LTC4150IMS#TRPBF [Linear]

LTC4150 - Coulomb Counter/Battery Gas Gauge; Package: MSOP; Pins: 10; Temperature Range: -40°C to 85°C;
LTC4150IMS#TRPBF
型号: LTC4150IMS#TRPBF
厂家: Linear    Linear
描述:

LTC4150 - Coulomb Counter/Battery Gas Gauge; Package: MSOP; Pins: 10; Temperature Range: -40°C to 85°C

放大器
文件: 总24页 (文件大小:857K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1999-10/LT1999-20/  
LT1999-50  
High Voltage, Bidirectional  
Current Sense Amplifier  
FeaTures  
DescripTion  
The LT®1999 is a high speed precision current sense  
amplifier, designed to monitor bidirectional currents over  
a wide common mode range. The LT1999 is offered in  
three gain options: 10V/V, 20V/V, and 50V/V.  
n
Buffered Output with 3 Gain Options:  
10V/V, 20V/V, 50V/V  
n
Gain Accuracy: 0.5% Max  
n
Input Common Mode Voltage Range: –5V to 80V  
n
AC CMRR > 80dB at 100kHz  
The LT1999 senses current via an external resistive shunt  
andgeneratesanoutputvoltage,indicatingbothmagnitude  
and direction of the sensed current. The output voltage is  
referencedhalfwaybetweenthesupplyvoltageandground,  
or an external voltage can be used to set the reference  
level. With a 2MHz bandwidth and a common mode input  
range of –5V to 80V, the LT1999 is suitable for monitoring  
currents in H-Bridge motor controls, switching power  
supplies, solenoid currents, and battery charge currents  
from full charge to depletion.  
n
Input Offset Voltage: 1.5mV Max  
n
–3dB Bandwidth: 2MHz  
n
Smooth, Continuous Operation Over Entire Common  
Mode Range  
n
4kV HBM Tolerant and 1kV CDM Tolerant  
n
Low Power Shutdown <10µA  
n
–55°C to 150°C Operating Temperature Range  
n
8-Lead MSOP and 8-Lead SO (Narrow) Packages  
applicaTions  
The LT1999 operates from an independent 5V supply and  
draws1.55mA.Ashutdownmodeisprovidedforminimiz-  
ing power consumption.  
n
n
n
n
n
n
High Side or Low Side Current Sensing  
H-Bridge Motor Control  
Solenoid Current Sense  
The LT1999 is available in an 8-lead MSOP or SOP package.  
High Voltage Data Acquisition  
PWM Control Loops  
Fuse/MOSFET Monitoring  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Typical applicaTion  
Full Bridge Armature Current Monitor  
+
V
LT1999  
V
S
5V  
+
2µA  
V
1
2
8
7
SHDN  
V
SHDN  
2.5V  
R
+
G
4k  
V
V
+IN  
–IN  
+
R
+
S
V
V
OUT  
REF  
V
0.8k  
0.8k  
+
V
+IN  
V
160k  
160k  
4k  
+
3
4
6
5
5V  
V
0.1µF  
1999 TA01b  
TIME (10µs/DIV)  
0.1µF  
1999 TA01a  
1999fb  
1
LT1999-10/LT1999-20/  
LT1999-50  
absoluTe MaxiMuM raTings  
Differential Input Voltage  
(Note 1)  
Specified Temperature Range (Note 6)  
+IN to –IN (Notes 1, 3)................................. 60V, 10ms  
+IN to GND, –IN to GND (Note 2)............. –5.25V to 88V  
LT1999C .................................................. 0°C to 70°C  
LT1999I................................................–40°C to 85°C  
LT1999H ............................................ –40°C to 125°C  
LT1999MP ......................................... –55°C to 150°C  
Junction Temperature ........................................... 150°C  
Storage Temperature Range .................. –65°C to 150°C  
+
Total Supply Voltage (V to GND)................................6V  
+
Input Voltage Pins 6 and 8 ...................V + 0.3V, –0.3V  
Output Short-Circuit Duration (Note 4) ............ Indefinite  
Operating Ambient Temperature (Note 5)  
LT1999C ..............................................–40°C to 85°C  
LT1999I................................................–40°C to 85°C  
LT1999H ............................................ –40°C to 125°C  
LT1999MP ......................................... –55°C to 150°C  
pin conFiguraTion  
TOP VIEW  
+
TOP VIEW  
+
V
1
2
3
4
8
7
6
5
SHDN  
OUT  
REF  
V
1
8 SHDN  
7 OUT  
6 REF  
+IN  
–IN  
+IN 2  
–IN  
3
4
+
V
5 GND  
+
V
GND  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
T
= 150°C, Θ = 300°C/W  
JA  
JMAX  
T
JMAX  
= 150°C, Θ = 190°C/W  
JA  
orDer inForMaTion  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
LTFPB  
PACKAGE DESCRIPTION  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic SO  
SPECIFIED TEMPERATURE RANGE  
LT1999CMS8-10#PBF  
LT1999IMS8-10#PBF  
LT1999HMS8-10#PBF  
LT1999MPMS8-10#PBF  
LT1999CS8-10#PBF  
LT1999IS8-10#PBF  
LT1999CMS8-10#TRPBF  
LT1999IMS8-10#TRPBF  
LT1999HMS8-10#TRPBF  
LT1999MPMS8-10#TRPBF  
LT1999CS8-10#TRPBF  
LT1999IS8-10#TRPBF  
LT1999HS8-10#TRPBF  
LT1999MPS8-10#TRPBF  
LT1999CMS8-20#TRPBF  
LT1999IMS8-20#TRPBF  
LT1999HMS8-20#TRPBF  
LT1999MPMS8-20#TRPBF  
0°C to 70°C  
LTFPB  
–40°C to 85°C  
–40°C to 125°C  
–55°C to 150°C  
0°C to 70°C  
LTFPB  
LTFQP  
199910  
199910  
199910  
99MP10  
LTFNZ  
8-Lead Plastic SO  
–40°C to 85°C  
–40°C to 125°C  
–55°C to 150°C  
0°C to 70°C  
LT1999HS8-10#PBF  
LT1999MPS8-10#PBF  
LT1999CMS8-20#PBF  
LT1999IMS8-20#PBF  
LT1999HMS8-20#PBF  
LT1999MPMS8-20#PBF  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
LTFNZ  
–40°C to 85°C  
–40°C to 125°C  
–55°C to 150°C  
LTFNZ  
LTFQQ  
1999fb  
2
LT1999-10/LT1999-20/  
LT1999-50  
orDer inForMaTion  
LEAD FREE FINISH  
LT1999CS8-20#PBF  
LT1999IS8-20#PBF  
LT1999HS8-20#PBF  
LT1999MPS8-20#PBF  
LT1999CMS8-50#PBF  
LT1999IMS8-50#PBF  
LT1999HMS8-50#PBF  
LT1999MPMS8-50#PBF  
LT1999CS8-50#PBF  
LT1999IS8-50#PBF  
LT1999HS8-50#PBF  
LT1999MPS8-50#PBF  
TAPE AND REEL  
PART MARKING*  
199920  
199920  
199920  
99MP20  
LTFPC  
PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
0°C to 70°C  
LT1999CS8-20#TRPBF  
LT1999IS8-20#TRPBF  
LT1999HS8-20#TRPBF  
LT1999MPS8-20#TRPBF  
LT1999CMS8-50#TRPBF  
LT1999IMS8-50#TRPBF  
LT1999HMS8-50#TRPBF  
LT1999MPMS8-50#TRPBF  
LT1999CS8-50#TRPBF  
LT1999IS8-50#TRPBF  
LT1999HS8-50#TRPBF  
LT1999MPS8-50#TRPBF  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
–40°C to 85°C  
–40°C to 125°C  
–55°C to 150°C  
0°C to 70°C  
LTFPC  
–40°C to 85°C  
LTFPC  
–40°C to 125°C  
–55°C to 150°C  
0°C to 70°C  
LTFQR  
199950  
199950  
199950  
99MP50  
–40°C to 85°C  
–40°C to 125°C  
–55°C to 150°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, 0°C < TA < 70°C for C-grade parts, –40°C < TA < 85°C for I-grade parts, and –40°C < TA < 125°C for H-grade parts,  
otherwise specifications are at TA = 25°C. V+ = 5V, GND = 0V, VCM = 12V, VREF = floating, VSHDN = floating, unless otherwise specified.  
See Figure 2.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
V
SENSE  
Full-Scale Input Sense Voltage (Note 7)  
SENSE  
LT1999-10  
LT1999-20  
LT1999-50  
–0.35  
–0.2  
–0.08  
0.35  
0.2  
0.08  
V
V
V
V
= V – V  
+IN –IN  
l
l
V
CM Input Voltage Range  
Differential Input Impedance  
CM Input Impedance  
–5  
80  
V
CM  
R
R
ΔV  
=
2V/Gain  
6.4  
8
9.6  
kΩ  
IN(DIFF)  
INCM  
INDIFF  
l
l
ΔV = 5.5V to 80V  
5
3.6  
20  
4.8  
MΩ  
kΩ  
CM  
ΔV = –5V to 4.5V  
6
CM  
V
Input Referred Voltage Offset  
–750  
–1500  
500  
750  
1500  
μV  
μV  
OSI  
l
ΔV /ΔT  
Input Referred Voltage Offset Drift  
Gain  
5
μV/°C  
OSI  
l
l
l
A
LT1999-10  
LT1999-20  
LT1999-50  
9.95  
19.9  
48.75  
10  
20  
50  
10.05  
20.1  
50.25  
V/V  
V/V  
V/V  
V
l
A Error  
V
Gain Error  
ΔV  
OUT  
=
2V  
–0.5  
0.2  
0.5  
%
l
l
l
I
Input Bias Current  
I(+IN) = I(–IN)  
(Note 8)  
V
V
V
> 5.5V  
= –5V  
SHDN  
100  
–2.35  
137.5  
–1.95  
0.001  
175  
–1.5  
2.5  
μA  
mA  
μA  
B
CM  
CM  
= 0.5V, 0V < V < 80V  
CM  
l
l
l
I
Input Offset Current  
OS  
(Note 8)  
V
V
V
> 5.5V  
–1  
1
10  
2.5  
μA  
μA  
μA  
OS  
CM  
CM  
SHDN  
+
I
= I(+IN) – I(–IN)  
= –5V  
–10  
–2.5  
= 0.5V, 0V < V < 80V  
CM  
l
PSRR  
Supply Rejection Ratio  
V = 4.5V to 5.5V  
68  
77  
dB  
1999fb  
3
LT1999-10/LT1999-20/  
LT1999-50  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, 0°C < TA < 70°C for C-grade parts, –40°C < TA < 85°C for I-grade parts, and –40°C < TA < 125°C for H-grade parts,  
otherwise specifications are at TA = 25°C. V+ = 5V, GND = 0V, VCM = 12V, VREF = floating, VSHDN = floating, unless otherwise specified.  
See Figure 2.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
CMRR  
Sense Input Common Mode Rejection  
V
CM  
V
CM  
V
CM  
V
CM  
= –5V to 80V  
= –5V to 5.5V  
96  
96  
75  
80  
105  
120  
90  
dB  
dB  
dB  
dB  
= 12V, 7V , f = 100kHz,  
P-P  
= 0V, 7V , f = 100kHz  
100  
P-P  
e
Differential Input Referred Noise Voltage Density  
f = 10kHz  
f = 0.1Hz to 10Hz  
97  
8
nV/√Hz  
μV  
P-P  
n
+
REF  
REF Pin Rejection, V = 5.5V  
RR  
l
l
l
ΔV = 3.0V  
LT1999-10  
LT1999-20  
LT1999-50  
62  
62  
62  
70  
70  
70  
dB  
dB  
dB  
REF  
ΔV = 3.25V  
REF  
ΔV = 3.25V  
REF  
l
l
R
REF Pin Input Impedance  
60  
0.15  
80  
0.4  
100  
0.65  
kΩ  
MΩ  
REF  
V
SHDN  
= 0.5V  
l
l
V
V
Open Circuit Voltage  
2.45  
1
2.5  
2.5  
2.55  
2.75  
V
V
REF  
V
= 0.5V  
SHDN  
+
+
+
l
l
l
REF Pin Input Range (Note 9)  
LT1999-10  
LT1999-20  
LT1999-50  
1.25  
1.125  
1.125  
V – 1.25  
V
V
V
REFR  
V – 1.125  
V – 1.125  
+
l
l
l
I
Pin Pull-Up Current  
SHDN Pin Input High  
SHDN Pin Input Low  
Small Signal Bandwidth  
V = 5.5V, V  
= 0V  
SHDN  
–6  
–2  
μA  
V
SHDN  
+
V
V
V – 0.5  
IH  
IL  
0.5  
V
f
LT1999-10  
LT1999-20  
LT1999-50  
2
2
1.2  
MHz  
MHz  
MHz  
3dB  
SR  
Slew Rate  
3
V/μs  
μs  
t
s
t
r
Settling Time due to Input Step, ΔV  
=
2V  
0.5% Settling  
2.5  
OUT  
Common Mode Step Recovery Time  
ΔV 50V, 20ns  
(Note 10)  
LT1999-10  
LT1999-20  
LT1999-50  
0.8  
1
1.3  
μs  
μs  
μs  
=
CM  
l
V
Supply Voltage (Note 11)  
Supply Current  
4.5  
5
5.5  
V
S
l
l
l
I
V
V
> 5.5V  
= –5V  
1.55  
5.8  
3
1.9  
7.1  
10  
mA  
mA  
μA  
S
CM  
CM  
+
V = 5.5V, V  
= 0.5V, V > 0V  
CM  
SHDN  
R
Output Impedance  
ΔI = 2mA  
0.15  
31  
Ω
mA  
mA  
O
O
l
l
I
I
Sourcing Output Current  
Sinking Output Current  
R
LOAD  
R
LOAD  
= 50Ω to GND  
6
40  
40  
SRC  
SNK  
+
= 50Ω to V  
15  
26  
+
l
l
V
Swing Output High (with Respect to V )  
R
LOAD  
R
LOAD  
= 1kΩ to Mid-Supply  
= Open  
125  
5
250  
125  
mV  
mV  
OUT  
l
l
Swing Output Low (with Respect to V )  
R
LOAD  
R
LOAD  
= 1kΩ to Mid-Supply  
= Open  
250  
150  
400  
225  
mV  
mV  
t
t
Turn-On Time  
Turn-Off Time  
V
SHDN  
V
SHDN  
= 0V to 5V  
= 5V to 0V  
1
1
μs  
μs  
ON  
OFF  
1999fb  
4
LT1999-10/LT1999-20/  
LT1999-50  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, –55°C < TA < 150°C for MP-grade parts, otherwise specifications are at TA = 25°C. V+ = 5V, GND = 0V, VCM = 12V,  
VREF = floating, VSHDN = floating, unless otherwise specified. See Figure 2.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
V
Full-Scale Input Sense Voltage (Note 7)  
= V – V  
LT1999-10  
LT1999-20  
LT1999-50  
–0.35  
–0.2  
–0.08  
0.35  
0.2  
0.08  
V
V
V
SENSE  
V
SENSE  
+IN  
–IN  
l
l
V
CM Input Voltage Range  
Differential Input Impedance  
CM Input Impedance  
–5  
80  
V
CM  
R
R
ΔV  
=
INDIFF  
2V/GAIN  
6.4  
8
9.6  
kΩ  
IN(DIFF)  
l
l
ΔV = 5.5V to 80V  
ΔV = 5V to 4.5V  
5
3.6  
20  
4.8  
MΩ  
kΩ  
INCM  
CM  
CM  
6
V
Input Referred Voltage Offset  
–750  
–2000  
500  
750  
2000  
μV  
μV  
OSI  
l
ΔV /ΔT Input Referred Voltage Offset Drift  
OSI  
8
μV/°C  
l
l
l
A
Gain  
LT1999-10  
LT1999-20  
LT1999-50  
9.95  
19.9  
48.75  
10  
20  
50  
10.05  
20.1  
50.25  
V/V  
V/V  
V/V  
V
l
A Error  
V
Gain Error  
ΔV  
=
OUT  
2V  
–0.5  
0.2  
0.5  
%
l
l
l
I
Input Bias Current  
I(+IN) = I(–IN)  
(Note 8)  
V
V
V
> 5.5V  
= –5V  
SHDN  
100  
–2.35  
137.5  
–1.95  
0.001  
180  
–1.5  
10  
μA  
mA  
μA  
B
CM  
CM  
= 0.5V, 0V < V < 80V  
CM  
l
l
l
I
Input Offset Current  
OS  
(Note 8)  
V
V
V
> 5.5V  
–1  
1
10  
10  
μA  
μA  
μA  
OS  
CM  
CM  
SHDN  
+
I
= I(+IN) – I(–IN)  
= –5V  
–10  
–10  
= 0.5V, 0V < V < 80V  
CM  
l
PSRR  
CMRR  
Supply Rejection Ratio  
Sense Input Common Mode Rejection  
V = 4.5V to 5.5V  
68  
77  
dB  
l
l
l
l
V
CM  
V
CM  
V
CM  
V
CM  
= –5V to 80V  
= –5V to 5.5V  
96  
96  
75  
80  
105  
120  
90  
dB  
dB  
dB  
dB  
= 12V, 7V , f = 100kHz,  
P-P  
P-P  
= 0V, 7V , f = 100kHz  
100  
e
Differential Input Referred Noise Voltage Density f= 10kHz  
f = 0.1Hz to 10Hz  
97  
8
nV/√Hz  
n
μV  
P-P  
+
REF  
REF Pin Rejection, V = 5.5V  
ΔV = 2.75V  
RR  
l
l
l
LT1999-10  
LT1999-20  
LT1999-50  
62  
62  
62  
70  
70  
70  
dB  
dB  
dB  
REF  
ΔV = 3.25V  
REF  
ΔV = 3.25V  
REF  
l
l
R
REF Pin Input Impedance  
Open Circuit Voltage  
60  
80  
100  
kΩ  
REF  
V
= 0.5V  
0.15  
0.4  
0.65  
MΩ  
SHDN  
l
l
V
V
2.45  
0.25  
2.5  
2.5  
2.55  
2.75  
V
V
REF  
V
= 0.5V  
SHDN  
+
+
+
l
l
l
REF Pin Input Range (Note 9)  
LT1999-10  
LT1999-20  
LT1999-50  
1.5  
1.125  
1.125  
V – 1.25  
V
V
V
REFR  
V – 1.125  
V – 1.125  
+
l
l
l
I
Pin Pull-Up Current  
SHDN Pin Input High  
SHDN Pin Input Low  
Small Signal Bandwidth  
V = 5.5V, V  
= 0V  
SHDN  
–6  
–2  
μA  
V
SHDN  
+
V
V
V – 0.5  
IH  
IL  
0.5  
V
f
LT1999-10  
LT1999-20  
LT1999-50  
2
2
1.2  
MHz  
MHz  
MHz  
3dB  
SR  
Slew Rate  
3
V/μs  
μs  
t
Settling Time Due to Input Step, ΔV  
=
2V  
0.5% Settling  
2.5  
S
OUT  
1999fb  
5
LT1999-10/LT1999-20/  
LT1999-50  
The l denotes the specifications which apply over the full operating  
elecTrical characTerisTics  
temperature range, –55°C < TA < 150°C for MP-grade parts, otherwise specifications are at TA = 25°C. V+ = 5V, GND = 0V, VCM = 12V,  
VREF = floating, VSHDN = floating, unless otherwise specified. See Figure 2.  
SYMBOL PARAMETER  
Common Mode Step Recovery Time  
ΔV 50V, 20ns  
(Note 10)  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
t
LT1999-10  
LT1999-20  
LT1999-50  
0.8  
1
1.3  
μs  
μs  
μs  
r
=
CM  
l
V
Supply Voltage (Note 11)  
Supply Current  
4.5  
5
5.5  
V
S
l
l
l
I
V
V
> 5.5V  
= –5V  
1.55  
5.8  
3
1.9  
7.1  
25  
mA  
mA  
μA  
S
CM  
CM  
+
V = 5.5V, V  
= 0.5V, V > 0V  
CM  
SHDN  
R
Output Impedance  
ΔI = 2mA  
0.15  
31  
Ω
mA  
mA  
O
O
l
l
I
I
Sourcing Output Current  
Sinking Output Current  
R
R
= 50Ω to GND  
3
40  
40  
SRC  
SNK  
LOAD  
LOAD  
+
= 50Ω to V  
10  
26  
+
l
l
V
Swing Output High (with Respect to V )  
R
LOAD  
R
LOAD  
= 1kΩ to Mid-Supply  
= Open  
125  
5
250  
125  
mV  
mV  
OUT  
l
l
Swing Output Low (with Respect to V )  
R
LOAD  
R
LOAD  
= 1kΩ to Mid-Supply  
= Open  
250  
150  
400  
225  
mV  
mV  
t
t
Turn-On Time  
Turn-Off Time  
V
V
= 0V to 5V  
= 5V to 0V  
1
1
μs  
μs  
ON  
SHDN  
SHDN  
OFF  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 7: Full-scale sense (V  
differential input that can be applied with better than 0.5% gain accuracy.  
Gain accuracy is degraded when the output saturates against either power  
) gives indication of the maximum  
SENSE  
+
supply rail. V  
is verified with V = 5.5V, V = 12V, with the REF pin  
SENSE  
CM  
set to it’s voltage range limits. The maximum V  
is verified with the  
SENSE  
Note 2: Pin 2 (+IN) and Pin 3 (–IN) are protected by ESD voltage clamps  
which have asymmetric bidirectional breakdown characteristics with respect  
to the GND pin (Pin 5). These pins can safely support common mode  
voltages which vary from –5.25V to 88V without triggering an ESD clamp.  
Note 3: Exposure to differential sense voltages exceeding the normal  
operating range for extended periods of time may degrade part  
performance. A heat sink may be required to keep the junction temperature  
below the Absolute Maximum Rating when the inputs are stressed  
differentially. The amount of power dissipated in the LT1999 due to input  
REF pin set to it’s minimum specified limit, verifying the gain error is less  
than 0.5% at the output. The minimum V is verified with the REF pin  
SENSE  
set to its maximum specified limit, verifying the gain error at the output is  
less than 0.5%. See Note 9 for more information.  
Note 8: I is defined as the average of the input bias currents to the +IN  
B
and –IN pins (Pins 2 and 3). A positive current indicates current flowing  
into the pin. I is defined as the difference of the input bias currents.  
OS  
I
= I(+IN) – I(–IN)  
OS  
overdrive can be approximated by:  
Note 9: The REF pin voltage range is the minimum and maximum limits  
that ensures the input referred voltage offset does not exceed 3mV over  
the I, C, and H temperature ranges, and 3.5mV over the MP temperature  
range.  
2
V
+IN VIN  
8kΩ  
(
=
)
PDISS  
Note 4: A heat sink may be required to keep the junction temperature  
below the absolute maximum rating.  
Note 10: Common mode recovery time is defined as the time it takes the  
output of the LT1999 to recover from a 50V, 20ns input common mode  
voltage transition, and settle to within the DC amplifier specifications.  
Note 5: The LT1999C/LT1999I are guaranteed functional over the operating  
temperature range –40°C to 85°C. The LT1999H is guaranteed functional  
over the operating temperature range –40°C to 125°C. The LT1999MP is  
guaranteed functional over the operating temperature range –55°C to 150°C.  
Junction temperatures greater than 125°C will promote accelerated aging.  
The LT1999 has a demonstrated typical life beyond 1000 hours at 150°C.  
+
Note 11: Operating the LT1999 with V < 4.5V is possible, although the  
LT1999 is not tested or specified in this condition. See the Applications  
Information section.  
Note 6: The LT1999C is guaranteed to meet specified performance from  
0°C to 70°C. The LT1999C is designed, characterized, and expected to  
meet specified performance from –40°C to 85°C but is not tested or  
QA sampled at these temperatures. The LT1999I is guaranteed to meet  
specified performance from –40°C to 85°C. The LT1999H is guaranteed  
to meet specified performance from –40°C to 125°C. The LT1999MP is  
guaranteed to meet specified performance from –55°C to 150°C.  
1999fb  
6
LT1999-10/LT1999-20/  
LT1999-50  
Typical perForMance characTerisTics  
Supply Current  
vs Input Common Mode  
Supply Current vs Temperature  
Supply Current vs Supply Voltage  
1.8  
1.7  
1.6  
1.5  
1.4  
4.0  
7
6
5
4
3
2
1
0
+
150°C  
V
V
V
= OPEN  
= 0V  
V
= 12V  
SHDN  
CM  
V
= 5V  
130°C  
90°C  
INDIFF  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
= 12V  
CM  
25°C  
–45°C  
–55°C  
+
+
V
V
= 5.5V  
= 4.5V  
–55 –30 –5 20 45 70 95 120 145  
0
1
2
3
4
5
–5  
5
15 25 35 45 55 65 75 80  
(V)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
V
CM  
1999 G02  
1999 G03  
1999 G01  
Supply Current  
Shutdown Supply Current  
vs Temperature  
Shutdown Input Bias Current  
vs Input Common Mode  
vs SHDN Pin Voltage  
10  
1
10  
8
1000  
100  
10  
+
+
V
V
V
= 0V  
= 0V  
V
V
V
= 5V  
SHDN  
V
V
= 5V  
= 12V  
T
T
T
= 150°C  
A
= 0V  
= 0V  
INDIFF  
SHDN  
SENSE  
CM  
= 12V  
CM  
=130°C  
=110°C  
A
6
A
0.1  
+
+
T
= 150°C  
V
V
= 5.5V  
= 4.5V  
A
4
T
T
= 90°C  
= 70°C  
A
A
0.01  
0.001  
2
T
= –55°C  
A
T
= 25°C  
2
A
0
1
0
1
3
(V)  
4
5
–55 –30 –5 20 45 70 95 120 145  
0
20  
40  
V
CM  
60  
(V)  
80  
100  
V
TEMPERATURE (°C)  
SHDN  
1999 G04  
1999 G05  
1999 G06  
Input Bias Current  
vs Input Common Mode  
Input Impedance  
vs Input Common Mode Voltage  
Input Bias Current vs Temperature  
0.5  
0
146  
144  
142  
140  
138  
136  
134  
132  
100000  
10000  
1000  
100  
+
V
V
V
= OPEN  
= 0V  
SHDN  
V
= 5V  
INDIFF  
+
= 5V  
COMMON MODE INPUT  
IMPEDANCE  
V
V
= 80V  
–0.5  
–1.0  
–1.5  
–2.0  
CM  
CM  
= 5.5V  
DIFFERENTIAL INPUT IMPEDANCE  
10  
1
–5  
5
15 25 35 45 55 65 75 80  
(V)  
–55 –30 –5 20 45 70 95 120 145  
–5  
5
15 25 35 45 55 65 75  
(V)  
V
TEMPERATURE (°C)  
V
CM  
CM  
1999 G07  
1999 G08  
1999 G09  
1999fb  
7
LT1999-10/LT1999-20/  
LT1999-50  
Typical perForMance characTerisTics  
Input Referred Voltage Offset  
Input Referred Voltage Offset  
vs Temperature and Gain Option  
vs Input Common Mode Voltage  
1500  
1500  
1000  
500  
+
V
T
= 5V  
= 25°C  
V
= 12V  
CM  
12 UNITS PLOTTED  
A
1000 12 UNITS PLOTTED  
500  
0
0
–500  
–500  
–1000  
–1500  
LT1999-10  
LT1999-20  
LT1999-50  
–1000  
–1500  
LT1999-10  
LT1999-20  
LT1999-50  
–5  
5
15 25 35 45 55 65 75  
–55 –30 –5 20 45 70 95 120 145  
V
(V)  
TEMPERATURE (°C)  
CM  
1999 G11  
1999 G10  
LT1999-20 Small Signal  
Frequency Response  
LT1999-10 Small Signal  
Frequency Response  
35  
30  
25  
20  
15  
10  
5
180  
135  
90  
30  
180  
135  
90  
25  
20  
15  
10  
5
GAIN  
GAIN  
45  
45  
PHASE  
PHASE  
0
0
–45  
–90  
–135  
–180  
–45  
–90  
–135  
–180  
0
0
–5  
–10  
V
= 0.5V AT 1kHz  
P-P  
V
= 0.5V AT 1kHz  
OUT  
OUT  
P-P  
–5  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1999 G13  
1999 G12  
Gain Error  
vs Input Common Mode Voltage  
LT1999-50 Small Signal  
Frequency Response  
Gain Error vs Temperature  
40  
35  
30  
25  
20  
15  
10  
5
180  
135  
90  
0.50  
0.25  
0
0.50  
0.25  
0
+
V
T
= 5V  
V
= 12V  
CM  
GAIN  
= 25°C  
12 UNITS PLOTTED  
A
12 UNITS PLOTTED  
45  
PHASE  
0
–45  
–90  
–135  
–0.25  
–0.50  
–0.25  
–0.50  
LT1999-10  
LT1999-20  
LT1999-50  
LT1999-10  
LT1999-20  
LT1999-50  
V
= 0.5V AT 1kHz  
P-P  
OUT  
0
–180  
1
10  
100  
1000  
10000  
–5  
5
15 25 35 45 55 65 75  
–55 –30 –5 20 45 70 95 120 145  
FREQUENCY (kHz)  
V
(V)  
CM  
TEMPERATURE (°C)  
1999 G14  
1999 G16  
1999 G15  
1999fb  
8
LT1999-10/LT1999-20/  
LT1999-50  
Typical perForMance characTerisTics  
LT1999-10 Pulse Response  
LT1999-20 Pulse Response  
LT1999-50 Pulse Response  
V
V
V
SENSE  
SENSE  
SENSE  
V
V
V
OUT  
OUT  
OUT  
1999 G19  
1999 G17  
1999 G18  
TIME (2µs/DIV)  
TIME (2µs/DIV)  
TIME (2µs/DIV)  
LT1999-20 2V Step Response  
Settling Time  
LT1999-10 2V Step Response  
Settling Time  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.20  
0.15  
0.10  
0.05  
0
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.100  
0.075  
0.050  
0.025  
0
V
OUT  
V
OUT  
–0.05  
–0.01  
–0.15  
–0.20  
–0.025  
–0.050  
–0.075  
–0.100  
OUTPUT ERROR  
OUTPUT ERROR  
1999 G20  
–1  
0
1
2
3
4
5
6
7
8
9 10  
TIME (1µs/DIV)  
TIME (1µs/DIV)  
1999 G21  
LT1999-50 2V Step Response  
Settling Time  
CMRR vs Frequency  
CMRR vs Frequency  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.500  
0.375  
0.250  
0.125  
0
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
LT1999-10  
LT1999-20  
LT1999-50  
LT1999-10  
LT1999-20  
LT1999-50  
V
OUT  
–0.125  
–0.250  
–0.375  
–0.500  
OUTPUT ERROR  
V
V
T
= 0V  
= 5V  
= 25°C  
V
V
T
= 12V  
= 5V  
= 25°C  
CM  
CM  
+
+
A
A
6 UNITS PLOTTED  
6 UNITS PLOTTED  
1999 G22  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
TIME (1µs/DIV)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1999 G24  
1999 G23  
1999fb  
9
LT1999-10/LT1999-20/  
LT1999-50  
Typical perForMance characTerisTics  
LT1999-10 Common Mode Rising  
Edge Step Response  
LT1999-10 Common Mode Falling  
Edge Step Response  
V
, t  
≈ 20ns  
CM RISE  
V
, t  
≈ 20ns  
CM FALL  
V
V
OUT  
OUT  
1999 G25  
1999 G26  
TIME (0.5µs/DIV)  
TIME (0.5µs/DIV)  
LT1999-20 Common Mode Rising  
Edge Step Response  
LT1999-20 Common Mode Falling  
Edge Step Response  
V
, t  
≈ 20ns  
CM RISE  
V
, t  
≈ 20ns  
CM FALL  
V
V
OUT  
OUT  
1999 G27  
1999 G28  
TIME (0.5µs/DIV)  
TIME (0.5µs/DIV)  
LT1999-50 Common Mode Rising  
Edge Step Response  
LT1999-50 Common Mode Falling  
Edge Step Response  
V
, t  
≈ 20ns  
CM RISE  
V
, t  
≈ 20ns  
CM FALL  
V
OUT  
V
OUT  
1999 G29  
1999 G30  
TIME (0.5µs/DIV)  
TIME (0.5µs/DIV)  
1999fb  
10  
LT1999-10/LT1999-20/  
LT1999-50  
Typical perForMance characTerisTics  
LT1999 Input Referred Noise  
Density vs Frequency  
Short-Circuit Current  
vs Temperature  
REF Open Circuit Voltage  
vs Temperature  
3.0  
1000  
100  
10  
40  
30  
ACTIVE MODE  
2.5  
SINKING  
20  
SHDN MODE  
2.0  
10  
1.5  
1.0  
0
–10  
–20  
–30  
–40  
SOURCING  
0.5  
+
V
= 5V  
0
–55 –30 –5 20 45 70 95 120 145  
0.001 0.01  
0.1  
1
10  
1000 10000  
–55 –30 –5 20 45 70 95 120 145  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
1999 G33  
1999 G31  
1999 G32  
SHDN Pin Current vs SHDN Pin  
Voltage and Temperature  
Turn-On/Turn-Off Time  
vs SHDN Voltage  
0
–1  
–2  
–3  
–4  
+
V
= 12V  
V
V
= 5V  
= 12V  
CM  
CM  
I
S
T
= 150°C  
A
T
T
= 25°C  
A
A
SHUTDOWN  
= –55°C  
V
SHDN  
1999 G35  
0
1
2
3
4
5
TIME (1µs/DIV)  
V
(V)  
SHDN  
1999 G34  
VOUT vs VSENSE Over the Sense  
ABSMAX Range  
VOUT vs VSENSE  
6
5
6
5
V
= 2.5V  
V
PHASE REVERSAL FOR V  
< –25V  
REF  
OUT  
SENSE  
4
4
3
3
2
2
1
1
LT1999-10  
LT1999-20  
LT1999-50  
LT1999-10  
LT1999-20  
LT1999-50  
0
0
V
= 2.5V  
REF  
–1  
–1  
–0.25 –0.15 –0.05  
0.05  
(V)  
0.15  
0.25  
–60  
–30  
0
30  
60  
V
V
(V)  
SENSE  
SENSE  
1999 G36  
1999 G37  
1999fb  
11  
LT1999-10/LT1999-20/  
LT1999-50  
pin FuncTions  
V (Pins 1, 4): Power Supply Voltage. Pins 1 and 4 are  
tied internally together. The specified range of operation  
is 4.5V to 5.5V, but lower supply voltages (down to ap-  
proximately 4V) is possible although the LT1999 is not  
tested or characterized below 4.5V. See the Applications  
Information section.  
+
OUT (Pin 7): Voltage Output. V  
= A (V  
V
),  
OUT  
V
SENSE  
OSI  
where A is the gain, and V is the input referred off-  
V OSI  
set voltage. The output amplifier has a low impedance  
output and is designed to drive up to 200pF capacitive  
loads directly. Capacitive loads exceeding 200pF should  
be decoupled with an external resistor of at least 100Ω.  
+IN (Pin 2): Positive Sense Input Pin.  
–IN (Pin 3): Negative Sense Input Pin.  
GND (Pin 5): Ground Pin.  
SHDN (Pin 8): Shutdown Pin. When pulled to within 0.5V  
of GND (Pin 5), will place the LT1999 into low power  
shutdown. If the pin is left floating, an internal 2µA pull-  
up current source will place the LT1999 into the active  
(amplifying) state.  
REF (Pin 6): Reference Pin Input. The REF pin sets the  
output common mode level and is set halfway between V  
+
and GND using a divider made of two 160k resistors. The  
default open circuit potential of the REF pin is mid-supply.  
It can be overdriven by an external voltage source cable  
of driving 80k to a mid-supply potential (see the Electrical  
Characteristics table for its specified input voltage range).  
1999fb  
12  
LT1999-10/LT1999-20/  
LT1999-50  
block DiagraM  
+
V
+
2µA  
V
4.5k  
8
SHDN  
1
2
V(G  
V(G  
)
)
+IN  
–IN  
R
G
R
+
+IN  
G
IN  
2k  
2k  
2k  
+IN  
+
OUT  
REF  
V+  
A
7
6
0.8k  
+S  
O
D1  
C
F
4pF  
R
V+  
0.8k  
–S  
300Ω  
160k  
160k  
2k  
R
–IN  
3
4
R
–IN  
+
V
GND  
5
1999 BD  
Figure 1. Simplified Block Diagram  
TesT circuiT  
+
V
LT1999  
+
V
5V  
2µA  
1
8
SHDN  
V
SHDN  
R
+
G
+
4k  
4k  
2
+
7
V
V
+
OUT  
REF  
+
V
0.8k  
0.8k  
+
V
V
IN(DIFF)  
+
+
V
CM  
160k  
160k  
3
6
5
+
5V  
V
0.1µF  
4
0.1µF  
1999 F02  
Figure 2. Test Circuit  
1999fb  
13  
LT1999-10/LT1999-20/  
LT1999-50  
applicaTions inForMaTion  
The LT1999 current sense amplifier provides accurate  
bidirectionalmonitoringofcurrentthroughauser-selected  
senseresistor.Thevoltagegeneratedbythecurrentowing  
in the sense resistor is amplified by a fixed gain of 10V/V,  
20V/V or 50V/V (LT1999-10, LT1999-20, or LT1999-50  
respectively) and is level shifted to the OUT pin. The volt-  
age difference and polarity of the OUT pin with respect  
to REF (Pin 6) indicates magnitude and direction of the  
current in the sense resistor.  
The voltage difference between the OUT pin and the REF  
pin represent both polarity and magnitude of the sensed  
voltage. The noninverting input of amplifier A is biased  
O
+
by a resistive 160k to 160k divider tied between V and  
GND to set the default REF pin bias to mid-supply.  
+
Case 2: –5V < V < V  
CM  
Forcommonmodeinputswhichtransitionoraresetbelow  
the supply voltage, diode D1 will turn on and will provide a  
source of current through R and R to bias the inputs  
+S  
S
THEORY OF OPERATION  
of transconductance amplifier G at least 2.25V above  
IN  
GND. The transition is smooth and continuous; there are  
negligible changes to either gain or amplifier voltage off-  
set. The only difference in amplifier operation is the bias  
Refer to the Block Diagram (Figure 1).  
+
Case 1: V < V < 80V  
CM  
currents provided by D1 through R and R are steered  
+S  
S
For input common mode voltages exceeding the power  
supply, one can assume D1 of Figure 1 is completely off.  
through the input pins, otherwise amplifier operation is  
identical.TheinputstotransconductanceamplifierG are  
IN  
The sensed voltage (V  
) is applied across Pin 2 (+IN)  
SENSE  
still forced to equal potentials forcing any differential volt-  
ages appearing at the +IN and –IN pins into a differential  
current.Thisdifferentialcurrentiscombined,level-shifted,  
and converted back into a voltage by trans-resistance  
and Pin 3 (–IN) to matched resistors R and R (nomi-  
+
IN  
+
IN  
nally 4k each). The opposite ends of R and R are  
IN  
IN  
forced to equal potentials by transconductor G , which  
IN  
convert the differentially sensed voltage into a sensed  
amplifier A and Resistor R . Resistors R and R are  
O
G
+S  
S
current. The sensed current in R and R is combined,  
+
IN  
IN  
trimmed to match R and R respectively, to prevent  
+
IN  
IN  
level-shifted, and converted back into a voltage by trans-  
resistance amplifier A and resistor R . Amplifier A pro-  
common mode to differential conversion from occurring  
(to the extent of the matched trim) when the input com-  
O
G
O
+
videshighopenloopgaintoaccuratelyconvertthesensed  
current back into a voltage and to drive external loads. The  
theoretical output voltage is determined by the sensed  
mon mode transitions below V .  
As described in case 1, the output is determined by the  
sense voltage and the ratio of two on-chip resistors:  
voltage (V  
), and the ratio of two on-chip resistors:  
SENSE  
RG  
RIN  
RG  
RIN  
VOUT VREF = VSENSE  
VOUT VREF = VSENSE  
where  
RIN =  
where  
RIN =  
R+IN + RIN  
R+IN + RIN  
nominally 4k  
2
2
FortheLT1999-10,R isnominally40k.FortheLT1999-20,  
G
R is nominally 80k, and for the LT1999-50, R is nomi-  
G
G
nally 200k.  
1999fb  
14  
LT1999-10/LT1999-20/  
LT1999-50  
applicaTions inForMaTion  
Input Common Mode Range  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
–5.5  
–6.0  
The LT1999 was optimized for high common mode re-  
jection. Its input stage is balanced and fully differential,  
designedtoamplifydifferentialsignalsandrejectcommon  
mode signals. There is negligible crossover distortion due  
to sense voltage reversals. The amplifier is most linear in  
the zero-sense region.  
BELOW GROUND INPUT  
COMMON MODE RANGE  
+
LIMITED BY V  
SUPPLY VOLTAGE  
BELOW GROUND INPUT  
COMMON MODE RANGE  
LIMITED BY ESD CLAMPS  
+
With the V supply configured within the specified and  
+
TYPICAL ESD CLAMP VOLTAGE  
tested range (4.5V < V < 5.5V), the LT1999’s common  
mode range extends from –5V to 80V. Pushing +IN and  
–IN beyond the limits specified in the Absolute Maximum  
table can turn on the voltage clamps designed to protect  
the +IN and –IN pins during ESD events.  
4
4.25  
4.5  
4.75  
5
5.25  
5.5  
SUPPLY VOLTAGE (V)  
1999 F03  
Figure 3. Lower Input Common Mode vs Supply Voltage  
It is possible to operate the LT1999 on power supplies  
as low as 4V (although it is not tested or specified below  
4.5V). Operating the LT1999 on supplies below 4V will  
produce erratic behavior. When operating the LT1999  
with supplies as low as 4V, the common mode range for  
inputs which extend below GND is reduced. Refer to the  
Output Common Mode Range  
The LT1999’s output common mode level is set by the  
voltage on the REF pin. The REF pin sits in the middle of  
a 160k to 160k voltage divider connected between V and  
GND which sets the default open circuit potential of the  
REF pin to mid-supply. It can be overdriven by an external  
voltage source capable of driving 80k tied to a mid-supply  
potential. See the Electrical Characteristics table for the  
REF pin’s specified input voltage range.  
+
+
Block Diagram (Figure 1). For inputs driven below V ,  
diode D1 conducts. For proper operation, the input to the  
transconductor V(G ) must be biased at approximately  
+
IN  
2.25V above the GND pin. V(G ) sits on the centertap  
+
IN  
of a voltage divider comprised of R and R V(G )  
IN  
Differential sampling of the OUT pin with respect the REF  
pin provides the best noise immunity. Measurements of  
the output voltage made differentially with respect to the  
REF pin will provide the highest power supply and com-  
monmoderejection. Otherwise, powersupplyorGNDpin  
disturbances are divided by the REF pin’s voltage divider  
and appear directly at the noninverting input of the trans-  
+
+
S
IN  
likewisesitsinthemiddleofthevoltagedividercomprised  
of R , and R ). The voltage on V(G ) input is given  
+
S
IN  
IN  
by the following equation:  
R+ S  
R+ S + R+IN  
R+IN  
R+ S + R+IN  
V(G+IN)= V +IN  
+ V+ V  
(
)
D1  
Setting V(G ) = 2.25V, the ratio (R /R ) to 5, and V  
+
+
+
IN  
IN  
S
D1  
resistance amplifier A and are not rejected.  
O
equalto 0.8V (coldtemperatures), aplotof thelowerinput  
common mode range plotted against supply is shown in  
Figure 3.  
If not driven by a low impedance (<100Ω), the REF pin  
should be filtered with at least 1nF of capacitance to a  
low impedance, low noise ground plane. This external  
capacitance will also provide a charge reservoir during  
high frequency sampling of the REF pin by ADC inputs  
attached to this pin.  
1999fb  
15  
LT1999-10/LT1999-20/  
LT1999-50  
applicaTions inForMaTion  
Shutdown Capability  
bandwidth of the LT1999 that may introduce errors. The  
pole is set by the following equation:  
IfSHDN(Pin8)isdriventowithin0.5VofGND, theLT1999  
is placed into a low power shutdown state in which the  
f = 1/(π•(R + R )•C ) ≈ 10MHz  
+ –  
filt IN IN F  
+
part will draw about 3μA from the V supply. The input  
Both the resistors and capacitors have a 15% variation  
so the pole can vary by approximately 30% over manu-  
facturing process and temperature variations.  
pins (+IN and –IN) will draw approximately 1nA if biased  
within the range of 0V to 80V (with no differential voltage  
applied). If the input pins are pulled below the GND pin,  
each input appears as a diode tied to GND in series with  
approximately 4k of resistance. The REF pin appears as  
approximately 0.4MΩ tied to a mid-supply potential. The  
output appears as reverse biased diodes tied between the  
The layout for lowest EMI/noise susceptibility is achieved  
by keeping short direct connections and minimizing loop  
areas (see Figure 4). If the user-supplied sense resistor  
cannot be placed in close proximity to the LT1999, the  
surface area of the loop comprising connections of +IN  
+
output to either V or GND pins.  
to R  
and back to –IN should be minimized. This  
SENSE  
EMI Filtering and Layout Practices  
requires routing PCB traces connecting +IN to R  
SENSE  
and –IN to R  
adjacent with one another with minimal  
SENSE  
An internal 1st order differential lowpass noise/EMI sup-  
pression filter with a –3dB bandwidth of 10MHz (approxi-  
mately 5× the LT1999’s –3dB bandwidth) is included to  
help improve the LT1999’s EMI susceptibility and to assist  
with the rejection of high frequency signals beyond the  
separation. The metal traces connecting +IN to the sense  
resistor and –IN to the sense resistor should match and  
use the same trace width.  
+
Bypassing the V pin to the GND pin with a 0.1µF capacitor  
with short wiring connection is recommended.  
+
1
2
3
4
8
7
6
5
V
SHDN  
OUT  
REF  
FROM DC SOURCE  
TO LOAD  
+IN  
–IN  
DIFFERENTIAL  
ANALOG OUT  
R
SENSE  
*
+
V
GND  
**  
SUPPLY BYPASS  
CAPACITOR  
1999 F03  
* KEEP LOOP AREA COMPRISING R  
AS SMALL AS POSSIBLE.  
, +IN AND –IN PINS  
SENSE  
**REF BYPASS TIED TO A LOW NOISE, LOW IMPEDANCE  
SIGNAL GROUND PLANE.  
† OPTIONAL 10pF CAPACITOR TO PREVENT dV/dt EDGES  
ON INPUT COUPLING TO FLOATING SHDN PIN.  
Figure 4. Recommended Layout  
1999fb  
16  
LT1999-10/LT1999-20/  
LT1999-50  
applicaTions inForMaTion  
The REF pin should be either driven by a low source im-  
pedance (<100Ω) or should be bypassed with at least 1nF  
to a low impedance, low noise, signal ground plane (see  
Selection of the Current Sense Resistor  
The external sense resistor selection presents a delicate  
trade-off between power dissipation in the resistor and  
current measurement accuracy.  
+
Figure 4). Larger bypass capacitors on both V pins, and  
the REF pin, will extend enhanced AC CMRR, and PSRR  
performance to lower frequencies. Bypassing the REF pin  
In high current applications, the user may want to mini-  
mize the power dissipated in the sense resistor. The sense  
resistorcurrentwillcreateheatandvoltageloss,degrading  
efficiency. Asaresult,thesenseresistorshouldbeassmall  
as possible while still providing adequate dynamic range  
required by the measurement. The dynamic range is the  
ratio between the maximum accurately produced signal  
generated by the voltage across the sense resistor, and  
theminimumaccuratelyreproducedsignal.Theminimum  
accurately reproduced signal is primarily dictated by the  
voltage offset of the LT1999. The maximum accurately  
reproduced signal is dictated by the output swing of the  
LT1999.  
+
to a quiet ground plane filters the V pin or GND pin noise  
that is sensed by the REF pin voltage divider and applied  
to the noninverting input of output amplifier A . Any com-  
O
mon I•R drops generated by pulsating ground currents in  
common with the REF pin filter capacitor can compromise  
the filtering performance and should be avoided.  
If the SHDN pin is not driven and is left floating, routing  
a PCB trace connecting Pins 1 and 8 under the part will  
act as a shield, and will help limit edge coupling from the  
inputs (Pins 2 and 3) to the SHDN pin. Periodic pulses on  
the inputs with fast edges may glitch the high impedance  
SHDN pin, periodically putting the part into low power  
shutdown.Additionalprecautionagainstthismaybetaken  
by adding an optional small (~10pF) capacitor may be tied  
Thus the dynamic range for the LT1999 can be thought of  
the maximum sense voltage divided by the input referred  
voltage offset or:  
+
between V (Pin 1) and Pin 8.  
VOUT(MAX)  
Dynamic Range =  
Finally, when connecting the LT1999 inputs to the sense  
resistor,itisimportanttousegoodKelvinsensingpractices  
(sensing the resistor in a way that excludes PCB trace  
I•R voltage drops). For sense resistors less than 1Ω, one  
might consider using a 4-wire sense resistor to sense the  
resistive element accurately.  
GAINVOSI  
The above equation tells us that the dynamic range is  
inversely proportional to the gain of the LT1999. Thus,  
if accuracy is of greater importance than efficiency or  
power loss, the LT1999-10 used with the highest valued  
sense resistor possible is recommended. If efficiency,  
heat generated, and power loss in the resistive shunt is  
the primary concern, the LT1999-50 and the lowest value  
sense resistor possible is recommended. The LT1999-20  
is available for applications somewhere in between these  
two extremes.  
1999fb  
17  
LT1999-10/LT1999-20/  
LT1999-50  
applicaTions inForMaTion  
Fuse Monitor  
power in the precision on-chip input resistors. Precaution  
should be taken to prevent junction temperatures from  
exceedingtheAbsoluteMaximumratings(seeNote3inthe  
Electrical Characteristics section). Secondly, if the load is  
inductive, and the fuse blows open without a clamp diode,  
energy stored in the inductive load will be dissipated in  
the LT1999, which could cause damage. A simple steering  
diode as shown in Figure 5 will prevent this from happen-  
ing, and will protect the LT1999 from damage.  
The inputs can be overdriven without fear of damaging  
the LT1999. This makes the LT1999 ideal for monitoring  
fuses if either +IN or –IN are shorted to ground while the  
other is at the full common mode supply voltage (see  
Figure 5). If the fuse in Figure 5 opens with the +IN tied  
to the positive supply, the load will pull –IN to GND. The  
+
output will be forced to the positive V supply rail. If it is  
desired that the output be near ground if the fuse opens,  
it is a simple matter of swapping the inputs. Precautions  
should be followed: First, when the inputs are stressed  
differentially due to the fuse blowing open, a large voltage  
drop will be placed across the +IN to –IN pins, dissipating  
Finally, the user should be aware that in fuse monitoring  
applications with the sense voltage (V  
= V – V  
)
IN  
+
SENSE  
IN  
being driven in excess of –25V, the output of the LT1999  
will undergo phase reversal (see Figure 6).  
+
V
S
V
LT1999  
+
V
5V  
2µA  
1
2
8
7
SHDN  
V
ON OFF  
V
SHDN  
SHDN  
R
I
+
G
+
LOAD  
4k  
4k  
V
+IN  
+
V
V
+
V
V
OUT  
REF  
OUT  
V
0.8k  
0.8k  
FUSE  
V
R
SENSE  
V
160k  
160k  
3
–IN  
REF  
6
5
+
5V  
V
0.1µF  
STEERING  
DIODE  
LOAD  
4
0.1µF  
1999 F05  
Figure 5. Using the LT1999 to Monitor a Fuse  
V
PHASE REVERSAL FOR V  
< –25V  
OUT  
SENSE  
V
= 2.5V  
REF  
–60 –45 –30 –15  
V
0
15 30 45 60  
(V)  
SENSE  
1999 F06  
Figure 6. A Plot of the LT1999s Output Voltage vs VSENSE (VSENSE = V+IN – V–IN).  
In Applications Where the Sense Voltage Is Driven in Excess of –25V, the Output  
of the LT1999 Will Undergo Phase Reversal  
1999fb  
18  
LT1999-10/LT1999-20/  
LT1999-50  
Typical applicaTions  
Solenoid Current Monitor  
Bidirectional PWM Motor Monitor  
The solenoid of Figure 7 consists of a coil of wire in an  
iron case with permeable plunger that acts as a movable  
element.WhentheMOSFETturnson,thediodeisreversed  
Pulse width modulation is commonly used to efficiently  
vary the average voltage applied across a DC motor. The  
H-bridgetopologyofFigure9allowsfull4-quadrantcontrol:  
clockwise control, counter-clockwise control, clockwise  
regeneration, and counter-clockwise regeneration. The  
LT1999 in conjunction with a non-inductive current shunt  
is used to monitor currents in the rotor. The LT1999 can  
be used to detect stuck rotors, provide detection of over-  
current conditions in general, or provide current mode  
feedback control.  
biased off, and current flows through R  
to actuate  
SENSE  
the solenoid. If the MOSFET is turned off, the current  
in the MOSFET is interrupted, but the energy stored in  
the solenoid causes the diode to turn on and current to  
freewheel in the loop consisting of the diode, R  
the solenoid.  
and  
SENSE  
Figure 7 shows the LT1999 monitoring currents in a  
ground referenced solenoid used when the coil is hard  
tied to the case, and is tied to ground. Figure 8 shows a  
supply referenced solenoid whose coil is insulated from  
the case. The LT1999 will interface equally well to either  
of these two configurations.  
Figure 10 shows a plotof the outputvoltage ofthe LT1999.  
+
V
S
V
LT1999  
+
V
OFF  
5V  
2µA  
ON  
1
2
8
7
SHDN  
V
SHDN  
R
+
G
+
4k  
4k  
V
+IN  
–IN  
+
+
V
V
OUT  
REF  
V
0.8k  
0.8k  
2.5V  
V
OUT  
V
R
SENSE  
SOLENOID RELEASES  
SOLENOID PLUNGER PULLS IN  
160k  
160k  
V
3
6
5
5V  
+
0.1µF  
V
V
+IN  
4
SOLENOID  
0.1µF  
1999 F07b  
1999 F07a  
TIME (50ms/DIV)  
Figure 7. Solenoid Current Monitor for Ground Tied Solenoid. The Common Mode  
Inputs to the LT1999 Switch Between VS and One Diode Drop Below Ground  
1999fb  
19  
LT1999-10/LT1999-20/  
LT1999-50  
Typical applicaTions  
+
V
LT1999  
V
S
5V  
+
2µA  
V
8
7
1
2
SHDN  
V
SHDN  
SOLENOID  
V
R
+
G
4k  
+IN  
+
+
V
V
V
OUT  
REF  
0.8k  
0.8k  
2.5V  
V
OUT  
+
V
R
SENSE  
SOLENOID RELEASES  
SOLENOID PLUNGER PULLS IN  
160k  
160k  
4k  
V
–IN  
3
4
6
5
ON  
5V  
+
V
+IN  
V
0.1µF  
OFF  
0.1µF  
1999 F08b  
1999 F08a  
TIME (50ms/DIV)  
Figure 8. Solenoid Current Monitor for Non-Grounded Solenoids. This Circuit Performs the  
Same Function as Figure 7 Except One End of the Solenoid Is Tied to VS. The Common Mode  
Voltage of Inputs of the LT1999 Switch Between Ground and One Diode Drop Above VS  
1999fb  
20  
LT1999-10/LT1999-20/  
LT1999-50  
Typical applicaTions  
5V  
+
+
V
V
LT1999-20  
10µF  
1
2
2µA  
8
7
SHDN  
V
V
V
SHDN  
80k  
0.1µF  
+
24V  
4k  
4k  
+
V
V
+
+IN  
–IN  
V
OUT  
0.8k  
0.8k  
C4  
1000µF  
+
V
160k  
160k  
3
4
V
6
5
H-BRIDGE  
BRIDGE  
REF  
0.1µF  
5V  
+
5V  
V
PWM INPUT  
DIRECTION  
1999 F09  
R
SENSE  
0.025Ω  
OUTA  
OUTB  
PWM IN  
24V MOTOR  
BRAKE INPUT  
GND  
Figure 9. Armature Current Monitor for DC Motor Applications  
V
OUT  
2.5V  
V
+IN  
1999 F10  
TIME (20µs/DIV)  
Figure 10. LT1999 Output Waveforms for the Circuit of Figure 9  
1999fb  
21  
LT1999-10/LT1999-20/  
LT1999-50  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660 Rev F)  
3.00 0.ꢀ0ꢁ  
(.ꢀꢀ8 .004)  
(NOTE 3)  
0.5ꢁ  
(.0ꢁ05)  
REF  
8
7 ꢂ  
5
3.00 0.ꢀ0ꢁ  
(.ꢀꢀ8 .004)  
(NOTE 4)  
4.90 0.ꢀ5ꢁ  
(.ꢀ93 .00ꢂ)  
DETAIL “A”  
0° – ꢂ° TYP  
0.889 0.ꢀꢁ7  
(.035 .005)  
0.ꢁ54  
(.0ꢀ0)  
GAUGE PLANE  
5.ꢁ3  
(.ꢁ0ꢂ)  
MIN  
4
3
3.ꢁ0 – 3.45  
(.ꢀꢁꢂ – .ꢀ3ꢂ)  
0.53 0.ꢀ5ꢁ  
(.0ꢁꢀ .00ꢂ)  
ꢀ.ꢀ0  
(.043)  
MAX  
0.8ꢂ  
(.034)  
REF  
DETAIL “A”  
0.ꢀ8  
(.007)  
0.ꢂ5  
(.0ꢁ5ꢂ)  
BSC  
0.4ꢁ 0.038  
(.0ꢀꢂ5 .00ꢀ5)  
TYP  
SEATING  
PLANE  
0.ꢁꢁ – 0.38  
0.ꢀ0ꢀꢂ 0.0508  
RECOMMENDED SOLDER PAD LAYOUT  
NOTE:  
ꢀ. DIMENSIONS IN MILLIMETER/(INCH)  
ꢁ. DRAWING NOT TO SCALE  
(.009 – .0ꢀ5)  
(.004 .00ꢁ)  
0.ꢂ5  
(.0ꢁ5ꢂ)  
BSC  
TYP  
MSOP (MS8) 0307 REV F  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.ꢀ5ꢁmm (.00ꢂ") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.ꢀ5ꢁmm (.00ꢂ") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.ꢀ0ꢁmm (.004") MAX  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
1999fb  
22  
LT1999-10/LT1999-20/  
LT1999-50  
revision hisTory  
REV  
DATE  
5/11  
3/12  
DESCRIPTION  
PAGE NUMBER  
A
Revised +IN and –IN pin descriptions in Pin Functions section  
12  
B
Revised Voltage Output Swing Low specification (V ) under a loaded condition of 1kΩ to mid-supply.  
4, 6  
16  
OUT  
Updated Figure 4 to multicolor.  
1999fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LT1999-10/LT1999-20/  
LT1999-50  
Typical applicaTion  
Battery Charge Current and Load Current Monitor  
VOUT = 0.25V/A, Maximum Measured Current 9.5A  
0.025Ω  
CHARGER  
BAT  
42V  
5V  
+
V
LT1999-10  
LOAD  
+
5V  
V
2µA  
0.1µF  
1
2
8
7
V
V
SHDN  
SHDN  
0.1µF  
10µF  
40k  
+
4k  
V
V
+IN  
–IN  
+
OUT  
+
V
V
REF  
CS  
V
CC  
+IN  
0.8k  
0.8k  
+
+
V
V
LTC2433-1  
SCK  
SDO  
OUT  
160k  
160k  
4k  
3
4
V
REF  
6
5
–IN  
+
V
5V  
0.1µF  
1999 TA02  
0.1µF  
relaTeD parTs  
PART NUMBER DESCRIPTION  
COMMENTS  
LT1787/  
Precision, Bidirectional High Side Current Sense Amplifier  
Gain-Selectable High Side Current Sense Amplifier  
High Voltage High Side Current Sense Amplifier  
Zero Drift High Side Current Sense Amplifier  
2.7V to 60V Operation, 75μV Offset, 60μA Current Draw  
LT1787HV  
LT6100  
4.1V to 48V Operation, Pin-Selectable Gain:  
10V/V, 12.5V/V, 20V/V, 25V/V, 40V/V, 50V/V  
LTC6101/  
LTC6101HV  
4V to 60V/5V to 100V Operation, External Resistor Set Gain, SOT23  
LTC6102/  
LTC6102HV  
4V to 60V/5V to 100V Operation, 10μV Offset, 1μs Step Response,  
MSOP8/DFN Packages  
LTC6103  
LTC6104  
LT6106  
LT6105  
LTC4150  
LT1990  
LT1991  
Dual High Side Precision Current Sense Amplifier  
Bidirectional, High Side Current Sense  
4V to 60V, Gain Configurable, 8-Pin MSOP Package  
4V to 60V, Gain Configurable, 8-Pin MSOP Package  
2.7V to 36V, Gain Configurable, SOT23 Package  
–0.3 to 44V, Gain Configurable, 8-Pin MSOP Package  
Indicates Charge Quantity and Polarity  
Low Cost, High Side Precision Current Sense Amplifier  
Precision, Extended Input Range Current Sense Amplifier  
Coulomb Counter/Battery Gas Gauge  
Precision, 100μA Gain Selectable Amplifier  
250V Input Range Difference Amplifier  
2.7V to 36V Operation, CMRR > 70dB, Input Voltage = 250V  
2.7V to 36V Operation, 50μV Offset, CMRR > 75B, Input Voltage = 60V  
0.4V/μs Slew Rate, 230μA per Amplifier  
LT1637/LT1638 1.1/1.2MHz, 0.4V/μs Over-The-Top, Rail-to-Rail Input and  
Output Amplifier  
1999fb  
LT 0312 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
l
l
LINEAR TECHNOLOGY CORPORATION 2010  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC4150IMSPBF

Coulomb Counter/ Battery Gas Gauge
Linear

LTC4150IMSTRPBF

Coulomb Counter/ Battery Gas Gauge
Linear

LTC4150_1

Coulomb Counter/ Battery Gas Gauge
Linear

LTC4151

High Voltage I2C Current and Voltage Monitor
Linear

LTC4151-1

High Voltage I2C Current and Voltage Monitor
Linear

LTC4151CDD#PBF

LTC4151 - High Voltage I<sup>2</sup>C Current and Voltage Monitor; Package: DFN; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC4151CDD-1#PBF

LTC4151 - High Voltage I<sup>2</sup>C Current and Voltage Monitor; Package: DFN; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC4151CDD-1-PBF

High Voltage I2C Current and Voltage Monitor
Linear

LTC4151CDD-1-TRPBF

High Voltage I2C Current and Voltage Monitor
Linear

LTC4151CDD-PBF

High Voltage I2C Current and Voltage Monitor
Linear

LTC4151CDD-TRPBF

High Voltage I2C Current and Voltage Monitor
Linear

LTC4151CMS#PBF

LTC4151 - High Voltage I<sup>2</sup>C Current and Voltage Monitor; Package: MSOP; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear