LTC4068X-4.2 [Linear]

Standalone Linear Li-Ion Battery Charger with Programmable Termination;
LTC4068X-4.2
型号: LTC4068X-4.2
厂家: Linear    Linear
描述:

Standalone Linear Li-Ion Battery Charger with Programmable Termination

电池
文件: 总12页 (文件大小:149K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC4068-4.2/LTC4068X-4.2  
Standalone Linear  
Li-Ion Battery Charger with  
Programmable Termination  
U
FEATURES  
DESCRIPTIO  
Programmable Charge Current Up to 950mA  
The LTC®4068 is a complete constant-current/constant-  
voltage linear charger for single cell lithium-ion batteries.  
Its DFN package and low external component count make  
the LTC4068 ideally suited for portable applications. Fur-  
thermore, the LTC4068 is designed to work within USB  
power specifications.  
Complete Linear Charger in DFN Package  
No MOSFET, Sense Resistor or Blocking Diode  
Required  
Thermal Regulation Maximizes Charge Rate  
Without Risk of Overheating*  
Charges Directly from a USB Port  
No external sense resistor or external blocking diode are  
requiredduetotheinternalMOSFETarchitecture.Thermal  
feedback regulates the charge current to limit the die  
temperature during high power operation or high ambient  
temperature conditions. The charge voltage is fixed at  
4.2V and the charge current is programmed with a resis-  
tor. The LTC4068 terminates the charge cycle when the  
charge current drops below the programmed termination  
threshold after the final float voltage is reached.  
Programmable Charge Current Termination  
Preset 4.2V Charge Voltage with ±1% Accuracy  
Charge Current Monitor Output for Gas Gauging*  
Automatic Recharge  
Charge Status Output  
“AC Present” Output  
2.9V Trickle Charge Threshold (LTC4068)  
Available Without Trickle Charge (LTC4068X)  
Soft-Start Limits Inrush Current  
When the input supply (wall adapter or USB supply) is  
removed,theLTC4068entersalowcurrentstatedropping  
the battery drain current to less than 2µA. Other features  
include charge current monitor, undervoltage lockout,  
automatic recharge and status pins to indicate charge  
termination and the presence of adequate input voltage.  
Low Profile (3mm × 3mm × 0.75mm) DFN Package  
U
APPLICATIO S  
Cellular Telephones, PDAs, MP3 Players  
Bluetooth Applications  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Protected by U.S. Patents, including 6522118.  
U
TYPICAL APPLICATIO  
Complete Charge Cycle (750mAh Battery)  
700  
600  
500  
400  
300  
200  
100  
0
4.75  
4.50  
4.25  
4.00  
3.75  
3.50  
3.25  
3.00  
CONSTANT  
CURRENT  
Single Cell Li-Ion Battery Charger with C/5 Termination  
CONSTANT  
VOLTAGE  
600mA  
V
IN  
V
CC  
BAT  
4.5V TO 6.5V  
LTC4068-4.2  
1-CELL  
Li-Ion  
BATTERY  
+
CHRG  
ACPR  
EN  
ITERM  
PROG  
V
= 5V  
825  
CC  
θ
= 40°C/W  
GND  
JA  
1µF  
1.65k  
R
R
= 1.65k  
PROG  
TERM  
= 825Ω  
406842 TA01  
T
A
= 25°C  
0.25 0.5 0.75 1.0 1.25  
1.75 2.0 2.25  
0
1.5  
406842 TA02  
TIME (HOURS)  
406842fa  
1
LTC4068-4.2/LTC4068X-4.2  
W W  
U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
Input Supply Voltage (VCC) ....................... –0.3V to 10V  
PROG, ITERM ................................ 0.3V to VCC + 0.3V  
BAT............................................................. –0.3V to 7V  
CHRG, ACPR, EN ...................................... –0.3V to 10V  
BAT Short-Circuit Duration .......................... Continuous  
BAT Pin Current ........................................................ 1A  
PROG Pin Current................................................... 1mA  
Maximum Junction Temperature .......................... 125°C  
Operating Temperature Range (Note 2) .. 40°C to 85°C  
Storage Temperature Range ................. 65°C to 125°C  
ORDER PART  
NUMBER  
ITERM  
BAT  
1
2
3
4
8
7
6
5
EN  
ACPR  
LTC4068EDD-4.2  
LTC4068XEDD-4.2  
9
CHRG  
GND  
V
CC  
PROG  
DD PART MARKING  
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
TJMAX = 125°C, θJA = 40°C/W (NOTE 3)  
EXPOSED PAD IS GROUND (PIN 9)  
MUST BE SOLDERED TO PCB  
LBHZ  
LBQB  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Supply Voltage  
Input Supply Current  
4.25  
6.5  
V
CC  
I
Charge Mode (Note 4), R  
Standby Mode (Charge Terminated)  
Shutdown Mode (EN = 5V, V < V  
= 10k  
0.4  
200  
25  
1
500  
50  
mA  
µA  
µA  
CC  
PROG  
CC  
BAT  
or V < V  
)
CC  
UV  
V
Regulated Output (Float) Voltage  
BAT Pin Current  
0°C T 85°C, 4.3V < V < 6.5V  
4.158  
4.2  
4.242  
V
FLOAT  
A
CC  
I
R
R
= 10k, Current Mode  
= 2k, Current Mode  
92  
465  
100  
500  
–2.5  
±1  
105  
535  
–6  
mA  
mA  
µA  
BAT  
PROG  
PROG  
Standby Mode, V  
= 4.2V  
BAT  
Shutdown Mode (EN = 5V, V < V  
or  
±2  
µA  
CC  
BAT  
V
< V )  
CC  
UV  
Sleep Mode, V = 0V  
±1  
45  
±2  
60  
3
µA  
mA  
V
CC  
I
Trickle Charge Current  
V
< V , R = 2k (Note 5)  
TRIKL PROG  
30  
TRIKL  
BAT  
V
V
V
V
V
V
Trickle Charge Threshold Voltage  
Trickle Charge Hysteresis Voltage  
R
R
= 10k, V Rising (Note 5)  
BAT  
2.8  
2.9  
80  
TRIKL  
TRHYS  
UV  
PROG  
PROG  
= 10k (Note 5)  
mV  
V
V
V
Undervoltage Lockout Voltage  
Undervoltage Lockout Hysteresis  
From V Low to High  
3.7  
150  
0.4  
3.8  
200  
0.7  
0.7  
2
3.92  
300  
CC  
CC  
CC  
mV  
V
UVHYS  
EN(IL)  
EN(IH)  
EN Pin Input Low Voltage  
EN Pin Input High Voltage  
EN Pin Pull-Down Resistor  
1
5
V
R
1.2  
MΩ  
EN  
V
V
– V  
Lockout Threshold  
V
V
from Low to High  
from High to Low  
70  
5
100  
30  
140  
50  
mV  
mV  
ASD  
CC  
BAT  
CC  
CC  
I
Charge Termination Current Threshold  
R
TERM  
R
TERM  
= 1k  
= 5k  
90  
17.5  
100  
20  
110  
22.5  
mA  
mA  
TERM  
V
V
V
PROG Pin Voltage  
R
= 10k, Current Mode  
= 5mA  
0.93  
1
1.07  
0.6  
V
V
PROG  
CHRG  
ACPR  
PROG  
CHRG  
CHRG Pin Output Low Voltage  
ACPR Pin Output Low Voltage  
Recharge Battery Threshold Voltage  
I
I
0.35  
0.35  
100  
= 5mA  
0.6  
V
ACPR  
V  
V
– V  
, 0°C T 85°C  
60  
140  
mV  
RECHRG  
FLOAT  
RECHRG  
A
406842fa  
2
LTC4068-4.2/LTC4068X-4.2  
ELECTRICAL CHARACTERISTICS The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
T
Junction Temperature in Constant  
Temperature Mode  
120  
°C  
LIM  
R
ON  
Power FET “ON” Resistance  
600  
mΩ  
(Between V and BAT)  
CC  
t
t
t
Soft-Start Time  
I
= 0 to I  
=1000V/R  
PROG  
100  
2
µs  
ms  
µs  
SS  
BAT  
BAT  
Recharge Comparator Filter Time  
Termination Comparator Filter Time  
V
High to Low  
0.75  
400  
4.5  
RECHARGE  
TERM  
BAT  
BAT  
I
Drops Below Charge Termination Threshold  
1000  
2500  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of the device may be impaired.  
Note 3: Failure to solder the exposed backside of the package to the PC  
board will result in a thermal resistance much higher than 40°C/W.  
Note 2: The LTC4068E-4.2/LTC4068XE-4.2 are guaranteed to meet  
performance specifications from 0°C to 70°C. Specifications over the  
–40°C to 85°C operating temperature range are assured by design,  
characterization and correlation with statistical process controls.  
Note 4: Supply current includes PROG pin current and ITERM pin current  
(approximately 100µA each) but does not include any current delivered to  
the battery through the BAT pin (approximately 100mA).  
Note 5: This parameter is not applicable to the LTC4068X.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
PROG Pin Voltage vs Supply  
Voltage (Constant Current Mode)  
PROG Pin Voltage  
vs Temperature  
Charge Current  
vs PROG Pin Voltage  
1.015  
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
600  
500  
400  
300  
200  
100  
0
1.0100  
1.0075  
1.0050  
1.0025  
V
V
T
= 5V  
V
V
= 5V  
V
= 5V  
CC  
CC  
CC  
= 4V  
= 4V  
T
= 25°C  
BAT  
BAT  
PROG  
A
R
R
= 25°C  
= 2k  
= 2k  
R
= 10k  
A
R
PROG  
TERM  
= 10k  
PROG  
1.0000  
0.9975  
0.9950  
0.9925  
0.9900  
4
5
5.5  
(V)  
6
6.5  
7
–50  
–25  
0
50  
75  
100  
0
0.4  
0.6  
(V)  
PROG  
0.8  
1
1.2  
4.5  
25  
0.2  
V
V
TEMPERATURE (°C)  
CC  
405842 G01  
405842 G02  
405842 G03  
406842fa  
3
LTC4068-4.2/LTC4068X-4.2  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Regulated Output (Float) Voltage  
vs Charge Current  
Regulated Output (Float) Voltage  
vs Temperature  
Regulated Output (Float) Voltage  
vs Supply Voltage  
4.26  
4.215  
4.210  
4.205  
4.200  
4.195  
4.190  
4.185  
4.215  
4.210  
4.205  
4.200  
4.195  
4.190  
4.185  
V
A
R
= 5V  
V
= 5V  
PROG  
T = 25°C  
A
CC  
CC  
R
T
= 25°C  
= 10k  
R
= 10k  
PROG  
4.24  
4.22  
= 1.25k  
PROG  
4.20  
4.18  
4.16  
4.14  
4.12  
4.10  
100 200  
400 500 600 700  
(mA)  
–50  
0
25  
50  
75  
100  
4
5
5.5  
(V)  
6
6.5  
7
0
300  
–25  
4.5  
TEMPERATURE (°C)  
V
I
CC  
BAT  
405842 G04  
405842 G05  
405842 G06  
CHRG Pin I-V Curve  
(Pull-Down State)  
ACPR Pin I-V Curve  
(Pull-Down State)  
Trickle Charge Current  
vs Temperature  
30  
25  
20  
15  
30  
25  
20  
15  
60  
50  
40  
30  
20  
10  
0
V
V
= 5V  
BAT  
LTC4068 ONLY  
CC  
T
= –40°C  
T
A
= –40°C  
A
= 2.5V  
T
T
= 25°C  
= 90°C  
T
T
= 25°C  
= 90°C  
A
A
A
R
= 2k  
PROG  
A
10  
5
10  
5
R
= 10k  
50  
PROG  
25  
V
V
= 5V  
CC  
BAT  
V
V
= 5V  
CC  
BAT  
= 4V  
= 4V  
0
0
4
6
7
4
6
7
–50  
0
75  
100  
0
1
2
3
5
0
1
2
3
5
–25  
TEMPERATURE (°C)  
V
(V)  
V
ACPR  
(V)  
CHRG  
405842 G07  
405842 G08  
405842 G09  
Trickle Charge Current  
vs Supply Voltage  
Trickle Charge Threshold Voltage  
vs Temperature  
Charge Current vs Battery Voltage  
60  
50  
40  
30  
20  
10  
0
600  
500  
400  
300  
3.000  
2.975  
2.950  
2.925  
V
T
= 2.5V  
LTC4068 ONLY  
LTC4068 ONLY  
V
= 5V  
PROG  
LTC4068 ONLY  
BAT  
A
CC  
= 25°C  
R
= 10k  
R
= 2k  
PROG  
2.900  
2.875  
200  
100  
0
2.850  
2.825  
2.800  
R
= 10k  
6
PROG  
V
= 5V  
CC  
JA  
θ
= 40°C/W  
R
= 2k  
PROG  
3.3 3.6 3.9  
(V)  
4
5
5.5  
(V)  
6.5  
7
–50  
–25  
0
50  
75  
100  
2.4 2.7  
3
4.2 4.5  
4.5  
25  
V
TEMPERATURE (°C)  
V
BAT  
CC  
405842 G10  
405842 G11  
405842 G12  
406842fa  
4
LTC4068-4.2/LTC4068X-4.2  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Charge Current  
vs Ambient Temperature  
Charge Current vs Supply Voltage  
600  
500  
400  
300  
200  
100  
0
600  
ONSET OF THERMAL REGULATION  
R
= 2k  
PROG  
500  
400  
300  
R
PROG  
= 2k  
V
T
JA  
= 4V  
V
V
θ
= 5V  
= 4V  
BAT  
A
CC  
= 25°C  
BAT  
θ
= 40°C/W  
= 40°C/W  
JA  
200  
100  
0
R
= 10k  
50  
R
= 10k  
PROG  
PROG  
4
5
5.5  
6
6.5  
7
–50 –25  
0
25  
75  
100 125  
4.5  
V
(V)  
TEMPERATURE (°C)  
CC  
405842 G13  
405842 G14  
Power FET “ON” Resistance  
vs Temperature  
Recharge Threshold Voltage  
vs Temperature  
700  
650  
600  
550  
500  
450  
400  
350  
4.16  
4.14  
4.12  
4.10  
4.08  
4.06  
4.04  
V
I
= 4.2V  
V
= 5V  
PROG  
CC  
BAT  
R
CC  
= 100mA  
R
= 10k  
= 2k  
PROG  
–50  
0
25  
50  
75 100 125  
–25  
–50  
0
25  
50  
75  
100  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
405842 G17  
405842 G15  
U
U
U
PI FU CTIO S  
ITERM (Pin 1): Charge Termination Program. The charge voltage. Thisdividerisdisconnectedinshutdownmodeto  
termination current threshold current is programmed by minimize current drain from the battery.  
connecting a 1% resistor, RTERM, to ground. The current  
CHRG (Pin 3): Charge Status Open-Drain Output. When  
threshold ITERM, is set by the following formula:  
the battery is charging, the CHRG pin is pulled low by an  
internal N-channel MOSFET. When the charge cycle is  
completed, CHRG becomes high impedance.  
100V  
RTERM  
100V  
ITERM  
ITERM  
=
, RTERM =  
GND (Pins 4, 9): Ground/Exposed Pad. The exposed  
backside package pad (Pin 9) is electrical ground and  
must be soldered to the PC board for maximum heat  
transfer.  
BAT (Pin 2): Charge Current Output. Provides charge  
currenttothebatteryfromtheinternalP-channelMOSFET,  
and regulates the final float voltage to 4.2V. An internal  
precision resistor divider from this pin sets the float  
406842fa  
5
LTC4068-4.2/LTC4068X-4.2  
U
U
U
PI FU CTIO S  
PROG (Pin 5): Charge Current Program and Charge Cur-  
rent Monitor. Charge current is programmed by connect-  
ing a 1% resistor, RPROG, to ground. When charging in  
constant-currentmode,thispinservosto1V.Inallmodes,  
the voltage on this pin can be used to measure the charge  
current using the following formula:  
When VCC is within 100mV of the BAT pin voltage, the  
LTC4068 enters shutdown mode dropping the battery  
drain current to less than 2µA.  
ACPR (Pin 7): Power Supply Status Open-Drain Output.  
WhenVCC isgreaterthantheundervoltagelockoutthresh-  
old and at least 100mV above VBAT, the ACPR pin is pulled  
to ground; otherwise, the pin is high impedance.  
IBAT = (VPROG/RPROG) • 1000  
Thispinisclampedtoapproximately2.4V. Drivingthispin  
to voltages beyond the clamp voltage can draw large  
currents and should be avoided.  
EN(Pin8):EnableInput. AlogichighontheENpinwillput  
the LTC4068 into shutdown mode where the battery drain  
current is reduced to less than 2µA and the supply current  
is reduced to less than 50µA. A logic low or floating the EN  
pin (allowing an internal 2Mpull-down resistor to pull  
this pin low) enables charging.  
VCC (Pin 6): Positive Input Supply Voltage. Provides  
power to the charger. VCC can range from 4.25V to 6.5V.  
This pin should be bypassed with at least a 1µF capacitor.  
W
BLOCK DIAGRA  
6
V
CC  
120°C  
T
A
1×  
1×  
T
DIE  
1000×  
+
BAT  
2
5µA  
MA  
R1  
R2  
ACPR  
CHRG  
+
7
3
VA  
CA  
+
REF  
1.211V  
R3  
1V  
*
CHARGE ACPR  
LOGIC  
R4  
0.1V  
R5  
+
TERM  
C1  
EN  
SHDN  
EN  
8
*TRICKLE  
CHARGE  
DISABLED  
ON THE  
LTC4068X  
C2*  
+
2.9V  
TO BAT  
ITERM  
PROG  
GND  
4, 9  
1
5
R
R
PROG  
TERM  
406842 BD  
406842fa  
6
LTC4068-4.2/LTC4068X-4.2  
U
OPERATIO  
The LTC4068 is a single cell lithium-ion battery charger  
using a constant-current/constant-voltage algorithm. It  
can deliver up to 950mA of charge current (using a good  
thermal PCB layout) with a final float voltage accuracy of  
±1%. The LTC4068 includes an internal P-channel power  
MOSFET and thermal regulation circuitry. No blocking  
diode or external current sense resistor is required; thus,  
the basic charger circuit requires only two external com-  
ponents. Furthermore, the LTC4068 is capable of operat-  
ing from a USB power source.  
Programming Charge Termination  
The charge cycle terminates when the charge current  
falls below the programmed termination threshold. This  
threshold is set by connecting an external resistor, RTERM  
from the ITERM pin to ground. The charge termination  
current threshold (ITERM) is set by the following equation:  
,
100V ICHG  
R
100V  
ITERM  
ITERM  
=
=
PROG ,RTERM  
RTERM 10 RTERM  
=
The termination condition is detected by using an internal  
filtered comparator to monitor the ITERM pin. When the  
ITERM pin voltage drops below 100mV* for longer than  
tTERM (typically 1ms), charging is terminated. The charge  
current is latched off and the LTC4068 enters standby  
mode where the input supply current drops to 200µA.  
(Note: Termination is disabled in trickle charging and  
thermal limiting modes.)  
Normal Charge Cycle  
AchargecyclebeginswhenthevoltageattheVCC pinrises  
abovetheUVLOthresholdlevelanda1%programresistor  
is connected from the PROG pin to ground. If the BAT pin  
is less than 2.9V, the charger enters trickle charge mode.  
In this mode, the LTC4068 supplies approximately 1/10th  
the programmed charge current to bring the battery volt-  
age up to a safe level for full current charging. (Note: The  
LTC4068X does not include this trickle charge feature.)  
ITERMcanbesettobe1/10thofICHG byshortingtheITERM  
pin to the PROG pin, thus eliminating the need for external  
resistor RTERM. When configured in this way, ITERM is  
alwayssettoICHG/10,andtheprogrammedchargecurrent  
is set by the equation:  
When the BAT pin voltage rises above 2.9V, the charger  
enters constant-current mode where the programmed  
chargecurrentissuppliedtothebattery.WhentheBATpin  
approaches the final float voltage (4.2V), the LTC4068  
enters constant-voltage mode and the charge current  
begins to decrease. When the charge current drops to the  
programmed termination threshold (set by the external  
resistor RTERM), the charge cycle ends.  
500V  
RPROG  
500V**  
ICHG  
ICHG  
=
,RPROG =  
When charging, transient loads on the BAT pin can cause  
the ITERM pin to fall below 100mV for short periods of  
time before the DC charge current has dropped to 10% of  
the programmed value. The 1ms filter time (tTERM) on the  
termination comparator ensures that transient loads of  
this nature do not result in premature charge cycle termi-  
nation. Once the average charge current drops below the  
programmed termination threshold, the LTC4068 termi-  
nates the charge cycle and ceases to provide any current  
out of the BAT pin. In this state, any load on the BAT pin  
must be supplied by the battery.  
Programming Charge Current  
The charge current is programmed using a single resistor  
from the PROG pin to ground. The charge current out of  
the BAT pin is 1000 times the current out of the PROG pin.  
The program resistor and the charge current are calcu-  
lated using the following equations:  
1000V  
ICHG  
1000V  
RPROG  
RPROG  
=
, ICHG =  
ChargecurrentoutoftheBATpincanbedeterminedatany  
time by monitoring the PROG pin voltage and using the  
following equation:  
The LTC4068 constantly monitors the BAT pin voltage in  
standbymode.Ifthisvoltagedropsbelowthe4.1Vrecharge  
*
Any external sources that hold the ITERM pin above 100mV will prevent the LTC4068 from  
terminating a charge cycle.  
VPROG  
RPROG  
IBAT  
=
1000  
**  
These equations apply only when the ITERM pin is shorted to the PROG pin.  
406842fa  
7
LTC4068-4.2/LTC4068X-4.2  
U
OPERATIO  
Thermal Limiting  
threshold (VRECHRG), another charge cycle begins and  
charge current is once again supplied to the battery. To  
manuallyrestartachargecyclewheninstandbymode, the  
inputvoltagemustberemovedandreappliedorthecharger  
mustbeshutdownandrestartedusingtheENpin.Figure 1  
shows the state diagram of a typical charge cycle.  
Aninternalthermalfeedbackloopreducestheprogrammed  
chargecurrentifthedietemperatureattemptstoriseabove  
apresetvalueofapproximately120°C.Thisfeatureprotects  
the LTC4068 from excessive temperature and allows the  
user to push the limits of the power handling capability of  
agivencircuitboardwithoutriskofdamagingtheLTC4068.  
Thechargecurrentcanbesetaccordingtotypical(notworst  
case) ambient temperature with the assurance that the  
chargerwillautomaticallyreducethecurrentinworst-case  
conditions. DFN power considerations are discussed fur-  
ther in the Applications Information section.  
POWER ON  
BAT < 2.9V  
TRICKLE CHARGE  
MODE  
EN DRIVEN LOW  
OR  
UVLO CONDITION  
STOPS  
LTC4068  
ONLY  
1/10TH FULL CURRENT  
CHRG: STRONG  
PULL-DOWN  
BAT > 2.9V  
Undervoltage Lockout (UVLO)  
BAT > 2.9V  
SHUTDOWN MODE  
CHARGE MODE  
Aninternalundervoltagelockoutcircuitmonitorstheinput  
voltageandkeepsthechargerinshutdownmodeuntilVCC  
risesabovetheundervoltagelockoutthreshold. TheUVLO  
circuit has a built-in hysteresis of 200mV. Furthermore, to  
protect against reverse current in the power MOSFET, the  
UVLO circuit keeps the charger in shutdown mode if VCC  
falls to within 30mV of the BAT voltage. If the UVLO com-  
parator is tripped, the charger will not come out of shut-  
down mode until VCC rises 100mV above the BAT voltage.  
I
CC  
DROPS TO <25µA  
FULL CURRENT  
CHRG: Hi-Z  
CHRG: STRONG  
PULL-DOWN  
ITERM < 100mV  
STANDBY MODE  
NO CHARGE CURRENT  
CHRG: Hi-Z  
EN DRIVEN HIGH  
OR  
UVLO CONDITION  
2.9V < BAT < 4.1V  
406842 F01  
Figure 1. State Diagram of a Typical Charge Cycle  
Manual Shutdown  
At any point in the charge cycle, the LTC4068 can be put  
into shutdown mode by driving the EN pin high. This  
reduces the battery drain current to less than 2µA and the  
supply current to less than 50µA. When in shutdown  
mode, the CHRG pin is in the high impedance state. A new  
charge cycle can be initiated by driving the EN pin low. An  
internal resistor pull-down on this pin forces the LTC4068  
to be enabled if the pin is allowed to float.  
Charge Status Indicator (CHRG)  
The charge status output has two states: pull-down and  
high impedance. The pull-down state indicates that the  
LTC4068 is in a charge cycle. Once the charge cycle has  
terminated or the LTC4068 is disabled, the pin state  
becomes high impedance.  
Power Supply Status Indicator (ACPR)  
Automatic Recharge  
The power supply status output has two states: pull-down  
and high impedance. The pull-down state indicates that  
Oncethechargecycleisterminated,theLTC4068continu-  
ously monitors the voltage on the BAT pin using a com-  
parator with a 2ms filter time (tRECHARGE). A charge cycle  
restarts when the battery voltage falls below 4.10V (which  
corresponds to approximately 80% to 90% battery capac-  
ity). This ensures that the battery is kept at, or near, a fully  
V
CC isabovetheUVLOthreshold(3.8V)andisalso100mV  
above the battery voltage. If these conditions are not met,  
theACPRpinishighimpedanceindicatingthattheLTC4068  
is unable to charge the battery.  
406842fa  
8
LTC4068-4.2/LTC4068X-4.2  
U
W U U  
APPLICATIO S I FOR ATIO  
charged condition and eliminates the need for periodic filter can be used on the PROG pin to measure the average  
charge cycle initiations. The CHRG output enters a pull- battery current, as shown in Figure 2. A 10k resistor has  
down state during recharge cycles.  
been added between the PROG pin and the filter capacitor  
to ensure stability.  
If the battery is removed from the charger, a sawtooth  
waveformofapproximately100mVappearsatthecharger  
output. This is caused by the repeated cycling between  
termination and recharge events. This cycling results in  
pulsing at the CHRG output; an LED connected to this pin  
will exhibit a blinking pattern, indicating to the user that a  
battery is not present. The frequency of the sawtooth is  
dependent on the amount of output capacitance.  
LTC4068-4.2  
CHARGE  
10k  
CURRENT  
PROG  
MONITOR  
CIRCUITRY  
R
PROG  
C
FILTER  
GND  
406842 F02  
Figure 2. Isolating Capacitive Load on PROG Pin and Filtering  
Stability Considerations  
The constant-voltage mode feedback loop is stable with-  
out an output capacitor, provided a battery is connected to  
the charger output. With no battery present, an output  
capacitor on the BAT pin is recommended to reduce ripple  
voltage. When using high value, low ESR ceramic capaci-  
tors, it is recommended to add a 1resistor in series with  
the capacitor. No series resistor is needed if tantalum  
capacitors are used.  
Power Dissipation  
It is not necessary to design for worst-case power dissi-  
pation scenarios because the LTC4068 automatically  
reducesthechargecurrentduringhighpowerconditions.  
The conditions that cause the LTC4068 to reduce charge  
current through thermal feedback can be approximated  
by considering the power dissipated in the IC. Nearly all  
of this power dissipation is generated by the internal  
MOSFET—this is calculated to be approximately:  
In constant-current mode, the PROG pin is in the feedback  
loop, not the battery. The constant-current mode stability  
is affected by the impedance at the PROG pin. With no  
additional capacitance on the PROG pin, the charger is  
stable with program resistor values as high as 20k; how-  
ever, additional capacitance on this node reduces the  
maximum allowed program resistor. The pole frequency  
at the PROG pin should be kept above 100kHz. Therefore,  
if the PROG pin is loaded with a capacitance, CPROG, the  
following equation can be used to calculate the maximum  
PD = (VCC – VBAT) • IBAT  
where PD is the power dissipated, VCC is the input supply  
voltage, VBAT is the battery voltage and IBAT is the charge  
current. The approximate ambient temperature at which  
the thermal feedback begins to protect the IC is:  
TA = 120°C – PDθJA  
TA = 120°C – (VCC – VBAT) • IBAT θJA  
Example: An LTC4068 operating from a 5V supply is  
programmed to supply 800mA full-scale current to a  
dischargedLi-Ionbatterywithavoltageof3.3V.Assuming  
θJA is 50°C/W (see Thermal Considerations), the ambient  
temperatureatwhichtheLTC4068willbegintoreducethe  
charge current is approximately:  
resistance value for RPROG  
:
1
RPROG  
2π 105 CPROG  
Average, ratherthaninstantaneouschargecurrentmaybe  
of interest to the user. For example, if a switching power  
supply operating in low current mode is connected in  
parallel with the battery, the average current being pulled  
out of the BAT pin is typically of more interest than the  
instantaneous current pulses. In such a case, a simple RC  
TA = 120°C – (5V – 3.3V) • (800mA) • 50°C/W  
TA = 120°C – 1.36W • 50°C/W = 120°C – 68°C  
TA = 52°C  
406842fa  
9
LTC4068-4.2/LTC4068X-4.2  
W U U  
U
APPLICATIO S I FOR ATIO  
The LTC4068 can be used above 52°C ambient but the  
charge current will be reduced from the programmed  
800mA. The approximate current at a given ambient  
temperature can be approximated by:  
ceramiccapacitors. Becauseoftheself-resonantandhigh  
Q characteristics of some types of ceramic capacitors,  
high voltage transients can be generated under some  
start-up conditions such as connecting the charger input  
to a live power source. Adding a 1.5resistor in series  
with an X5R ceramic capacitor will minimize start-up  
voltage transients. For more information, see Application  
Note 88.  
120°C – TA  
IBAT  
=
VCC VBAT θJA  
(
)
Using the previous example with an ambient temperature  
of 60°C, the charge current will be reduced to  
approximately:  
Charge Current Soft-Start  
The LTC4068 includes a soft-start circuit to minimize the  
inrushcurrentatthestartofachargecycle.Whenacharge  
cycle is initiated, the charge current ramps from zero to  
full-scale current over a period of approximately 100µs.  
Thishastheeffectofminimizingthetransientcurrentload  
on the power supply during start-up.  
120°C – 60°C  
60°C  
85°C/A  
IBAT  
=
=
5V – 3.3V • 50°C/W  
(
)
IBAT = 706mA  
Moreover,whenthermalfeedbackreducesthechargecur-  
rentthevoltageatthePROGpinisalsoreducedproportion-  
ally as discussed in the Operation section. It is important  
to remember that LTC4068 applications do not need to be  
designedforworst-casethermalconditionssincetheICwill  
automatically reduce power dissipation when the junction  
temperature reaches approximately 120°C.  
USB and Wall Adapter Power  
The LTC4068 allows charging from both a wall adapter  
and a USB port. Figure 3 shows how to combine wall  
adapter and USB power inputs. A P-channel MOSFET,  
MP1, isusedtopreventbackconductingintotheUSBport  
when a wall adapter is present and a Schottky diode, D1,  
is used to prevent USB power loss through the 1k pull-  
down resistor.  
Thermal Considerations  
I
n order to deliver maximum charge current under all  
Typically a wall adapter can supply more current than  
the 500mA-limited USB port. Therefore, an N-channel  
MOSFET, MN1, and an extra 3.3k program resistor are  
used to increase the charge current to 800mA when the  
walladapterispresent.Thechargeterminationthreshold  
remains fixed at 80mA.  
conditions, it is critical that the exposed metal pad on the  
backside of the LTC4068 package is soldered to the PC  
board ground. Correctly soldered to a 2500mm2 double-  
sided 1oz copper board, the LTC4068 has a thermal  
resistance of approximately 40°C/W. Failure to make  
thermal contact between the exposed pad on the back-  
side of the package and the copper board will result in  
thermal resistances far greater than 40°C/W. As an  
example, a correctly soldered LTC4068 can deliver over  
800mA to a battery from a 5V supply at room tempera-  
ture. Without a good backside thermal connection, this  
number will drop considerably.  
5V WALL  
ADAPTER  
I
CHG  
800mA I  
LTC4068-4.2  
BAT  
CHG  
2
1
5
SYSTEM  
LOAD  
D1  
6
USB POWER  
V
CC  
ITERM  
500mA I  
CHG  
4, 9  
MP1  
GND PROG  
1.25k  
+
Li-Ion  
BATTERY  
3.3k  
1k  
2k  
MN1  
406842 F03  
VCC Bypass Capacitor  
Many types of capacitors can be used for input bypassing;  
however,cautionmustbeexercisedwhenusingmultilayer  
Figure 3. Combining Wall Adapter and USB Power  
406842fa  
10  
LTC4068-4.2/LTC4068X-4.2  
W U U  
U
APPLICATIO S I FOR ATIO  
DRAIN-BULK  
DIODE OF FET  
Reverse Polarity Input Voltage Protection  
LTC4068  
CC  
In some applications, protection from reverse polarity  
voltage on VCC is desired. If the supply voltage is high  
enough, a series blocking diode can be used. In other  
cases,wherethevoltagedropmustbekeptlow,aP-channel  
MOSFET can be used (as shown in Figure 4).  
V
V
IN  
405842 F04  
Figure 4. Low Loss Input Reverse Polarity Protection  
U
PACKAGE DESCRIPTIO  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698)  
0.675 ±0.05  
3.5 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.28 ± 0.05  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
0.38 ± 0.10  
TYP  
5
8
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(DD8) DFN 0203  
4
1
0.28 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.50 BSC  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
4. EXPOSED PAD SHALL BE SOLDER PLATED  
406842fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC4068-4.2/LTC4068X-4.2  
U
TYPICAL APPLICATIO S  
Full Featured Single Cell Li-Ion Charger  
Li-Ion Battery Charger with Reverse Polarity Input Protection  
V
IN  
5V  
5V  
WALL  
ADAPTER  
6
1k  
1k  
6
500mA  
V
CC  
2
500mA  
V
CC  
BAT  
2
1
7
3
ACPR  
BAT  
LTC4068-4.2  
ITERM  
1
5
CHRG ITERM  
LTC4068-4.2  
1µF  
1-CELL  
Li-Ion  
+
8
1µF  
1k  
EN  
PROG  
GND  
4, 9  
1µF  
8
5
BATTERY  
EN  
PROG  
GND  
4, 9  
1-CELL  
Li-Ion  
BATTERY  
1k  
+
2k  
406842 TA04  
405642 TA03  
USB/Wall Adapter Power Li-Ion Charger  
I
BAT  
5V WALL  
ADAPTER  
2
BAT  
1-CELL  
Li-Ion  
BATTERY  
+
LTC4068-4.2  
1
5
6
USB  
POWER  
V
ITERM  
PROG  
GND  
4, 9  
CC  
1µF  
1.25k  
5k  
1k  
100mA/  
500mA  
µC  
406842 TA05  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
Simple Charger uses External FET, Features Preset Voltages, C/10  
LTC1732  
Lithium-Ion Linear Battery Charger Controller  
Charger Detection and Programmable Timer, Input Power Good Indication  
Standalone Charger with Programmable Timer, Up to 1.5A Charge Current  
Simple ThinSOT Charger, No Blocking Diode, No Sense Resistor Needed  
LTC1733  
LTC1734  
LTC1734L  
LTC1998  
LTC4007  
Monolithic Lithium-Ion Linear Battery Charger  
Lithium-Ion Linear Battery Charger in ThinSOTTM  
Lithium-Ion Linear Battery Charger in ThinSOT  
Lithium-Ion Low Battery Detector  
Low Current Version of LTC1734; 50mA I  
180mA  
CHRG  
1% Accurate 2.5µA Quiescent Current, SOT-23  
4A Multicell Li-Ion Battery Charger  
Standalone Charger, 6V V 28V, Up to 96% Efficiency,  
IN  
±0.8% Charging Voltage Accuracy  
LTC4050  
LTC4052  
LTC4053  
LTC4054  
Lithium-Ion Linear Battery Charger Controller  
Monolithic Lithium-Ion Battery Pulse Charger  
USB Compatible Monolithic Li-Ion Battery Charger  
C/10 Charger Detection and Programmable Timer, Thermistor Interface  
No Blocking Diode or External Power FET Required, 1.5A Charge Current  
Standalone Charger with Programmable Timer, Up to 1.25A Charge Current  
Standalone Linear Li-Ion Battery Charger  
in ThinSOT  
Thermal Regulation Prevents Overheating, C/10 Termination,  
C/10 Indicator, Up to 800mA Charge Current  
LTC4057  
Li-Ion Linear Battery Charger  
Up to 800mA Charge Current, Thermal Regulation, ThinSOT Package  
LTC4058  
LTC4058X  
Standalone Li-Ion Linear Charger in DFN  
Up to 950mA Charge Current, Kelvin Sense for High Accuracy,  
C/10 Charge Termination  
LTC4410  
USB Power Manager  
For Simultaneous Operation of USB Peripheral and Battery Charging from USB  
Port, Keeps Current Drawn from USB Port Constant, Keeps Battery Fresh, Use  
with the LTC4053, LTC1733, or LTC4054  
LTC4411  
LTC4412  
Low Loss PowerPathTM Controller in ThinSOT  
Automatic Switching Between DC Sources, Load Sharing,  
Replaces ORing Diodes  
ThinSOT and PowerPath are trademarks of Linear Technology Corporation.  
406842fa  
LT/TP 0904 1K REV A • PRINTED IN USA  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
©LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

LTC4068X-4.2_15

Standalone Linear Li-Ion Battery Charger with Programmable Termination
Linear

LTC4068XEDD-4.2

Standalone Linear Li-Ion Battery Charger with Programmable Termination
Linear

LTC4068XEDD-4.2#PBF

LTC4068-4.2 - Standalone Linear Li-Ion Battery Charger with Programmable Termination; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC4068XEDD-4.2#TR

LTC4068-4.2 - Standalone Linear Li-Ion Battery Charger with Programmable Termination; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear
Linear

LTC4069

Standalone 750mA Li-Ion Battery Charger in 2 × 2 DFN with NTC Thermistor Input
Linear

LTC4069-4.4

Standalone 750mA Li-Ion Battery Charger in 2 × 2 DFN with NTC Thermistor Input
Linear

LTC4069EDC

LTC4069 - Standalone 750mA Li-Ion Battery Charger in 2 x 2 DFN with NTC Thermistor Input; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC4069EDC#PBF

LTC4069 - Standalone 750mA Li-Ion Battery Charger in 2 x 2 DFN with NTC Thermistor Input; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC4069EDC#TRM

LTC4069 - Standalone 750mA Li-Ion Battery Charger in 2 x 2 DFN with NTC Thermistor Input; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC4069EDC#TRMPBF

LTC4069 - Standalone 750mA Li-Ion Battery Charger in 2 x 2 DFN with NTC Thermistor Input; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC4069EDC-4.4#TRMPBF

LTC4069-4.4 - Standalone 750mA Li-Ion Battery Charger in 2 x 2 DFN with NTC Thermistor Input; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear