LTC3670 [Linear]

Monolithic 400mA Buck Regulator with Dual 150mA LDOs in 3mm × 2mm DFN; 单片400毫安降压稳压器,带有双150毫安的LDO采用3mm × 2mm DFN封装
LTC3670
型号: LTC3670
厂家: Linear    Linear
描述:

Monolithic 400mA Buck Regulator with Dual 150mA LDOs in 3mm × 2mm DFN
单片400毫安降压稳压器,带有双150毫安的LDO采用3mm × 2mm DFN封装

稳压器
文件: 总12页 (文件大小:214K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3670  
Monolithic 400mA Buck  
Regulator with Dual 150mA  
LDOs in 3mm × 2mm DFN  
FEATURES  
DESCRIPTION  
The LTC®3670 is a triple power supply composed of a  
400mA synchronous buck regulator and two 150mA low  
dropout linear regulators (LDOs). The input supply range  
of 2.5V to 5.5V is especially well-suited for single-cell  
Lithium-Ion and Lithium-Ion/Polymer applications, and  
for powering low voltage ASICs and SoCs from 3V, 3.3V  
or 5V rails. Regulated output voltages are programmed  
via external resistors. Each output has its own enable pin  
for maximum flexibility.  
n
Triple Output Supply from a Single 2.5V to 5.5V Input  
n
400mA Buck DC/DC Plus Dual 150mA LDOs in One IC  
n
Outputs Regulate Down to 0.8V  
2.5ꢀ Reference Accuracy  
n
n
Constant-Frequency 2.25MHz Operation  
Burst Mode® Operation for High Efficiency at Light  
n
Loads; I = 70μA, All Outputs Enabled  
Q
n
Independent Enable Pin for Each Output  
n
Current Mode Operation for Excellent Line and Load  
Transient Response  
Internal Soft-Start for Each Output  
The 400mA buck regulator features constant-frequency  
2.25MHz operation, allowing small surface mount induc-  
tors and capacitors to be used. Burst Mode operation  
maintains high efficiency in light-load and no-load con-  
ditions. Internal control-loop compensation simplifies  
application design.  
n
n
Tiny 12-Lead 3mm × 2mm × 0.75mm DFN Package  
APPLICATIONS  
n
Handheld Products  
n
Portable Instruments  
The LTC3670 is available in a 0.75mm profile, 3mm ×  
2mm 12-lead DFN package.  
L, LT, LTC, LTM and Burst Mode are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners. Patents pending.  
n
Single-Cell Li-Ion/Li-Polymer Powered Devices  
n
DMB/DVB-H Multimedia Cell Phones  
n
Multivoltage Power for Digital Logic, I/O, FPGAs,  
CPLDs, ASICs, SoCs, CPUs and RF Chipsets  
TYPICAL APPLICATION  
Triple Power Supply with Independent Enables  
Demoboard  
V
IN  
3.3V TO 5.5V  
2.2μF  
V
IN  
4.7μH  
V
OUT1  
1.2V  
400mA  
GND  
SW  
232k  
464k  
10pF  
4.7μF  
1μF  
BUCKFB  
9.3mm  
LTC3670  
V
OUT2  
2.8V  
ENBUCK  
ENLDO1  
ENLDO2  
PGOOD  
LDO1  
DIGITAL  
CONTROL  
150mA  
9.4mm  
ACTIVE AREA  
806k  
324k  
LDO1_FB  
V
OUT3  
3.3V  
LDO2  
3670 TA01b  
150mA  
1.02M  
1μF  
LDO2_FB  
324k  
3670 TA01a  
3670f  
1
LTC3670  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Notes 1, 2, 3)  
TOP VIEW  
V , ENBUCK, ENLDO1, ENLDO2,  
IN  
PGOOD .................................................... –0.3V to 6V  
1
2
3
4
5
6
SW  
GND  
12  
V
IN  
11 LDO2  
SW, BUCKFB, LDO1_FB, LDO2_FB,  
ENLD01  
ENLD02  
ENBUCK  
BUCKFB  
LDO1  
10  
9
LDO1, LDO2...............................–0.3V to (V + 0.3V)  
IN  
13  
LDO1_FB  
LDO2_FB  
PGOOD  
I
I
I
.......................................................................600mA  
SW  
LDO1 LDO2  
8
, I  
..........................................................250mA  
7
....................................................................40mA  
PGOOD  
DDB PACKAGE  
12-LEAD (3mm × 2mm) PLASTIC DFN  
Junction Temperature ........................................... 125°C  
Operating Temperature Range.................. –40°C to 85°C  
Storage Temperature Range................... –65°C to 125°C  
T
= 125°C, θ = 76°C/W, θ = 13.5°C/W  
JMAX  
JA  
JC  
EXPOSED PAD (PIN 13) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
12-Lead (3mm × 2mm) Plastic DFN  
TEMPERATURE RANGE  
–40°C to 85°C  
LTC3670EDDB#PBF  
LTC3670EDDB#TRPBF  
LDBY  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 3.6V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
5.5  
UNITS  
l
V
IN  
Input Voltage Range  
2.5  
V
V
V
UVLO  
Undervoltage Lockout Threshold  
Undervoltage Lockout Hysteresis  
V
IN  
Rising  
2.2  
18  
2.3  
100  
mV  
I
V
IN  
Quiescent Current, No Load  
(Note 4)  
Q
All Outputs Enabled  
Buck Enabled Only  
Buck Enabled Only, in Dropout  
One LDO Enabled Only  
Shutdown  
V
V
V
= 0.9V  
= 0.9V  
= 0V  
70  
38  
700  
22  
110  
60  
μA  
μA  
μA  
μA  
μA  
BUCKFB  
BUCKFB  
BUCKFB  
1100  
35  
V
= V  
= V = 0V  
ENLDO2  
1
ENBUCK  
ENLDO1  
ENBUCK, ENLDO1, ENLDO2 Pin Thresholds  
Logic Low Voltage  
l
l
V
V
0.4  
1
V
V
IL  
IH  
Logic High Voltage  
1.2  
ENBUCK, ENLDO1, ENLDO2 Pin Pull-Down  
Resistance  
4
MΩ  
R
PGOOD Pin Logic Low Output Resistance  
PGOOD Pin Hi-Z Leakage  
30  
Ω
μA  
%
PGOOD  
V
= 6V  
PGOOD  
PGOOD Threshold on Feedback Voltages of  
Enabled Regulators  
(Note 5)  
92  
3670f  
2
LTC3670  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 3.6V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Synchronous Buck Regulator  
f
Oscillator Frequency  
1.91  
0.78  
2.25  
0.8  
2.59  
0.82  
20  
MHz  
V
OSC  
l
l
V
Buck Regulated Feedback Voltage  
Feedback Pin Input Bias Current  
PMOS Switch Maximum Peak Current (Note 6)  
PMOS Switch On-Resistance  
NMOS Switch On-Resistance  
SW Pin Pull-Down Resistance in Shutdown  
Soft-Start Time  
BUCKFB  
BUCKFB  
MAXP  
I
I
nA  
mA  
Ω
600  
800  
0.6  
0.7  
10  
1100  
R
R
R
P(BUCK)  
N(BUCK)  
PD(BUCK)  
SS(BUCK)  
Ω
kΩ  
ms  
t
0.6  
Each LDO Regulator  
l
l
V
LDO Regulated Feedback Voltage  
LDO Line Regulation (Note 7)  
LDO Load Regulation (Note 7)  
Feedback Pin Input Bias Current  
Short-Circuit Output Current (Note 6)  
Dropout Voltage (Note 8)  
LDO Output, I  
= 1mA to 150mA  
0.78  
0.8  
0.25  
–5  
0.82  
20  
V
mV/V  
μV/mA  
nA  
LDO  
LDO  
I
I
= 1mA, V = 2.5V to 5.5V  
LDO  
LDO  
IN  
= 1mA to 150mA  
I
LDO_FB  
420  
mA  
V
I
= 150mA  
IN  
IN  
DROP  
LDO  
V
V
= 3.6V  
= 2.5V  
150  
200  
200  
300  
mV  
mV  
t
Soft-Start Time  
0.1  
10  
ms  
kΩ  
SS(LDO)  
R
Output Pull-Down Resistance in Shutdown  
PD(LDO)  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperatures will exceed 125°C when overtemperature protection is  
active. Continuous operation above the specified maximum operating  
junction temperature may result in device degradation or failure.  
Note 5: PGOOD threshold is expressed as a percentage of the feedback  
regulation voltage. The threshold is measured for the feedback pin voltage  
rising.  
Note 6: The current limit features are intended to protect the IC from  
short term or intermittent fault conditions. Prolonged operation above  
the specified Absolute Maximum pin current rating may result in device  
degradation or failure.  
Note 7: Measured with the LDO running unity gain, with output tied to  
feedback pin.  
Note 3: The LTC3670 is guaranteed to meet performance specifications  
from 0°C to 85°C. Specifications over the –40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
Note 4: Dynamic supply current is higher due to the gate charge delivered  
to the buck regulator’s internal MOSFET switches at the switching  
frequency.  
Note 8: Dropout voltage is the minimum input to output voltage differential  
needed for an LDO to maintain regulation at a specified output current.  
When an LDO is in dropout, its output voltage will be equal to:  
V
IN  
– V  
DROP  
3670f  
3
LTC3670  
TYPICAL PERFORMANCE CHARACTERISTICS (TA = 25°C unless otherwise noted)  
Buck Regulated Feedback Voltage  
vs Temperature  
Regulated LDO Feedback Pin  
Voltage vs Temperature  
VIN Supply Current vs VIN  
820  
815  
810  
805  
800  
795  
790  
785  
780  
120  
100  
80  
60  
40  
20  
0
820  
815  
810  
805  
800  
795  
790  
785  
780  
UNITY GAIN, V  
(OUT)  
= V  
(BUCKFB)  
ALL THREE OUTPUTS ENABLED,  
NO LOAD  
UNITY GAIN, V  
(OUT)  
= V  
(OUT)  
(OUT) (LDO_FB)  
I
= 100mA  
I
= 0.1mA  
130°C  
90°C  
25°C  
V
= 5.5V  
IN  
V = 4.2V  
IN  
–45°C  
V
= 2.5V  
IN  
V
= 3.6V  
IN  
V
V
V
V
= 2.5V  
= 3.6V  
= 4.2V  
= 5.5V  
IN  
IN  
IN  
IN  
–10 10 30 50 70  
TEMPERATURE (˚C)  
130  
90 110  
–50 –30  
–10 10 30 50 70  
TEMPERATURE (˚C)  
130  
90 110  
2.5  
3.5  
4
4.5  
5
5.5  
–50 –30  
3
V
(V)  
IN  
3670 G02  
3670 G03  
3670 G01  
LDO Dropout vs Load Current  
at VIN = 2.5V  
Buck Load Regulation  
LDO Load Regulation  
820  
815  
810  
805  
800  
795  
790  
785  
780  
820  
815  
810  
805  
800  
795  
790  
785  
780  
300  
250  
200  
150  
100  
50  
V
= 2.5V  
V
= 3.6V  
V
= 3.6V  
IN  
IN  
IN  
130°C  
90°C  
25°C  
4C  
0
0
50  
75  
100  
125  
150  
25  
100 150 200 250 300  
400  
0
50  
75  
100  
125  
150  
0
50  
350  
25  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
3670 G04  
3670 G06  
3670 G05  
LDO Dropout vs Load Current  
at VIN = 3.6V  
Buck Oscillator Frequency  
vs Temperature  
LDO Short-Circuit Current vs VIN  
2.35  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
1.90  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
V
= 3.6V  
V
= 5.5V  
IN  
IN  
V
= 4.2V  
IN  
V
= 3.6V  
IN  
130°C  
4C  
V
= 2.5V  
IN  
90°C  
25°C  
45°C  
25°C  
90°C  
0
0
–10 10 30 50 70  
TEMPERATURE (˚C)  
130  
90 110  
–50 –30  
0
50  
75  
100  
125  
150  
25  
2.5  
3.5  
4
4.5  
5
5.5  
3
LOAD CURRENT (mA)  
V
(V)  
IN  
3670 G09  
3670 G07  
3670 G08  
3670f  
4
LTC3670  
TYPICAL PERFORMANCE CHARACTERISTICS (TA = 25°C unless otherwise noted)  
PMOS Switch Maximum Peak  
Current vs Temperature  
PGOOD Threshold at Any  
Feedback Pin  
Buck PMOS On-Resistance  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
V
= 5.5V  
IN  
90°C  
130°C  
25°C  
V
= 4.2V  
IN  
V
= 3.6V  
IN  
V
= 2.5V  
IN  
–45°C  
90°C  
130°C  
–45°C  
25°C  
–10 10 30 50 70  
130  
–50 –30  
90 110  
2.5  
3.5  
4
4.5  
5
5.5  
2.5  
3.5  
4
4.5  
5
5.5  
3
3
V
(V)  
V
(V)  
IN  
TEMPERATURE (˚C)  
IN  
3670 G1O  
3670 G11  
3670 G12  
PGOOD Pin Pull-Down Resistance  
Front Page Application Efficiency  
100  
95  
90  
85  
80  
75  
70  
65  
60  
80  
70  
60  
50  
40  
30  
20  
10  
0
FRONT PAGE APPLICATION CIRCUIT  
WITH ONLY THE BUCK ENABLED.  
PGOOD PIN SINKING 2mA  
INDUCTOR: COILCRAFT EPL2014-472ML  
V
= 1.2V  
OUT  
V
= 2.5V  
IN  
130°C  
90°C  
25°C  
V
V
= 3.6V  
= 5.5V  
IN  
IN  
–45°C  
1
100  
1000  
2.5  
3.5  
4
4.5  
5
5.5  
10  
3
LOAD CURRENT (mA)  
V
(V)  
IN  
3670 G14  
3670 G13  
3670f  
5
LTC3670  
PIN FUNCTIONS  
SW(Pin1):BuckRegulatorSwitchNodeConnectiontoIn-  
ductor.Thispinconnectstothedrainsofthebuckregulator’s  
main PMOS and synchronous NMOS switches.  
LDO2_FB (Pin 8): Feedback Voltage Input for the Second  
Low Dropout Linear Regulator (LDO2). Typically, an ex-  
ternal resistor divider feeds a fraction of the LDO2 output  
voltage to this pin.  
GND (Pin 2): Ground.  
LDO1_FB(Pin9):FeedbackVoltageInputfortheFirstLow  
Dropout Linear Regulator (LDO1). Typically, an external  
resistor divider feeds a fraction of the LDO1 output volt-  
age to this pin.  
ENLDO1 (Pin 3): Enables the First Low Dropout Linear  
Regulator (LDO1) When High. This is a MOS gate input.  
There is an internal 4MΩ pull-down.  
ENLDO2 (Pin 4): Enables the Second Low Dropout Linear  
Regulator (LDO2) When High. This is a MOS gate input.  
There is an internal 4MΩ pull-down.  
LDO1 (Pin 10): Output of the First Low Dropout Linear  
Regulator. This pin must be bypassed to ground with a  
1μF or greater ceramic capacitor.  
ENBUCK (Pin 5): Enables the Buck Converter When High.  
This is a MOS gate input. There is an internal 4MΩ pull-  
down.  
LDO2 (Pin 11): Output of the Second Low Dropout Linear  
Regulator. This pin must be bypassed to ground with a  
1μF or greater ceramic capacitor.  
BUCKFB (Pin 6): Feedback Voltage Input for the Buck  
Regulator. Typically, an external resistor divider feeds a  
fraction of the buck output voltage to this pin.  
V (Pin 12): Input Supply. This pin should be bypassed  
IN  
to ground with a 2.2μF or greater ceramic capacitor.  
Exposed Pad (Pin 13): Ground. This pin must be soldered  
to the PCB.  
PGOOD (Pin 7): Power Good Open-Drain NMOS Output.  
The PGOOD pin goes Hi-Z when all enabled outputs are  
within 8% of final value.  
BLOCK DIAGRAM  
V
IN  
12  
LDO1  
LDO2  
10  
11  
1
2
SW  
400mA BUCK  
ENABLE  
BUCK  
GND  
PGOOD  
7
2.25MHz  
OSC  
6
BUCKFB  
LDO2  
LDO1  
800mV  
3
4
5
ENLDO1  
ENLDO2  
ENBUCK  
REFERENCE  
LOGIC  
9
8
LDO1_FB  
LDO2_FB  
POWER GOOD  
COMPARATORS  
ENABLE_LDO2  
ENABLE_LDO1  
GND  
13  
3670 BD  
3670f  
6
LTC3670  
OPERATION  
INTRODUCTION  
2.25MHz cycle, or sooner, if the current through it drops  
to zero before the end of the cycle.  
The LTC3670 combines a synchronous buck converter  
with two low dropout linear regulators (LDOs) to provide  
three low voltage outputs from a higher voltage input  
source. The input supply range of 2.5V to 5.5V spans the  
single-cell Li-Ion operating range. Each output can be  
independently enabled or shut down via the three enable  
pins. The output regulation voltages are programmed by  
external resistor dividers.  
Throughthesemechanisms,theerroramplifieradjuststhe  
peak inductor current to deliver the required output power  
to regulate the output voltage as sensed by the BUCKFB  
pin.Allnecessarycontrol-loopcompensationisinternalto  
the step-down switching regulator requiring only a single  
ceramic output capacitor for stability.  
At light loads, the inductor current may reach zero before  
theendoftheoscillatorcycle,whichwillturnofftheNMOS  
synchronous rectifier. In this case, the SW pin goes high  
impedanceandwillshowdampedringing.Thisisknown  
as discontinuous operation and is normal behavior for a  
switching regulator.  
SYNCHRONOUS BUCK REGULATOR  
The synchronous buck includes many features: It uses a  
Constant-frequency current mode architecture, switching  
at 2.25MHz down to light loads. Automatic Burst Mode  
operation maintains efficiency in light load and no-load  
situations. Should the input voltage ever fall below the  
target output voltage, the buck enters 100% duty cycle  
operation. Also known as operating in dropout, this can  
extendoperatinglifeinbattery-poweredsystems.Soft-start  
circuitry limits inrush current when powering on. Output  
currentislimitedintheeventofanoutputshortcircuit.The  
switch node is slew-rate limited to reduce EMI radiation.  
Thebuckregulationcontrol-loopcompensationisinternal  
to the IC and requires no external components.  
Burst Mode Operation  
Atlightloadandno-loadconditions,thebuckautomatically  
switchestoapower-savinghystereticcontrolalgorithmthat  
operatestheswitchesintermittentlytominimizeswitching  
losses. Known as Burst Mode operation, the buck cycles  
the power switches enough times to charge the output  
capacitor to a voltage slightly higher than the regulation  
point.Thebuckthengoesintoareducedquiescentcurrent  
sleepmode.Inthisstate,powerlossisminimizedwhilethe  
load current is supplied by the output capacitor. Whenever  
theoutputvoltagedropsbelowapre-determinedvalue,the  
buck wakes from sleep and cycles the switches again until  
the output capacitor voltage is once again slightly above  
the regulation point. Sleep time thus depends on load cur-  
rent, because the load current determines the discharge  
rate of the output capacitor. Should load current increase  
above roughly 1/4 of the rated output load current, the  
buck resumes constant-frequency operation.  
Main Control Loop  
An error amplifier monitors the difference between an  
internal reference voltage and the voltage on the BUCKFB  
pin. When the BUCKFB voltage is below the reference, the  
erroramplifieroutputvoltageincreases.WhentheBUCKFB  
voltage exceeds the reference, the error amplifier output  
voltage decreases.  
Theerroramplifieroutputcontrolsthepeakinductorcurrent  
throughthefollowingmechanism:Pacedbyafree-running  
2.25MHz oscillator, the main P-channel MOSFET switch is  
turned on at the start of the oscillator cycle. Current flows  
Soft-Start  
Soft-startinthebuckregulatorisaccomplishedbygradually  
increasing the maximum allowed peak inductor current  
over a 600ꢀs period. This allows the output to rise slowly,  
controlling the inrush current required to charge up the  
output capacitor. A soft-start cycle occurs whenever the  
LTC3670 is enabled, or after a fault condition has occurred  
(thermal shutdown or UVLO).  
from the V supply through this PMOS switch, through  
IN  
the inductor via the SW pin, and into the output capacitor  
and load. When the current reaches the level programmed  
by the output of the error amplifier, the PMOS is shut off,  
and the N-channel MOSFET synchronous rectifier turns  
on. Energy stored in the inductor discharges into the load  
through this NMOS. The NMOS turns off at the end of the  
3670f  
7
LTC3670  
OPERATION  
Switch Slew-Rate Control  
Each LDO can be enabled or disabled via its own enable  
pin. When disabled with V still applied, an internal  
IN  
The buck regulator contains new patent-pending circuitry  
to limit the slew rate of the switch node (SW pin). This  
new circuitry is designed to transition the switch node  
over a period of a couple nanoseconds, significantly  
reducing radiated EMI and conducted supply noise while  
maintaining high efficiency.  
pull-down resistor is switched in to help bring the output  
to ground. When an LDO is enabled, a soft-start circuit  
ramps its regulation point from zero to final value over a  
period of roughly 0.1ms, reducing the required V inrush  
IN  
current.  
LOW V SUPPLY UNDERVOLTAGE LOCKOUT  
IN  
LOW DROPOUT LINEAR REGULATORS (LDOs)  
An undervoltage lockout (UVLO) circuit shuts down the  
The LTC3670 contains two independent LDO regulators,  
each supporting a load of up to 150mA. Each LDO takes  
LTC3670 when V drops below about 2.2V.  
IN  
power from the V pin and drives its output pin with the  
IN  
POWER GOOD DETECTION  
goal of bringing its feedback pin voltage to 0.8V. In the  
usual case, a resistor divider is connected between the  
LDO’s output pin, feedback pin and ground, in order to  
close the control loop and program the output voltage. For  
stability, each LDO output must be bypassed to ground  
with a minimum 1μF ceramic capacitor.  
The LTC3670 has a built-in supply monitor. If the feedback  
voltage of every enabled regulator is above 92% of its  
regulationvalue,thePGOODpinbecomeshighimpedance.  
Otherwise, or if no regulators are enabled, the PGOOD pin  
is driven to ground by an internal open-drain NMOS.  
The PGOOD pin may be connected through a pull-up  
resistor to a supply voltage of up to 5.5V, independent of  
the V pin voltage.  
IN  
3670f  
8
LTC3670  
APPLICATIONS INFORMATION  
Buck Regulator Inductor Selection  
Differentcorematerialsandshapeswillchangethesize/cur-  
rent and price/current relationship of an inductor. Toroid  
or shielded pot cores in ferrite or Permalloy materials  
are small and do not radiate much energy, but generally  
cost more than powdered iron core inductors with similar  
electrical characteristics. Inductors that are very thin or  
have a very small volume typically have much higher core  
and DCR losses, and will not give the best efficiency. The  
choice of which style inductor to use often depends more  
on the price vs size, performance, and any radiated EMI  
requirements than on what the buck regulator needs to  
operate.  
Many different sizes and shapes of inductors are avail-  
able from numerous manufacturers. Choosing the right  
inductor from such a large selection of devices can be  
overwhelming, but following a few basic guidelines will  
make the selection process much simpler.  
The buck regulator is designed to work with inductors in  
the range of 2.2μH to 10μH. A 4.7μH inductor is a good  
starting point. Larger value inductors reduce ripple cur-  
rent which improves output ripple voltage. Lower value  
inductors result in higher ripple current and improved  
transient response time. To maximize efficiency, choose  
an inductor with a low DC resistance. Choose an inductor  
with a DC current rating at least 1.5 times larger than the  
maximumloadcurrenttoensurethattheinductordoesnot  
saturate during normal operation. If output short-circuit  
is a possible condition, the inductor should be rated to  
handle the maximum peak current specified for the buck  
regulator.  
Table 1 shows several inductors that work well with the  
buck regulator. These inductors offer a good compromise  
in current rating, DCR and physical size. Consult each  
manufacturer for detailed information on their entire  
selection of inductors.  
Table 1. Recommended Inductors for the Buck Regulator  
L
(μH)  
MAXIMUM I  
(A)  
MAXIMUM DCR  
SIZE in mm  
(L × W × H)  
DC  
INDUCTOR TYPE  
(Ω)  
MANUFACTURER  
EPL2014-472ML  
4.7  
1.3  
0.254  
Coilcraft  
1.8 × 2.0 × 1.4  
www.coilcraft.com  
LPS3015  
DE2818C  
DE2812C  
4.7  
3.3  
1.1  
1.3  
0.2  
0.13  
3.0 × 3.0 × 1.5  
3.0 × 3.0 × 1.5  
4.7  
3.3  
1.25  
1.45  
0.072  
0.053  
Toko  
www.toko.com  
3.0 × 2.8 × 1.8  
3.0 × 2.8 × 1.8  
4.7  
3.3  
1.15  
1.37  
0.13*  
0.105*  
3.0 × 2.8 × 1.2  
3.0 × 2.8 × 1.2  
CDRH3D16  
CDRH2D11  
4.7  
0.9  
0.11  
Sumida  
www.sumida.com  
4.0 × 4.0 × 1.8  
4.7  
3.3  
0.5  
0.6  
0.17  
0.123  
3.2 × 3.2 × 1.2  
3.2 × 3.2 × 1.2  
SD3118  
4.7  
3.3  
1.3  
1.59  
0.162  
0.113  
Cooper  
www.cooperet.com  
3.1 × 3.1 × 1.8  
3.1 × 3.1 × 1.8  
*Typical DCR  
3670f  
9
LTC3670  
APPLICATIONS INFORMATION  
Input/Output Capacitor Selection  
The output voltage of the buck regulator is determined by  
R1 and R2, following the equation:  
LowESR(equivalentseriesresistance)ceramiccapacitors  
should be used to bypass the following pins to ground:  
R2  
R1  
VOUT(BUCK) = 1+  
• 0.8V  
V , the buck output, LDO1 and LDO2. Only X5R or X7R  
IN  
ceramic capacitors should be used because they retain  
their capacitance over wider voltage and temperature  
ranges than other ceramic types. A 10ꢀF output capaci-  
tor is sufficient for the buck regulator output. For good  
transient response and stability the output capacitor for  
thebuckregulatorshouldretainatleast4Fofcapacitance  
An LDO’s output voltage is similarly determined by R3  
and R4, following:  
R4  
R3  
VOUT(LDO) = 1+  
• 0.8V  
over operating temperature and bias voltage. The V pin  
IN  
Typical values for R2 and R4 are in the range from 40k  
to 1M.  
should be bypassed with a 2.2ꢀF capacitor. The LDO1  
and LDO2 output pins should each be bypassed with a  
1μF capacitor or greater. Larger values yield improved  
transient response.  
Forimprovedbuckregulatortransientresponse,thecapaci-  
tor C cancels the pole created by the feedback resistors  
FB  
and the input capacitance of the BUCKFB pin. A variety of  
Consult with capacitor manufacturers for detailed infor-  
mation and specifications on their selection of ceramic  
capacitors.Manymanufacturersnowofferverythin(<1mm  
tall) ceramic capacitors ideal for use in height-restricted  
designs. Table 2 shows a list of several ceramic capacitor  
manufacturers.  
capacitor sizes can be used for C , but a value of 10pF  
FB  
is recommended for most applications. Experimentation  
with capacitor sizes between 2pF and 22pF may yield  
improved transient response.  
Printed Circuit Board Layout Considerations  
Table 2. Ceramic Capacitor Manufacturers  
When laying out the printed circuit board, the following  
list should be followed to ensure proper operation of the  
LTC3670:  
AVX  
www.avxcorp.com  
www.murata.com  
www.t-yuden.com  
www.vishay.com  
www.tdk.com  
Murata  
Taiyo Yuden  
Vishay Siliconix  
TDK  
1) TheExposedPadofthepackageshouldconnectdirectly  
to a large ground plane to minimize thermal and electri-  
cal impedance.  
Output Voltage Programming  
2) The connection from the input supply pin (V ) to its  
IN  
decoupling capacitor should be kept as short as pos-  
Figure 1 shows how feedback resistor dividers are con-  
nected to the LTC3670 to set the output voltages of the  
buck and an LDO.  
sible. The GND side of this capacitor should connect  
directlytothegroundplaneofthepart.TheV capacitor  
IN  
provides the AC current to the buck regulator’s power  
MOSFETs and their drivers. It is especially important  
to minimize PCB trace inductance from this capacitor  
V
SW  
OUT(BUCK)  
R2  
R1  
C
FB  
BUCKFB  
to the V and GND pins of the LTC3670.  
IN  
LTC3670  
3) TheswitchingpowertraceconnectingtheSWpintothe  
inductor should be kept as short as possible to reduce  
radiated EMI and parasitic coupling.  
LDO  
V
OUT(LDO)  
R4  
LDO_FB  
3670 F01  
R3  
4) The LDO output capacitors should be placed as close to  
the IC as possible, and connected to the LDO outputs  
and the GND pin as directly as possible.  
Figure 1. Setting the Output Voltages of the LTC3670  
3670f  
10  
LTC3670  
PACKAGE DESCRIPTION  
DDB Package  
12-Lead Plastic DFN (3mm × 2mm)  
(Reference LTC DWG # 05-08-1723 Rev Ø)  
0.64 0.05  
(2 SIDES)  
0.70 0.05  
2.55 0.05  
1.15 0.05  
PACKAGE  
OUTLINE  
0.25 0.05  
0.45 BSC  
2.39 0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.115  
TYP  
7
0.40 0.10  
12  
3.00 0.10  
(2 SIDES)  
R = 0.05  
TYP  
2.00 0.10  
(2 SIDES)  
PIN 1 BAR  
TOP MARK  
PIN 1  
R = 0.20 OR  
(SEE NOTE 6)  
0.25 s 45°  
0.64 0.10  
(2 SIDES)  
CHAMFER  
6
1
(DDB12) DFN 0106 REV Ø  
0.23 0.05  
0.75 0.05  
0.200 REF  
0.45 BSC  
2.39 0.10  
(2 SIDES)  
0 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
3670f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
11  
LTC3670  
TYPICAL APPLICATION  
Start-Up Transient  
LTC3670 with More Output Capacitance for  
1V  
0V  
Improved Transient Response  
ALL ENABLE  
PINS  
V
IN  
2.5V TO 5.5V  
V
OUT3  
V
V
OUT2  
OUTPUT  
VOLTAGES  
500mV/DIV  
10μF  
V
IN  
4.7μH  
V
OUT1  
OUT1  
1.2V  
GND  
SW  
400mA  
232k  
464k  
10pF  
10μF  
4.7μF  
4.7μF  
BUCKFB  
3670 TA03  
50μs/DIV  
LTC3670  
V
V
= 3.6V Li-Ion CELL, 10mA RESISTIVE LOAD ON EACH OUTPUT  
OUT2  
IN  
ENBUCK  
ENLDO1  
ENLDO2  
PGOOD  
1.8V  
LDO1  
DIGITAL  
CONTROL  
150mA  
1.00M  
806k  
Load Transient Response  
LDO1_FB  
100mA  
10mA  
V
, V  
OUT1 OUT2  
AND V  
OUT3  
LOAD CURRENT  
V
OUT3  
2.5V  
LDO2  
150mA  
V
V
V
OUT1  
OUT2  
OUT3  
590k  
LDO2_FB  
50mV/DIV  
AC COUPLED  
280k  
3670 TA02  
3670 TA04  
20μs/DIV  
= 3.6V Li-Ion CELL, SIMULTANEOUS LOAD TRANSIENT ALL OUTPUTS  
V
IN  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
95% Efficiency, V : 2.5V to 5.5V, V  
LTC3405/LTC3405A  
300mA I , 1.5MHz, Synchronous Step-Down DC/DC  
= 0.8V, I = 20μA,  
Q
OUT  
IN  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
Converter  
I
<1μA, ThinSOT Package  
SD  
LTC3406/LTC3406B  
LTC3407/LTC3407-2  
LTC3410/LTC3410B  
LTC3411  
600mA I , 1.5MHz, Synchronous Step-Down DC/DC  
96% Efficiency, V : 2.5V to 5.5V, V  
= 0.6V, I = 20μA,  
Q
OUT  
Converter  
IN  
I
<1μA, ThinSOT Package  
SD  
Dual 600mA/800mA I , 1.5MHz/2.25MHz, Synchronous 95% Efficiency, V : 2.5V to 5.5V, V  
= 0.6V, I = 40μA,  
Q
OUT  
IN  
Step-Down DC/DC Converter  
I
<1μA, MS10E Package  
SD  
300mA I , 2.25MHz, Synchronous Step-Down DC/DC  
96% Efficiency, V : 2.5V to 5.5V, V  
= 0.8V, I = 26μA,  
Q
OUT  
IN  
Converter  
I
<1μA, SC70 Package  
SD  
1.25A I , 4MHz, Synchronous Step-Down DC/DC  
95% Efficiency, V : 2.5V to 5.5V, V  
= 0.8V, I = 60μA,  
Q
OUT  
IN  
Converter  
I
<1μA, MS10 Package  
SD  
2
LTC3445  
I C Controllable 600mA Synchronous Buck Regulator with 95% Efficiency, V : 2.5V to 5.5V, V  
= 0.85V, I = 360μA,  
Q
IN  
Two 50mA LDOs in a 4mm × 4mm QFN  
I
<27μA, 4mm × 4mm QFN Package  
SD  
LTC3446  
Synchronous 1A, 2.25MHz Step-Down DC/DC Regulator  
with Dual VLDOs  
95% Efficiency, V : 2.7V to 5.5V, V  
= 0.4V, I = 140μA,  
Q
IN  
I
SD  
<1μA, 3mm × 4mm DFN Package  
LTC3448  
600A I , 1.5MHz/2.25MHz, Synchronous  
95% Efficiency, V : 2.5V to 5.5V, V  
= 0.6V, I = 32μA,  
Q
OUT  
IN  
Step-Down DC/DC Converter with LDO Mode  
I
SD  
<1μA, MS10, DFN Packages  
LTC3541/LTC3541-1/ Synchronous 500mA, 2.25MHz Step-Down DC/DC  
LTC3541-2/LTC3541-3 Regulator with a 300mA VLDO in a 3mm × 3mm DFN  
95% Efficiency, V : 2.7V to 5.5V, V  
= 0.4V, I = 85μA,  
Q
IN  
I
SD  
<1μA, 3mm × 3mm DFN Package  
LTC3547  
Dual 300mA I , 2.25MHz, Synchronous Step-Down  
95% Efficiency, V : 2.5V to 5.5V, V  
= 0.6V, I = 40μA,  
Q
OUT  
IN  
DC/DC Converter  
I
SD  
<1μA, DFN-8 Package  
LTC3548/LTC3548-1/ Dual 800mA/400mA I , 2.25MHz, Synchronous Step-  
LTC3548-2  
95% Efficiency, V : 2.5V to 5.5V, V  
= 0.6V, I = 40μA,  
Q
OUT  
IN  
Down DC/DC Converter  
I
SD  
<1μA, MS10, DFN Packages  
LTC3672B-1/  
LTC3672B-2  
Monolithic Fixed-Output 400mA Buck Regulator with Dual 95% Efficiency, V : 2.9V to 5.5V, I = 260μA,  
IN Q  
150mA LDOs in a 2mm × 2mm DFN  
LTC3672B-1: Buckout = 1.8V, LDO1 = 1.2V, LDO2 = 2.8V  
LTC3672B-2: Buckout = 1.2V, LDO1 = 2.8V, LDO2 = 1.8V  
3670f  
LT 0108 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC3670EDDB#TRMPBF

LTC3670 - Monolithic 400mA Buck Regulator with Dual 150mA LDOs in 3mm x 2mm DFN; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3670EDDB#TRPBF

LTC3670 - Monolithic 400mA Buck Regulator with Dual 150mA LDOs in 3mm x 2mm DFN; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3670EDDB-PBF

Monolithic 400mA Buck Regulator with Dual 150mA LDOs in 3mm × 2mm DFN
Linear

LTC3670EDDB-TRPBF

Monolithic 400mA Buck Regulator with Dual 150mA LDOs in 3mm × 2mm DFN
Linear

LTC3672B-1

Monolithic Fixed-Output 400mA Buck Regulator with Dual 150mA LDOs in 2mm × 2mm DFN
Linear

LTC3672B-2

Monolithic Fixed-Output 400mA Buck Regulator with Dual 150mA LDOs in 2mm × 2mm DFN
Linear

LTC3672BEDC-1-PBF

Monolithic Fixed-Output 400mA Buck Regulator with Dual 150mA LDOs in 2mm × 2mm DFN
Linear

LTC3672BEDC-1-TRPBF

Monolithic Fixed-Output 400mA Buck Regulator with Dual 150mA LDOs in 2mm × 2mm DFN
Linear

LTC3672BEDC-2#TRPBF

LTC3672B-2 - Monolithic Fixed-Output 400mA Buck Regulator with Dual 150mA LDOs in 2mm x 2mm DFN; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3672BEDC-2-PBF

Monolithic Fixed-Output 400mA Buck Regulator with Dual 150mA LDOs in 2mm × 2mm DFN
Linear

LTC3672BEDC-2-TRPBF

Monolithic Fixed-Output 400mA Buck Regulator with Dual 150mA LDOs in 2mm × 2mm DFN
Linear

LTC3675

7-Channel Confi gurable High Power PMIC
Linear