LTC3857EUHPBF [Linear]

Low IQ, Dual, 2-Phase Synchronous Step-Down Controller; 低IQ ,双通道,两相同步降压型控制器
LTC3857EUHPBF
型号: LTC3857EUHPBF
厂家: Linear    Linear
描述:

Low IQ, Dual, 2-Phase Synchronous Step-Down Controller
低IQ ,双通道,两相同步降压型控制器

控制器
文件: 总38页 (文件大小:524K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3857  
Low I , Dual, 2-Phase  
Q
Synchronous Step-Down  
Controller  
FeaTures  
DescripTion  
Theꢀ LTC®3857ꢀ isꢀ aꢀ highꢀ performanceꢀ dualꢀ step-downꢀ  
switchingregulatorcontrollerthatdrivesallN-channelꢀ  
synchronouspowerMOSFETstages.Aconstantfrequencyꢀ  
currentmodearchitectureallowsaphase-lockablefre-  
quencyꢀofꢀupꢀtoꢀ850kHz.ꢀPowerꢀlossꢀandꢀnoiseꢀdueꢀtoꢀtheꢀ  
ESRoftheinputcapacitorESRareminimizedbyoperatingꢀ  
theꢀtwoꢀcontrollerꢀoutputꢀstagesꢀoutꢀofꢀphase.  
n
Low Operating I : 50µA (One Channel On)  
Q
n
n
n
n
Wide Output Voltage Range: 0.8V ≤ V  
≤ 24V  
OUT  
Wide V Range: 4V to 38V (40V Abs Max)  
IN  
R  
or DCR Current Sensing  
SENSE  
ꢀ Out-of-PhaseꢀControllersꢀReduceꢀRequiredꢀInputꢀ  
CapacitanceꢀandꢀPowerꢀSupplyꢀInducedꢀNoise  
®
n
n
n
n
ꢀ OPTI-LOOP ꢀCompensationꢀMinimizesꢀC  
OUT  
ꢀ Phase-LockableꢀFrequencyꢀ(75kHz-850kHz)  
ꢀ ProgrammableꢀFixedꢀFrequencyꢀ(50kHz-900kHz)  
ꢀ SelectableꢀContinuous,ꢀPulse-SkippingꢀorꢀLowꢀRippleꢀ  
BurstꢀMode®ꢀOperationꢀatꢀLightꢀLoads  
Theꢀ50μAꢀno-loadꢀquiescentꢀcurrentꢀextendsꢀoperatingꢀrunꢀ  
timeꢀinꢀbattery-poweredꢀsystems.ꢀTheꢀLTC3857ꢀfeaturesꢀaꢀ  
precision0.8Vreferenceandpowergoodoutputindicators.Aꢀ  
wide4Vto38Vinputsupplyrangeencompassesawiderangeꢀ  
ofꢀintermediateꢀbusꢀvoltagesꢀandꢀbatteryꢀchemistries.  
n
n
n
n
n
n
n
n
n
ꢀ SelectableꢀCurrentꢀLimit  
ꢀ VeryꢀLowꢀDropoutꢀOperation:ꢀ99%ꢀDutyꢀCycle  
ꢀ AdjustableꢀOutputꢀVoltageꢀSoft-StartꢀorꢀTracking  
ꢀ PowerꢀGoodꢀOutputꢀVoltageꢀMonitors  
ꢀ OutputꢀOvervoltageꢀProtection  
IndependentꢀTRACK/SSꢀpinsꢀforꢀeachꢀcontrollerꢀrampꢀtheꢀ  
outputꢀvoltagesꢀduringꢀstart-up.ꢀCurrentꢀfoldbackꢀlimitsꢀ  
MOSFETꢀheatꢀdissipationꢀduringꢀshort-circuitꢀconditions.ꢀ  
TheꢀPLLIN/MODEꢀpinꢀselectsꢀamongꢀBurstꢀModeꢀopera-  
tion,pulse-skippingmode,orcontinuousinductorcurrentꢀ  
modeꢀatꢀlightꢀloads.ꢀ  
ꢀ LowꢀShutdownꢀI ꢀ:ꢀ<8µA  
Q
ꢀ InternalꢀLDOꢀPowersꢀGateꢀDriveꢀfromꢀV ꢀorꢀEXTV  
IN  
CC  
ꢀ NoꢀCurrentꢀFoldbackꢀDuringꢀStart-up  
ꢀ SmallꢀLowꢀProfileꢀ(0.75mm)ꢀ5mmꢀ×ꢀ5mmꢀQFNꢀPackage  
Forꢀaꢀleadedꢀ28-leadꢀSSOPꢀpackageꢀwithꢀaꢀfixedꢀcurrentꢀ  
limitꢀandꢀoneꢀPGOODꢀoutput,ꢀwithoutꢀphaseꢀmodulationꢀ  
orꢀaꢀclockꢀoutput,ꢀseeꢀtheꢀLTC3857-1ꢀdataꢀsheet.  
applicaTions  
n
ꢀ AutomotiveꢀAlways-OnꢀSystems  
L,ꢀLT,LTC,ꢀLTM,ꢀBurstꢀMode,ꢀOPTI-LOOP,ꢀPolyPhase,ꢀµModule,ꢀLinearꢀTechnologyꢀandꢀtheꢀ  
LinearꢀlogoꢀareꢀregisteredꢀtrademarksꢀandꢀNoꢀR  
ꢀandꢀUltraFastꢀareꢀtrademarksꢀofꢀLinearꢀ  
SENSE  
n
ꢀ BatteryꢀOperatedꢀDigitalꢀDevices  
TechnologyꢀCorporation.ꢀAllꢀotherꢀtrademarksꢀareꢀtheꢀpropertyꢀofꢀtheirꢀrespectiveꢀowners.ꢀ  
ProtectedꢀbyꢀU.S.ꢀPatents,ꢀincludingꢀ5481178,ꢀ5929620,ꢀ6177787,ꢀ6144194,ꢀ5408150,ꢀ  
6580258,ꢀ5705919,ꢀ6100678.  
n
ꢀ DistributedꢀDCꢀPowerꢀSystems  
Typical applicaTion  
Efficiency and Power Loss  
High Efficiency Dual 3.3V/8.5V Step-Down Converter  
V
IN  
vs Output Current  
9V TO 38V  
22µF  
50V  
100  
90  
10000  
1000  
100  
10  
4.7µF  
V
V
= 12V  
IN  
OUT  
V
INTV  
CC  
IN  
= 3.3V  
TG1  
TG2  
FIGURE 13 CIRCUIT  
80  
0.1µF  
0.1µF  
BOOST1  
SW1  
BOOST2  
SW2  
3.3µH  
7.2µH  
70  
60  
50  
BG1  
BG2  
LTC3857  
PGND  
40  
30  
20  
10  
0
+
+
SENSE1  
SENSE2  
0.010Ω  
193k  
0.007Ω  
1
V
SENSE2  
OUT2  
SENSE1  
FB1  
V
OUT1  
3.3V  
5A  
8.5V  
3.5A  
V
V
I
FB2  
0.1  
62.5k  
I
0.000010.0001 0.001 0.01  
0.1  
1
10  
TH1  
TH2  
150µF  
680pF  
15k  
680pF  
15k  
150µF  
OUTPUT CURRENT (A)  
TRACK/SS1 SGND TRACK/SS2  
0.1µF  
20k  
3857 TA01b  
20k  
0.1µF  
3857 TA01  
3857fa  
                                  
RUN1,ꢀRUN2................................................ –0.3Vꢀtoꢀ8V  
               
SENSE2 ꢀVoltages  
                   
...................................... –0.3Vꢀtoꢀ28V  
EXTV ꢀ...................................................... –0.3Vꢀtoꢀ14V  
            
                             
           
                         
ꢀ BOOST1,ꢀBOOST2ꢀꢀ................................ –0.3Vꢀtoꢀ46V  
                     
LTC3857  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Note 1)  
TOP VIEW  
InputꢀSupplyꢀVoltageꢀ(V )......................... –0.3Vꢀtoꢀ40V  
IN  
TopsideꢀDriverꢀVoltagesꢀ  
SwitchꢀVoltageꢀ(SW1,ꢀSW2)ꢀꢀ........................ –5Vꢀtoꢀ40V  
(BOOST1-SW1),ꢀ(BOOST2-SW2),ꢀINTV ꢀ... –0.3Vꢀtoꢀ6V  
32 31 30 29 28 27 26 25  
SENSE1  
FREQ  
1
2
3
4
5
6
7
8
24 BOOST1  
23 BG1  
CC  
PHASMD  
CLKOUT  
PLLIN/MODE  
SGND  
V
IN  
22  
21  
ꢀ MaximumꢀCurrentꢀSourcedꢀintoꢀPinꢀ  
PGND  
33  
SGND  
ꢀ fromꢀSourceꢀ>8V...............................................100µA  
20 EXTV  
CC  
CC  
+
+
SENSE1 ,ꢀSENSE2 ,ꢀSENSE1  
INTV  
19  
18 BG2  
17 BOOST2  
RUN1  
PLLIN/MODE,ꢀFREQꢀVoltagesꢀꢀ.............. –0.3VꢀtoꢀINTV  
RUN2  
CC  
CC  
9
10 11 12 13 14 15 16  
I
,ꢀPHASMDꢀVoltagesꢀꢀ....................... –0.3VꢀtoꢀINTV  
LIM  
CC  
I
,ꢀI ,V ,ꢀV ꢀVoltagesꢀ...................... –0.3Vꢀtoꢀ6V  
TH1 TH2 FB1 FB2  
PGOOD1,ꢀPGOOD2ꢀVoltagesꢀ....................... –0.3Vꢀtoꢀ6V  
TRACK/SS1,ꢀTRACK/SS2ꢀVoltagesꢀ.............. –0.3Vꢀtoꢀ6V  
OperatingꢀJunctionꢀTemperatureꢀRangeꢀ  
(Noteꢀ2................................................... –40°Cꢀtoꢀ125°C  
MaximumꢀJunctionꢀTemperatureꢀ(Noteꢀ3)ꢀ............ 125°C  
StorageꢀTemperatureꢀRange................... –65°Cꢀtoꢀ150°C  
UH PACKAGE  
32-LEAD (5mm s 5mm) PLASTIC QFN  
T
ꢀ=ꢀ125°C,ꢀθ ꢀ=ꢀ34°C/W  
JMAX JA  
EXPOSEDꢀPADꢀ(PINꢀ33)ꢀISꢀSGND,ꢀMUSTꢀBEꢀSOLDEREDꢀTOꢀPCB  
orDer inForMaTion  
LEAD FREE FINISH  
LTC3857EUH#PBF  
LTC3857IUH#PBF  
TAPE AND REEL  
PART MARKING*  
3857  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°Cꢀtoꢀ125°C  
LTC3857EUH#TRPBF  
LTC3857IUH#TRPBF  
32-Leadꢀ(5mmꢀ×ꢀ5mm)ꢀPlasticꢀQFN  
32-Leadꢀ(5mmꢀ×ꢀ5mm)ꢀPlasticꢀQFN  
3857  
–40°Cꢀtoꢀ125°C  
ConsultꢀLTCꢀMarketingꢀforꢀpartsꢀspecifiedꢀwithꢀwiderꢀoperatingꢀtemperatureꢀranges.ꢀꢀ*Theꢀtemperatureꢀgradeꢀisꢀidentifiedꢀbyꢀaꢀlabelꢀonꢀtheꢀshippingꢀcontainer.  
ConsultꢀLTCꢀMarketingꢀforꢀinformationꢀonꢀnon-standardꢀleadꢀbasedꢀfinishꢀparts.  
Forꢀmoreꢀinformationꢀonꢀleadꢀfreeꢀpartꢀmarking,ꢀgoꢀto:ꢀhttp://www.linear.com/leadfree/ꢀꢀ  
Forꢀmoreꢀinformationꢀonꢀtapeꢀandꢀreelꢀspecifications,ꢀgoꢀto:ꢀhttp://www.linear.com/tapeandreel/  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
junction temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, VRUN1,2 = 5V, EXTVCC = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
InputꢀSupplyꢀOperatingꢀVoltageꢀRange  
RegulatedꢀFeedbackꢀVoltage  
4
38  
V
IN  
(Noteꢀ4)ꢀI  
ꢀVoltageꢀ=ꢀ1.2Vꢀ  
TH1,2  
FB1,2  
l
–40°Cꢀtoꢀ125°Cꢀ  
–40°Cꢀtoꢀ85°C  
0.788ꢀ  
0.792  
0.800ꢀ  
0.800  
0.812ꢀ  
0.808  
Vꢀ  
V
I
FeedbackꢀCurrent  
(Noteꢀ4)  
5
50  
nA  
FB1,2  
V
ReferenceꢀVoltageꢀLineꢀRegulation  
(Noteꢀ4)ꢀV ꢀ=ꢀ4.5Vꢀtoꢀ38V  
0.002  
0.02  
%/V  
REFLNREG  
IN  
3857fa  
LTC3857  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
junction temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, VRUN1,2 = 5V, EXTVCC = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OutputꢀVoltageꢀLoadꢀRegulation  
(Note4)ꢀ  
LOADREG  
l
l
MeasuredꢀinꢀServoꢀLoop,ꢀꢀ  
0.01  
0.1  
%
I ꢀVoltageꢀ=ꢀ1.2Vꢀtoꢀ0.7V  
TH  
(Note4)ꢀ  
%
MeasuredꢀinꢀServoꢀLoop,ꢀꢀ  
–0.01  
–0.1  
I ꢀVoltageꢀ=ꢀ1.2Vꢀtoꢀ2V  
TH  
g
TransconductanceꢀAmplifierꢀg  
InputꢀDCꢀSupplyꢀCurrent  
(Noteꢀ4)ꢀI  
ꢀ=ꢀ1.2V,ꢀSink/Sourceꢀ=ꢀ5µA  
TH1,2  
2
mmho  
mA  
m1,2  
m
I
Q
(Noteꢀ5)  
Pulse-SkippingꢀorꢀForcedꢀContinuousꢀ  
Modeꢀ(OneꢀChannelꢀOn)  
RUN1ꢀ=ꢀ5VꢀandꢀRUN2ꢀ=ꢀ0Vꢀorꢀꢀ  
RUN1ꢀ=ꢀ0VꢀandꢀRUN2ꢀ=ꢀ5V,ꢀꢀ  
1.3  
V
ꢀ=ꢀ0.83Vꢀ(NoꢀLoad)  
FB1  
Pulse-SkippingꢀorꢀForcedꢀContinuousꢀ  
Modeꢀ(BothꢀChannelsꢀOn)  
RUN1,2ꢀ=ꢀ5V,ꢀV  
ꢀ=ꢀ0.83Vꢀ(NoꢀLoad)  
2
mA  
µA  
FB1,2  
SleepꢀModeꢀ(OneꢀChannelꢀOn)  
RUN1ꢀ=ꢀ5VꢀandꢀRUN2ꢀ=ꢀ0Vꢀorꢀꢀ  
RUN1ꢀ=ꢀ0VꢀandꢀRUN2ꢀ=ꢀ5V,ꢀꢀ  
50  
75  
V
ꢀ=ꢀ0.83Vꢀ(NoꢀLoad)  
FB1  
SleepꢀModeꢀ(BothꢀChannelsꢀOn)  
Shutdown  
RUN1,2ꢀ=ꢀ5V,ꢀV  
RUN1,2ꢀ=ꢀ0V  
ꢀ=ꢀ0.83Vꢀ(NoꢀLoad)  
FB1,2  
65  
8
120  
20  
µA  
µA  
l
l
UVLO  
UndervoltageꢀLockout  
INTV ꢀRampingꢀUpꢀ  
4.0ꢀ  
3.8  
4.2ꢀ  
4
Vꢀ  
V
CC  
INTV ꢀRampingꢀDown  
3.6  
CC  
V
FeedbackꢀOvervoltageꢀProtection  
MeasuredꢀatꢀV  
EachꢀChannel  
,ꢀRelativeꢀtoꢀRegulatedꢀV  
FB1,2  
7
10  
13  
1
%
OVL  
FB1,2  
+
+
I
I
SENSE ꢀPinꢀCurrent  
µA  
SENSE  
SENSE  
SENSE ꢀPinsꢀCurrent  
EachꢀChannelꢀ  
µAꢀ  
µA  
V
V
ꢀ<ꢀINTV ꢀ–ꢀ0.5Vꢀ  
1ꢀ  
SENSE  
SENSE  
CC  
CC  
ꢀ>ꢀINTV ꢀ+ꢀ0.5V  
550  
700  
DF  
MaximumꢀDutyꢀFactor  
Soft-StartꢀChargeꢀCurrent  
RUNꢀPinꢀOnꢀThreshold  
InꢀDropout,ꢀFREQꢀ=ꢀ0V  
ꢀ=ꢀ0V  
98  
0.7  
99.4  
1
%
µA  
V
MAX  
I
V
1.4  
TRACK/SS1,2  
TRACK1,2  
l
V
V
V
ꢀOn  
V
,ꢀV ꢀRising  
RUN1 RUN2  
1.21  
1.26  
50  
1.31  
RUN1,2  
RUN1,2  
ꢀHyst RUNꢀPinꢀHysteresis  
mV  
l
l
l
MaximumꢀCurrentꢀSenseꢀThreshold  
V
FB1,2  
V
FB1,2  
V
FB1,2  
ꢀ=ꢀ0.7V,ꢀV  
ꢀ=ꢀ0.7V,ꢀV  
ꢀ=ꢀ0.7V,ꢀV  
–, –ꢀ=ꢀ3.3V,ꢀI ꢀ=ꢀ0ꢀ  
22ꢀ  
43ꢀ  
64  
30ꢀ  
50ꢀ  
75  
36ꢀ  
57ꢀ  
85  
mVꢀ  
mVꢀ  
mV  
SENSE(MAX)  
SENSE1  
SENSE1  
SENSE1  
2
2
2
LIM  
LIM  
LIM  
–, –ꢀ=ꢀ3.3V,ꢀI ꢀ=ꢀFLOATꢀ  
–, –ꢀ=ꢀ3.3V,ꢀI ꢀ=ꢀINTV  
CC  
Gate Driver  
TG1,2  
Pull-UpꢀOn-Resistanceꢀ  
Pull-DownꢀOn-Resistance  
2.5ꢀ  
1.5  
Ωꢀ  
Ω
BG1,2  
Pull-UpꢀOn-Resistanceꢀ  
Pull-DownꢀOn-Resistance  
2.4ꢀ  
1.1  
Ωꢀ  
Ω
TGꢀTransistionꢀTime:ꢀ  
ꢀꢀꢀRiseꢀTimeꢀ  
ꢀꢀꢀFallꢀTime  
(Noteꢀ6)ꢀ  
nsꢀ  
ns  
TG1,2ꢀt ꢀ  
C
C
ꢀ=ꢀ3300pFꢀ  
25ꢀ  
16  
r
LOAD  
LOAD  
TG1,2ꢀt  
ꢀ=ꢀ3300pF  
f
BGꢀTransistionꢀTime:ꢀ  
ꢀꢀꢀRiseꢀTimeꢀ  
ꢀꢀꢀFallꢀTime  
(Noteꢀ6)ꢀ  
LOAD  
LOAD  
nsꢀ  
ns  
BG1,2ꢀt ꢀ  
C
C
ꢀ=ꢀ3300pFꢀ  
ꢀ=ꢀ3300pF  
28ꢀ  
13  
r
BG1,2ꢀt  
f
TG/BGꢀt  
TopꢀGateꢀOffꢀtoꢀBottomꢀGateꢀOnꢀDelayꢀ  
SynchronousꢀSwitch-OnꢀDelayꢀTime  
C
ꢀ=ꢀ3300pFꢀEachꢀDriver  
30  
ns  
1D  
1D  
LOAD  
BG/TGꢀt  
BottomꢀGateꢀOffꢀtoꢀTopꢀGateꢀOnꢀDelayꢀ  
TopꢀSwitch-OnꢀDelayꢀTime  
C
LOAD  
ꢀ=ꢀ3300pFꢀEachꢀDriver  
30  
ns  
3857fa  
LTC3857  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
junction temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, VRUN1,2 = 5V, EXTVCC = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
t
MinimumꢀOn-Time  
(Noteꢀ7)  
95  
ns  
ON(MIN)  
INTV Linear Regulator  
CC  
V
V
V
V
V
V
InternalꢀV ꢀVoltage  
6Vꢀ<ꢀV ꢀ<ꢀ38V,ꢀV ꢀ=ꢀ0V  
EXTVCC  
4.85  
4.85  
4.5  
5.1  
0.7  
5.1  
0.6  
4.7  
250  
5.35  
1.1  
V
%
V
INTVCCVIN  
LDOVIN  
CC  
IN  
INTV ꢀLoadꢀRegulation  
I ꢀ=ꢀ0mAꢀtoꢀ50mA,ꢀV  
CC  
ꢀ=ꢀ0V  
CC  
EXTVCC  
InternalꢀV ꢀVoltage  
6Vꢀ<ꢀV ꢀ<ꢀ13V  
EXTVCC  
5.35  
1.1  
INTVCCEXT  
LDOEXT  
CC  
INTV ꢀLoadꢀRegulation  
I ꢀ=ꢀ0mAꢀtoꢀ50mA,ꢀV  
CC  
ꢀ=ꢀ8.5V  
%
V
CC  
EXTVCC  
EXTV ꢀSwitchoverꢀVoltage  
EXTV ꢀRampingꢀPositive  
4.9  
EXTVCC  
CC  
CC  
EXTV ꢀHysteresis  
mV  
LDOHYS  
CC  
Oscillator and Phase-Locked Loop  
f
f
f
f
f
f
ProgrammableꢀFrequency  
ProgrammableꢀFrequency  
ProgrammableꢀFrequency  
LowꢀFixedꢀFrequency  
R
R
R
ꢀ=ꢀ25k,ꢀPLLIN/MODEꢀ=ꢀDCꢀVoltage  
ꢀ=ꢀ65k,ꢀPLLIN/MODEꢀ=ꢀDCꢀVoltage  
ꢀ=ꢀ105k,ꢀPLLIN/MODEꢀ=ꢀDCꢀVoltage  
ꢀ=ꢀ0V,ꢀPLLIN/MODEꢀ=ꢀDCꢀVoltage  
105  
440  
835  
350  
535  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
25kΩ  
65kΩ  
105kΩ  
LOW  
FREQ  
FREQ  
FREQ  
FREQ  
FREQ  
375  
505  
V
V
320  
485  
75  
380  
585  
850  
HighꢀFixedꢀFrequency  
ꢀ=ꢀINTV ,ꢀPLLIN/MODEꢀ=ꢀDCꢀVoltage  
CC  
HIGH  
SYNC  
l
SynchronizableꢀFrequency  
PLLIN/MODEꢀ=ꢀExternalꢀClock  
PGOOD1 and PGOOD2 Outputs  
V
PGOODꢀVoltageꢀLow  
PGOODꢀLeakageꢀCurrent  
PGOODꢀTripꢀLevel  
I
ꢀ=ꢀ2mA  
PGOOD  
0.2  
0.4  
1
V
PGL  
I
V
ꢀ=ꢀ5V  
PGOOD  
µA  
PGOOD  
V
V
ꢀwithꢀRespectꢀtoꢀSetꢀRegulatedꢀVoltageꢀ  
FB  
FB  
PG  
ꢀꢀꢀV ꢀRampingꢀNegativeꢀ  
–13  
–10ꢀ  
2.5  
–7  
%ꢀ  
%
ꢀꢀꢀHysteresis  
V
ꢀwithꢀRespectꢀtoꢀSetꢀRegulatedꢀVoltageꢀ  
FB  
7
FB  
ꢀꢀꢀV ꢀRampingꢀPositiveꢀ  
10ꢀ  
2.5  
13  
%ꢀ  
%
ꢀꢀꢀHysteresis  
t
PG  
DelayꢀforꢀReportingꢀaꢀFault  
25  
µs  
Note 1:ꢀStressesꢀbeyondꢀthoseꢀlistedꢀunderꢀAbsoluteꢀMaximumꢀRatingsꢀ  
mayꢀcauseꢀpermanentꢀdamageꢀtoꢀtheꢀdevice.ꢀExposureꢀtoꢀanyꢀAbsoluteꢀ  
MaximumꢀRatingsꢀforꢀextendedꢀperiodsꢀmayꢀaffectꢀdeviceꢀreliabilityꢀandꢀ  
lifetime.ꢀ  
Note 4:ꢀTheꢀLTC3857ꢀisꢀtestedꢀinꢀaꢀfeedbackꢀloopꢀthatꢀservosꢀV  
ꢀtoꢀaꢀ  
ITH1,2  
specifiedꢀvoltageꢀandꢀmeasuresꢀtheꢀresultantꢀV .ꢀTheꢀspecificationꢀatꢀ  
FB1,2  
85°Cꢀisꢀnotꢀtestedꢀinꢀproduction.ꢀThisꢀspecificationꢀisꢀassuredꢀbyꢀdesign,ꢀ  
characterizationꢀandꢀcorrelationꢀtoꢀproductionꢀtestingꢀatꢀ125°C.  
Note 2:ꢀTheꢀLTC3857Eꢀisꢀguaranteedꢀtoꢀmeetꢀperformanceꢀspecificationsꢀ  
fromꢀ0°Cꢀtoꢀ85°C.ꢀSpecificationsꢀoverꢀtheꢀ–40°Cꢀtoꢀ125°Cꢀoperatingꢀ  
junctionꢀtemperatureꢀrangeꢀareꢀassuredꢀbyꢀdesign,ꢀcharacterizationꢀandꢀ  
correlationꢀwithꢀstatisticalꢀprocessꢀcontrols.ꢀTheꢀLTC3857Iꢀisꢀguaranteedꢀ  
overꢀtheꢀfullꢀ–40°Cꢀtoꢀ125°Cꢀoperatingꢀjunctionꢀtemperatureꢀrange.  
Note 5:ꢀDynamicꢀsupplyꢀcurrentꢀisꢀhigherꢀdueꢀtoꢀtheꢀgateꢀchargeꢀbeingꢀ  
deliveredꢀatꢀtheꢀswitchingꢀfrequency.ꢀSeeꢀApplicationsꢀinformation.  
Note 6:ꢀRiseꢀandꢀfallꢀtimesꢀareꢀmeasuredꢀusingꢀ10%ꢀandꢀ90%ꢀlevels.ꢀDelayꢀ  
timesꢀareꢀmeasuredꢀusingꢀ50%ꢀlevels.  
Note 7:ꢀTheꢀminimumꢀon-timeꢀconditionꢀisꢀspecifiedꢀforꢀanꢀinductorꢀ  
Note 3:ꢀT ꢀisꢀcalculatedꢀfromꢀtheꢀambientꢀtemperatureꢀT ꢀandꢀpowerꢀ  
J
A
peak-to-peakꢀrippleꢀcurrentꢀ≥40%ꢀofꢀI ꢀ(SeeꢀMinimumꢀOn-Timeꢀ  
MAX  
dissipationꢀP ꢀaccordingꢀtoꢀtheꢀfollowingꢀformula:  
D
ConsiderationsꢀinꢀtheꢀApplicationsꢀInformationꢀsection).  
T ꢀ=ꢀT ꢀ+ꢀ(P •ꢀ34°C/W)  
J A Dꢀ  
3857fa  
LTC3857  
Typical perForMance characTerisTics  
Efficiency and Power Loss  
Efficiency vs Output Current  
Efficiency vs Input Voltage  
vs Output Current  
100  
90  
100  
90  
10000  
1000  
100  
10  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
V
V
= 12V  
V
LOAD  
= 3.3V  
= 5A  
IN  
OUT  
OUT  
= 3.3V  
I
V
= 5V  
IN  
FIGURE 13 CIRCUIT  
80  
80  
70  
70  
V
IN  
= 12V  
60  
50  
60  
50  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
1
V
= 3.3V  
OUT  
FIGURE 13 CIRCUIT  
0.1  
20 25  
10 15  
INPUT VOLTAGE (V)  
0.000010.0001 0.001 0.01  
0.1  
1
10  
1
5
30 35 40  
0.000010.0001 0.001 0.01  
0.1  
1
10  
OUTPUT CURRENT (A)  
38 57 G01  
OUTPUT CURRENT (A)  
3857 G02  
BURST EFFICIENCY  
PULSE-SKIPPING  
EFFICIENCY  
BURST LOSS  
3857 G03  
PULSE-SKIPPING  
LOSS  
CCM EFFICIENCY  
CCM LOSS  
Load Step  
(Forced Continuous Mode)  
Load Step  
(Pulse-Skipping Mode)  
Load Step (Burst Mode Operation)  
V
OUT  
V
V
OUT  
OUT  
100mV/DIV  
100mV/DIV  
100mV/DIV  
INDUCTOR  
CURRENT  
2A/DIV  
INDUCTOR  
CURRENT  
2A/DIV  
INDUCTOR  
CURRENT  
2A/DIV  
3857 G06  
3857 G04  
3857 G05  
V
V
= 12V  
20µs/DIV  
V
V
= 12V  
20µs/DIV  
V
V
= 12V  
20µs/DIV  
IN  
OUT  
IN  
OUT  
IN  
OUT  
= 3.3V  
= 3.3V  
= 3.3V  
FIGURE 13 CIRCUIT  
FIGURE 13 CIRCUIT  
FIGURE 13 CIRCUIT  
Inductor Current at Light Load  
Soft Start-Up  
Tracking Start-Up  
FORCED  
CONTINUOUS  
MODE  
V
OUT2  
2V/DIV  
V
OUT2  
2V/DIV  
Burst Mode  
OPERATION  
2A/DIV  
V
OUT1  
2V/DIV  
V
OUT1  
2V/DIV  
PULSE-  
SKIPPING MODE  
3857 G07  
3857 G09  
3857 G08  
V
V
LOAD  
= 12V  
5µs/DIV  
20ms/DIV  
FIGURE 13 CIRCUIT  
20ms/DIV  
FIGURE 13 CIRCUIT  
IN  
= 3.3V  
OUT  
I
= 200µA  
FIGURE 13 CIRCUIT  
3857fa  
LTC3857  
Typical perForMance characTerisTics  
Total Input Supply Current  
vs Input Voltage  
EXTVCC Switchover and INTVCC  
Voltages vs Temperature  
INTVCC Line Regulation  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
6.0  
5.8  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
5.2  
5.1  
5.0  
4.9  
4.8  
V
= 3.3V  
OUT1  
RUN2 = 0V  
FIGURE 13 CIRCUIT  
INTV  
CC  
500µA  
EXTV RISING  
CC  
300µA  
EXTV FALLING  
CC  
NO LOAD  
0
5
15  
20  
25  
30  
35  
40  
10  
55  
TEMPERATURE (°C)  
130  
–45  
5
30  
80 105  
20 25  
INPUT VOLTAGE (V)  
–20  
0
5
10 15  
30 35 40  
INPUT VOLTAGE (V)  
3857 G10  
3857 G11  
3857 G12  
Maximum Current Sense Voltage  
vs ITH Voltage  
Maximum Current Sense  
Threshold vs Duty Cycle  
SENSEPin Input Bias Current  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
–50  
5% DUTY CYCLE  
I
= INTV  
CC  
LIM  
–100  
–150  
–200  
–250  
–300  
–350  
–400  
–450  
–500  
–550  
–600  
PULSE-SKIPPING MODE  
I
= FLOAT  
LIM  
Burst Mode  
OPERATION  
I
= GND  
LIM  
I
= GND  
LIM  
0
–20  
–40  
I
= FLOAT  
LIM  
I
= INTV  
LIM  
CC  
FORCED CONTINUOUS MODE  
0.8  
(V)  
1.2  
1.4  
0
10 20 30 40 50 60 70 80 90 100  
0
0.2  
0.4 0.6  
V
1.0  
0
10  
15  
20  
25  
5
V
COMMON MODE VOLTAGE (V)  
DUTY CYCLE (%)  
SENSE  
ITH  
3857 G13  
3857 G14  
3857 G15  
Foldback Current Limit  
Quiescent Current vs Temperature  
INTVCC vs Load Current  
90  
80  
70  
60  
50  
40  
30  
20  
10  
80  
5.20  
5.15  
5.10  
V
= 12V  
IN  
I
= INTV  
LIM  
CC  
75  
70  
65  
60  
55  
50  
45  
I
= FLOAT  
= GND  
LIM  
EXTV = 0V  
CC  
5.05  
5.00  
4.95  
I
LIM  
EXTV = 8.5V  
CC  
40  
0
–20  
5
55  
80 105 130  
20 40 60  
120 140  
–45  
30  
0
80 100  
160  
180  
200  
0
0.1 0.2 0.3 0.4 0.5  
0.9  
0.6 0.7 0.8  
FEEDBACK VOLTAGE (V)  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
3857 G17  
3857 G18  
3857 G16  
3857fa  
LTC3857  
Typical perForMance characTerisTics  
Regulated Feedback Voltage  
vs Temperature  
TRACK/SS Pull-Up Current  
vs Temperature  
Shutdown (RUN) Threshold  
vs Temperature  
1.40  
1.35  
1.30  
1.25  
800  
1.10  
1.05  
1.00  
0.95  
806  
804  
RUN RISING  
802  
800  
798  
796  
794  
RUN FALLING  
1.20  
1.15  
1.10  
0.90  
792  
–45 –20  
5
30  
55  
80 105 130  
–45 –20  
5
30  
55  
80  
105 130  
–45 –20  
5
30  
55  
80 105 130  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3857 G19  
3857 G20  
3857 G21  
SENSEPin Input Current  
vs Temperature  
Oscillator Frequency  
vs Temperature  
Shutdown Current  
vs Input Voltage  
50  
0
–50  
30  
25  
20  
15  
600  
550  
500  
450  
V
< INTV – 0.5V  
CC  
FREQ = INTV  
OUT  
CC  
–100  
–150  
–200  
–250  
–300  
–350  
–400  
–450  
–500  
–550  
–600  
10  
5
400  
350  
300  
FREQ = GND  
V
5
> INTV – 0.5V  
CC  
OUT  
0
25  
INPUT VOLTAGE (V)  
35  
40  
–45 –20  
30  
55  
80 105 130  
5
10  
15  
20  
30  
55  
TEMPERATURE (°C)  
105 130  
–45 –20  
5
30  
80  
TEMPERATURE (°C)  
3857 G22  
3857 G23  
3857 G24  
Undervoltage Lockout Threshold  
vs Temperature  
Oscillator Frequency  
vs Input Voltage  
Shutdown Current vs Temperature  
4.4  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
356  
354  
352  
350  
20  
FREQ = GND  
18  
16  
14  
12  
10  
8
348  
346  
344  
6
4
25  
INPUT VOLTAGE (V)  
35  
40  
5
10  
15  
20  
30  
–45  
5
30  
55  
80 105 130  
–20  
5
55  
80 105 130  
–20  
–45  
30  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3857 G26  
3857 G25  
3857 G27  
3857fa  
LTC3857  
pin FuncTions  
SGND (Pin 6, Exposed Pad Pin 33):ꢀSmall-signalꢀgroundꢀ  
commonꢀtoꢀbothꢀcontrollers,ꢀmustꢀbeꢀroutedꢀseparatelyꢀ  
fromꢀhighꢀcurrentꢀgroundsꢀtoꢀtheꢀcommonꢀ(–)ꢀterminalsꢀ  
SENSE1 , SENSE2 (Pin 1, Pin 9):ꢀTheꢀ(–)ꢀInputꢀtoꢀtheꢀ  
Differentialꢀ Currentꢀ Comparators.ꢀ Whenꢀ greaterꢀ thanꢀ  
INTV 0.5V,theSENSE pinsuppliescurrenttotheꢀ  
CC  
ofꢀtheꢀC ꢀcapacitors.ꢀTheꢀexposedꢀpadꢀmustꢀbeꢀsolderedꢀ  
currentꢀcomparator.  
IN  
toꢀtheꢀPCBꢀforꢀratedꢀthermalꢀperformance.  
FREQ (Pin 2):ꢀTheꢀfrequencyꢀcontrolꢀpinꢀforꢀtheꢀinternalꢀ  
RUN1, RUN2 (Pin 7, Pin 8):DigitalRunControlInputsforꢀ  
EachꢀController.ꢀForcingꢀeitherꢀofꢀtheseꢀpinsꢀbelowꢀ1.26Vꢀ  
shutsdownthatcontroller.Forcingbothofthesepinsbelowꢀ  
0.7VꢀshutsꢀdownꢀtheꢀentireꢀLTC3857,ꢀreducingꢀquiescentꢀ  
currentꢀtoꢀapproximatelyꢀ8µA.ꢀDoꢀnotꢀfloatꢀtheseꢀpins.  
VCO.ꢀConnectingꢀtheꢀpinꢀtoꢀGNDꢀforcesꢀtheꢀVCOꢀtoꢀaꢀfixedꢀ  
lowꢀfrequencyꢀofꢀ350kHz.ꢀConnectingꢀtheꢀpinꢀtoꢀINTV ꢀ  
CC  
forcesꢀ theꢀ VCOꢀ toꢀ aꢀ fixedꢀ highꢀ frequencyꢀ ofꢀ 535kHz.ꢀ  
Otherꢀ frequenciesꢀ betweenꢀ 50kHzꢀ andꢀ 900kHzꢀ canꢀ beꢀ  
programmedusingaresistorbetweenFREQandGND.ꢀ  
Anꢀinternalꢀ20µAꢀpull-upꢀcurrentꢀdevelopsꢀtheꢀvoltageꢀtoꢀ  
beꢀusedꢀbyꢀtheꢀVCOꢀtoꢀcontrolꢀtheꢀfrequency  
INTV (Pin19):OutputoftheInternalLinearLowDropoutꢀ  
CC  
Regulator.Thedriverandcontrolcircuitsarepoweredꢀ  
fromthisvoltagesource.Mustbedecoupledtopowerꢀ  
groundꢀwithꢀaꢀminimumꢀofꢀ4.7µFꢀceramicꢀorꢀotherꢀlowꢀ  
PHASMD (Pin 3):ꢀControlꢀInputꢀtoꢀPhaseꢀSelectorꢀwhichꢀ  
determinesꢀ theꢀ phaseꢀ relationshipsꢀ betweenꢀ control-  
lerꢀ1,controller2andtheCLKOUTsignal.Pullingthisꢀ  
pinꢀtoꢀgroundꢀforcesꢀTG2ꢀandꢀCLKOUTꢀtoꢀbeꢀoutꢀofꢀphaseꢀ  
180°ꢀandꢀ60°ꢀwithꢀrespectꢀtoꢀTG1.ꢀConnectingꢀthisꢀpinꢀtoꢀ  
ESRꢀcapacitor.ꢀDoꢀnotꢀuseꢀtheꢀINTV ꢀpinꢀforꢀanyꢀotherꢀ  
CC  
purpose.  
EXTV (Pin 20):ꢀExternalꢀPowerꢀInputꢀtoꢀanꢀInternalꢀLDOꢀ  
CC  
INTV ꢀforcesꢀTG2ꢀandꢀCLKOUTꢀtoꢀbeꢀoutꢀofꢀphaseꢀ240°ꢀ  
CC  
ConnectedꢀtoꢀINTV .ꢀThisꢀLDOꢀsuppliesꢀINTV ꢀpower,ꢀ  
CC  
CC  
andꢀ120°ꢀwithꢀrespectꢀtoꢀTG1.ꢀFloatingꢀthisꢀpinꢀforcesꢀTG2ꢀ  
andꢀCLKOUTꢀtoꢀbeꢀoutꢀofꢀphaseꢀ180°ꢀandꢀ90°ꢀwithꢀrespectꢀ  
toꢀTG1.ꢀReferꢀtoꢀTableꢀ1.ꢀ  
bypassingꢀtheꢀinternalꢀLDOꢀpoweredꢀfromꢀV ꢀwheneverꢀ  
IN  
EXTV ishigherthan4.7V.SeeEXTV Connectioninꢀ  
CC  
CC  
theꢀApplicationsꢀInformationꢀsection.ꢀDoꢀnotꢀexceedꢀ14Vꢀ  
onꢀthisꢀpin.  
CLKOUT (Pin 4):ꢀOutputꢀclockꢀsignalꢀavailableꢀtoꢀdaisy-  
chainꢀotherꢀcontrollerꢀICsꢀforꢀadditionalꢀMOSFETꢀdriverꢀ  
PGND (Pin 21):ꢀDriverꢀPowerꢀGround.ꢀConnectsꢀtoꢀtheꢀ  
stages/phases.ꢀTheꢀoutputꢀlevelsꢀswingꢀfromꢀINTV ꢀtoꢀ  
CC  
sourcesofbottom(synchronous)N-channelMOSFETsꢀ  
ground.ꢀ  
andꢀtheꢀ(–)ꢀterminal(s)ꢀofꢀC .  
IN  
PLLIN/MODE (Pin 5):ꢀExternalꢀSynchronizationꢀInputꢀtoꢀ  
PhaseDetectorandForcedContinuousModeInput.Whenꢀ  
anꢀexternalꢀclockꢀisꢀappliedꢀtoꢀthisꢀpin,ꢀtheꢀphase-lockedꢀ  
loopꢀwillꢀforceꢀtheꢀrisingꢀTG1ꢀsignalꢀtoꢀbeꢀsynchronizedꢀ  
withꢀ theꢀ risingꢀ edgeꢀ ofꢀ theꢀ externalꢀ clock.ꢀ Whenꢀ notꢀ  
synchronizingꢀtoꢀanꢀexternalꢀclock,ꢀthisꢀinput,ꢀwhichꢀactsꢀ  
onbothcontrollers,determineshowtheLTC3857operatesꢀ  
atlightloads.PullingthispintogroundselectsBurstꢀ  
Modeꢀoperation.ꢀAnꢀinternalꢀ100kꢀresistorꢀtoꢀgroundꢀalsoꢀ  
invokesBurstModeoperationwhenthepinisoated.ꢀ  
V (Pin 22):ꢀMainꢀSupplyꢀPin.ꢀAꢀbypassꢀcapacitorꢀshouldꢀ  
IN  
beꢀtiedꢀbetweenꢀthisꢀpinꢀandꢀtheꢀsignalꢀgroundꢀpin.  
BG1, BG2 (Pin 23, Pin 18):HighCurrentGateDrivesꢀ  
forꢀBottomꢀ(Synchronous)ꢀN-ChannelꢀMOSFETs.ꢀVoltageꢀ  
swingꢀatꢀtheseꢀpinsꢀisꢀfromꢀgroundꢀtoꢀINTV .  
CC  
BOOST1,BOOST2(Pin24,Pin17):BootstrappedSuppliesꢀ  
toꢀtheꢀTopsideꢀFloatingꢀDrivers.ꢀCapacitorsꢀareꢀconnectedꢀ  
betweenꢀtheꢀBOOSTꢀandꢀSWꢀpinsꢀandꢀSchottkyꢀdiodesꢀareꢀ  
tiedꢀbetweenꢀtheꢀBOOSTꢀandꢀINTV ꢀpins.ꢀVoltageꢀswingꢀ  
CC  
TyingthispintoINTV forcescontinuousinductorcurrentꢀ  
CC  
atꢀtheꢀBOOSTꢀpinsꢀisꢀfromꢀINTV ꢀtoꢀ(V ꢀ+ꢀINTV ).  
CC  
IN  
CC  
operation.Tyingꢀthisꢀpinꢀtoꢀaꢀvoltageꢀgreaterꢀthanꢀ1.2Vꢀandꢀ  
SW1, SW2 (Pin 25, Pin 16):ꢀSwitchꢀNodeꢀConnectionsꢀ  
toꢀInductors.ꢀ  
lessꢀthanꢀINTV ꢀ–ꢀ1.3Vꢀselectsꢀpulse-skippingꢀoperation.ꢀ  
CC  
Thisꢀcanꢀbeꢀdoneꢀbyꢀaddingꢀaꢀ100kꢀresistorꢀbetweenꢀtheꢀ  
PLLIN/MODEꢀpinꢀandꢀINTV .  
CC  
3857fa  
LTC3857  
pin FuncTions  
I
, I  
(Pin 30, Pin 12):ꢀErrorꢀAmplifierꢀOutputsꢀandꢀ  
TG1, TG2 (Pin 26, Pin 15):ꢀHighꢀCurrentꢀGateꢀDrivesꢀforꢀ  
TH1 TH2  
SwitchingꢀRegulatorꢀCompensationꢀPoints.ꢀEachꢀassoci-  
atedchannel’scurrentcomparatortrippointincreasesꢀ  
withꢀthisꢀcontrolꢀvoltage.  
TopꢀN-ChannelꢀMOSFETs.ꢀTheseꢀareꢀtheꢀoutputsꢀofꢀfloat-  
ingꢀdriversꢀwithꢀaꢀvoltageꢀswingꢀequalꢀtoꢀINTV ꢀ–ꢀ0.5Vꢀ  
CC  
superimposedꢀonꢀtheꢀswitchꢀnodeꢀvoltageꢀSW.  
V
, V (Pin31, Pin11):Receivestheremotelysensedꢀ  
PGOOD1, PGOOD2 (Pin 27, Pin 14):ꢀOpen-DrainꢀLogicꢀ  
FB1 FB2  
feedbackꢀ voltageꢀ forꢀ eachꢀ controllerꢀ fromꢀ anꢀ externalꢀ  
Output.ꢀPGOOD1,2ꢀisꢀpulledꢀtoꢀgroundꢀwhenꢀtheꢀvoltageꢀ  
resistiveꢀdividerꢀacrossꢀtheꢀoutput.  
onꢀtheꢀV ꢀpinꢀisꢀnotꢀwithinꢀ 10%ꢀofꢀitsꢀsetꢀpoint.  
FB1,2  
+
+
SENSE1 , SENSE2 (Pin 32, Pin 10):ꢀTheꢀ(+)ꢀinputꢀtoꢀtheꢀ  
differentialꢀcurrentꢀcomparatorsꢀareꢀnormallyꢀconnectedꢀ  
toDCRsensingnetworksorcurrentsensingresistors.ꢀ  
I
(Pin 28):ꢀCurrentꢀComparatorꢀSenseꢀVoltageꢀRangeꢀ  
LIM  
Inputs.ꢀTyingꢀthisꢀpinꢀtoꢀSGND,ꢀFLOATꢀorꢀINTV ꢀsetsꢀtheꢀ  
CC  
maximumcurrentsensethresholdtooneofthreedifferentꢀ  
levelsꢀforꢀbothꢀcomparators.  
TheI ꢀpinvoltageandcontrolledoffsetsbetweentheꢀ  
SENSE ꢀandꢀSENSE ꢀpinsꢀinꢀconjunctionꢀwithꢀR  
theꢀcurrentꢀtripꢀthreshold.  
TH  
+
ꢀsetꢀ  
SENSE  
TRACK/SS1, TRACK/SS2 (Pin 29, Pin 13):ꢀ Externalꢀ  
TrackingꢀandꢀSoft-StartꢀInput.ꢀTheꢀLTC3857ꢀregulatesꢀtheꢀ  
V
ꢀvoltageꢀtoꢀtheꢀsmallerꢀofꢀ0.8Vꢀorꢀtheꢀvoltageꢀonꢀtheꢀ  
FB1,2  
TRACK/SS1,2ꢀpin.ꢀAnꢀinternalꢀ1µAꢀpull-upꢀcurrentꢀsourceꢀ  
isconnectedtothispin.Acapacitortogroundatthisꢀ  
pinꢀsetsꢀtheꢀrampꢀtimeꢀtoꢀfinalꢀregulatedꢀoutputꢀvoltage.ꢀ  
Alternatively,ꢀaꢀresistorꢀdividerꢀonꢀanotherꢀvoltageꢀsupplyꢀ  
connectedꢀtoꢀthisꢀpinꢀallowsꢀtheꢀLTC3857ꢀoutputꢀtoꢀtrackꢀ  
theꢀotherꢀsupplyꢀduringꢀstart-up.  
3857fa  
LTC3857  
FuncTional DiagraM  
INTV  
CC  
V
IN  
DUPLICATE FOR SECOND  
CONTROLLER CHANNEL  
BOOST  
24, 17  
D
+
B
PHASMD  
3
CLKOUT  
4
PGOOD1  
27  
0.88V  
V
TG  
26, 15  
C
B
FB1  
+
DROP  
OUT  
TOP  
BOT  
C
IN  
D
0.72V  
0.88V  
DET  
BOT  
SW  
25, 16  
TOP ON  
+
S
R
Q
PGOOD2  
14  
INTV  
CC  
Q
BG  
23, 18  
SWITCH  
LOGIC  
V
FB2  
SHDN  
+
C
OUT  
0.72V  
PGND  
21  
20µA  
FREQ  
2
V
OUT  
VCO  
CLK2  
+
R
SENSE  
0.425V  
SLEEP  
CLK1  
L
ICMP  
IR  
+
+
PFD  
C
LP  
+
+
+
SENSE  
32, 10  
3mV  
SYNC  
DET  
2.7V  
0.55V  
PLLIN/MODE  
5
SENSE  
1, 9  
100k  
SLOPE COMP  
V
FB  
31, 11  
I
LIM  
R
B
CURRENT  
LIMIT  
+
28  
0.80V  
TRACK/SS  
EA  
V
R
A
IN  
22  
+
OV  
EXTV  
20  
CC  
I
TH  
30, 12  
C
C
0.88V  
11V  
5.1V  
LDO  
EN  
5.1V  
LDO  
EN  
SHDN  
RST  
FB  
C
C2  
R
C
TRACK/SS  
29, 13  
FOLDBACK  
1µA  
2(V  
)
+
0.5µA  
C
SHDN  
SS  
4.7V  
RUN  
7, 8  
33 SGND  
19 INTV  
CC  
3857 FD  
3857fa  
ꢀ0  
LTC3857  
operaTion (Refer to the Functional Diagram)  
Main Control Loop  
toturnonthetopMOSFETcontinuously.Thedropoutꢀ  
detectorꢀdetectsꢀthisꢀandꢀforcesꢀtheꢀtopꢀMOSFETꢀoffꢀforꢀ  
aboutꢀoneꢀtwelfthꢀofꢀtheꢀclockꢀperiodꢀeveryꢀtenthꢀcycleꢀtoꢀ  
TheLTC3857usesaconstantfrequency,currentmodeꢀ  
step-downꢀarchitectureꢀwithꢀtheꢀtwoꢀcontrollerꢀchannelsꢀ  
operatingꢀ 180ꢀ degreesꢀ outꢀ ofꢀ phase.ꢀ Duringꢀ normalꢀ  
operation,ꢀeachꢀexternalꢀtopꢀMOSFETꢀisꢀturnedꢀonꢀwhenꢀ  
theꢀclockꢀforꢀthatꢀchannelꢀsetsꢀtheꢀRSꢀlatch,ꢀandꢀisꢀturnedꢀ  
offꢀwhenꢀtheꢀmainꢀcurrentꢀcomparator,ꢀICMP,ꢀresetsꢀtheꢀ  
RSꢀlatch.ꢀTheꢀpeakꢀinductorꢀcurrentꢀatꢀwhichꢀICMPꢀtripsꢀ  
allowꢀC ꢀtoꢀrecharge.  
B
Shutdown and Start-Up (RUN1, RUN2 and  
TRACK/ SS1, TRACK/SS2 Pins)  
TheꢀtwoꢀchannelsꢀofꢀtheꢀLTC3857ꢀcanꢀbeꢀindependentlyꢀ  
shutdownusingtheRUN1andRUN2pins.Pullingeitherofꢀ  
theseꢀpinsꢀbelowꢀ1.26Vꢀshutsꢀdownꢀtheꢀmainꢀcontrolꢀloopꢀ  
forꢀthatꢀcontroller.ꢀPullingꢀbothꢀpinsꢀbelowꢀ0.7Vꢀdisablesꢀ  
bothꢀcontrollersꢀandꢀmostꢀinternalꢀcircuits,ꢀincludingꢀtheꢀ  
andꢀresetsꢀtheꢀlatchꢀisꢀcontrolledꢀbyꢀtheꢀvoltageꢀonꢀtheꢀI ꢀ  
TH  
pin,whichistheoutputoftheerroramplifier,EA.Theerrorꢀ  
amplifierꢀcomparesꢀtheꢀoutputꢀvoltageꢀfeedbackꢀsignalꢀatꢀ  
theꢀV ꢀpin,ꢀ(whichꢀisꢀgeneratedꢀwithꢀanꢀexternalꢀresistorꢀ  
FB  
INTV ꢀLDOs.ꢀInꢀthisꢀstate,ꢀtheꢀLTC3857ꢀdrawsꢀonlyꢀ8µAꢀ  
dividerꢀ connectedꢀ acrossꢀ theꢀ outputꢀ voltage,ꢀ V ,ꢀ toꢀ  
CC  
OUTꢀ  
ofꢀquiescentꢀcurrent.  
ground)totheinternal0.800Vreferencevoltage.Whentheꢀ  
loadꢀcurrentꢀincreases,ꢀitꢀcausesꢀaꢀslightꢀdecreaseꢀinꢀV ꢀ  
FB  
TheꢀRUNꢀpinꢀmayꢀbeꢀexternallyꢀpulledꢀupꢀorꢀdrivenꢀdirectlyꢀ  
byꢀlogic.ꢀWhenꢀdrivingꢀtheꢀRUNꢀpinꢀwithꢀaꢀlowꢀimpedanceꢀ  
source,ꢀdoꢀnotꢀexceedꢀtheꢀabsoluteꢀmaximumꢀratingꢀofꢀ  
8V.ꢀTheꢀRUNꢀpinꢀhasꢀanꢀinternalꢀ11Vꢀvoltageꢀclampꢀthatꢀ  
allowsꢀtheꢀRUNꢀpinꢀtoꢀbeꢀconnectedꢀthroughꢀaꢀresistorꢀtoꢀaꢀ  
relativeꢀtoꢀtheꢀreference,ꢀwhichꢀcausesꢀtheꢀEAꢀtoꢀincreaseꢀ  
theꢀI ꢀvoltageꢀuntilꢀtheꢀaverageꢀinductorꢀcurrentꢀmatchesꢀ  
TH  
theꢀnewꢀloadꢀcurrent.  
AfterꢀtheꢀtopꢀMOSFETꢀisꢀturnedꢀoffꢀeachꢀcycle,ꢀtheꢀbottomꢀ  
MOSFETisturnedonuntileithertheinductorcurrentstartsꢀ  
toꢀreverse,ꢀasꢀindicatedꢀbyꢀtheꢀcurrentꢀcomparatorꢀIR,ꢀorꢀ  
theꢀbeginningꢀofꢀtheꢀnextꢀclockꢀcycle.  
highervoltage(forexample,V ),solongasthemaximumꢀ  
IN  
currentꢀintoꢀtheꢀRUNꢀpinꢀdoesꢀnotꢀexceedꢀ100µA.  
Theꢀstart-upꢀofꢀeachꢀcontroller’sꢀoutputꢀvoltageꢀV ꢀisꢀ  
OUT  
controlledꢀbyꢀtheꢀvoltageꢀonꢀtheꢀTRACK/SSꢀpinꢀforꢀthatꢀ  
channel.ꢀWhenꢀtheꢀvoltageꢀonꢀtheꢀTRACK/SSꢀpinꢀisꢀlessꢀ  
thanꢀtheꢀ0.8Vꢀinternalꢀreference,ꢀtheꢀLTC3857ꢀregulatesꢀ  
INTV /EXTV Power  
CC  
CC  
PowerꢀforꢀtheꢀtopꢀandꢀbottomꢀMOSFETꢀdriversꢀandꢀmostꢀ  
otherinternalcircuitryisderivedfromtheINTV pin.Whenꢀ  
theꢀV ꢀvoltageꢀtoꢀtheꢀTRACK/SSꢀpinꢀvoltageꢀinsteadꢀofꢀtheꢀ  
CC  
FB  
theꢀEXTV ꢀpinꢀisꢀleftꢀopenꢀorꢀtiedꢀtoꢀaꢀvoltageꢀlessꢀthanꢀ  
0.8Vꢀreference.ꢀThisꢀallowsꢀtheꢀTRACK/SSꢀpinꢀtoꢀbeꢀusedꢀ  
toprogramasoft-startbyconnectinganexternalcapacitorꢀ  
fromꢀtheꢀTRACK/SSꢀpinꢀtoꢀSGND.ꢀAnꢀinternalꢀ1µAꢀpull-upꢀ  
currentꢀchargesꢀthisꢀcapacitorꢀcreatingꢀaꢀvoltageꢀrampꢀonꢀ  
theꢀTRACK/SSꢀpin.ꢀAsꢀtheꢀTRACK/SSꢀvoltageꢀrisesꢀlinearlyꢀ  
fromꢀ0Vꢀtoꢀ0.8Vꢀ(andꢀbeyondꢀupꢀtoꢀtheꢀabsoluteꢀmaximumꢀ  
CC  
4.7V,ꢀtheꢀV ꢀLDOꢀ(lowꢀdropoutꢀlinearꢀregulator)ꢀsuppliesꢀ  
IN  
5.1VꢀfromꢀV ꢀtoꢀINTV .ꢀIfꢀEXTV ꢀisꢀtakenꢀaboveꢀ4.7V,ꢀ  
IN  
CC  
CC  
theꢀV ꢀLDOꢀisꢀturnedꢀoffꢀandꢀanꢀEXTV ꢀLDOꢀisꢀturnedꢀon.ꢀ  
IN  
CC  
Onceenabled,theEXTV LDOsupplies5.1VfromEXTV ꢀ  
CC  
CC  
toꢀINTV .ꢀUsingꢀtheꢀEXTV ꢀpinꢀallowsꢀtheꢀINTV ꢀpowerꢀ  
CC  
CC  
CC  
toꢀbeꢀderivedꢀfromꢀaꢀhighꢀefficiencyꢀexternalꢀsourceꢀsuchꢀ  
ratingof6V),theoutputvoltageV ꢀrisessmoothlyfromꢀ  
OUT  
asꢀoneꢀofꢀtheꢀLTC3857ꢀswitchingꢀregulatorꢀoutputs.  
zeroꢀtoꢀitsꢀfinalꢀvalue.  
Eachꢀ topꢀ MOSFETꢀ driverꢀ isꢀ biasedꢀ fromꢀ theꢀ floatingꢀ  
AlternativelyꢀtheꢀTRACK/SSꢀpinꢀcanꢀbeꢀusedꢀtoꢀcauseꢀtheꢀ  
bootstrapꢀcapacitor,ꢀC ,ꢀwhichꢀnormallyꢀrechargesꢀduringꢀ  
start-upꢀofꢀV ꢀtoꢀtrackꢀthatꢀofꢀanotherꢀsupply.ꢀTypically,ꢀ  
B
OUT  
eachcyclethroughanexternaldiodewhenthetopMOSFETꢀ  
thisꢀrequiresꢀconnectingꢀtoꢀtheꢀTRACK/SSꢀpinꢀanꢀexternalꢀ  
resistorꢀ dividerꢀ fromꢀ theꢀ otherꢀ supplyꢀ toꢀ groundꢀ (seeꢀ  
ApplicationsꢀInformationꢀsection).  
turnsꢀoff.ꢀIfꢀtheꢀinputꢀvoltage,ꢀV ,ꢀdecreasesꢀtoꢀaꢀvoltageꢀ  
IN  
closeꢀtoꢀV ,ꢀtheꢀloopꢀmayꢀenterꢀdropoutꢀandꢀattemptꢀ  
OUTꢀ  
3857fa  
ꢀꢀ  
LTC3857  
operaTion (Refer to the Functional Diagram)  
Light Load Current Operation (Burst Mode Operation,  
Pulse-Skipping or Forced Continuous Mode)  
(PLLIN/MODE Pin)  
Inꢀforcedꢀcontinuousꢀoperationꢀorꢀclockedꢀbyꢀanꢀexternalꢀ  
clocksourcetousethephase-lockedloop(seeFrequencyꢀ  
SelectionandPhase-LockedLoopsection),theinduc-  
torꢀcurrentꢀisꢀallowedꢀtoꢀreverseꢀatꢀlightꢀloadsꢀorꢀunderꢀ  
largeꢀ transientꢀ conditions.ꢀ Theꢀ peakꢀ inductorꢀ currentꢀ  
isdeterminedbythevoltageontheITHpin,justasinꢀ  
normaloperation.Inthismode,theefficiencyatlightꢀ  
loadsꢀisꢀlowerꢀthanꢀinꢀBurstꢀModeꢀoperation.ꢀHowever,ꢀ  
continuousꢀoperationꢀhasꢀtheꢀadvantageꢀofꢀlowerꢀoutputꢀ  
voltageꢀrippleꢀandꢀlessꢀinterferenceꢀtoꢀaudioꢀcircuitry.ꢀInꢀ  
forcedcontinuousmode,theoutputrippleisindependentꢀ  
ofꢀloadꢀcurrent.  
TheꢀLTC3857ꢀcanꢀbeꢀenabledꢀtoꢀenterꢀhighꢀefficiencyꢀBurstꢀ  
Modeoperation,constantfrequencypulse-skippingmode,ꢀ  
orꢀforcedꢀcontinuousꢀconductionꢀmodeꢀatꢀlowꢀloadꢀcur-  
rents.ToselectBurstModeoperation,tiethePLLIN/MODEꢀ  
pinꢀtoꢀground.ꢀToꢀselectꢀforcedꢀcontinuousꢀoperation,ꢀtieꢀ  
theꢀPLLIN/MODEꢀpinꢀtoꢀINTV .ꢀToꢀselectꢀpulse-skippingꢀ  
CC  
mode,ꢀtieꢀtheꢀPLLIN/MODEꢀpinꢀtoꢀaꢀDCꢀvoltageꢀgreaterꢀ  
thanꢀ1.2VꢀandꢀlessꢀthanꢀINTV ꢀ–ꢀ1.3V.  
CC  
WhenꢀaꢀcontrollerꢀisꢀenabledꢀforꢀBurstꢀModeꢀoperation,ꢀ  
theꢀminimumꢀpeakꢀcurrentꢀinꢀtheꢀinductorꢀisꢀsetꢀtoꢀap-  
proximately15%ofthemaximumsensevoltageevenꢀ  
WhenꢀtheꢀPLLIN/MODEꢀpinꢀisꢀconnectedꢀforꢀpulse-skip-  
pingꢀmode,ꢀtheꢀLTC3857ꢀoperatesꢀinꢀPWMꢀpulse-skippingꢀ  
modeatlightloads.Inthismode,constantfrequencyꢀ  
operationismaintaineddowntoapproximately1%ofꢀ  
designedmaximumoutputcurrent.Atverylightloads,theꢀ  
currentꢀcomparator,ꢀICMP,ꢀmayꢀremainꢀtrippedꢀforꢀseveralꢀ  
cyclesꢀandꢀforceꢀtheꢀexternalꢀtopꢀMOSFETꢀtoꢀstayꢀoffꢀforꢀ  
thesamenumberofcycles(i.e.,skippingpulses).Theꢀ  
inductorꢀcurrentꢀisꢀnotꢀallowedꢀtoꢀreverseꢀ(discontinuousꢀ  
operation).ꢀThisꢀmode,ꢀlikeꢀforcedꢀcontinuousꢀoperation,ꢀ  
exhibitsꢀlowꢀoutputꢀrippleꢀasꢀwellꢀasꢀlowꢀaudioꢀnoiseꢀandꢀ  
reducedꢀ RFꢀ interferenceꢀ asꢀ comparedꢀ toꢀ Burstꢀ Modeꢀ  
operation.ꢀItꢀprovidesꢀhigherꢀlowꢀcurrentꢀefficiencyꢀthanꢀ  
forcedꢀcontinuousꢀmode,ꢀbutꢀnotꢀnearlyꢀasꢀhighꢀasꢀBurstꢀ  
Modeꢀoperation.  
thoughꢀtheꢀvoltageꢀonꢀtheꢀI ꢀpinꢀindicatesꢀaꢀlowerꢀvalue.ꢀ  
TH  
Iftheaverageinductorcurrentishigherthantheloadꢀ  
current,ꢀtheꢀerrorꢀamplifier,ꢀEA,ꢀwillꢀdecreaseꢀtheꢀvoltageꢀ  
onꢀtheꢀI ꢀpin.ꢀWhenꢀtheꢀI ꢀvoltageꢀdropsꢀbelowꢀ0.425V,ꢀ  
TH  
TH  
theꢀinternalꢀsleepꢀsignalꢀgoesꢀhighꢀ(enablingꢀsleepꢀmode)ꢀ  
andꢀbothꢀexternalꢀMOSFETsꢀareꢀturnedꢀoff.ꢀTheꢀI ꢀpinꢀisꢀ  
TH  
thenꢀdisconnectedꢀfromꢀtheꢀoutputꢀofꢀtheꢀEAꢀandꢀparkedꢀ  
atꢀ0.450V.  
Inꢀsleepꢀmode,ꢀmuchꢀofꢀtheꢀinternalꢀcircuitryꢀisꢀturnedꢀoff,ꢀ  
reducingꢀtheꢀquiescentꢀcurrentꢀthatꢀtheꢀLTC3857ꢀdraws.ꢀ  
Ifꢀoneꢀchannelꢀisꢀshutꢀdownꢀandꢀtheꢀotherꢀchannelꢀisꢀinꢀ  
sleepꢀmode,ꢀtheꢀLTC3857ꢀdrawsꢀonlyꢀ50µAꢀofꢀquiescentꢀ  
current.ꢀIfꢀbothꢀchannelsꢀareꢀinꢀsleepꢀmode,ꢀtheꢀLTC3857ꢀ  
drawsonly80µAofquiescentcurrent.Insleepmode,ꢀ Frequency Selection and Phase-Locked Loop  
theꢀloadꢀcurrentꢀisꢀsuppliedꢀbyꢀtheꢀoutputꢀcapacitor.ꢀAsꢀ (FREQ and PLLIN/MODE Pins)  
theꢀoutputꢀvoltageꢀdecreases,ꢀtheꢀEA’sꢀoutputꢀbeginsꢀtoꢀ  
Theꢀselectionꢀofꢀswitchingꢀfrequencyꢀisꢀaꢀtradeoffꢀbetweenꢀ  
rise.ꢀWhenꢀtheꢀoutputꢀvoltageꢀdropsꢀenough,ꢀtheꢀI ꢀpinꢀ  
TH  
efficiencyꢀ andꢀ componentꢀ size.ꢀ Lowꢀ frequencyꢀ opera-  
tionꢀincreasesꢀefficiencyꢀbyꢀreducingꢀMOSFETꢀswitchingꢀ  
losses,ꢀbutꢀrequiresꢀlargerꢀinductanceꢀand/orꢀcapacitanceꢀ  
toꢀmaintainꢀlowꢀoutputꢀrippleꢀvoltage.  
isꢀreconnectedꢀtoꢀtheꢀoutputꢀofꢀtheꢀEA,ꢀtheꢀsleepꢀsignalꢀ  
goesꢀlow,ꢀandꢀtheꢀcontrollerꢀresumesꢀnormalꢀoperationꢀ  
byꢀturningꢀonꢀtheꢀtopꢀexternalꢀMOSFETꢀonꢀtheꢀnextꢀcycleꢀ  
ofꢀtheꢀinternalꢀoscillator.  
TheꢀswitchingꢀfrequencyꢀofꢀtheꢀLTC3857’sꢀcontrollersꢀcanꢀ  
beꢀselectedꢀusingꢀtheꢀFREQꢀpin.  
WhenacontrollerisenabledforBurstModeoperation,theꢀ  
inductorcurrentisnotallowedtoreverse.Thereversecur-  
rentcomparator,IR,turnsoffthebottomexternalMOSFETꢀ  
justꢀbeforeꢀtheꢀinductorꢀcurrentꢀreachesꢀzero,ꢀpreventingꢀ  
itꢀfromꢀreversingꢀandꢀgoingꢀnegative.ꢀThus,ꢀtheꢀcontrollerꢀ  
operatesꢀinꢀdiscontinuousꢀoperation.  
IfꢀtheꢀPLLIN/MODEꢀpinꢀisꢀnotꢀbeingꢀdrivenꢀbyꢀanꢀexternalꢀ  
clockꢀsource,ꢀtheꢀFREQꢀpinꢀcanꢀbeꢀtiedꢀtoꢀSGND,ꢀtiedꢀtoꢀ  
INTV orprogrammedthroughanexternalresistor.Tyingꢀ  
CC  
FREQtoSGNDselects350kHzwhiletyingFREQtoINTV ꢀ  
CC  
3857fa  
ꢀꢁ  
LTC3857  
operaTion (Refer to the Functional Diagram)  
selects535kHz.PlacingaresistorbetweenFREQandSGNDꢀ  
allowsꢀtheꢀfrequencyꢀtoꢀbeꢀprogrammedꢀbetweenꢀ50kHzꢀ  
andꢀ900kHz,ꢀasꢀshownꢀinꢀFigureꢀ10.  
Table 1  
V
CONTROLLER 2 PHASE  
CLKOUT PHASE  
PHASMD  
GND  
180°  
180°  
240°  
60°  
90°  
Floating  
Aꢀphase-lockedꢀloopꢀ(PLL)ꢀisꢀavailableꢀonꢀtheꢀLTC3857ꢀ  
toꢀsynchronizeꢀtheꢀinternalꢀoscillatorꢀtoꢀanꢀexternalꢀclockꢀ  
sourcethatisconnectedtothePLLIN/MODEpin.Theꢀ  
phaseꢀdetectorꢀadjustsꢀtheꢀvoltageꢀ(throughꢀanꢀinternalꢀ  
lowpasslter)oftheVCOinputtoaligntheturn-onofꢀ  
controllerꢀ1’sꢀexternalꢀtopꢀMOSFETꢀtoꢀtheꢀrisingꢀedgeꢀofꢀ  
thesynchronizingsignal.Thus,theturn-onofcontrollerꢀ2’sꢀ  
externalꢀtopꢀMOSFETꢀisꢀ180ꢀdegreesꢀoutꢀofꢀphaseꢀtoꢀtheꢀ  
risingꢀedgeꢀofꢀtheꢀexternalꢀclockꢀsource.  
INTV  
120°  
CC  
Output Overvoltage Protection  
Anovervoltagecomparatorguardsagainsttransientover-  
shootsꢀasꢀwellꢀasꢀotherꢀmoreꢀseriousꢀconditionsꢀthatꢀmayꢀ  
overvoltageꢀtheꢀoutput.ꢀWhenꢀtheꢀV ꢀpinꢀrisesꢀbyꢀmoreꢀ  
than10%aboveitsregulationpointof0.800V,thetopꢀ  
MOSFETꢀisꢀturnedꢀoffꢀandꢀtheꢀbottomꢀMOSFETꢀisꢀturnedꢀ  
onꢀuntilꢀtheꢀovervoltageꢀconditionꢀisꢀcleared.  
FB  
TheꢀVCOꢀinputꢀvoltageꢀisꢀprebiasedꢀtoꢀtheꢀoperatingꢀfre-  
quencyꢀsetꢀbyꢀtheꢀFREQꢀpinꢀbeforeꢀtheꢀexternalꢀclockꢀisꢀ  
applied.Ifprebiasedneartheexternalclockfrequency,ꢀ  
theꢀPLLꢀloopꢀonlyꢀneedsꢀtoꢀmakeꢀslightꢀchangesꢀtoꢀtheꢀ  
VCOꢀinputꢀinꢀorderꢀtoꢀsynchronizeꢀtheꢀrisingꢀedgeꢀofꢀtheꢀ  
externalꢀclock’sꢀtoꢀtheꢀrisingꢀedgeꢀofꢀTG1.ꢀTheꢀabilityꢀtoꢀ  
prebiasthelooplterallowsthePLLtolock-inrapidlyꢀ  
withoutꢀdeviatingꢀfarꢀfromꢀtheꢀdesiredꢀfrequency.  
Power Good (PGOOD1 and PGOOD2) Pins  
EachPGOODpinisconnectedtoanopendrainofanꢀ  
internalꢀN-channelꢀMOSFET.ꢀTheꢀMOSFETꢀturnsꢀonꢀandꢀ  
pullsꢀtheꢀPGOODꢀpinꢀlowꢀwhenꢀtheꢀcorrespondingꢀV ꢀpinꢀ  
FB  
voltageꢀisꢀnotꢀwithinꢀ 10%ꢀofꢀtheꢀ0.8Vꢀreferenceꢀvoltage.ꢀ  
ThePGOODpinisalsopulledlowwhenthecorrespondingꢀ  
RUNꢀpinꢀisꢀlowꢀ(shutꢀdown).ꢀWhenꢀtheꢀV ꢀpinꢀvoltageꢀ  
FB  
Theꢀtypicalꢀcaptureꢀrangeꢀofꢀtheꢀphase-lockedꢀloopꢀisꢀfromꢀ  
approximatelyꢀ55kHzꢀtoꢀ1MHz,ꢀwithꢀaꢀguaranteeꢀoverꢀallꢀ  
manufacturingvariationstobebetween75kHzand850kHz.ꢀ  
Inꢀotherꢀwords,ꢀtheꢀLTC3857’sꢀPLLꢀisꢀguaranteedꢀtoꢀlockꢀ  
toꢀanꢀexternalꢀclockꢀsourceꢀwhoseꢀfrequencyꢀisꢀbetweenꢀ  
75kHzꢀandꢀ850kHz.  
isꢀwithinꢀtheꢀ 10%ꢀrequirement,ꢀtheꢀMOSFETꢀisꢀturnedꢀ  
offꢀandꢀtheꢀpinꢀisꢀallowedꢀtoꢀbeꢀpulledꢀupꢀbyꢀanꢀexternalꢀ  
resistorꢀtoꢀaꢀsourceꢀnoꢀgreaterꢀthanꢀ6V.  
Foldback Current  
Whentheoutputvoltagefallstolessthan70%ofitsꢀ  
nominalꢀlevel,ꢀfoldbackꢀcurrentꢀlimitingꢀisꢀactivated,ꢀpro-  
gressivelyꢀloweringꢀtheꢀpeakꢀcurrentꢀlimitꢀinꢀproportionꢀtoꢀ  
theꢀseverityꢀofꢀtheꢀovercurrentꢀorꢀshort-circuitꢀcondition.ꢀ  
Foldbackꢀcurrentꢀlimitingꢀisꢀdisabledꢀduringꢀtheꢀsoft-startꢀ  
ThetypicalinputclockthresholdsonthePLLIN/MODEꢀ  
pinꢀareꢀ1.6Vꢀ(rising)ꢀandꢀ1.1Vꢀ(falling).  
PolyPhase® Applications (CLKOUT and PHASMD Pins)  
intervalꢀ(asꢀlongꢀasꢀtheꢀV ꢀvoltageꢀisꢀkeepingꢀupꢀwithꢀtheꢀ  
TheꢀLTC3857ꢀfeaturesꢀtwoꢀpinsꢀ(CLKOUTꢀandꢀPHASMD)ꢀ  
thatꢀallowꢀotherꢀcontrollerꢀICsꢀtoꢀbeꢀdaisy-chainedꢀwithꢀ  
theꢀLTC3857ꢀinꢀPolyPhaseꢀapplications.ꢀTheꢀclockꢀoutputꢀ  
signalontheCLKOUTpincanbeusedtosynchronizeꢀ  
additionalpowerstagesinamultiphasepowersupplyꢀ  
solutionꢀfeedingꢀaꢀsingle,ꢀhighꢀcurrentꢀoutputꢀorꢀmultipleꢀ  
separateꢀoutputs.ꢀTheꢀPHASMDꢀpinꢀisꢀusedꢀtoꢀadjustꢀtheꢀ  
phaseꢀofꢀtheꢀCLKOUTꢀsignalꢀasꢀwellꢀasꢀtheꢀrelativeꢀphasesꢀ  
betweenꢀtheꢀtwoꢀinternalꢀcontrollers,ꢀasꢀsummarizedꢀinꢀ  
Table1.Thephasesarecalculatedrelativetothezeroꢀ  
degreesꢀphaseꢀbeingꢀdefinedꢀasꢀtheꢀrisingꢀedgeꢀofꢀtheꢀtopꢀ  
gateꢀdriverꢀoutputꢀofꢀcontrollerꢀ1ꢀ(TG1).  
FB  
TRACK/SSꢀvoltage).  
Theory and Benefits of 2-Phase Operation  
Whyꢀtheꢀneedꢀforꢀ2-phaseꢀoperation?ꢀUpꢀuntilꢀtheꢀ2-phaseꢀ  
family,ꢀ constant-frequencyꢀ dualꢀ switchingꢀ regulatorsꢀ  
operatedꢀ bothꢀ channelsꢀ inꢀ phaseꢀ (i.e.,ꢀ singleꢀ phaseꢀ  
operation).ꢀThisꢀmeansꢀthatꢀbothꢀswitchesꢀturnedꢀonꢀatꢀ  
theꢀsameꢀtime,ꢀcausingꢀcurrentꢀpulsesꢀofꢀupꢀtoꢀtwiceꢀtheꢀ  
amplitudeꢀofꢀthoseꢀforꢀoneꢀregulatorꢀtoꢀbeꢀdrawnꢀfromꢀtheꢀ  
inputꢀcapacitorꢀandꢀbattery.ꢀTheseꢀlargeꢀamplitudeꢀcurrentꢀ  
3857fa  
ꢀꢂ  
LTC3857  
operaTion (Refer to the Functional Diagram)  
pulsesꢀincreasedꢀtheꢀtotalꢀRMSꢀcurrentꢀflowingꢀfromꢀtheꢀ  
inputꢀcapacitor,ꢀrequiringꢀtheꢀuseꢀofꢀmoreꢀexpensiveꢀinputꢀ  
capacitorsandincreasingbothEMIandlossesintheinputꢀ  
capacitorꢀandꢀbattery.  
Ofcourse,theimprovementaffordedby2-phaseoperationꢀ  
isꢀaꢀfunctionꢀofꢀtheꢀdualꢀswitchingꢀregulator’sꢀrelativeꢀdutyꢀ  
cycleswhich,inturn,aredependentupontheinputvoltageꢀ  
V ꢀ(DutyꢀCycleꢀ=ꢀV /V ).ꢀFigureꢀ2ꢀshowsꢀhowꢀtheꢀRMSꢀ  
IN  
OUT IN  
inputcurrentvariesforsingle-phaseand2-phaseoperationꢀ  
for3.3Vand5Vregulatorsoverawideinputvoltagerange.  
Withꢀ 2-phaseꢀ operation,ꢀ theꢀ twoꢀ channelsꢀ ofꢀ theꢀ dualꢀ  
switchingregulatorareoperated180degreesoutofphase.ꢀ  
Thiseffectivelyinterleavesthecurrentpulsesdrawnbytheꢀ  
switches,greatlyreducingtheoverlaptimewheretheyaddꢀ  
together.ꢀTheꢀresultꢀisꢀaꢀsignificantꢀreductionꢀinꢀtotalꢀRMSꢀ  
inputꢀcurrent,ꢀwhichꢀinꢀturnꢀallowsꢀlessꢀexpensiveꢀinputꢀ  
capacitorsꢀtoꢀbeꢀused,ꢀreducesꢀshieldingꢀrequirementsꢀforꢀ  
EMIꢀandꢀimprovesꢀrealꢀworldꢀoperatingꢀefficiency.  
Itꢀcanꢀreadilyꢀbeꢀseenꢀthatꢀtheꢀadvantagesꢀofꢀ2-phaseꢀop-  
erationꢀareꢀnotꢀjustꢀlimitedꢀtoꢀaꢀnarrowꢀoperatingꢀrange,ꢀ  
formostapplicationsisthat2-phaseoperationwillreduceꢀ  
theinputcapacitorrequirementtothatforjustonechannelꢀ  
operatingꢀatꢀmaximumꢀcurrentꢀandꢀ50%ꢀdutyꢀcycle.  
Figure1comparestheinputwaveformsforasingle-phaseꢀ  
dualꢀ switchingꢀ regulatorꢀ toꢀ aꢀ 2-phaseꢀ dualꢀ switchingꢀ  
regulator.ꢀAnꢀactualꢀmeasurementꢀofꢀtheꢀRMSꢀinputꢀcur-  
rentundertheseconditionsshowsthat2-phaseoperationꢀ  
3.0  
SINGLE PHASE  
DUAL CONTROLLER  
2.5  
2.0  
1.5  
1.0  
0.5  
0
droppedꢀtheꢀinputꢀcurrentꢀfromꢀ2.53A  
ꢀtoꢀ1.55A  
.ꢀ  
RMS  
RMS  
Whileꢀthisꢀisꢀanꢀimpressiveꢀreductionꢀinꢀitself,ꢀrememberꢀ  
2
thatꢀtheꢀpowerꢀlossesꢀareꢀproportionalꢀtoꢀI  
,ꢀmeaningꢀ  
2-PHASE  
DUAL CONTROLLER  
RMS  
thattheactualpowerwastedisreducedbyafactorof2.66.ꢀ  
Theꢀreducedꢀinputꢀrippleꢀvoltageꢀalsoꢀmeansꢀlessꢀpowerꢀisꢀ  
lostꢀinꢀtheꢀinputꢀpowerꢀpath,ꢀwhichꢀcouldꢀincludeꢀbatter-  
ies,ꢀswitches,ꢀtrace/connectorꢀresistancesꢀandꢀprotectionꢀ  
circuitry.ꢀImprovementsꢀinꢀbothꢀconductedꢀandꢀradiatedꢀ  
EMIꢀalsoꢀdirectlyꢀaccrueꢀasꢀaꢀresultꢀofꢀtheꢀreducedꢀRMSꢀ  
inputꢀcurrentꢀandꢀvoltage.  
V
O1  
V
O2  
= 5V/3A  
= 3.3V/3A  
0
10  
20  
30  
40  
INPUT VOLTAGE (V)  
3857 F02  
Figure 2. RMS Input Current Comparison  
5V SWITCH  
20V/DIV  
3.3V SWITCH  
20V/DIV  
INPUT CURRENT  
5A/DIV  
INPUT VOLTAGE  
500mV/DIV  
3857 F01  
I
= 2.53A  
I
= 1.55A  
IN(MEAS) RMS  
IN(MEAS)  
RMS  
Figure 1. Input Waveforms Comparing Single-Phase (a) and 2-Phase (b) Operation for Dual Switching Regulators  
Converting 12V to 5V and 3.3V at 3A Each. The Reduced Input Ripple with the 2-Phase Regulator Allows  
Less Expensive Input Capacitors, Reduces Shielding Requirements for EMI and Improves Efficiency  
3857fa  
ꢀꢃ  
LTC3857  
applicaTions inForMaTion  
TheTypicalApplicationontherstpageisabasicLTC3857ꢀ  
applicationꢀ circuit.ꢀ LTC3857ꢀ canꢀ beꢀ configuredꢀ toꢀ useꢀ  
eitherꢀ DCRꢀ (inductorꢀ resistance)ꢀ sensingꢀ orꢀ lowꢀ valueꢀ  
resistorꢀ sensing.ꢀ Theꢀ choiceꢀ betweenꢀ theꢀ twoꢀ currentꢀ  
sensingschemesislargelyadesigntrade-offbetweenꢀ  
cost,ꢀ powerꢀ consumptionꢀ andꢀ accuracy.ꢀ DCRꢀ sensingꢀ  
isꢀbecomingꢀpopularꢀbecauseꢀitꢀsavesꢀexpensiveꢀcurrentꢀ  
sensingꢀresistorsꢀandꢀisꢀmoreꢀpowerꢀefficient,ꢀespeciallyꢀ  
inꢀ highꢀ currentꢀ applications.ꢀ However,ꢀ currentꢀ sensingꢀ  
resistorsꢀprovideꢀtheꢀmostꢀaccurateꢀcurrentꢀlimitsꢀforꢀtheꢀ  
controller.ꢀOtherꢀexternalꢀcomponentꢀselectionꢀisꢀdrivenꢀ  
byꢀtheꢀloadꢀrequirement,ꢀandꢀbeginsꢀwithꢀtheꢀselectionꢀofꢀ  
Filtercomponentsmutualtothesenselinesshouldbeꢀ  
placedꢀcloseꢀtoꢀtheꢀLTC3857,ꢀandꢀtheꢀsenseꢀlinesꢀshouldꢀ  
runꢀcloseꢀtogetherꢀtoꢀaꢀKelvinꢀconnectionꢀunderneathꢀtheꢀ  
currentꢀsenseꢀelementꢀ(shownꢀinꢀFigureꢀ3).ꢀSensingꢀcur-  
rentelsewherecaneffectivelyaddparasiticinductanceꢀ  
andꢀcapacitanceꢀtoꢀtheꢀcurrentꢀsenseꢀelement,ꢀdegradingꢀ  
theinformationatthesenseterminalsandmakingtheꢀ  
programmedꢀcurrentꢀlimitꢀunpredictable.ꢀIfꢀinductorꢀDCRꢀ  
sensingꢀisꢀusedꢀ(Figureꢀ4b),ꢀsenseꢀresistorꢀR1ꢀshouldꢀbeꢀ  
TO SENSE FILTER,  
NEXT TO THE CONTROLLER  
C
OUT  
R
ꢀ(ifꢀR  
ꢀisꢀused)ꢀandꢀinductorꢀvalue.ꢀNext,ꢀtheꢀ  
SENSE  
SENSE  
3857 F03  
powerMOSFETsandSchottkydiodesareselected.Finally,ꢀ  
inputꢀandꢀoutputꢀcapacitorsꢀareꢀselected.  
INDUCTOR OR R  
SENSE  
Figure 3. Sense Lines Placement with Inductor or Sense Resistor  
Current Limit Programming  
V
V
IN  
IN  
INTV  
CC  
TheꢀILIMꢀpinꢀisꢀaꢀtri-levelꢀlogicꢀinputꢀwhichꢀsetsꢀtheꢀmaxi-  
mumcurrentlimitofthecontroller.WhenILIMisgrounded,ꢀ  
theꢀmaximumꢀcurrentꢀlimitꢀthresholdꢀvoltageꢀofꢀtheꢀcur-  
BOOST  
TG  
R
SENSE  
SW  
V
OUT  
rentꢀcomparatorꢀisꢀprogrammedꢀtoꢀbeꢀ30mV.ꢀWhenꢀILIM  
LTC3857  
isꢀfloated,ꢀtheꢀmaximumꢀcurrentꢀlimitꢀthresholdꢀisꢀ50mV.ꢀ  
WhenꢀILIMꢀisꢀtiedꢀtoꢀINTVCC,ꢀtheꢀmaximumꢀcurrentꢀlimitꢀ  
thresholdꢀisꢀsetꢀtoꢀ75mV.  
BG  
+
SENSE  
PLACE CAPACITOR NEAR  
SENSE PINS  
+
SENSE  
SGND  
SENSE and SENSE Pins  
+
3857 F04a  
TheꢀSENSE ꢀandꢀSENSE ꢀpinsꢀareꢀtheꢀinputsꢀtoꢀtheꢀcur-  
rentꢀcomparators.ꢀTheꢀcommonꢀmodeꢀvoltageꢀrangeꢀonꢀ  
theseꢀpinsꢀisꢀ0Vꢀtoꢀ24Vꢀ(absꢀmax),ꢀenablingꢀtheꢀLTC3857ꢀ  
toꢀregulateꢀoutputꢀvoltagesꢀupꢀtoꢀaꢀnominalꢀ24Vꢀ(allowingꢀ  
marginꢀforꢀtolerancesꢀandꢀtransients).ꢀ  
(4a) Using a Resistor to Sense Current  
V
V
IN  
IN  
INTV  
CC  
+
INDUCTOR  
DCR  
BOOST  
TG  
TheꢀSENSE ꢀpinꢀisꢀhighꢀimpedanceꢀoverꢀtheꢀfullꢀcommonꢀ  
modeꢀrange,ꢀdrawingꢀatꢀmostꢀ 1µA.ꢀThisꢀhighꢀimpedanceꢀ  
allowsthecurrentcomparatorstobeusedininductorꢀ  
DCRꢀsensing.  
L
SW  
V
OUT  
LTC3857  
BG  
R1  
C1* R2  
TheꢀimpedanceꢀofꢀtheꢀSENSE ꢀpinꢀchangesꢀdependingꢀonꢀ  
+
SENSE  
thecommonmodevoltage.WhenSENSE islessthanꢀ  
SENSE  
INTV ꢀ–ꢀ0.5V,ꢀaꢀsmallꢀcurrentꢀofꢀlessꢀthanꢀ1µAꢀflowsꢀoutꢀ  
CC  
SGND  
ofꢀtheꢀpin.ꢀWhenꢀSENSE ꢀisꢀaboveꢀINTV ꢀ+ꢀ0.5V,ꢀaꢀhigherꢀ  
CC  
3857 F04b  
R2  
R1 + R2  
L
||  
(R1 R2) C1 =  
*PLACE C1 NEAR  
SENSE PINS  
R
= DCR  
SENSE(EQ)  
current(~550µA)owsintothepin.BetweenINTV 0.5Vꢀ  
CC  
DCR  
andINTV +0.5V,thecurrenttransitionsfromthesmallerꢀ  
CC  
(4b) Using the Inductor DCR to Sense Current  
Figure 4. Current Sensing Methods  
currentꢀtoꢀtheꢀhigherꢀcurrent.  
3857fa  
ꢀꢄ  
LTC3857  
applicaTions inForMaTion  
placedꢀcloseꢀtoꢀtheꢀswitchingꢀnode,ꢀtoꢀpreventꢀnoiseꢀfromꢀ  
IfꢀtheꢀexternalꢀR1||R2ꢀ•ꢀC1ꢀtimeꢀconstantꢀisꢀchosenꢀtoꢀbeꢀ  
exactlyꢀequalꢀtoꢀtheꢀL/DCRꢀtimeꢀconstant,ꢀtheꢀvoltageꢀdropꢀ  
acrossꢀtheꢀexternalꢀcapacitorꢀisꢀequalꢀtoꢀtheꢀdropꢀacrossꢀ  
theinductorDCRmultipliedbyR2/(R1+R2).R2scalestheꢀ  
voltageꢀacrossꢀtheꢀsenseꢀterminalsꢀforꢀapplicationsꢀwhereꢀ  
theꢀDCRꢀisꢀgreaterꢀthanꢀtheꢀtargetꢀsenseꢀresistorꢀvalue.ꢀ  
Toꢀproperlyꢀdimensionꢀtheꢀexternalꢀfilterꢀcomponents,ꢀtheꢀ  
DCRꢀofꢀtheꢀinductorꢀmustꢀbeꢀknown.ꢀItꢀcanꢀbeꢀmeasuredꢀ  
usingagoodRLCmeter,buttheDCRtoleranceisnotꢀ  
alwaysꢀtheꢀsameꢀandꢀvariesꢀwithꢀtemperature;ꢀconsultꢀtheꢀ  
manufacturers’ꢀdataꢀsheetsꢀforꢀdetailedꢀinformation.  
couplingꢀintoꢀsensitiveꢀsmall-signalꢀnodes.  
Low Value Resistor Current Sensing  
Aꢀtypicalꢀsensingꢀcircuitꢀusingꢀaꢀdiscreteꢀresistorꢀisꢀshownꢀ  
inꢀ Figureꢀ 4a.ꢀ R  
outputꢀcurrent.  
ꢀ isꢀ chosenꢀ basedꢀ onꢀ theꢀ requiredꢀ  
SENSE  
Theꢀ currentꢀ comparatorꢀ hasꢀ aꢀ maximumꢀ thresholdꢀ  
ꢀdeterminedꢀbyꢀtheꢀI ꢀsetting.ꢀTheꢀcurrentꢀ  
V
SENSE(MAX)  
LIM  
comparatorꢀthresholdꢀvoltageꢀsetsꢀtheꢀpeakꢀofꢀtheꢀinduc-  
torꢀcurrent,ꢀyieldingꢀaꢀmaximumꢀaverageꢀoutputꢀcurrent,ꢀ  
UsingꢀtheꢀinductorꢀrippleꢀcurrentꢀvalueꢀfromꢀtheꢀInductorꢀ  
ValueꢀCalculationꢀsection,ꢀtheꢀtargetꢀsenseꢀresistorꢀvalueꢀ  
is:  
I
,ꢀequalꢀtoꢀtheꢀpeakꢀvalueꢀlessꢀhalfꢀtheꢀpeak-to-peakꢀ  
MAX  
rippleꢀcurrent,ꢀI .ꢀToꢀcalculateꢀtheꢀsenseꢀresistorꢀvalue,ꢀ  
L
useꢀtheꢀequation:  
VSENSE(MAX)  
VSENSE(MAX)  
RSENSE(EQUIV)  
=
RSENSE  
=
IL  
IL  
IMAX  
+
IMAX  
+
2
2
Toꢀensureꢀthatꢀtheꢀapplicationꢀwillꢀdeliverꢀfullꢀloadꢀcurrentꢀ  
overꢀ theꢀ fullꢀ operatingꢀ temperatureꢀ range,ꢀ chooseꢀ theꢀ  
minimumꢀvalueꢀforꢀtheꢀmaximumꢀcurrentꢀsenseꢀthresholdꢀ  
Whenꢀusingꢀtheꢀcontrollerꢀinꢀveryꢀlowꢀdropoutꢀconditions,ꢀ  
themaximumoutputcurrentlevelwillbereducedduetotheꢀ  
internalꢀcompensationꢀrequiredꢀtoꢀmeetꢀstabilityꢀcriterionꢀ  
forꢀbuckꢀregulatorsꢀoperatingꢀatꢀgreaterꢀthanꢀ50%ꢀdutyꢀ  
factor.AcurveisprovidedintheTypicalPerformanceChar-  
acteristicssectiontoestimatethisreductioninpeakoutputꢀ  
currentꢀdependingꢀuponꢀtheꢀoperatingꢀdutyꢀfactor.  
voltageꢀ (V  
)ꢀ inꢀ theꢀ Electricalꢀ Characteristicsꢀ  
SENSE(MAX)  
tableꢀ(30mV,ꢀ50mVꢀorꢀ75mV,ꢀdependingꢀonꢀtheꢀstateꢀofꢀ  
theꢀI ꢀpin).  
LIM  
Next,ꢀdetermineꢀtheꢀDCRꢀofꢀtheꢀinductor.ꢀWhenꢀprovided,ꢀ  
useꢀtheꢀmanufacturer’sꢀmaximumꢀvalue,ꢀusuallyꢀgivenꢀatꢀ  
20°C.ꢀIncreaseꢀthisꢀvalueꢀtoꢀaccountꢀforꢀtheꢀtemperatureꢀ  
coefficientꢀofꢀcopperꢀresistance,ꢀwhichꢀisꢀapproximatelyꢀ  
Inductor DCR Sensing  
Forꢀapplicationsꢀrequiringꢀtheꢀhighestꢀpossibleꢀefficiencyꢀ  
atꢀhighꢀloadꢀcurrents,ꢀtheꢀLTC3857ꢀisꢀcapableꢀofꢀsensingꢀ  
theꢀvoltageꢀdropꢀacrossꢀtheꢀinductorꢀDCR,ꢀasꢀshownꢀinꢀ  
Figureꢀ4b.ꢀTheꢀDCRꢀofꢀtheꢀinductorꢀrepresentsꢀtheꢀsmallꢀ  
amountꢀofꢀDCꢀresistanceꢀofꢀtheꢀcopperꢀwire,ꢀwhichꢀcanꢀ  
belessthan1fortoday’slowvalue,highcurrentꢀ  
inductors.Inahighcurrentapplicationrequiringsuchꢀ  
anꢀinductor,ꢀpowerꢀlossꢀthroughꢀaꢀsenseꢀresistorꢀwouldꢀ  
costseveralpointsofefficiencycomparedtoinductorꢀ  
DCRꢀsensing.  
0.4%/°C.ꢀAꢀconservativeꢀvalueꢀforꢀT  
ꢀisꢀ100°C.  
L(MAX)  
ToꢀscaleꢀtheꢀmaximumꢀinductorꢀDCRꢀtoꢀtheꢀdesiredꢀsenseꢀ  
resistorꢀ(R )ꢀvalue,ꢀuseꢀtheꢀdividerꢀratio:  
D
RSENSE(EQUIV)  
RD =  
DCRMAX atT  
L(MAX)  
C1ꢀisꢀusuallyꢀselectedꢀtoꢀbeꢀinꢀtheꢀrangeꢀofꢀ0.1µFꢀtoꢀ0.47µF.ꢀ  
ThisforcesR1||R2toaround2k,reducingerrorthatmightꢀ  
+
haveꢀbeenꢀcausedꢀbyꢀtheꢀSENSE ꢀpin’sꢀ 1µAꢀcurrent.  
3857fa  
ꢀꢅ  
LTC3857  
applicaTions inForMaTion  
TheꢀequivalentꢀresistanceꢀR1||ꢀR2ꢀisꢀscaledꢀtoꢀtheꢀroomꢀ  
Acceptingꢀ largerꢀ valuesꢀ ofꢀ I ꢀ allowsꢀ theꢀ useꢀ ofꢀ lowꢀ  
L
temperatureꢀinductanceꢀandꢀmaximumꢀDCR:  
inductances,ꢀbutꢀresultsꢀinꢀhigherꢀoutputꢀvoltageꢀrippleꢀ  
andꢀgreaterꢀcoreꢀlosses.ꢀAꢀreasonableꢀstartingꢀpointꢀforꢀ  
L
R1||R2 =  
settingꢀrippleꢀcurrentꢀisꢀI ꢀ=ꢀ0.3(I  
).ꢀTheꢀmaximumꢀ  
MAX  
L
DCR at 20°C C1  
(
)
I ꢀoccursꢀatꢀtheꢀmaximumꢀinputꢀvoltage.  
L
Theꢀinductorꢀvalueꢀalsoꢀhasꢀsecondaryꢀeffects.ꢀTheꢀtran-  
sitionꢀtoꢀBurstꢀModeꢀoperationꢀbeginsꢀwhenꢀtheꢀaverageꢀ  
inductorꢀcurrentꢀrequiredꢀresultsꢀinꢀaꢀpeakꢀcurrentꢀbelowꢀ  
Theꢀsenseꢀresistorꢀvaluesꢀare:  
R1RD  
1RD  
R1||R2  
RD  
R1=  
; R2 =  
15%ofthecurrentlimitdeterminedbyR  
.Lowerꢀ  
SENSE  
inductorvalues(higherI )willcausethistooccuratꢀ  
L
TheꢀmaximumꢀpowerꢀlossꢀinꢀR1ꢀisꢀrelatedꢀtoꢀdutyꢀcycle,ꢀ  
andꢀwillꢀoccurꢀinꢀcontinuousꢀmodeꢀatꢀtheꢀmaximumꢀinputꢀ  
voltage:  
lowerꢀloadꢀcurrents,ꢀwhichꢀcanꢀcauseꢀaꢀdipꢀinꢀefficiencyꢀinꢀ  
theꢀupperꢀrangeꢀofꢀlowꢀcurrentꢀoperation.ꢀInꢀBurstꢀModeꢀ  
operation,ꢀlowerꢀinductanceꢀvaluesꢀwillꢀcauseꢀtheꢀburstꢀ  
frequencyꢀtoꢀdecrease.  
V
IN(MAX) VOUT • V  
(
)
OUT  
P
R1=  
LOSS  
Inductor Core Selection  
R1  
OnceꢀtheꢀvalueꢀforꢀLꢀisꢀknown,ꢀtheꢀtypeꢀofꢀinductorꢀmustꢀ  
beꢀselected.ꢀHighꢀefficiencyꢀconvertersꢀgenerallyꢀcannotꢀ  
affordthecorelossfoundinlowcostpowderedironcores,ꢀ  
forcingtheuseofmoreexpensiveferriteormolypermalloyꢀ  
cores.ꢀActualꢀcoreꢀlossꢀisꢀindependentꢀofꢀcoreꢀsizeꢀforꢀaꢀ  
fixedinductorvalue,butitisverydependentoninductanceꢀ  
valueꢀselected.ꢀAsꢀinductanceꢀincreases,ꢀcoreꢀlossesꢀgoꢀ  
down.ꢀUnfortunately,ꢀincreasedꢀinductanceꢀrequiresꢀmoreꢀ  
turnsꢀofꢀwireꢀandꢀthereforeꢀcopperꢀlossesꢀwillꢀincrease.  
EnsureꢀthatꢀR1ꢀhasꢀaꢀpowerꢀratingꢀhigherꢀthanꢀthisꢀvalue.ꢀ  
Ifꢀhighꢀefficiencyꢀisꢀnecessaryꢀatꢀlightꢀloads,ꢀconsiderꢀthisꢀ  
powerꢀlossꢀwhenꢀdecidingꢀwhetherꢀtoꢀuseꢀDCRꢀsensingꢀorꢀ  
senseꢀresistors.ꢀLightꢀloadꢀpowerꢀlossꢀcanꢀbeꢀmodestlyꢀ  
higherꢀwithꢀaꢀDCRꢀnetworkꢀthanꢀwithꢀaꢀsenseꢀresistor,ꢀdueꢀ  
totheextraswitchinglossesincurredthroughR1.However,ꢀ  
DCRꢀsensingꢀeliminatesꢀaꢀsenseꢀresistor,ꢀreducesꢀconduc-  
tionꢀlossesꢀandꢀprovidesꢀhigherꢀefficiencyꢀatꢀheavyꢀloads.ꢀ  
Peakꢀefficiencyꢀisꢀaboutꢀtheꢀsameꢀwithꢀeitherꢀmethod.  
Ferriteꢀdesignsꢀhaveꢀveryꢀlowꢀcoreꢀlossꢀandꢀareꢀpreferredꢀ  
forꢀ highꢀ switchingꢀ frequencies,ꢀ soꢀ designꢀ goalsꢀ canꢀ  
concentrateoncopperlossandpreventingsaturation.ꢀ  
Ferritecorematerialsaturateshard,whichmeansthatꢀ  
inductancecollapsesabruptlywhenthepeakdesigncurrentꢀ  
isꢀexceeded.ꢀThisꢀresultsꢀinꢀanꢀabruptꢀincreaseꢀinꢀinductorꢀ  
rippleꢀcurrentꢀandꢀconsequentꢀoutputꢀvoltageꢀripple.ꢀDoꢀ  
notꢀallowꢀtheꢀcoreꢀtoꢀsaturate!  
Inductor Value Calculation  
Theꢀoperatingꢀfrequencyꢀandꢀinductorꢀselectionꢀareꢀinter-  
relatedꢀinꢀthatꢀhigherꢀoperatingꢀfrequenciesꢀallowꢀtheꢀuseꢀ  
ofꢀsmallerꢀinductorꢀandꢀcapacitorꢀvalues.ꢀSoꢀwhyꢀwouldꢀ  
anyoneꢀeverꢀchooseꢀtoꢀoperateꢀatꢀlowerꢀfrequenciesꢀwithꢀ  
largercomponents?Theanswerisefficiency.Ahigherꢀ  
frequencygenerallyresultsinlowerefficiencybecauseꢀ  
ofꢀMOSFETꢀgateꢀchargeꢀlosses.ꢀInꢀadditionꢀtoꢀthisꢀbasicꢀ  
trade-off,ꢀtheꢀeffectꢀofꢀinductorꢀvalueꢀonꢀrippleꢀcurrentꢀandꢀ  
lowꢀcurrentꢀoperationꢀmustꢀalsoꢀbeꢀconsidered.  
Power MOSFET and Schottky Diode (Optional)  
Selection  
TwoꢀexternalꢀpowerꢀMOSFETsꢀmustꢀbeꢀselectedꢀforꢀeachꢀ  
controllerꢀinꢀtheꢀLTC3857:ꢀoneꢀN-channelꢀMOSFETꢀforꢀtheꢀ  
top(main)switch,andoneN-channelMOSFETfortheꢀ  
bottomꢀ(synchronous)ꢀswitch.  
Theꢀinductorꢀvalueꢀhasꢀaꢀdirectꢀeffectꢀonꢀrippleꢀcurrent.ꢀ  
Theinductorripplecurrent,I ,decreaseswithhigherꢀ  
L
inductanceꢀorꢀhigherꢀfrequencyꢀandꢀincreasesꢀwithꢀhigherꢀ  
V :  
IN  
VOUT  
1
IL =  
VOUT 1–  
V
f L  
( )( )  
IN  
3857fa  
ꢀꢆ  
LTC3857  
applicaTions inForMaTion  
Theꢀ peak-to-peakꢀ driveꢀ levelsꢀ areꢀ setꢀ byꢀ theꢀ INTV ꢀ  
whereꢀδꢀisꢀtheꢀtemperatureꢀdependencyꢀofꢀR  
DR  
ꢀandꢀ  
CC  
DS(ON)  
voltage.ꢀ Thisꢀ voltageꢀ isꢀ typicallyꢀ 5.1Vꢀ duringꢀ start-upꢀ  
R ꢀ(approximatelyꢀ2Ω)ꢀisꢀtheꢀeffectiveꢀdriverꢀresistanceꢀ  
(seeꢀEXTV ꢀPinꢀConnection).ꢀConsequently,ꢀlogic-levelꢀ  
atꢀtheꢀMOSFET’sꢀMillerꢀthresholdꢀvoltage.ꢀV  
ꢀisꢀtheꢀ  
CC  
THMIN  
thresholdꢀMOSFETsꢀmustꢀbeꢀusedꢀinꢀmostꢀapplications.ꢀ  
Theꢀ onlyꢀ exceptionꢀ isꢀ ifꢀ lowꢀ inputꢀ voltageꢀ isꢀ expectedꢀ  
typicalꢀMOSFETꢀminimumꢀthresholdꢀvoltage.  
2
BothMOSFETshaveI RlosseswhilethetopsideN-channelꢀ  
equationꢀincludesꢀanꢀadditionalꢀtermꢀforꢀtransitionꢀlosses,ꢀ  
(V ꢀ <ꢀ 4V);ꢀ then,ꢀ sub-logicꢀ levelꢀ thresholdꢀ MOSFETsꢀ  
IN  
(V  
ꢀ<ꢀ3V)ꢀshouldꢀbeꢀused.ꢀPayꢀcloseꢀattentionꢀtoꢀtheꢀ  
GS(TH)  
whichꢀareꢀhighestꢀatꢀhighꢀinputꢀvoltages.ꢀForꢀV ꢀ<ꢀ20Vꢀ  
IN  
BV ꢀspecificationꢀforꢀtheꢀMOSFETsꢀasꢀwell;ꢀmanyꢀofꢀtheꢀ  
DSS  
theꢀhighꢀcurrentꢀefficiencyꢀgenerallyꢀimprovesꢀwithꢀlargerꢀ  
logicꢀlevelꢀMOSFETsꢀareꢀlimitedꢀtoꢀ30Vꢀorꢀless.  
MOSFETs,ꢀwhileꢀforꢀV ꢀ>ꢀ20Vꢀtheꢀtransitionꢀlossesꢀrapidlyꢀ  
IN  
SelectionꢀcriteriaꢀforꢀtheꢀpowerꢀMOSFETsꢀincludeꢀtheꢀon-  
increasetothepointthattheuseofahigherR  
deviceꢀ  
DS(ON)  
resistance,ꢀ R ,ꢀ Millerꢀ capacitance,ꢀ C ,ꢀ inputꢀ  
DS(ON) MILLER  
withlowerC  
actuallyprovideshigherefficiency.Theꢀ  
MILLER  
voltageꢀandꢀmaximumꢀoutputꢀcurrent.ꢀMillerꢀcapacitance,ꢀ  
,ꢀcanꢀbeꢀapproximatedꢀfromꢀtheꢀgateꢀchargeꢀcurveꢀ  
synchronousꢀMOSFETꢀlossesꢀareꢀgreatestꢀatꢀhighꢀinputꢀ  
voltageꢀwhenꢀtheꢀtopꢀswitchꢀdutyꢀfactorꢀisꢀlowꢀorꢀduringꢀ  
aꢀshort-circuitꢀwhenꢀtheꢀsynchronousꢀswitchꢀisꢀonꢀcloseꢀ  
toꢀ100%ꢀofꢀtheꢀperiod.  
C
MILLER  
usuallyꢀ providedꢀ onꢀ theꢀ MOSFETꢀ manufacturers’ꢀ dataꢀ  
sheet.C ꢀisequaltotheincreaseingatechargeꢀ  
MILLER  
alongꢀtheꢀhorizontalꢀaxisꢀwhileꢀtheꢀcurveꢀisꢀapproximatelyꢀ  
Theꢀtermꢀ(1+ꢀδ)ꢀisꢀgenerallyꢀgivenꢀforꢀaꢀMOSFETꢀinꢀtheꢀ  
flatꢀdividedꢀbyꢀtheꢀspecifiedꢀchangeꢀinꢀV .ꢀThisꢀresultꢀisꢀ  
DS  
formꢀofꢀaꢀnormalizedꢀR  
ꢀvsꢀTemperatureꢀcurve,ꢀbutꢀ  
DS(ON)  
thenꢀmultipliedꢀbyꢀtheꢀratioꢀofꢀtheꢀapplicationꢀappliedꢀV ꢀ  
DS  
δ=0.005/°Ccanbeusedasanapproximationforlowꢀ  
toꢀtheꢀgateꢀchargeꢀcurveꢀspecifiedꢀV .ꢀWhenꢀtheꢀICꢀisꢀ  
DS  
voltageꢀMOSFETs.  
operatingꢀinꢀcontinuousꢀmodeꢀtheꢀdutyꢀcyclesꢀforꢀtheꢀtopꢀ  
Theꢀ optionalꢀ Schottkyꢀ diodesꢀ D1ꢀ andꢀ D2ꢀ shownꢀ inꢀ  
Figureꢀ11ꢀ conductꢀ duringꢀ theꢀ dead-timeꢀ betweenꢀ theꢀ  
conductionꢀofꢀtheꢀtwoꢀpowerꢀMOSFETs.ꢀThisꢀpreventsꢀ  
theꢀbodyꢀdiodeꢀofꢀtheꢀbottomꢀMOSFETꢀfromꢀturningꢀon,ꢀ  
storingꢀ chargeꢀ duringꢀ theꢀ dead-timeꢀ andꢀ requiringꢀ aꢀ  
reverseꢀrecoveryꢀperiodꢀthatꢀcouldꢀcostꢀasꢀmuchꢀasꢀ3%ꢀ  
andꢀbottomꢀMOSFETsꢀareꢀgivenꢀby:  
VOUT  
Main Switch Duty Cycle =  
V
IN  
V VOUT  
IN  
Synchronous Switch Duty Cycle =  
V
IN  
inꢀefficiencyꢀatꢀhighꢀV .ꢀAꢀ1Aꢀtoꢀ3AꢀSchottkyꢀisꢀgenerallyꢀ  
IN  
aꢀgoodꢀcompromiseꢀforꢀbothꢀregionsꢀofꢀoperationꢀdueꢀ  
totherelativelysmallaveragecurrent.Largerdiodesꢀ  
resultꢀinꢀadditionalꢀtransitionꢀlossesꢀdueꢀtoꢀtheirꢀlargerꢀ  
junctionꢀcapacitance.  
Theꢀ MOSFETꢀ powerꢀ dissipationsꢀ atꢀ maximumꢀ outputꢀ  
currentꢀareꢀgivenꢀby:  
VOUT  
2
PMAIN  
=
=
I
1+ δ R  
+
(
MAX) (  
)
DS(ON)  
V
IN  
C and C  
Selection  
IN  
OUT  
IMAX  
2
2   
V
R
C
(
)
(
DR )(  
)
IN  
MILLER  
TheꢀselectionꢀofꢀC ꢀisꢀsimplifiedꢀbyꢀtheꢀ2-phaseꢀarchitec-  
IN  
tureꢀandꢀitsꢀimpactꢀonꢀtheꢀworst-caseꢀRMSꢀcurrentꢀdrawnꢀ  
throughꢀtheꢀinputꢀnetworkꢀ(battery/fuse/capacitor).ꢀItꢀcanꢀ  
beꢀshownꢀthatꢀtheꢀworst-caseꢀcapacitorꢀRMSꢀcurrentꢀoc-  
cursꢀwhenꢀonlyꢀoneꢀcontrollerꢀisꢀoperating.ꢀTheꢀcontrollerꢀ  
1
1
+
f
( )  
VINTVCC – VTHMIN VTHMIN  
V – VOUT  
2
withꢀtheꢀhighestꢀ(V )(I )ꢀproductꢀneedsꢀtoꢀbeꢀusedꢀ  
IN  
OUT OUT  
PSYNC  
I
1+ δ R  
(
MAX) (  
)
DS(ON)  
intheformulashowninEquation(1)todeterminetheꢀ  
V
IN  
3857fa  
ꢀꢇ  
LTC3857  
applicaTions inForMaTion  
maximumꢀRMSꢀcapacitorꢀcurrentꢀrequirement.ꢀIncreas-  
ingtheoutputcurrentdrawnfromtheothercontrollerꢀ  
willꢀactuallyꢀdecreaseꢀtheꢀinputꢀRMSꢀrippleꢀcurrentꢀfromꢀ  
itsꢀmaximumꢀvalue.ꢀTheꢀout-of-phaseꢀtechniqueꢀtypicallyꢀ  
reducesꢀ theꢀ inputꢀ capacitor’sꢀ RMSꢀ rippleꢀ currentꢀ byꢀ aꢀ  
factorꢀofꢀ30%ꢀtoꢀ70%ꢀwhenꢀcomparedꢀtoꢀaꢀsingleꢀphaseꢀ  
powerꢀsupplyꢀsolution.  
TheꢀdrainsꢀofꢀtheꢀtopꢀMOSFETsꢀshouldꢀbeꢀplacedꢀwithinꢀ  
1cmofeachotherandshareacommonC (s).Separatingꢀ  
IN  
theꢀdrainsꢀandꢀC ꢀmayꢀproduceꢀundesirableꢀvoltageꢀandꢀ  
IN  
currentꢀresonancesꢀatꢀV .  
IN  
Aꢀsmallꢀ(0.1µFꢀtoꢀ1µF)ꢀbypassꢀcapacitorꢀbetweenꢀtheꢀchipꢀ  
V ꢀpinꢀandꢀground,ꢀplacedꢀcloseꢀtoꢀtheꢀLTC3857,ꢀisꢀalsoꢀ  
IN  
suggested.ꢀAꢀ10ΩꢀresistorꢀplacedꢀbetweenꢀC ꢀ(C1)ꢀandꢀ  
IN  
Incontinuousmode,thesourcecurrentofthetopMOSFETꢀ  
isꢀaꢀsquareꢀwaveꢀofꢀdutyꢀcycleꢀ(V )/(V ).ꢀToꢀpreventꢀ  
theV ꢀpinprovidesfurtherisolationbetweenthetwoꢀ  
IN  
channels.  
OUT  
IN  
largeꢀvoltageꢀtransients,ꢀaꢀlowꢀESRꢀcapacitorꢀsizedꢀforꢀtheꢀ  
maximumꢀRMSꢀcurrentꢀofꢀoneꢀchannelꢀmustꢀbeꢀused.ꢀTheꢀ  
maximumꢀRMSꢀcapacitorꢀcurrentꢀisꢀgivenꢀby:  
TheselectionofC ꢀisdrivenbytheeffectiveseriesꢀ  
OUT  
resistance(ESR).Typically,oncetheESRrequirementꢀ  
isꢀsatisfied,ꢀtheꢀcapacitanceꢀisꢀadequateꢀforꢀfiltering.ꢀTheꢀ  
1/2  
outputꢀrippleꢀ(V )ꢀisꢀapproximatedꢀby:  
IMAX  
OUT  
CIN Required IRMS  
V
OUT )(  
V – V  
IN OUT  
(1)  
(
)
V
IN  
1
VOUT ≈ ∆IL ESR +  
ThisꢀformulaꢀhasꢀaꢀmaximumꢀatꢀV ꢀ=ꢀ2V ,ꢀwhereꢀI  
8 • f C  
OUT   
IN  
OUTꢀ  
RMS  
=ꢀI /2.ꢀThisꢀsimpleꢀworst-caseꢀconditionꢀisꢀcommonlyꢀ  
OUT  
wherefistheoperatingfrequency,C ꢀistheoutputꢀ  
OUT  
usedfordesignbecauseevensignificantdeviationsdonotꢀ  
offermuchrelief.Notethatcapacitormanufacturers’rippleꢀ  
currentꢀratingsꢀareꢀoftenꢀbasedꢀonꢀonlyꢀ2000ꢀhoursꢀofꢀlife.ꢀ  
Thisꢀmakesꢀitꢀadvisableꢀtoꢀfurtherꢀderateꢀtheꢀcapacitor,ꢀorꢀ  
toꢀchooseꢀaꢀcapacitorꢀratedꢀatꢀaꢀhigherꢀtemperatureꢀthanꢀ  
required.Severalcapacitorsmaybeparalleledtomeetꢀ  
sizeꢀorꢀheightꢀrequirementsꢀinꢀtheꢀdesign.ꢀDueꢀtoꢀtheꢀhighꢀ  
operatingꢀfrequencyꢀofꢀtheꢀLTC3857,ꢀceramicꢀcapacitorsꢀ  
capacitanceꢀandꢀI ꢀisꢀtheꢀrippleꢀcurrentꢀinꢀtheꢀinductor.ꢀ  
L
Theoutputrippleishighestatmaximuminputvoltageꢀ  
sinceꢀI ꢀincreasesꢀwithꢀinputꢀvoltage.  
L
Setting Output Voltage  
TheꢀLTC3857ꢀoutputꢀvoltagesꢀareꢀeachꢀsetꢀbyꢀanꢀexternalꢀ  
feedbackꢀresistorꢀdividerꢀcarefullyꢀplacedꢀacrossꢀtheꢀout-  
put,ꢀasꢀshownꢀinꢀFigureꢀ5.ꢀTheꢀregulatedꢀoutputꢀvoltageꢀ  
isꢀdeterminedꢀby:  
canꢀalsoꢀbeꢀusedꢀforꢀC .ꢀAlwaysꢀconsultꢀtheꢀmanufacturerꢀ  
IN  
ifꢀthereꢀisꢀanyꢀquestion.  
TheꢀbenefitꢀofꢀtheꢀLTC3857ꢀ2-phaseꢀoperationꢀcanꢀbeꢀcal-  
culatedbyusingEquation1forthehigherpowercontrollerꢀ  
andꢀthenꢀcalculatingꢀtheꢀlossꢀthatꢀwouldꢀhaveꢀresultedꢀifꢀ  
bothꢀcontrollerꢀchannelsꢀswitchedꢀonꢀatꢀtheꢀsameꢀtime.ꢀ  
TheꢀtotalꢀRMSꢀpowerꢀlostꢀisꢀlowerꢀwhenꢀbothꢀcontrollersꢀ  
areꢀoperatingꢀdueꢀtoꢀtheꢀreducedꢀoverlapꢀofꢀcurrentꢀpulsesꢀ  
requiredꢀthroughꢀtheꢀinputꢀcapacitor’sꢀESR.ꢀThisꢀisꢀwhyꢀ  
theꢀinputꢀcapacitor’sꢀrequirementꢀcalculatedꢀaboveꢀforꢀtheꢀ  
worst-caseꢀcontrollerꢀisꢀadequateꢀforꢀtheꢀdualꢀcontrollerꢀ  
design.ꢀAlso,ꢀtheꢀinputꢀprotectionꢀfuseꢀresistance,ꢀbatteryꢀ  
resistance,ꢀandꢀPCꢀboardꢀtraceꢀresistanceꢀlossesꢀareꢀalsoꢀ  
reducedꢀdueꢀtoꢀtheꢀreducedꢀpeakꢀcurrentsꢀinꢀaꢀ2-phaseꢀ  
system.Theoverallbenefitofamultiphasedesignwillꢀ  
onlyꢀbeꢀfullyꢀrealizedꢀwhenꢀtheꢀsourceꢀimpedanceꢀofꢀtheꢀ  
powerꢀsupply/batteryꢀisꢀincludedꢀinꢀtheꢀefficiencyꢀtesting.ꢀ  
RB  
R
VOUT = 0.8V 1+  
A   
Toimprovethefrequencyresponse,afeedforwardca-  
pacitor,ꢀC ,ꢀmayꢀbeꢀused.ꢀGreatꢀcareꢀshouldꢀbeꢀtakenꢀtoꢀ  
FFꢀ  
FB  
routeꢀtheꢀV ꢀlineꢀawayꢀfromꢀnoiseꢀsources,ꢀsuchꢀasꢀtheꢀ  
inductorꢀorꢀtheꢀSWꢀline.  
V
OUT  
R
C
FF  
1/2 LTC3857  
B
V
FB  
R
A
3857 F05  
Figure 5. Setting Output Voltage  
3857fa  
ꢀꢈ  
LTC3857  
applicaTions inForMaTion  
Tracking and Soft-Start (TRACK/SS Pins)  
V
V
X(MASTER)  
Theꢀstart-upꢀofꢀeachꢀV ꢀisꢀcontrolledꢀbyꢀtheꢀvoltageꢀonꢀ  
OUT  
theꢀrespectiveꢀTRACK/SSꢀpin.ꢀWhenꢀtheꢀvoltageꢀonꢀtheꢀ  
TRACK/SSpinislessthantheinternal0.8Vreference,ꢀ  
OUT(SLAVE)  
theꢀLTC3857ꢀregulatesꢀtheꢀV ꢀpinꢀvoltageꢀtoꢀtheꢀvoltageꢀ  
FB  
onꢀtheꢀTRACK/SSꢀpinꢀinsteadꢀofꢀ0.8V.ꢀTheꢀTRACK/SSꢀpinꢀ  
canꢀbeꢀusedꢀtoꢀprogramꢀanꢀexternalꢀsoft-startꢀfunctionꢀorꢀ  
toꢀallowꢀV ꢀtoꢀtrackꢀanotherꢀsupplyꢀduringꢀstart-up.  
OUT  
3857 F07a  
Soft-startisenabledbysimplyconnectingacapacitorꢀ  
fromꢀtheꢀTRACK/SSꢀpinꢀtoꢀground,ꢀasꢀshownꢀinꢀFigureꢀ6.ꢀ  
Anꢀ internalꢀ 1µAꢀ currentꢀ sourceꢀ chargesꢀ theꢀ capacitor,ꢀ  
providingꢀaꢀlinearꢀrampingꢀvoltageꢀatꢀtheꢀTRACK/SSꢀpin.ꢀ  
TIME  
(7a) Coincident Tracking  
V
V
X(MASTER)  
OUT(SLAVE)  
TheꢀLTC3857ꢀwillꢀregulateꢀtheꢀV ꢀpinꢀ(andꢀhenceꢀV )ꢀ  
FB  
OUT  
accordingꢀtoꢀtheꢀvoltageꢀonꢀtheꢀTRACK/SSꢀpin,ꢀallowingꢀ  
V
ꢀtoꢀriseꢀsmoothlyꢀfromꢀ0Vꢀtoꢀitsꢀfinalꢀregulatedꢀvalue.ꢀ  
OUT  
Theꢀtotalꢀsoft-startꢀtimeꢀwillꢀbeꢀapproximately:  
0.8V  
1µA  
tSS = CSS  
3857 F07b  
TIME  
1/2 LTC3857  
TRACK/SS  
(7b) Ratiometric Tracking  
C
SS  
Figure 7. Two Different Modes of Output Voltage Tracking  
SGND  
3857 F06  
V
V
OUT  
x
Figure 6. Using the TRACK/SS Pin to Program Soft-Start  
1/2 LTC3857  
R
B
V
FB  
Alternatively,ꢀtheꢀTRACK/SSꢀpinꢀcanꢀbeꢀusedꢀtoꢀtrackꢀtwoꢀ  
(ormore)suppliesduringstart-up,asshownqualita-  
tivelyꢀinꢀFiguresꢀ7aꢀandꢀ7b.ꢀToꢀdoꢀthis,ꢀaꢀresistorꢀdividerꢀ  
R
A
R
R
TRACKB  
TRACK/SS  
3857 F08  
shouldꢀbeꢀconnectedꢀfromꢀtheꢀmasterꢀsupplyꢀ(V )ꢀtoꢀtheꢀ  
TRACKA  
X
TRACK/SSꢀpinꢀofꢀtheꢀslaveꢀsupplyꢀ(V ),ꢀasꢀshownꢀinꢀ  
OUT  
Figureꢀ8.ꢀDuringꢀstart-upꢀV ꢀwillꢀtrackꢀV ꢀaccordingꢀ  
OUT  
X
Figure 8. Using the TRACK/SS Pin for Tracking  
toꢀtheꢀratioꢀsetꢀbyꢀtheꢀresistorꢀdivider:  
RTRACKA +RTRACKB  
RA +RB  
VX  
RA  
=
VOUT RTRACKA  
Forꢀcoincidentꢀtrackingꢀ(V ꢀ=ꢀV ꢀduringꢀstart-up):  
OUT  
X
ꢀ R ꢀ=ꢀR  
A
TRACKA  
TRACKB  
ꢀ R ꢀ=ꢀR  
B
3857fa  
ꢁ0  
                                                
EXTV ꢀConnectedꢀtoꢀanꢀExternalꢀSupply.ꢀIfꢀanꢀexternalꢀ  
2.ꢀ  
3.ꢀ  
                                                
EXTV ꢀConnectedꢀDirectlyꢀtoꢀV .ꢀThisꢀisꢀtheꢀnormalꢀ  
CC OUTꢀ  
connectionꢀforꢀaꢀ5Vꢀtoꢀ14Vꢀregulatorꢀandꢀprovidesꢀtheꢀ  
highestꢀefficiency.  
LTC3857  
applicaTions inForMaTion  
INTV Regulators  
isꢀlessꢀthanꢀ5.1V,ꢀtheꢀLDOꢀisꢀinꢀdropoutꢀandꢀtheꢀINTV ꢀ  
CC  
CC  
voltageꢀisꢀapproximatelyꢀequalꢀtoꢀEXTV .ꢀWhenꢀEXTV ꢀ  
CC  
CC  
TheLTC3857featurestwoseparateinternalP-channellowꢀ  
dropoutꢀlinearꢀregulatorsꢀ(LDO)ꢀthatꢀsupplyꢀpowerꢀatꢀtheꢀ  
INTVCCꢀpinꢀfromꢀeitherꢀtheꢀVINꢀsupplyꢀpinꢀorꢀtheꢀEXTVCCꢀ  
isꢀgreaterꢀthanꢀ5.1V,ꢀupꢀtoꢀanꢀabsoluteꢀmaximumꢀofꢀ14V,ꢀ  
INTV ꢀisꢀregulatedꢀtoꢀ5.1V.  
CC  
pinꢀ dependingꢀ onꢀ theꢀ connectionꢀ ofꢀ theꢀ EXTVCCꢀ pin.ꢀ UsingtheEXTV LDOallowstheMOSFETdriverandcon-  
CC  
INTVCCpowersthegatedriversandmuchoftheLTC3857’sꢀ trolpowertobederivedfromoneoftheLTC3857’sswitch-  
internalcircuitry.TheVINLDOandtheEXTVCCLDOregulateꢀ ingꢀregulatorꢀoutputsꢀ(4.7Vꢀ≤ꢀV ꢀ≤ꢀ14V)ꢀduringꢀnormalꢀ  
OUT  
INTV ꢀtoꢀ5.1V.ꢀEachꢀofꢀtheseꢀcanꢀsupplyꢀaꢀpeakꢀcurrentꢀofꢀ operationꢀandꢀfromꢀtheꢀV ꢀLDOꢀwhenꢀtheꢀoutputꢀisꢀoutꢀofꢀ  
CC  
IN  
50mAꢀandꢀmustꢀbeꢀbypassedꢀtoꢀgroundꢀwithꢀaꢀminimumꢀ regulationꢀ(e.g.,ꢀstart-up,ꢀshort-circuit).ꢀIfꢀmoreꢀcurrentꢀ  
ofꢀ4.7µFꢀceramicꢀcapacitor.ꢀNoꢀmatterꢀwhatꢀtypeꢀofꢀbulkꢀ isꢀrequiredꢀthroughꢀtheꢀEXTV ꢀLDOꢀthanꢀisꢀspecified,ꢀanꢀ  
CC  
capacitorisused,anadditional1µFceramiccapacitorꢀ externalSchottkydiodecanbeaddedbetweentheEXTV ꢀ  
CC  
placedꢀdirectlyꢀadjacentꢀtoꢀtheꢀINTV ꢀandꢀPGNDꢀpinsꢀisꢀ andꢀINTV ꢀpins.ꢀInꢀthisꢀcase,ꢀdoꢀnotꢀapplyꢀmoreꢀthanꢀ6Vꢀ  
CC  
CC  
highlyrecommended.Goodbypassingisneededtosupplyꢀ toꢀtheꢀEXTV ꢀpinꢀandꢀmakeꢀsureꢀthatꢀEXTV ꢀ≤ꢀV .  
CC  
CC  
IN  
theꢀhighꢀtransientꢀcurrentsꢀrequiredꢀbyꢀtheꢀMOSFETꢀgateꢀ  
driversꢀandꢀtoꢀpreventꢀinteractionꢀbetweenꢀtheꢀchannels.  
Significantꢀefficiencyꢀandꢀthermalꢀgainsꢀcanꢀbeꢀrealizedꢀ  
byꢀpoweringꢀINTV ꢀfromꢀtheꢀoutput,ꢀsinceꢀtheꢀV ꢀcur-  
CC  
IN  
HighꢀinputꢀvoltageꢀapplicationsꢀinꢀwhichꢀlargeꢀMOSFETsꢀ rentꢀresultingꢀfromꢀtheꢀdriverꢀandꢀcontrolꢀcurrentsꢀwillꢀbeꢀ  
areꢀ beingꢀ drivenꢀ atꢀ highꢀ frequenciesꢀ mayꢀ causeꢀ theꢀ scaledꢀbyꢀaꢀfactorꢀofꢀ(DutyꢀCycle)/(SwitcherꢀEfficiency).ꢀ  
maximumjunctiontemperatureratingfortheLTC3857ꢀ Forꢀ5Vꢀtoꢀ14Vꢀregulatorꢀoutputs,ꢀthisꢀmeansꢀconnectingꢀ  
toꢀbeꢀexceeded.ꢀTheꢀINTV ꢀcurrent,ꢀwhichꢀisꢀdominatedꢀ theꢀEXTV ꢀpinꢀdirectlyꢀtoꢀV .ꢀTyingꢀtheꢀEXTV ꢀpinꢀtoꢀ  
CC  
CC  
OUTꢀ  
CC  
byꢀtheꢀgateꢀchargeꢀcurrent,ꢀmayꢀbeꢀsuppliedꢀbyꢀeitherꢀtheꢀ anꢀ8.5Vꢀsupplyꢀreducesꢀtheꢀjunctionꢀtemperatureꢀinꢀtheꢀ  
V LDOortheEXTV LDO.Whenthevoltageontheꢀ previousꢀexampleꢀfromꢀ125°Cꢀto:  
IN  
CC  
EXTV pinislessthan4.7V,theV LDOisenabled.Powerꢀ  
CC  
IN  
ꢀ T ꢀ=ꢀ70°Cꢀ+ꢀ(32mA)(8.5V)(43°C/W)ꢀ=ꢀ82°C  
J
dissipationꢀforꢀtheꢀICꢀinꢀthisꢀcaseꢀisꢀhighestꢀandꢀisꢀequalꢀ  
toV ꢀI .Thegatechargecurrentisdependentꢀ  
However,ꢀforꢀ3.3Vꢀandꢀotherꢀlowꢀvoltageꢀoutputs,ꢀaddi-  
IN  
INTVCC  
tionalꢀcircuitryꢀisꢀrequiredꢀtoꢀderiveꢀINTV ꢀpowerꢀfromꢀ  
onꢀ operatingꢀ frequencyꢀ asꢀ discussedꢀ inꢀ theꢀ Efficiencyꢀ  
Considerationsꢀ section.ꢀ Theꢀ junctionꢀ temperatureꢀ canꢀ  
beꢀestimatedꢀbyꢀusingꢀtheꢀequationsꢀgivenꢀinꢀNoteꢀ3ꢀofꢀ  
theꢀElectricalꢀCharacteristics.ꢀForꢀexample,ꢀtheꢀLTC3857ꢀ  
CC  
theꢀoutput.  
Theꢀfollowingꢀlistꢀsummarizesꢀtheꢀfourꢀpossibleꢀconnec-  
tionsꢀforꢀEXTV :  
CC  
INTV ꢀcurrentꢀisꢀlimitedꢀtoꢀlessꢀthanꢀ32mAꢀfromꢀaꢀ40Vꢀ  
CC  
1.ꢀEXTV LeftOpen(orGrounded).ThiswillcauseINTV ꢀ  
CC  
CC  
supplyꢀwhenꢀnotꢀusingꢀtheꢀEXTV ꢀsupplyꢀatꢀ70°Cꢀambi-  
CC  
toꢀbeꢀpoweredꢀfromꢀtheꢀinternalꢀ5.1Vꢀregulatorꢀresult-  
ingꢀinꢀanꢀefficiencyꢀpenaltyꢀofꢀupꢀtoꢀ10%ꢀatꢀhighꢀinputꢀ  
voltages.  
entꢀtemperature:  
ꢀ T ꢀ=ꢀ70°Cꢀ+ꢀ(32mA)(40V)(43°C/W)ꢀ=ꢀ125°C  
J
Toꢀpreventꢀtheꢀmaximumꢀjunctionꢀtemperatureꢀfromꢀbe-  
ingꢀexceeded,ꢀtheꢀinputꢀsupplyꢀcurrentꢀmustꢀbeꢀcheckedꢀ  
whileꢀoperatingꢀinꢀforcedꢀcontinuousꢀmodeꢀ(PLLIN/MODEꢀ  
=ꢀINTV )ꢀatꢀmaximumꢀV .  
CC  
IN  
CC  
WhenꢀtheꢀvoltageꢀappliedꢀtoꢀEXTV ꢀrisesꢀaboveꢀ4.7V,ꢀtheꢀ  
CC  
supplyꢀisꢀavailableꢀinꢀtheꢀ5Vꢀtoꢀ14Vꢀrange,ꢀitꢀmayꢀbeꢀ  
V ꢀLDOꢀisꢀturnedꢀoffꢀandꢀtheꢀEXTV ꢀLDOꢀisꢀenabled.ꢀTheꢀ  
IN  
CC  
usedtopowerEXTV providingitiscompatiblewiththeꢀ  
CC  
EXTV ꢀLDOꢀremainsꢀonꢀasꢀlongꢀasꢀtheꢀvoltageꢀappliedꢀtoꢀ  
CC  
MOSFETꢀgateꢀdriveꢀrequirements.ꢀEnsureꢀthatꢀEXTV ꢀ  
CC  
EXTV ꢀremainsꢀaboveꢀ4.5V.ꢀTheꢀEXTV ꢀLDOꢀattemptsꢀ  
CC  
CC  
<ꢀV .  
IN  
toꢀregulateꢀtheꢀINTV ꢀvoltageꢀtoꢀ5.1V,ꢀsoꢀwhileꢀEXTV ꢀ  
CC  
CC  
3857fa  
ꢁꢀ  
4.ꢀ  
        
EXTV ConnectedtoanOutput-DerivedBoostNetwork.ꢀ  
LTC3857  
applicaTions inForMaTion  
Fault Conditions: Current Limit and Current Foldback  
C
IN  
TheꢀLTC3857ꢀincludesꢀcurrentꢀfoldbackꢀtoꢀhelpꢀlimitꢀloadꢀ  
currentwhentheoutputisshortedtoground.Iftheoutputꢀ  
voltageꢀfallsꢀbelowꢀ70%ꢀofꢀitsꢀnominalꢀoutputꢀlevel,ꢀthenꢀ  
theꢀmaximumꢀsenseꢀvoltageꢀisꢀprogressivelyꢀloweredꢀtoꢀ  
aboutꢀhalfꢀofꢀitsꢀmaximumꢀselectedꢀvalue.ꢀUnderꢀshort-  
circuitꢀconditionsꢀwithꢀveryꢀlowꢀdutyꢀcycles,ꢀtheꢀLTC3857ꢀ  
willꢀbeginꢀcycleꢀskippingꢀinꢀorderꢀtoꢀlimitꢀtheꢀshort-circuitꢀ  
current.ꢀ Inꢀ thisꢀ situationꢀ theꢀ bottomꢀ MOSFETꢀ willꢀ beꢀ  
dissipatingꢀmostꢀofꢀtheꢀpowerꢀbutꢀlessꢀthanꢀinꢀnormalꢀ  
operation.Theshort-circuitripplecurrentisdeterminedbyꢀ  
BAT85  
BAT85  
BAT85  
V
IN  
MTOP  
MBOT  
VN2222LL  
TG1  
1/2 LTC3857  
L
R
SENSE  
V
EXTV  
SW  
OUT  
CC  
C
BG1  
OUT  
3857 F09  
PGND  
theꢀminimumꢀon-time,ꢀt  
,ꢀofꢀtheꢀLTC3857ꢀ(≈90ns),ꢀ  
ON(MIN)  
Figure 9. Capacitive Charge Pump for EXTVCC  
theꢀinputꢀvoltageꢀandꢀinductorꢀvalue:  
IN  
V
CC  
IL(SC) = tON(MIN)  
L
Forꢀ3.3Vꢀandꢀotherꢀlowꢀvoltageꢀregulators,ꢀefficiencyꢀ  
gainsꢀcanꢀstillꢀbeꢀrealizedꢀbyꢀconnectingꢀEXTV ꢀtoꢀanꢀ  
CC  
Theꢀresultingꢀaverageꢀshort-circuitꢀcurrentꢀis:  
output-derivedvoltagethathasbeenboostedtogreaterꢀ  
thanꢀ4.7V.ꢀThisꢀcanꢀbeꢀdoneꢀwithꢀtheꢀcapacitiveꢀchargeꢀ  
1
2
ISC 50% •ILIM(MAX) IL(SC)  
pumpꢀshownꢀinꢀFigureꢀ9.ꢀEnsureꢀthatꢀEXTV ꢀ<ꢀV .  
CC  
IN  
Topside MOSFET Driver Supply (C , D )  
B
B
Fault Conditions: Overvoltage Protection (Crowbar)  
Externalbootstrapcapacitors,C ,connectedtotheBOOSTꢀ  
B
Theꢀovervoltageꢀcrowbarꢀisꢀdesignedꢀtoꢀblowꢀaꢀsystemꢀ  
inputꢀfuseꢀwhenꢀtheꢀoutputꢀvoltageꢀofꢀtheꢀregulatorꢀrisesꢀ  
muchhigherthannominallevels.Thecrowbarcauseshugeꢀ  
currentsꢀtoꢀflow,ꢀthatꢀblowꢀtheꢀfuseꢀtoꢀprotectꢀagainstꢀaꢀ  
shortedꢀtopꢀMOSFETꢀifꢀtheꢀshortꢀoccursꢀwhileꢀtheꢀcontrol-  
lerꢀisꢀoperating.  
pinssupplythegatedrivevoltagesforthetopsideMOSFETs.ꢀ  
CapacitorꢀC ꢀinꢀtheꢀFunctionalꢀDiagramꢀisꢀchargedꢀthoughꢀ  
B
externalꢀdiodeꢀD ꢀfromꢀINTV ꢀwhenꢀtheꢀSWꢀpinꢀisꢀlow.ꢀ  
B
CC  
WhenꢀoneꢀofꢀtheꢀtopsideꢀMOSFETsꢀisꢀtoꢀbeꢀturnedꢀon,ꢀtheꢀ  
driverꢀplacesꢀtheꢀC ꢀvoltageꢀacrossꢀtheꢀgate-sourceꢀofꢀtheꢀ  
B
desiredꢀMOSFET.ꢀThisꢀenhancesꢀtheꢀtopꢀMOSFETꢀswitchꢀ  
Aꢀcomparatorꢀmonitorsꢀtheꢀoutputꢀforꢀovervoltageꢀcondi-  
tions.Thecomparatordetectsfaultsgreaterthan10%ꢀ  
aboveꢀtheꢀnominalꢀoutputꢀvoltage.ꢀWhenꢀthisꢀconditionꢀ  
isꢀsensed,ꢀtheꢀtopꢀMOSFETꢀisꢀturnedꢀoffꢀandꢀtheꢀbottomꢀ  
MOSFETꢀisꢀturnedꢀonꢀuntilꢀtheꢀovervoltageꢀconditionꢀisꢀ  
cleared.ThebottomMOSFETremainsoncontinuouslyꢀ  
andꢀturnsꢀitꢀon.ꢀTheꢀswitchꢀnodeꢀvoltage,ꢀSW,ꢀrisesꢀtoꢀV ꢀ  
IN  
andtheBOOSTpinfollows.WiththetopsideMOSFETꢀ  
on,ꢀtheꢀboostꢀvoltageꢀisꢀaboveꢀtheꢀinputꢀsupply:ꢀV  
ꢀ=ꢀ  
BOOST  
V ꢀ+ꢀV  
.ꢀTheꢀvalueꢀofꢀtheꢀboostꢀcapacitor,ꢀC ,ꢀneedsꢀ  
IN  
INTVCC  
B
toꢀbeꢀ100ꢀtimesꢀthatꢀofꢀtheꢀtotalꢀinputꢀcapacitanceꢀofꢀtheꢀ  
topsideMOSFET(s).Thereversebreakdownoftheexternalꢀ  
forꢀasꢀlongꢀasꢀtheꢀovervoltageꢀconditionꢀpersists;ꢀifꢀV  
SchottkyꢀdiodeꢀmustꢀbeꢀgreaterꢀthanꢀV  
.ꢀ  
OUT  
IN(MAX)  
returnstoasafelevel,normaloperationautomaticallyꢀ  
resumes.ꢀ  
Whenꢀadjustingꢀtheꢀgateꢀdriveꢀlevel,ꢀtheꢀfinalꢀarbiterꢀisꢀtheꢀ  
totalꢀinputꢀcurrentꢀforꢀtheꢀregulator.ꢀIfꢀaꢀchangeꢀisꢀmadeꢀ  
andꢀtheꢀinputꢀcurrentꢀdecreases,ꢀthenꢀtheꢀefficiencyꢀhasꢀ  
improved.Ifthereisnochangeininputcurrent,thenthereꢀ  
isꢀnoꢀchangeꢀinꢀefficiency.  
AshortedtopMOSFETwillresultinahighcurrentconditionꢀ  
whichꢀwillꢀopenꢀtheꢀsystemꢀfuse.ꢀTheꢀswitchingꢀregulatorꢀ  
willꢀregulateꢀproperlyꢀwithꢀaꢀleakyꢀtopꢀMOSFETꢀbyꢀalteringꢀ  
theꢀdutyꢀcycleꢀtoꢀaccommodateꢀtheꢀleakage.  
3857fa  
ꢁꢁ  
LTC3857  
applicaTions inForMaTion  
Phase-Locked Loop and Frequency Synchronization  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
TheLTC3857hasaninternalphase-lockedloop(PLL)ꢀ  
comprisedꢀofꢀaꢀphaseꢀfrequencyꢀdetector,ꢀaꢀlowpassꢀfilter,ꢀ  
andꢀaꢀvoltage-controlledꢀoscillatorꢀ(VCO).ꢀThisꢀallowsꢀtheꢀ  
turn-onꢀofꢀtheꢀtopꢀMOSFETꢀofꢀcontrollerꢀ1ꢀtoꢀbeꢀlockedꢀtoꢀ  
theꢀrisingꢀedgeꢀofꢀanꢀexternalꢀclockꢀsignalꢀappliedꢀtoꢀtheꢀ  
PLLIN/MODEpin.Theturn-onofcontroller2’stopMOSFETꢀ  
isꢀthusꢀ180ꢀdegreesꢀoutꢀofꢀphaseꢀwithꢀtheꢀexternalꢀclock.ꢀ  
Theꢀphaseꢀdetectorꢀisꢀanꢀedgeꢀsensitiveꢀdigitalꢀtypeꢀthatꢀ  
providesꢀzeroꢀdegreesꢀphaseꢀshiftꢀbetweenꢀtheꢀexternalꢀ  
andꢀinternalꢀoscillators.ꢀThisꢀtypeꢀofꢀphaseꢀdetectorꢀdoesꢀ  
notꢀexhibitꢀfalseꢀlockꢀtoꢀharmonicsꢀofꢀtheꢀexternalꢀclock.  
15 25 35 45 55 65 75 85 95 105 115 125  
FREQ PIN RESISTOR (kΩ)  
3857 F10  
Figure 10. Relationship Between Oscillator Frequency  
and Resistor Value at the FREQ Pin  
Ifꢀtheꢀexternalꢀclockꢀfrequencyꢀisꢀgreaterꢀthanꢀtheꢀinter-  
naloscillator’sfrequency,f ,thencurrentissourcedꢀ  
OSC  
continuouslyꢀ fromꢀ theꢀ phaseꢀ detectorꢀ output,ꢀ pullingꢀ  
andꢀsynchronization.ꢀAlthoughꢀitꢀisꢀnotꢀrequiredꢀthatꢀtheꢀ  
free-runningꢀfrequencyꢀbeꢀnearꢀexternalꢀclockꢀfrequency,ꢀ  
doingsowillpreventtheoperatingfrequencyfrompassingꢀ  
throughꢀaꢀlargeꢀrangeꢀofꢀfrequenciesꢀasꢀtheꢀPLLꢀlocks.ꢀ  
upꢀ theꢀ VCOꢀ input.ꢀ Whenꢀ theꢀ externalꢀ clockꢀ frequencyꢀ  
islessthanf ,currentissunkcontinuously,pullingꢀ  
OSC  
downꢀ theꢀ VCOꢀ input.ꢀ Ifꢀ theꢀ externalꢀ andꢀ internalꢀ fre-  
quenciesꢀ areꢀ theꢀ sameꢀ butꢀ exhibitꢀ aꢀ phaseꢀ difference,ꢀ  
theꢀ currentꢀ sourcesꢀ turnꢀ onꢀ forꢀ anꢀ amountꢀ ofꢀ timeꢀ  
correspondingꢀtoꢀtheꢀphaseꢀdifference.ꢀTheꢀvoltageꢀatꢀtheꢀ  
VCOꢀinputꢀisꢀadjustedꢀuntilꢀtheꢀphaseꢀandꢀfrequencyꢀofꢀ  
theꢀinternalꢀandꢀexternalꢀoscillatorsꢀareꢀidentical.ꢀAtꢀtheꢀ  
stableꢀoperatingꢀpoint,ꢀtheꢀphaseꢀdetectorꢀoutputꢀisꢀhighꢀ  
Tableꢀ2ꢀsummarizesꢀtheꢀdifferentꢀstatesꢀinꢀwhichꢀtheꢀFREQꢀ  
pinꢀcanꢀbeꢀused.  
Table 2  
FREQ PIN  
PLLIN/MODE PIN  
DCꢀVoltage  
FREQUENCY  
350kHz  
0V  
impedanceꢀandꢀtheꢀinternalꢀfilterꢀcapacitor,ꢀC ,ꢀholdsꢀtheꢀ  
LPꢀ  
INTV  
DCꢀVoltage  
535kHz  
CC  
voltageꢀatꢀtheꢀVCOꢀinput.  
Resistor  
DCꢀVoltage  
50kHz-900kHz  
NotethattheLTC3857canonlybesynchronizedtoanꢀ  
externalꢀ clockꢀ whoseꢀ frequencyꢀ isꢀ withinꢀ rangeꢀ ofꢀ theꢀ  
LTC3857’sinternalVCO,whichisnominally55kHzto1MHz.ꢀ  
Thisꢀisꢀguaranteedꢀtoꢀbeꢀbetweenꢀ75kHzꢀandꢀ850kHz.  
AnyꢀofꢀtheꢀAbove  
ExternalꢀClock  
Phase–Lockedꢀtoꢀ  
ExternalꢀClock  
Minimum On-Time Considerations  
Minimumꢀon-time,ꢀt ,ꢀisꢀtheꢀsmallestꢀtimeꢀdurationꢀ  
thatꢀtheꢀLTC3857ꢀisꢀcapableꢀofꢀturningꢀonꢀtheꢀtopꢀMOSFET.ꢀ  
Itisdeterminedbyinternaltimingdelaysandthegateꢀ  
chargerequiredtoturnonthetopMOSFET.Lowdutyꢀ  
cycleꢀapplicationsꢀmayꢀapproachꢀthisꢀminimumꢀon-timeꢀ  
limitꢀandꢀcareꢀshouldꢀbeꢀtakenꢀtoꢀensureꢀthat:  
ON(MIN)  
Typically,ꢀ theꢀ externalꢀ clockꢀ (onꢀ theꢀ PLLIN/MODEꢀ pin)ꢀ  
inputꢀhighꢀthresholdꢀisꢀ1.6V,ꢀwhileꢀtheꢀinputꢀlowꢀthresholdꢀ  
isꢀ1.1V.  
RapidꢀphaseꢀlockingꢀcanꢀbeꢀachievedꢀbyꢀusingꢀtheꢀFREQꢀ  
pinꢀ toꢀ setꢀ aꢀ free-runningꢀ frequencyꢀ nearꢀ theꢀ desiredꢀ  
synchronizationfrequency.TheVCO’sinputvoltageisꢀ  
prebiasedꢀatꢀaꢀfrequencyꢀcorrespondingꢀtoꢀtheꢀfrequencyꢀ  
setꢀbyꢀtheꢀFREQꢀpin.ꢀOnceꢀprebiased,ꢀtheꢀPLLꢀonlyꢀneedsꢀ  
toadjustthefrequencyslightlytoachievephaselockꢀ  
VOUT  
tON(MIN)  
<
V
IN
( )  
f
3857fa  
ꢁꢂ  
LTC3857  
applicaTions inForMaTion  
Ifꢀtheꢀdutyꢀcycleꢀfallsꢀbelowꢀwhatꢀcanꢀbeꢀaccommodatedꢀ  
byꢀtheꢀminimumꢀon-time,ꢀtheꢀcontrollerꢀwillꢀbeginꢀtoꢀskipꢀ  
cycles.ꢀTheꢀoutputꢀvoltageꢀwillꢀcontinueꢀtoꢀbeꢀregulated,ꢀ  
butꢀtheꢀrippleꢀvoltageꢀandꢀcurrentꢀwillꢀincrease.  
outofINTV thatistypicallymuchlargerthantheꢀ  
CC  
controlꢀcircuitꢀcurrent.ꢀInꢀcontinuousꢀmode,ꢀI  
GATECHG  
=ꢀf(Q ꢀ+ꢀQ ),ꢀwhereꢀQ ꢀandꢀQ ꢀareꢀtheꢀgateꢀchargesꢀofꢀ  
T
B
T
B
theꢀtopsideꢀandꢀbottomꢀsideꢀMOSFETs.  
Theꢀminimumꢀon-timeꢀforꢀtheꢀLTC3857ꢀisꢀapproximatelyꢀ  
95ns.ꢀHowever,ꢀasꢀtheꢀpeakꢀsenseꢀvoltageꢀdecreasesꢀtheꢀ  
minimumꢀon-timeꢀgraduallyꢀincreasesꢀupꢀtoꢀaboutꢀ130ns.ꢀ  
Thisꢀisꢀofꢀparticularꢀconcernꢀinꢀforcedꢀcontinuousꢀapplica-  
tionswithlowripplecurrentatlightloads.Ifthedutycycleꢀ  
dropsꢀbelowꢀtheꢀminimumꢀon-timeꢀlimitꢀinꢀthisꢀsituation,ꢀ  
aꢀsignificantꢀamountꢀofꢀcycleꢀskippingꢀcanꢀoccurꢀwithꢀcor-  
respondinglyꢀlargerꢀcurrentꢀandꢀvoltageꢀripple.  
ꢀ SupplyingINTV fromanoutput-derivedpowersourceꢀ  
CC  
throughꢀ EXTV ꢀ willꢀ scaleꢀ theꢀ V ꢀ currentꢀ requiredꢀ  
CC  
IN  
forꢀtheꢀdriverꢀandꢀcontrolꢀcircuitsꢀbyꢀaꢀfactorꢀofꢀ(Dutyꢀ  
Cycle)/(Efficiency).Forexample,ina20Vto5Vapplica-  
tion,ꢀ10mAꢀofꢀINTV ꢀcurrentꢀresultsꢀinꢀapproximatelyꢀ  
CC  
2.5mAꢀofꢀV ꢀcurrent.ꢀThisꢀreducesꢀtheꢀmidcurrentꢀlossꢀ  
IN  
fromꢀ10%ꢀorꢀmoreꢀ(ifꢀtheꢀdriverꢀwasꢀpoweredꢀdirectlyꢀ  
fromꢀV )ꢀtoꢀonlyꢀaꢀfewꢀpercent.  
IN  
2
3.ꢀI RꢀlossesꢀareꢀpredictedꢀfromꢀtheꢀDCꢀresistancesꢀofꢀtheꢀ  
Efficiency Considerations  
fuseꢀ(ifꢀused),ꢀMOSFET,ꢀinductor,ꢀcurrentꢀsenseꢀresis-  
torꢀandꢀinputꢀandꢀoutputꢀcapacitorꢀESR.ꢀInꢀcontinuousꢀ  
modeꢀtheꢀaverageꢀoutputꢀcurrentꢀflowsꢀthroughꢀLꢀandꢀ  
Theꢀpercentꢀefficiencyꢀofꢀaꢀswitchingꢀregulatorꢀisꢀequalꢀtoꢀ  
theꢀoutputꢀpowerꢀdividedꢀbyꢀtheꢀinputꢀpowerꢀtimesꢀ100%.ꢀ  
Itꢀisꢀoftenꢀusefulꢀtoꢀanalyzeꢀindividualꢀlossesꢀtoꢀdetermineꢀ  
whatꢀisꢀlimitingꢀtheꢀefficiencyꢀandꢀwhichꢀchangeꢀwouldꢀ  
producethemostimprovement.Percentefficiencycanꢀ  
beꢀexpressedꢀas:  
R
,ꢀbutꢀisꢀchoppedꢀbetweenꢀtheꢀtopsideꢀMOSFETꢀ  
SENSE  
andthesynchronousMOSFET.IfthetwoMOSFETshaveꢀ  
approximatelyꢀtheꢀsameꢀR  
,ꢀthenꢀtheꢀresistanceꢀ  
DS(ON)  
ofꢀoneꢀMOSFETꢀcanꢀsimplyꢀbeꢀsummedꢀwithꢀtheꢀresis-  
2
tancesꢀofꢀL,ꢀR  
example,ꢀifꢀeachꢀR  
ꢀandꢀESRꢀtoꢀobtainꢀI Rꢀlosses.ꢀForꢀ  
SENSE  
ꢀ %Efficiencyꢀ=ꢀ100%ꢀ–ꢀ(L1ꢀ+ꢀL2ꢀ+ꢀL3ꢀ+ꢀ...)  
ꢀ=ꢀ30mΩ,ꢀR ꢀ=ꢀ50mΩ,ꢀR  
DS(ON)  
L
SENSE  
whereꢀL1,ꢀL2,ꢀetc.ꢀareꢀtheꢀindividualꢀlossesꢀasꢀaꢀpercent-  
ageꢀofꢀinputꢀpower.  
=10mΩandR ꢀ=40mΩ(sumofbothinputandꢀ  
ESR  
outputcapacitancelosses),thenthetotalresistanceꢀ  
isꢀ130mΩ.ꢀThisꢀresultsꢀinꢀlossesꢀrangingꢀfromꢀ3%ꢀtoꢀ  
13%ꢀasꢀtheꢀoutputꢀcurrentꢀincreasesꢀfromꢀ1Aꢀtoꢀ5Aꢀforꢀ  
aꢀ5Vꢀoutput,ꢀorꢀaꢀ4%ꢀtoꢀ20%ꢀlossꢀforꢀaꢀ3.3Vꢀoutput.ꢀ  
Althoughꢀallꢀdissipativeꢀelementsꢀinꢀtheꢀcircuitꢀproduceꢀ  
losses,ꢀfourꢀmainꢀsourcesꢀusuallyꢀaccountꢀforꢀmostꢀofꢀtheꢀ  
lossesꢀinꢀLTC3857ꢀcircuits:ꢀ1)ꢀICꢀV ꢀcurrent,ꢀ2)ꢀINTV  
IN  
CCꢀ  
2
EfficiencyꢀvariesꢀasꢀtheꢀinverseꢀsquareꢀofꢀV ꢀforꢀtheꢀ  
regulatorꢀ current,ꢀ 3)ꢀ I Rꢀ losses,ꢀ 4)ꢀ topsideꢀ MOSFETꢀ  
OUT  
sameexternalcomponentsandoutputpowerlevel.Theꢀ  
combinedꢀeffectsꢀofꢀincreasinglyꢀlowerꢀoutputꢀvoltagesꢀ  
andhighercurrentsrequiredbyhighperformancedigitalꢀ  
systemsisnotdoublingbutquadruplingtheimportanceꢀ  
ofꢀlossꢀtermsꢀinꢀtheꢀswitchingꢀregulatorꢀsystem!  
transitionꢀlosses.  
1.ꢀTheꢀV ꢀcurrentꢀisꢀtheꢀDCꢀinputꢀsupplyꢀcurrentꢀgivenꢀ  
IN  
inꢀtheꢀElectricalꢀCharacteristicsꢀtable,ꢀwhichꢀexcludesꢀ  
MOSFETꢀdriverꢀandꢀcontrolꢀcurrents.ꢀV ꢀcurrentꢀtypi-  
IN  
callyꢀresultsꢀinꢀaꢀsmallꢀ(<0.1%)ꢀloss.  
4.ꢀTransitionꢀlossesꢀapplyꢀonlyꢀtoꢀtheꢀtopsideꢀMOSFET(s),ꢀ  
andbecomesignificantonlywhenoperatingathighꢀ  
2.ꢀINTV ꢀcurrentꢀisꢀtheꢀsumꢀofꢀtheꢀMOSFETꢀdriverꢀandꢀ  
CC  
controlcurrents.TheMOSFETdrivercurrentresultsꢀ  
fromꢀ switchingꢀ theꢀ gateꢀ capacitanceꢀ ofꢀ theꢀ powerꢀ  
MOSFETs.ꢀEachꢀtimeꢀaꢀMOSFETꢀgateꢀisꢀswitchedꢀfromꢀ  
lowꢀtoꢀhighꢀtoꢀlowꢀagain,ꢀaꢀpacketꢀofꢀcharge,ꢀdQ,ꢀmovesꢀ  
inputꢀ voltagesꢀ (t  
ypicallyꢀ 15Vꢀ orꢀ greater).ꢀ Transitionꢀ  
lossesꢀcanꢀbeꢀestimatedꢀfrom:  
ꢀ ꢀ TransitionꢀLossꢀ=ꢀ(1.7)ꢀ•ꢀV ꢀ•ꢀ2ꢀ•ꢀI  
ꢀ•ꢀC ꢀ•ꢀf  
IN  
O(MAX)  
RSS  
fromꢀINTV ꢀtoꢀground.ꢀTheꢀresultingꢀdQ/dtꢀisꢀaꢀcurrentꢀ  
CC  
3857fa  
ꢁꢃ  
LTC3857  
applicaTions inForMaTion  
ꢀ Otherꢀhiddenꢀlossesꢀsuchꢀasꢀcopperꢀtraceꢀandꢀinternalꢀ  
batteryꢀresistancesꢀcanꢀaccountꢀforꢀanꢀadditionalꢀ5%ꢀ  
toꢀ10%ꢀefficiencyꢀdegradationꢀinꢀportableꢀsystems.ꢀItꢀ  
isꢀveryꢀimportantꢀtoꢀincludeꢀtheseꢀsystemꢀlevelꢀlossesꢀ  
duringꢀtheꢀdesignꢀphase.ꢀTheꢀinternalꢀbatteryꢀandꢀfuseꢀ  
resistancelossescanbeminimizedbymakingsurethatꢀ  
TheI ꢀseriesR -C ltersetsthedominantpole-zeroꢀ  
TH  
C
C
loopꢀcompensation.ꢀTheꢀvaluesꢀcanꢀbeꢀmodifiedꢀslightlyꢀ  
(fromꢀ0.5ꢀtoꢀ2ꢀtimesꢀtheirꢀsuggestedꢀvalues)ꢀtoꢀoptimizeꢀ  
transientꢀresponseꢀonceꢀtheꢀfinalꢀPCꢀlayoutꢀisꢀdoneꢀandꢀ  
theꢀparticularꢀoutputꢀcapacitorꢀtypeꢀandꢀvalueꢀhaveꢀbeenꢀ  
determined.Theoutputcapacitorsneedtobeselectedꢀ  
becauseꢀtheꢀvariousꢀtypesꢀandꢀvaluesꢀdetermineꢀtheꢀloopꢀ  
gainꢀandꢀphase.ꢀAnꢀoutputꢀcurrentꢀpulseꢀofꢀ20%ꢀtoꢀ80%ꢀ  
ofꢀfull-loadꢀcurrentꢀhavingꢀaꢀriseꢀtimeꢀofꢀ1µsꢀtoꢀ10µsꢀwillꢀ  
C ꢀhasꢀadequateꢀchargeꢀstorageꢀandꢀveryꢀlowꢀESRꢀatꢀ  
IN  
theswitchingfrequency.A25Wsupplywilltypicallyꢀ  
requireꢀ aꢀ minimumꢀ ofꢀ 20µFꢀ toꢀ 40µFꢀ ofꢀ capacitanceꢀ  
havingamaximumof20mΩto50mΩofESR.Theꢀ  
LTC38572-phasearchitecturetypicallyhalvesthisinputꢀ  
capacitanceꢀ requirementꢀ overꢀ competingꢀ solutions.ꢀ  
Otherꢀ lossesꢀ includingꢀ Schottkyꢀ conductionꢀ lossesꢀ  
duringdead-timeandinductorcorelossesgenerallyꢀ  
accountꢀforꢀlessꢀthanꢀ2%ꢀtotalꢀadditionalꢀloss.  
produceꢀoutputꢀvoltageꢀandꢀI ꢀpinꢀwaveformsꢀthatꢀwillꢀ  
TH  
giveꢀaꢀsenseꢀofꢀtheꢀoverallꢀloopꢀstabilityꢀwithoutꢀbreakingꢀ  
theꢀfeedbackꢀloop.ꢀ  
Placingꢀ aꢀ resistiveꢀ loadꢀ andꢀ aꢀ powerꢀ MOSFETꢀ directlyꢀ  
acrossꢀtheꢀoutputꢀcapacitorꢀandꢀdrivingꢀtheꢀgateꢀwithꢀanꢀ  
appropriateꢀsignalꢀgeneratorꢀisꢀaꢀpracticalꢀwayꢀtoꢀproduceꢀ  
aꢀrealisticꢀloadꢀstepꢀcondition.ꢀTheꢀinitialꢀoutputꢀvoltageꢀ  
stepꢀresultingꢀfromꢀtheꢀstepꢀchangeꢀinꢀoutputꢀcurrentꢀmayꢀ  
notꢀbeꢀwithinꢀtheꢀbandwidthꢀofꢀtheꢀfeedbackꢀloop,ꢀsoꢀthisꢀ  
signalꢀcannotꢀbeꢀusedꢀtoꢀdetermineꢀphaseꢀmargin.ꢀThisꢀ  
Checking Transient Response  
Theꢀregulatorꢀloopꢀresponseꢀcanꢀbeꢀcheckedꢀbyꢀlookingꢀatꢀ  
theꢀloadꢀcurrentꢀtransientꢀresponse.ꢀSwitchingꢀregulatorsꢀ  
takeꢀseveralꢀcyclesꢀtoꢀrespondꢀtoꢀaꢀstepꢀinꢀDCꢀ(resistive)ꢀ  
isꢀwhyꢀitꢀisꢀbetterꢀtoꢀlookꢀatꢀtheꢀI ꢀpinꢀsignalꢀwhichꢀisꢀinꢀ  
TH  
loadcurrent.Whenaloadstepoccurs,V ꢀshiftsbyꢀ  
OUT  
thefeedbackloopandisthelteredandcompensatedꢀ  
anꢀamountꢀequalꢀtoꢀI  
ꢀ(ESR),ꢀwhereꢀESRꢀisꢀtheꢀef-  
LOAD  
controlꢀloopꢀresponse.ꢀ  
fectiveꢀseriesꢀresistanceꢀofꢀC .ꢀI  
ꢀalsoꢀbeginsꢀtoꢀ  
OUTꢀ  
LOAD  
TheꢀgainꢀofꢀtheꢀloopꢀwillꢀbeꢀincreasedꢀbyꢀincreasingꢀR ꢀ  
C
chargeꢀorꢀdischargeꢀC ꢀgeneratingꢀtheꢀfeedbackꢀerrorꢀ  
OUT  
andꢀtheꢀbandwidthꢀofꢀtheꢀloopꢀwillꢀbeꢀincreasedꢀbyꢀde-  
signalthatforcestheregulatortoadapttothecurrentꢀ  
creasingꢀC .ꢀIfꢀR ꢀisꢀincreasedꢀbyꢀtheꢀsameꢀfactorꢀthatꢀC ꢀ  
C
C
C
changeꢀandꢀreturnꢀV ꢀtoꢀitsꢀsteady-stateꢀvalue.ꢀDuringꢀ  
OUT  
OUT  
isꢀdecreased,ꢀtheꢀzeroꢀfrequencyꢀwillꢀbeꢀkeptꢀtheꢀsame,ꢀ  
therebykeepingthephaseshiftthesameinthemostꢀ  
criticalꢀfrequencyꢀrangeꢀofꢀtheꢀfeedbackꢀloop.ꢀTheꢀoutputꢀ  
voltageꢀsettlingꢀbehaviorꢀisꢀrelatedꢀtoꢀtheꢀstabilityꢀofꢀtheꢀ  
closed-loopsystemandwilldemonstratetheactualoverallꢀ  
supplyꢀperformance.  
thisꢀrecoveryꢀtimeꢀV ꢀcanꢀbeꢀmonitoredꢀforꢀexcessiveꢀ  
overshootꢀ orꢀ ringing,ꢀ whichꢀ wouldꢀ indicateꢀ aꢀ stabilityꢀ  
problem.ꢀOPTI-LOOPꢀcompensationꢀallowsꢀtheꢀtransientꢀ  
responsetobeoptimizedoverawiderangeofoutputꢀ  
capacitanceꢀandꢀESRꢀvalues.ꢀThe availability of the I pin  
TH  
not only allows optimization of control loop behavior, but  
it also provides a DC coupled and AC filtered closed-loop  
response test point. The DC step, rise time and settling  
at this test point truly reflects the closed-loop response.ꢀ  
Assumingꢀaꢀpredominantlyꢀsecondꢀorderꢀsystem,ꢀphaseꢀ  
marginꢀand/orꢀdampingꢀfactorꢀcanꢀbeꢀestimatedꢀusingꢀtheꢀ  
percentageꢀofꢀovershootꢀseenꢀatꢀthisꢀpin.ꢀTheꢀbandwidthꢀ  
canꢀalsoꢀbeꢀestimatedꢀbyꢀexaminingꢀtheꢀriseꢀtimeꢀatꢀtheꢀ  
Aꢀsecond,ꢀmoreꢀsevereꢀtransientꢀisꢀcausedꢀbyꢀswitchingꢀ  
inꢀloadsꢀwithꢀlargeꢀ(>1µF)ꢀsupplyꢀbypassꢀcapacitors.ꢀTheꢀ  
dischargedbypasscapacitorsareeffectivelyputinparallelꢀ  
withꢀC ,ꢀcausingꢀaꢀrapidꢀdropꢀinꢀV .ꢀNoꢀregulatorꢀcanꢀ  
OUTꢀ  
OUTꢀ  
alterꢀitsꢀdeliveryꢀofꢀcurrentꢀquicklyꢀenoughꢀtoꢀpreventꢀthisꢀ  
suddenꢀstepꢀchangeꢀinꢀoutputꢀvoltageꢀifꢀtheꢀloadꢀswitchꢀ  
resistanceꢀisꢀlowꢀandꢀitꢀisꢀdrivenꢀquickly.ꢀIfꢀtheꢀratioꢀofꢀ  
pin.ꢀ Theꢀ I ꢀ externalꢀ componentsꢀ shownꢀ inꢀ Figureꢀ 13ꢀ  
C
ꢀtoꢀC ꢀisꢀgreaterꢀthanꢀ1:50,ꢀtheꢀswitchꢀriseꢀtimeꢀ  
TH  
LOAD  
OUT  
circuitwillprovideanadequatestartingpointformostꢀ  
shouldꢀbeꢀcontrolledꢀsoꢀthatꢀtheꢀloadꢀriseꢀtimeꢀisꢀlimitedꢀ  
applications.  
3857fa  
ꢁꢄ  
LTC3857  
applicaTions inForMaTion  
toꢀapproximatelyꢀ25ꢀ•ꢀC  
.ꢀThusꢀaꢀ10µFꢀcapacitorꢀwouldꢀ ThepowerdissipationonthetopsideMOSFETcanbeeasilyꢀ  
LOAD  
requireꢀaꢀ250µsꢀriseꢀtime,ꢀlimitingꢀtheꢀchargingꢀcurrentꢀ estimated.ꢀChoosingꢀaꢀFairchildꢀFDS6982SꢀdualꢀMOSFETꢀ  
toꢀaboutꢀ200mA.  
resultsꢀin:ꢀR  
ꢀ=ꢀ0.035Ω/0.022Ω,ꢀC  
ꢀ=ꢀ215pF.ꢀAtꢀ  
DS(ON)  
MILLER  
maximumꢀinputꢀvoltageꢀwithꢀT(estimated)ꢀ=ꢀ50°C:  
Design Example  
2   
3.3V  
22V  
PMAIN  
=
5A 1+ 0.005 50°C – 25°C  
(
)
(
)(  
)
Asꢀaꢀdesignꢀexampleꢀforꢀoneꢀchannel,ꢀassumeꢀV ꢀ=ꢀ12Vꢀ  
IN  
MAX  
(nominal),ꢀ V ꢀ =ꢀ 22Vꢀ (max),ꢀ V ꢀ =ꢀ 3.3V,ꢀ I ꢀ =ꢀ 5A,ꢀ  
IN  
OUT  
2 5A  
V
ꢀ=ꢀ75mVꢀandꢀfꢀ=ꢀ350kHz.  
0.035Ω + 22V  
2.5215pF •  
(
) (  
)
1
(
)(  
)
SENSE(MAX)  
2
Theinductancevalueischosenrstbasedona30%rippleꢀ  
currentꢀassumption.ꢀTheꢀhighestꢀvalueꢀofꢀrippleꢀcurrentꢀ  
occursꢀatꢀtheꢀmaximumꢀinputꢀvoltage.ꢀTieꢀtheꢀFREQꢀpinꢀ  
toꢀ GND,ꢀ generatingꢀ 350kHzꢀ operation.ꢀ Theꢀ minimumꢀ  
inductanceꢀforꢀ30%ꢀrippleꢀcurrentꢀis:  
1
+
350kHz = 331mW  
(
)
5V – 2.3V 2.3V  
Aꢀshort-circuitꢀtoꢀgroundꢀwillꢀresultꢀinꢀaꢀfoldedꢀbackꢀcur-  
rentꢀof:  
VOUT  
ƒ L  
VOUT  
95ns 22V  
(
)
32mV  
0.012  
1
IL(NOM)  
=
1–  
ISC =  
= 2.98A  
V
IN(NOM)  
4.7µH  
A4.7µHinductorwillproduce29%ripplecurrent.Theꢀ  
peakꢀinductorꢀcurrentꢀwillꢀbeꢀtheꢀmaximumꢀDCꢀvalueꢀplusꢀ  
oneꢀhalfꢀtheꢀrippleꢀcurrent,ꢀorꢀ5.73A.ꢀIncreasingꢀtheꢀrippleꢀ  
currentꢀwillꢀalsoꢀhelpꢀensureꢀthatꢀtheꢀminimumꢀon-timeꢀ  
ofꢀ95nsꢀisꢀnotꢀviolated.ꢀTheꢀminimumꢀon-timeꢀoccursꢀatꢀ  
withꢀaꢀtypicalꢀvalueꢀofꢀR  
ꢀandꢀδꢀ=ꢀ(0.005/°C)(25°C)ꢀ  
DS(ON)  
=0.125.Theresultingpowerdissipatedinthebottomꢀ  
MOSFETꢀis:  
2
PSYNC = 2.98 1.125 0.022Ω = 220mW  
(
) (  
)(  
)
maximumꢀV :  
IN  
whichꢀisꢀlessꢀthanꢀunderꢀfull-loadꢀconditions.  
VOUT  
IN(MAX)ƒ  
3.3V  
tON(MIN)  
=
=
= 429ns  
V
22V 350kHz  
(
)
C ꢀisꢀchosenꢀforꢀanꢀRMSꢀcurrentꢀratingꢀofꢀatꢀleastꢀ3Aꢀatꢀ  
IN  
temperatureassumingonlythischannelison.C ꢀisꢀ  
OUT  
TheꢀequivalentꢀR  
ꢀresistorꢀvalueꢀcanꢀbeꢀcalculatedꢀbyꢀ  
chosenꢀwithꢀanꢀESRꢀofꢀ0.02Ωꢀforꢀlowꢀoutputꢀripple.ꢀTheꢀ  
outputꢀrippleꢀinꢀcontinuousꢀmodeꢀwillꢀbeꢀhighestꢀatꢀtheꢀ  
maximumꢀinputꢀvoltage.ꢀTheꢀoutputꢀvoltageꢀrippleꢀdueꢀtoꢀ  
ESRꢀisꢀapproximately:  
SENSE  
usingꢀtheꢀminimumꢀvalueꢀforꢀtheꢀmaximumꢀcurrentꢀsenseꢀ  
thresholdꢀ(64mV):  
64mV  
5.73A  
RSENSE  
0.01Ω  
ꢀ V ꢀ=ꢀR ꢀ(I )ꢀ=ꢀ0.02Ω(1.45A)ꢀ=ꢀ29mV  
ORIPPLE ESR L P-P  
Choosingꢀ1%ꢀresistors:ꢀRAꢀ=ꢀ25kꢀandꢀRBꢀ=ꢀ80.6kꢀyieldsꢀ  
anꢀoutputꢀvoltageꢀofꢀ3.33V.  
3857fa  
ꢁꢅ  
1.ꢀ  
        
AreꢀtheꢀtopꢀN-channelꢀMOSFETsꢀMTOP1ꢀandꢀMTOP2ꢀ  
locatedꢀwithinꢀ1cmꢀofꢀeachꢀotherꢀwithꢀaꢀcommonꢀdrainꢀ  
LTC3857  
applicaTions inForMaTion  
PC Board Layout Checklist  
2.ꢀAreꢀtheꢀsignalꢀandꢀpowerꢀgroundsꢀkeptꢀseparate?ꢀTheꢀ  
combinedꢀICꢀsignalꢀgroundꢀpinꢀandꢀtheꢀgroundꢀreturnꢀ  
Whenꢀlayingꢀoutꢀtheꢀprintedꢀcircuitꢀboard,ꢀtheꢀfollowingꢀ  
checklistꢀshouldꢀbeꢀusedꢀtoꢀensureꢀproperꢀoperationꢀofꢀ  
theꢀIC.ꢀTheseꢀitemsꢀareꢀalsoꢀillustratedꢀgraphicallyꢀinꢀtheꢀ  
layoutdiagramofFigure11.Figure12illustratesthecurrentꢀ  
waveformspresentinthevariousbranchesofthe2-phaseꢀ  
synchronousregulatorsoperatinginthecontinuousmode.ꢀ  
Checkꢀtheꢀfollowingꢀinꢀyourꢀlayout:  
ofꢀC  
ꢀmustꢀreturnꢀtoꢀtheꢀcombinedꢀC ꢀ(–)ꢀter-  
INTVCC  
OUT  
minals.ꢀTheꢀpathꢀformedꢀbyꢀtheꢀtopꢀN-channelꢀMOSFET,ꢀ  
SchottkyꢀdiodeꢀandꢀtheꢀC ꢀcapacitorꢀshouldꢀhaveꢀshortꢀ  
IN  
leadsꢀandꢀPCꢀtraceꢀlengths.ꢀTheꢀoutputꢀcapacitorꢀ(–)ꢀ  
terminalsshouldbeconnectedascloseaspossibleꢀ  
toꢀtheꢀ(–)ꢀterminalsꢀofꢀtheꢀinputꢀcapacitorꢀbyꢀplacingꢀ  
theꢀcapacitorsꢀnextꢀtoꢀeachꢀotherꢀandꢀawayꢀfromꢀtheꢀ  
Schottkyꢀloopꢀdescribedꢀabove.  
3.ꢀDoꢀtheꢀLTC3857ꢀV ꢀpins’ꢀresistiveꢀdividersꢀconnectꢀtoꢀ  
FB  
connectionatC ?Donotattempttosplittheinputꢀ  
IN  
theꢀ(+)ꢀterminalsꢀofꢀC ?ꢀTheꢀresistiveꢀdividerꢀmustꢀbeꢀ  
OUT  
decouplingꢀforꢀtheꢀtwoꢀchannelsꢀasꢀitꢀcanꢀcauseꢀaꢀlargeꢀ  
resonantꢀloop.  
connectedꢀbetweenꢀtheꢀ(+)ꢀterminalꢀofꢀC ꢀandꢀsignalꢀ  
OUT  
ground.ꢀTheꢀfeedbackꢀresistorꢀconnectionsꢀshouldꢀnotꢀ  
beꢀalongꢀtheꢀhighꢀcurrentꢀinputꢀfeedsꢀfromꢀtheꢀinputꢀ  
capacitor(s).  
R
PU2  
TRACK/SS1  
V
PULL-UP  
PGOOD2  
I
PGOOD2  
PGOOD1  
TG1  
R
TH1  
PU1  
V
PULL-UP  
V
PGOOD1  
FB1  
L1  
R
SENSE  
+
V
SENSE1  
SENSE1  
FREQ  
OUT1  
SW1  
LTC3857  
C
B1  
M1  
M2  
D1  
BOOST1  
BG1  
PHASMD  
CLKOUT  
PLLIN/MODE  
RUN1  
R
IN  
C
C
OUT1  
V
IN  
f
1µF  
IN  
+
C
CERAMIC  
VIN  
PGND  
GND  
RUN2  
+
EXTV  
INTV  
CC  
CC  
C
+
IN  
V
C
SGND  
IN  
INTVCC  
SENSE2  
OUT2  
1µF  
CERAMIC  
+
BG2  
SENSE2  
M4  
L2  
M3  
D2  
BOOST2  
V
FB2  
TH2  
C
B2  
SW2  
TG2  
I
R
SENSE  
V
OUT2  
TRACK/SS2  
ILIM  
3857 F11  
Figure 11. Recommended Printed Circuit Layout Diagram  
3857fa  
ꢁꢆ  
4.ꢀAreꢀtheꢀSENSE ꢀandꢀSENSE ꢀleadsꢀroutedꢀtogetherꢀwithꢀ 6.ꢀ  
minimumPCtracespacing?Theltercapacitorbetweenꢀ  
                                                
Keepꢀtheꢀswitchingꢀnodesꢀ(SW1,ꢀSW2),ꢀtopꢀgateꢀnodesꢀ  
(TG1,TG2),andboostnodes(BOOST1,BOOST2)awayꢀ  
fromꢀ sensitiveꢀ small-signalꢀ nodes,ꢀ especiallyꢀ fromꢀ  
theoppositeschannel’svoltageandcurrentsensingꢀ  
feedbackꢀpins.ꢀAllꢀofꢀtheseꢀnodesꢀhaveꢀveryꢀlargeꢀandꢀ  
fastꢀmovingꢀsignalsꢀandꢀthereforeꢀshouldꢀbeꢀkeptꢀonꢀ  
theꢀoutput sideꢀofꢀtheꢀLTC3857ꢀandꢀoccupyꢀminimumꢀ  
PCꢀtraceꢀarea.  
LTC3857  
applicaTions inForMaTion  
SW1  
L1  
R
SENSE1  
V
OUT1  
D1  
C
R
L1  
OUT1  
V
IN  
R
IN  
C
IN  
SW2  
L2  
R
SENSE2  
V
OUT2  
D2  
C
R
L2  
OUT2  
BOLD LINES INDICATE  
HIGH SWITCHING  
CURRENT. KEEP LINES  
TO A MINIMUM LENGTH.  
3857 F12  
Figure 12. Branch Current Waveforms  
+
+
SENSE ꢀandꢀSENSE ꢀshouldꢀbeꢀasꢀcloseꢀasꢀpossibleꢀ  
toꢀtheꢀIC.ꢀEnsureꢀaccurateꢀcurrentꢀsensingꢀwithꢀKelvinꢀ  
connectionsꢀatꢀtheꢀSENSEꢀresistor.  
5.IstheINTV decouplingcapacitorconnectedcloseꢀ  
CC  
toꢀtheꢀIC,ꢀbetweenꢀtheꢀINTV ꢀandꢀtheꢀpowerꢀgroundꢀ  
CC  
pins?ꢀThisꢀcapacitorꢀcarriesꢀtheꢀMOSFETꢀdrivers’ꢀcur-  
rentꢀpeaks.ꢀAnꢀadditionalꢀ1µFꢀceramicꢀcapacitorꢀplacedꢀ 7.Useamodifiedstargroundtechnique:alowimpedance,ꢀ  
immediatelynexttotheINTV andPGNDpinscanhelpꢀ  
improveꢀnoiseꢀperformanceꢀsubstantially.  
largeꢀcopperꢀareaꢀcentralꢀgroundingꢀpointꢀonꢀtheꢀsameꢀ  
sideꢀofꢀtheꢀPCꢀboardꢀasꢀtheꢀinputꢀandꢀoutputꢀcapacitorsꢀ  
CC  
withꢀtie-insꢀforꢀtheꢀbottomꢀofꢀtheꢀINTV ꢀdecouplingꢀ  
CC  
capacitor,ꢀtheꢀbottomꢀofꢀtheꢀvoltageꢀfeedbackꢀresistiveꢀ  
dividerꢀandꢀtheꢀSGNDꢀpinꢀofꢀtheꢀIC.  
3857fa  
ꢁꢇ  
LTC3857  
applicaTions inForMaTion  
PC Board Layout Debugging  
Investigatewhetheranyproblemsexistonlyathigherout-  
putꢀcurrentsꢀorꢀonlyꢀatꢀhigherꢀinputꢀvoltages.ꢀIfꢀproblemsꢀ  
coincidewithhighinputvoltagesandlowoutputcurrents,ꢀ  
lookꢀforꢀcapacitiveꢀcouplingꢀbetweenꢀtheꢀBOOST,ꢀSW,ꢀTG,ꢀ  
andpossiblyBGconnectionsandthesensitivevoltageꢀ  
andꢀcurrentꢀpins.ꢀTheꢀcapacitorꢀplacedꢀacrossꢀtheꢀcurrentꢀ  
sensingꢀpinsꢀneedsꢀtoꢀbeꢀplacedꢀimmediatelyꢀadjacentꢀtoꢀ  
theꢀpinsꢀofꢀtheꢀIC.ꢀThisꢀcapacitorꢀhelpsꢀtoꢀminimizeꢀtheꢀ  
effectsꢀofꢀdifferentialꢀnoiseꢀinjectionꢀdueꢀtoꢀhighꢀfrequencyꢀ  
capacitiveꢀ coupling.ꢀ Ifꢀ problemsꢀ areꢀ encounteredꢀ withꢀ  
highꢀcurrentꢀoutputꢀloadingꢀatꢀlowerꢀinputꢀvoltages,ꢀlookꢀ  
Startꢀwithꢀoneꢀcontrollerꢀonꢀatꢀaꢀtime.ꢀItꢀisꢀhelpfulꢀtoꢀuseꢀ  
aꢀDC-50MHzꢀcurrentꢀprobeꢀtoꢀmonitorꢀtheꢀcurrentꢀinꢀtheꢀ  
inductorꢀ whileꢀ testingꢀ theꢀ circuit.ꢀ Monitorꢀ theꢀ outputꢀ  
switchingꢀnodeꢀ(SWꢀpin)ꢀtoꢀsynchronizeꢀtheꢀoscilloscopeꢀ  
totheinternaloscillatorandprobetheactualoutputvoltageꢀ  
asꢀwell.ꢀCheckꢀforꢀproperꢀperformanceꢀoverꢀtheꢀoperatingꢀ  
voltageꢀandꢀcurrentꢀrangeꢀexpectedꢀinꢀtheꢀapplication.ꢀTheꢀ  
frequencyofoperationshouldbemaintainedovertheinputꢀ  
voltageꢀrangeꢀdownꢀtoꢀdropoutꢀandꢀuntilꢀtheꢀoutputꢀloadꢀ  
dropsꢀbelowꢀtheꢀlowꢀcurrentꢀoperationꢀthreshold—typi-  
callyꢀ15%ꢀofꢀtheꢀmaximumꢀdesignedꢀcurrentꢀlevelꢀinꢀBurstꢀ  
Modeꢀoperation.  
forꢀinductiveꢀcouplingꢀbetweenꢀC ,ꢀSchottkyꢀandꢀtheꢀtopꢀ  
IN  
MOSFETꢀcomponentsꢀtoꢀtheꢀsensitiveꢀcurrentꢀandꢀvoltageꢀ  
sensingꢀtraces.ꢀInꢀaddition,ꢀinvestigateꢀcommonꢀgroundꢀ  
pathꢀvoltageꢀpickupꢀbetweenꢀtheseꢀcomponentsꢀandꢀtheꢀ  
SGNDꢀpinꢀofꢀtheꢀIC.  
Thedutycyclepercentageshouldbemaintainedfromcycleꢀ  
toꢀcycleꢀinꢀaꢀwell-designed,ꢀlowꢀnoiseꢀPCBꢀimplementa-  
tion.ꢀVariationꢀinꢀtheꢀdutyꢀcycleꢀatꢀaꢀsubharmonicꢀrateꢀcanꢀ  
suggestꢀnoiseꢀpickupꢀatꢀtheꢀcurrentꢀorꢀvoltageꢀsensingꢀ  
inputsꢀorꢀinadequateꢀloopꢀcompensation.ꢀOvercompen-  
sationꢀofꢀtheꢀloopꢀcanꢀbeꢀusedꢀtoꢀtameꢀaꢀpoorꢀPCꢀlayoutꢀ  
ifꢀregulatorꢀbandwidthꢀoptimizationꢀisꢀnotꢀrequired.ꢀOnlyꢀ  
afterꢀeachꢀcontrollerꢀisꢀcheckedꢀforꢀitsꢀindividualꢀperfor-  
manceꢀshouldꢀbothꢀcontrollersꢀbeꢀturnedꢀonꢀatꢀtheꢀsameꢀ  
time.ꢀAꢀparticularlyꢀdifficultꢀregionꢀofꢀoperationꢀisꢀwhenꢀ  
oneꢀcontrollerꢀchannelꢀisꢀnearingꢀitsꢀcurrentꢀcomparatorꢀ  
tripꢀpointꢀwhenꢀtheꢀotherꢀchannelꢀisꢀturningꢀonꢀitsꢀtopꢀ  
MOSFET.ꢀThisꢀoccursꢀaroundꢀ50%ꢀdutyꢀcycleꢀonꢀeitherꢀ  
channelꢀdueꢀtoꢀtheꢀphasingꢀofꢀtheꢀinternalꢀclocksꢀandꢀmayꢀ  
causeꢀminorꢀdutyꢀcycleꢀjitter.  
Anembarrassingproblem,whichcanbemissedinanꢀ  
otherwiseꢀproperlyꢀworkingꢀswitchingꢀregulator,ꢀresultsꢀ  
whenthecurrentsensingleadsarehookedupbackwards.ꢀ  
Theꢀoutputꢀvoltageꢀunderꢀthisꢀimproperꢀhookupꢀwillꢀstillꢀ  
beꢀmaintainedꢀbutꢀtheꢀadvantagesꢀofꢀcurrentꢀmodeꢀcontrolꢀ  
willꢀnotꢀbeꢀrealized.ꢀCompensationꢀofꢀtheꢀvoltageꢀloopꢀwillꢀ  
beꢀ muchꢀ moreꢀ sensitiveꢀ toꢀ componentꢀ selection.ꢀ Thisꢀ  
behaviorꢀcanꢀbeꢀinvestigatedꢀbyꢀtemporarilyꢀshortingꢀoutꢀ  
theꢀcurrentꢀsensingꢀresistor—don’tꢀworry,ꢀtheꢀregulatorꢀ  
willꢀstillꢀmaintainꢀcontrolꢀofꢀtheꢀoutputꢀvoltage.  
Reduceꢀ V ꢀ fromꢀ itsꢀ nominalꢀ levelꢀ toꢀ verifyꢀ operationꢀ  
IN  
oftheregulatorindropout.Checktheoperationoftheꢀ  
undervoltageꢀlockoutꢀcircuitꢀbyꢀfurtherꢀloweringꢀV ꢀwhileꢀ  
IN  
monitoringꢀtheꢀoutputsꢀtoꢀverifyꢀoperation.  
3857fa  
ꢁꢈ  
LTC3857  
applicaTions inForMaTion  
R
B1  
INTV  
215k  
CC  
LTC3857  
+
100k  
C
15pF  
SENSE1  
F1  
PGOOD2  
C1  
1nF  
100k  
R
A1  
SENSE1  
PGOOD1  
BG1  
68.1k  
L1  
3.3µH  
MBOT1  
MTOP1  
V
FB1  
V
3.3V  
5A  
OUT1  
C
150pF  
ITH1A  
SW1  
R
C
C
SENSE1  
6mΩ  
OUT1  
B1  
BOOST1  
TG1  
150µF  
0.47µF  
R
ITH1  
15k  
I
TH1  
D1  
D2  
C
ITH1  
820pF  
C
SS1  
0.1µF  
V
IN  
V
IN  
9V TO 38V  
C
IN  
TRACK/SS1  
22µF  
I
INTV  
CC  
LIM  
C
INT  
PHSMD  
4.7µF  
CLKOUT  
PLLIN/MODE  
SGND  
PGND  
MTOP2  
MBOT2  
EXTV  
TG2  
CC  
RUN1  
RUN2  
FREQ  
C
B2  
BOOST2  
0.47µF  
L2  
7.2µH  
R
SENSE2  
8mΩ  
C
0.1µF  
SS2  
V
8.5V  
3A  
OUT2  
SW2  
BG2  
TRACK/SS2  
C
C
680pF  
OUT2  
ITH2  
R
27k  
150µF  
ITH2  
I
TH2  
C
100pF  
C2  
ITH2A  
V
FB2  
R
A2  
+
SENSE2  
44.2k  
C
1nF  
F2  
39pF  
SENSE2  
R
B2  
422k  
3857 F13  
C
, C  
: SANYO 10TPD150M  
OUT1 OUT2  
D1, D2: CENTRAL SEMI CMDSH-4E  
L1: SUMIDA CDEP105-3R2M  
L2: SUMIDA CDEP105-7R2M  
MTOP1, MTOP2, MBOT1, MBOT2: VISHAY Si7848DP  
Figure 13. High Efficiency Dual 3.3V/8.5V Step-Down Converter  
3857fa  
ꢂ0  
LTC3857  
Typical applicaTions  
High Efficiency Dual 2.5V/3.3V Step-Down Converter  
R
B1  
INTV  
143k  
CC  
LTC3857  
+
100k  
C
22pF  
SENSE1  
F1  
PGOOD2  
C1  
1nF  
100k  
R
A1  
SENSE1  
PGOOD1  
BG1  
68.1k  
L1  
2.4µH  
MBOT1  
MTOP1  
V
FB1  
V
2.5V  
5A  
OUT1  
C
100pF  
ITH1A  
SW1  
R
C
C
SENSE1  
6mΩ  
OUT1  
B1  
BOOST1  
TG1  
150µF  
0.47µF  
R
ITH1  
22k  
I
TH1  
D1  
D2  
C
ITH1  
820pF  
C
SS1  
0.01µF  
V
IN  
V
IN  
4.5V TO 38V  
C
IN  
TRACK/SS1  
22µF  
I
INTV  
CC  
LIM  
C
INT  
PHSMD  
4.7µF  
CLKOUT  
PLLIN/MODE  
SGND  
PGND  
MTOP2  
MBOT2  
EXTV  
TG2  
CC  
RUN1  
RUN2  
FREQ  
C
B2  
BOOST2  
0.47µF  
L2  
3.2µH  
R
SENSE2  
6mΩ  
C
0.01µF  
SS2  
V
3.3V  
5A  
OUT2  
SW2  
BG2  
TRACK/SS2  
C
C
820pF  
OUT2  
ITH2  
R
15k  
150µF  
ITH2  
I
TH2  
C
150pF  
C2  
ITH2A  
V
FB2  
R
A2  
+
SENSE2  
68.1k  
C
1nF  
F2  
15pF  
SENSE2  
R
B2  
215k  
3857 TA02  
C
, C  
: SANYO 4TPE150M  
OUT1 OUT2  
D1, D2: CENTRAL SEMI CMDSH-4E  
L1: SUMIDA CDEP105-2R5  
L2: SUMIDA CDEP105-3R2M  
MTOP1, MTOP2, MBOT1, MBOT2: VISHAY Si7848DP  
3857fa  
ꢂꢀ  
LTC3857  
Typical applicaTions  
High Efficiency Dual 12V/5V Step-Down Converter  
R
B1  
475k  
INTV  
CC  
100k  
100k  
+
C
SENSE1  
SENSE1  
F1  
PGOOD2  
C1  
1nF  
33pF  
R
A1  
PGOOD1  
BG1  
34k  
L1  
8.8µH  
MBOT1  
MTOP1  
V
FB1  
V
12V  
3A  
OUT1  
C
100pF  
ITH1A  
SW1  
R
C
C
SENSE1  
9mΩ  
OUT1  
B1  
BOOST1  
TG1  
47µF  
0.47µF  
R
ITH1  
10k  
I
TH1  
D1  
D2  
LTC3857  
C
SS1  
0.01µF  
C
ITH1  
680pF  
V
IN  
V
IN  
12.5V TO 38V  
C
IN  
TRACK/SS1  
22µF  
I
INTV  
CC  
LIM  
C
INT  
PHSMD  
4.7µF  
CLKOUT  
PLLIN/MODE  
SGND  
PGND  
MTOP2  
MBOT2  
EXTV  
TG2  
CC  
RUN1  
RUN2  
FREQ  
R
C
FREQ  
B2  
BOOST2  
60k  
0.47µF  
L2  
4.3µH  
R
SENSE2  
6mΩ  
C
0.01µF  
SS2  
V
5V  
5A  
OUT2  
SW2  
BG2  
TRACK/SS2  
C
C
680pF  
OUT2  
ITH2  
R
17k  
150µF  
ITH2  
I
TH2  
C
100pF  
C2  
ITH2A  
V
FB2  
R
A2  
C
: KEMET T525D476M016E035  
: SANYO 10TPD150M  
OUT1  
OUT2  
+
SENSE2  
75k  
C
L1: SUMIDA CDEP105-8R8M  
L2: SUMIDA CDEP105-4R3M  
MTOP1, MTOP2, MBOT1, MBOT2: VISHAY Si7848DP  
C
1nF  
F2  
15pF  
SENSE2  
R
B2  
392k  
3857 TA03  
3857fa  
ꢂꢁ  
LTC3857  
Typical applicaTions  
High Efficiency Dual 24V/5V Step-Down Converter  
R
B1  
487k  
INTV  
CC  
100k  
100k  
+
C
SENSE1  
SENSE1  
F1  
PGOOD2  
C1  
1nF  
18pF  
R
A1  
PGOOD1  
BG1  
16.9k  
L1  
22µH  
MBOT1  
MTOP1  
V
FB1  
V
24V  
1A  
OUT1  
C
100pF  
ITH1A  
SW1  
R
C
C
SENSE1  
OUT1  
B1  
BOOST1  
TG1  
25mΩ  
22µF  
0.47µF  
R
46k  
ITH1  
s2  
I
TH1  
CERAMIC  
C
0.01µF  
D1  
D2  
SS1  
LTC3857  
C
680pF  
ITH1  
V
IN  
V
TRACK/SS1  
IN  
28V TO 38V  
C
I
INTV  
CC  
IN  
LIM  
C
INT  
22µF  
PHSMD  
4.7µF  
CLKOUT  
PLLIN/MODE  
SGND  
PGND  
MTOP2  
MBOT2  
EXTV  
TG2  
CC  
RUN1  
RUN2  
FREQ  
R
C
FREQ  
B2  
BOOST2  
60k  
0.47µF  
L2  
4.3µH  
R
SENSE2  
6mΩ  
C
0.01µF  
SS2  
V
5V  
5A  
OUT2  
SW2  
BG2  
TRACK/SS2  
C
C
680pF  
OUT2  
ITH2  
R
17k  
150µF  
ITH2  
I
TH2  
C
100pF  
C2  
ITH2A  
V
FB2  
R
A2  
+
SENSE2  
75k  
C
: SANYO 10TPD150M  
OUT2  
L1: SUMIDA CDR7D43MN  
C
1nF  
F2  
15pF  
L2: SUMIDA CDEP105-4R3M  
SENSE2  
MTOP1, MTOP2, MBOT1, MBOT2: VISHAY Si7848DP  
R
B2  
3858 TA04  
392k  
3857fa  
ꢂꢂ  
LTC3857  
Typical applicaTions  
High Efficiency Dual 1V/1.2V Step-Down Converter  
R
B1  
28.7k  
INTV  
CC  
100k  
100k  
+
C
SENSE1  
SENSE1  
F1  
PGOOD2  
C1  
1nF  
56pF  
R
A1  
PGOOD1  
BG1  
115k  
L1  
0.47µH  
MBOT1  
MTOP1  
V
FB1  
V
1V  
8A  
OUT1  
C
200pF  
ITH1A  
SW1  
C
R
OUT1  
C
SENSE1  
B1  
BOOST1  
TG1  
220µF  
3.5mΩ  
0.47µF  
R
ITH1  
3.93k  
s2  
I
TH1  
D1  
D2  
LTC3857  
C
1000pF  
ITH1  
C
SS1  
0.01µF  
V
IN  
V
IN  
12V  
C
IN  
TRACK/SS1  
22µF  
I
INTV  
CC  
LIM  
C
INT  
PHSMD  
4.7µF  
CLKOUT  
PLLIN/MODE  
SGND  
PGND  
MTOP2  
MBOT2  
EXTV  
TG2  
CC  
RUN1  
RUN2  
FREQ  
R
C
FREQ  
B2  
BOOST2  
60k  
0.47µF  
L2  
0.47µH  
R
SENSE2  
3.5mΩ  
C
0.01µF  
SS2  
V
1.2V  
8A  
OUT2  
SW2  
BG2  
TRACK/SS2  
C
OUT2  
C
1000pF  
ITH2  
220µF  
R
3.93k  
ITH2  
s2  
I
TH2  
C
200pF  
C2  
ITH2A  
V
FB2  
R
C
, C  
: SANYO 2R5TPE220M  
A2  
OUT1 OUT2  
+
SENSE2  
115k  
L1: SUMIDA CDEP105-0R4  
L2: SUMIDA CDEP105-0R4  
MTOP1, MTOP2: RENESAS RJK0305  
MBOT1, MBOT2: RENESAS RJK0328  
C
1nF  
F2  
56pF  
SENSE2  
R
B2  
3858 TA05  
57.6k  
3857fa  
ꢂꢃ  
LTC3857  
Typical applicaTions  
High Efficiency Dual 1V/1.2V Step-Down Converter with Inductor DCR Current Sensing  
R
B1  
R
S1  
1.18k  
28.7k  
+
C
SENSE1  
SENSE1  
F1  
INTV  
CC  
C1  
0.1µF  
56pF  
100k  
R
A1  
PGOOD1  
115k  
L1  
0.47µH  
MBOT1  
MTOP1  
V
BG1  
SW1  
FB1  
V
OUT1  
C
200pF  
ITH1A  
1V  
C
OUT1 8A  
C
B1  
BOOST1  
TG1  
220µF  
0.47µF  
R
ITH1  
3.93k  
s2  
I
TH1  
D1  
D2  
LTC3857  
C
1000pF  
ITH1  
C
SS1  
0.01µF  
V
IN  
V
IN  
12V  
C
IN  
TRACK/SS1  
22µF  
INTV  
CC  
C
INT  
4.7µF  
PGND  
PLLIN/MODE  
SGND  
MTOP2  
MBOT2  
EXTV  
TG2  
CC  
RUN1  
RUN2  
FREQ  
R
C
FREQ  
B2  
BOOST2  
65k  
0.47µF  
L2  
0.47µH  
C
0.01µF  
SS2  
V
OUT2  
1.2V  
SW2  
BG2  
TRACK/SS2  
C
OUT2 8A  
C
1000pF  
ITH2  
220µF  
R
3.93k  
ITH2  
s2  
I
TH2  
C
220pF  
C2  
ITH2A  
V
FB2  
R
A2  
+
SENSE2  
115k  
C
, C  
: SANYO 2R5TPE220M  
OUT1 OUT2  
L1, L2: VISHAY IHL P2525CZERR47M06  
MTOP1, MTOP2: RENESAS RJK0305  
MBOT1, MBOT2: RENESAS RJK0328  
C
0.1µF  
F2  
56pF  
SENSE2  
R
S2  
1.18k  
R
B2  
3857 TA06  
57.6k  
3857fa  
ꢂꢄ  
LTC3857  
package DescripTion  
UH Package  
32-Lead Plastic QFN (5mm × 5mm)  
(ReferenceꢀLTCꢀDWGꢀ#ꢀ05-08-1693ꢀRevꢀD)  
0.70 p0.05  
5.50 p0.05  
4.10 p0.05  
3.45 p 0.05  
3.50 REF  
(4 SIDES)  
3.45 p 0.05  
PACKAGE OUTLINE  
0.25 p 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.30 TYP  
OR 0.35 s 45o CHAMFER  
R = 0.05  
TYP  
0.00 – 0.05  
R = 0.115  
TYP  
0.75 p 0.05  
5.00 p 0.10  
(4 SIDES)  
31 32  
0.40 p 0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
3.45 p 0.10  
3.50 REF  
(4-SIDES)  
3.45 p 0.10  
(UH32) QFN 0406 REV D  
0.200 REF  
0.25 p 0.05  
0.50 BSC  
NOTE:  
1. DRAWING PROPOSED TO BE A JEDEC PACKAGE OUTLINE  
M0-220 VARIATION WHHD-(X) (TO BE APPROVED)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3857fa  
ꢂꢅ  
LTC3857  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
12/09 ChangeꢀtoꢀAbsoluteꢀMaximumꢀRatings  
ChangeꢀtoꢀOrderꢀInformation  
2
2
ChangeꢀtoꢀElectricalꢀCharacteristics  
ChangeꢀtoꢀTypicalꢀPerformanceꢀCharacteristics  
ChangeꢀtoꢀPinꢀFunctions  
2,ꢀ3,ꢀ4  
6
8,ꢀ9  
TextꢀChangesꢀtoꢀOperationsꢀSection  
TextꢀChangesꢀtoꢀApplicationsꢀInformationꢀSection  
ChangeꢀtoꢀTableꢀ2  
11,ꢀ12,ꢀ13  
21,ꢀ22,ꢀ23,ꢀ24,ꢀ26  
23  
27  
38  
ChangeꢀtoꢀFigureꢀ11  
ChangesꢀtoꢀRelatedꢀParts  
3857fa  
InformationfurnishedbyLinearTechnologyCorporationisbelievedtobeaccurateandreliable.ꢀ  
However,ꢀnoꢀresponsibilityꢀisꢀassumedꢀforꢀitsꢀuse.ꢀLinearꢀTechnologyꢀCorporationꢀmakesꢀnoꢀrepresenta-  
tionꢀthatꢀtheꢀinterconnectionꢀofꢀitsꢀcircuitsꢀasꢀdescribedꢀhereinꢀwillꢀnotꢀinfringeꢀonꢀexistingꢀpatentꢀrights.  
ꢂꢆ  
LTC3857  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC3858/LTC3858-1 LowꢀI ,ꢀDualꢀOutputꢀ2-PhaseꢀSynchronousꢀStep-Downꢀ Phase-LockableꢀFixedꢀOperatingꢀFrequencyꢀ50kHzꢀtoꢀ900kHz,ꢀꢀ  
Q
DC/DCꢀControllerꢀwithꢀ99%ꢀDutyꢀCycle  
4Vꢀ≤ꢀV ꢀ≤ꢀ38V,ꢀꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀ24V,ꢀI ꢀ=ꢀ170µA,  
IN OUT Q  
LTC3868/LTC3868-1 LowꢀI ,ꢀDualꢀOutputꢀ2-PhaseꢀSynchronousꢀStep-Downꢀ Phase-LockableꢀFixedꢀOperatingꢀFrequencyꢀ50kHzꢀtoꢀ900kHz,ꢀꢀ  
Q
DC/DCꢀControllerꢀwithꢀ99%ꢀDutyꢀCycle  
4Vꢀ≤ꢀV ꢀ≤ꢀ24V,ꢀꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀ14V,ꢀI ꢀ=ꢀ170µA,  
IN OUT Q  
LTC3834/LTC3834-1 LowꢀI ,ꢀSynchronousꢀStep-DownꢀDC/DCꢀController  
Phase-LockableꢀFixedꢀOperatingꢀFrequencyꢀ140kHzꢀtoꢀ650kHz,ꢀꢀ  
4Vꢀ≤ꢀV ꢀ≤ꢀ36V,ꢀꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀ10V,ꢀI ꢀ=ꢀ30µA,  
Q
IN  
OUT  
Q
LTC3835/LTC3835-1 LowꢀI ,ꢀSynchronousꢀStep-DownꢀDC/DCꢀController  
Phase-LockableꢀFixedꢀOperatingꢀFrequencyꢀ140kHzꢀtoꢀ650kHz,ꢀ  
4Vꢀ≤ꢀV ꢀ≤ꢀ36V,ꢀꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀ10V,ꢀI ꢀ=ꢀ80µA,  
Q
IN  
OUT  
Q
LT3845  
LT3800  
LTC3824  
LowꢀI ,ꢀHighꢀVoltageꢀSynchronousꢀStep-Downꢀꢀ  
AdjustableꢀFixedꢀOperatingꢀFrequencyꢀ100kHzꢀtoꢀ500kHz,ꢀ  
4Vꢀ≤ꢀV ꢀ≤ꢀ60V,ꢀ1.23Vꢀ≤ꢀV ꢀ≤ꢀ36V,ꢀI ꢀ=ꢀ120µA,ꢀTSSOP-16  
Q
DC/DCꢀController  
IN  
OUT  
Q
LowꢀI ,ꢀHighꢀVoltageꢀSynchronousꢀStep-Downꢀꢀ  
Fixedꢀ200kHzꢀOperatingꢀFrequency,ꢀ4Vꢀ≤ꢀV ꢀ≤ꢀ60V,ꢀ1.23Vꢀ≤ꢀV ꢀ≤ꢀ36V,ꢀ  
IN OUT  
I ꢀ=ꢀ100µA,ꢀTSSOP-16  
Q
Q
DC/DCꢀController  
LowꢀI ,ꢀHighꢀVoltageꢀDC/DCꢀController,ꢀ100%ꢀDutyꢀCycle SelectableꢀFixedꢀ200kHzꢀtoꢀ600kHzꢀOperatingꢀFrequency,ꢀꢀ  
Q
4Vꢀ≤ꢀV ꢀ≤ꢀ60V,ꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀV ,ꢀI ꢀ=ꢀ40µA,ꢀMSOP-10E  
IN  
OUT  
IN Q  
LTC3850/LTC3850-1ꢀ Dualꢀ2-Phase,ꢀHighꢀEfficiencyꢀSynchronousꢀStep-Downꢀ Phase-LockableꢀFixedꢀOperatingꢀFrequencyꢀ250kHzꢀtoꢀ780kHz,ꢀꢀ  
LTC3850-2  
DC/DCꢀControllers,ꢀR  
ꢀorꢀDCRꢀCurrentꢀSensingꢀandꢀ 4Vꢀ≤ꢀV ꢀ≤ꢀ30V,ꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀ5.25V  
SENSE IN OUT  
Tracking  
LTC3855  
Dual,ꢀMultiphase,ꢀSynchronousꢀDC/DCꢀStep-Downꢀ  
ControllerꢀwithꢀDiffampꢀandꢀDCRꢀTemperatureꢀ  
Compensation  
Phase-LockableꢀFixedꢀFrequencyꢀ250kHzꢀtoꢀ770kHz,ꢀꢀ  
4.5Vꢀ≤ꢀV ꢀ≤ꢀ38V,ꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀ12.5V  
IN  
OUT  
LTC3853  
TripleꢀOutput,ꢀMultiphaseꢀSynchronousꢀStep-Downꢀ  
Phase-LockableꢀFixedꢀOperatingꢀFrequencyꢀ250kHzꢀtoꢀ750kHz,ꢀ  
DC/DCꢀController,ꢀR  
Tracking  
ꢀorꢀDCRꢀCurrentꢀSensingꢀandꢀ 4Vꢀ≤ꢀV ꢀ≤ꢀ24V,ꢀV ꢀUpꢀtoꢀ13.5V  
IN OUT  
SENSE  
LTC3854  
LTC3775  
SmallꢀFootprintꢀWideꢀV ꢀRangeꢀSynchronousꢀꢀ  
Fixedꢀ400kHzꢀOperatingꢀFrequencyꢀ4.5Vꢀ≤ꢀV ꢀ≤ꢀ38V,ꢀꢀ  
IN  
IN  
Step-DownꢀDC/DCꢀController  
0.8Vꢀ≤ꢀV ꢀ≤ꢀ5.25V,ꢀ2mmꢀ×ꢀ3mmꢀQFN-12,ꢀMSOP-12  
OUT  
HighꢀFrequencyꢀSynchronousꢀVoltageꢀModeꢀStep-Downꢀ FastꢀTransientꢀResponse,ꢀt  
DC/DCꢀController  
ꢀ=ꢀ30ns,ꢀ4Vꢀ≤ꢀV ꢀ≤ꢀ38V,ꢀ  
ON(MIN) IN  
0.6Vꢀ≤ꢀV ꢀ≤ꢀ0.8V ,ꢀMSOP-16E,ꢀ3mmꢀ×ꢀ3mmꢀQFN-16  
OUT IN  
LTC3851A/ꢀ  
LTC3851A-1  
NoꢀR ™ꢀWideꢀV ꢀRangeꢀSynchronousꢀStep-Downꢀ Phase-LockableꢀFixedꢀOperatingꢀFrequencyꢀ250kHzꢀtoꢀ750kHz,ꢀꢀ  
SENSE  
IN  
DC/DCꢀController  
4Vꢀ≤ꢀV ꢀ≤ꢀ38V,ꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀ5.25V,ꢀMSOP-16E,ꢀ3mmꢀ×ꢀ3mmꢀQFN-16,ꢀ  
IN  
OUT  
SSOP-16  
LTC3878/LTC3879  
LTM4600HV  
NoꢀR  
ꢀConstantꢀOn-TimeꢀSynchronousꢀStep-Downꢀ VeryꢀFastꢀTransientꢀResponse,ꢀt  
ꢀ=ꢀ43ns,ꢀ4Vꢀ≤ꢀV ꢀ≤ꢀ38V,ꢀꢀ  
SENSE  
ON(MIN) IN  
DC/DCꢀController  
V
ꢀUpꢀ90%ꢀofꢀV ,ꢀMSOP-16E,ꢀ3mmꢀ×ꢀ3mmꢀQFN-16,ꢀSSOP-16  
OUT IN  
10AꢀDC/DCꢀµModule®ꢀCompleteꢀPowerꢀSupply  
HighꢀEfficiency,ꢀCompactꢀSize,ꢀUltraFast™ꢀTransientꢀResponse,ꢀꢀ  
4.5Vꢀ≤ꢀV ꢀ≤ꢀ28V,ꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀ5V,ꢀ15mmꢀ×ꢀ15mmꢀ×ꢀ2.8mm  
IN  
OUT  
LTM4601AHV  
12AꢀDC/DCꢀµModuleꢀCompleteꢀPowerꢀSupply  
HighꢀEfficiency,ꢀCompactꢀSize,ꢀUltraFastꢀTransientꢀResponse,ꢀꢀ  
4.5Vꢀ≤ꢀV ꢀ≤ꢀ28V,ꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀ5V,ꢀ15mmꢀ×ꢀ15mmꢀ×ꢀ2.8mm  
IN  
OUT  
3857fa  
LT 0110 REV A • PRINTED IN USA  
Linear Technology Corporation  
1630ꢀ McCarthyꢀ Blvd.,ꢀ Milpitas,ꢀ CAꢀ 95035-7417  
ꢂꢇ  
ꢀ  
LINEAR TECHNOLOGY CORPORATION 2009  
(408)ꢀ432-1900ꢀ ꢀFAX:ꢀ(408)ꢀ434-0507ꢀ ꢀwww.linear.com  

相关型号:

LTC3857EUHTRPBF

Low IQ, Dual, 2-Phase Synchronous Step-Down Controller
Linear

LTC3857IGN-1

Low IQ, Dual, 2-Phase Synchronous Step-Down Controller
Linear

LTC3857IGN-1#PBF

LTC3857-1 - Low IQ, Dual, 2-Phase Synchronous Step-Down Controller; Package: SSOP; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3857IGN-1#TRPBF

LTC3857-1 - Low IQ, Dual, 2-Phase Synchronous Step-Down Controller; Package: SSOP; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3857IGN-1PBF

Low IQ, Dual, 2-Phase Synchronous Step-Down Controller
Linear

LTC3857IGN-1TRPBF

Low IQ, Dual, 2-Phase Synchronous Step-Down Controller
Linear

LTC3857IUH

Low IQ, Dual, 2-Phase Synchronous Step-Down Controller
Linear

LTC3857IUHPBF

Low IQ, Dual, 2-Phase Synchronous Step-Down Controller
Linear

LTC3857IUHTRPBF

Low IQ, Dual, 2-Phase Synchronous Step-Down Controller
Linear

LTC3858

Low IQ, Dual 2-Phase Synchronous Step-Down Controller
Linear

LTC3858

60V Low IQ, Dual, 2-Phase Synchronous Step-Down
Linear System

LTC3858-1

Low IQ, Dual 2-Phase Synchronous Step-Down Controller
Linear