#TRMPBF

LTC3621 - 17V, 1A Synchronous Step-Down Regulator with 3.5&#181;A Quiescent Current; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3621IDCB-2#TRMPBF

LTC3621 - 17V, 1A Synchronous Step-Down Regulator with 3.5&#181;A Quiescent Current; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3621IDCB-23.3#TRMPBF

LTC3621 - 17V, 1A Synchronous Step-Down Regulator with 3.5&#181;A Quiescent Current; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear