LTC4210-4 [Linear]

Hot Swap Controller in 6-Lead SOT-23 Package; 在6引脚SOT- 23封装热插拔控制器
LTC4210-4
型号: LTC4210-4
厂家: Linear    Linear
描述:

Hot Swap Controller in 6-Lead SOT-23 Package
在6引脚SOT- 23封装热插拔控制器

控制器
文件: 总16页 (文件大小:217K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC4210-3/LTC4210-4  
Hot Swap Controller in  
6-Lead SOT-23 Package  
U
FEATURES  
DESCRIPTIO  
Allows Safe Board Insertion and Removal  
TheLTC®4210-3/LTC4210-4isa6-pinSOT-23HotSwapTM  
controller that allows a board to be safely inserted and  
removed from a live backplane. An internal high side  
switch driver controls the GATE of an external N-channel  
MOSFET for a supply voltage ranging from 2.7V to 7V. The  
LTC4210 provides the initial timing cycle and allows the  
GATE to be ramped up at an adjustable rate.  
from a Live Backplane  
Adjustable Analog Current Limit  
with Circuit Breaker  
Fast Response Limits Peak Fault Current  
Automatic Retry or Latch Off On Current Fault  
Adjustable Supply Voltage Power-Up Rate  
High Side Drive for External MOSFET Switch  
The LTC4210 features a fast current limit loop providing  
active current limiting together with a circuit breaker  
timer. ThesignalattheONpinturnsthepartonandoffand  
is also used for the reset function.  
Controls Supply Voltages from 2.7V to 7V  
Undervoltage Lockout  
Adjustable Overvoltage Protection  
Low Profile (1mm) SOT-23 (ThinSOTTM) Package  
The LTC4210-3 retries on overcurrent fault and the  
LTC4210-4 latches off on an overcurrent fault.  
U
APPLICATIO S  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
ThinSOT and Hot Swap are trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Hot Board Insertion  
Electronic Circuit Breaker  
Industrial High Side Switch/Circuit Breaker  
U
TYPICAL APPLICATIO  
Single Channel 5V Hot Swap Controller  
BACKPLANE PCB EDGE  
CONNECTOR CONNECTOR  
(FEMALE)  
(MALE)  
R
Q1  
Si4410DY  
Power-Up Sequence  
SENSE  
0.01  
V
5V  
4A  
OUT  
LONG  
V
IN  
C
= 470µF  
5V  
LOAD  
+
V
10Ω  
0.1µF  
ON  
(2V/DIV)  
470µF  
Z1  
OPTIONAL  
100  
V
TIMER  
(1V/DIV)  
V
CC  
SENSE  
GATE  
20k  
SHORT  
LONG  
100  
0.01µF  
LTC4210-3  
ON  
V
OUT  
10k  
(5V/DIV)  
TIMER  
GND  
I
0.22µF  
OUT  
(0.5A/DIV)  
GND  
GND  
4210 TA01  
Z1: ISMA10A OR SMAJ10A  
4210 TA02  
10ms/DIV  
421034fa  
1
LTC4210-3/LTC4210-4  
W W  
U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
Supply Voltage (VCC) ............................................... 17V  
Input Voltage (SENSE, TIMER) .. 0.3V to (VCC + 0.3V)  
Input Voltage (ON)..................................... –0.3V to 17V  
Output Voltage (GATE) ........ Internally Limited (Note 3)  
Operating Temperature Range  
LTC4210-3C/LTC4210-4C ....................... 0°C to 70°C  
LTC4210-3I/LTC4210-4I .................... 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
ORDER PART  
NUMBER  
TOP VIEW  
LTC4210-3CS6  
LTC4210-4CS6  
LTC4210-3IS6  
LTC4210-4IS6  
TIMER 1  
GND 2  
ON 3  
6 V  
CC  
5 SENSE  
4 GATE  
S6 PACKAGE  
6-LEAD PLASTIC TSOT-23  
S6 PART MARKING  
LTCPJ  
LTCPM  
LTCPK  
LTCPN  
TJMAX = 125°C, θJA = 230°C/ W  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult factory for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The  
CC  
denotes specifications which apply over the full operating  
temperature range, otherwise specifications are T = 25°C. V = 5V, unless otherwise noted. (Note 2)  
A
SYMBOL  
PARAMETER  
CONDITIONS  
Supply Voltage  
MIN  
TYP  
MAX  
7.0  
UNITS  
V
V
2.7  
CC  
I
V
CC  
V
CC  
V
CC  
Supply Current  
0.75  
2.5  
100  
0
3.5  
mA  
V
CC  
V
V
Undervoltage Lockout Release  
Undervoltage Lockout Hysteresis  
V
CC  
Rising  
2.2  
2.65  
LKOR  
mV  
µA  
µA  
mV  
µA  
mA  
LKOHYST  
INON  
I
I
ON Pin Input Current  
–10  
–10  
44  
10  
10  
SENSE Pin Input Current  
Circuit Breaker Trip Voltage  
GATE Pin Pull-Up Current  
GATE Pin Pull-Down Current  
V
V
V
= V  
CC  
5
INSENSE  
SENSE  
V
= (V – V  
)
50  
56  
CB  
CB  
CC  
SENSE  
I
I
= 0V  
–5  
10  
25  
–15  
GATEUP  
GATEDN  
GATE  
V
V
V
= 1.5V, V  
= 3V or  
TIMER  
ON  
CC  
GATE  
= 3V or  
= 0V, V  
GATE  
– V  
= 100mV, V  
= 3V  
SENSE  
GATE  
V  
External N-Channel Gate Drive  
GATE Pin Voltage  
V
V
V
V
– V , V = 2.7V  
4.0  
4.5  
5.0  
5.0  
6.5  
7.5  
8.5  
7.0  
8
V
V
V
V
GATE  
GATE  
GATE  
GATE  
GATE  
CC CC  
– V , V = 3V  
10  
9.7  
8.0  
CC CC  
– V , V = 3.3V  
CC CC  
– V , V = 5V  
CC CC  
V
V
CC  
V
CC  
V
CC  
V
CC  
= 2.7V  
6.7  
7.5  
9.2  
10.7  
13.0  
13.0  
13.0  
V
V
V
V
GATE  
= 3.0V  
10.5  
11.8  
12.0  
= 3.3V  
= 5.0V  
8.3  
10.0  
I
I
TIMER Pin Pull-Up Current  
TIMER Pin Pull-Down Current  
TIMER Pin Threshold  
Initial Cycle, V  
= 1V  
–2  
–5  
–8.5  
µA  
µA  
µA  
µA  
V
V
TIMERUP  
TIMERDN  
TIMER  
During Current Fault Condition, V  
= 1V  
= 1V  
–25  
–60  
–100  
TIMER  
After Current Fault Disappears, V  
Under Normal Conditions, V  
2
100  
3.5  
TIMER  
TIMER  
= 1V  
V
High Threshold, TIMER Rising  
Low Threshold, TIMER Falling  
1.22  
0.15  
1.3  
0.2  
1.38  
0.25  
TIMER  
V
V
V
TIMER Low Threshold Hysteresis  
ON Pin Threshold  
100  
1.3  
80  
mV  
V
TMRHYST  
ON  
ON Threshold, ON Rising  
1.22  
1.38  
ON Pin Threshold Hysteresis  
mV  
ONHYST  
421034fa  
2
LTC4210-3/LTC4210-4  
ELECTRICAL CHARACTERISTICS  
The  
CC  
denotes specifications which apply over the full operating  
temperature range, otherwise specifications are T = 25°C. V = 5V, unless otherwise noted. (Note 2)  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1
MAX  
UNITS  
µs  
t
t
t
Turn-Off Time (TIMER Rise to GATE Fall)  
Turn-Off Time (ON Fall to GATE Fall)  
V
V
V
= 0V to 2V Step, V = V = 5V  
OFF(TMRHIGH)  
OFF(ONLOW)  
OFF(VCCLOW)  
TIMER CC ON  
= 5V to 0V Step, V = 5V  
30  
30  
µs  
µs  
ON  
CC  
CC  
Turn-Off Time (V Fall to IC Reset)  
= 5V to 2V Step, V = 5V  
CC  
ON  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: An internal Zener clamped the GATE pin to a typical voltage of  
12V. External overdrive of the GATE pin beyond the internal Zener voltage  
may damage the device. Without a limiting resistor, the GATE capacitance  
must be <0.15µF at maximum V  
.
CC  
Note 2: All currents into device pins are positive; all currents out of device  
pins are negative. All voltages are referenced to ground unless otherwise  
specified.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Undervoltage Lockout Threshold  
vs Temperature  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
2.65  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
2.25  
T
= 25°C  
A
S
V
= 5V  
V
V
RISING  
CC  
CC  
FALLING  
V
V
= 5V  
CC  
CC  
= 3V  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
SUPPLY VOLTAGE (V)  
–75 –50 –25  
0
25 50 75 100 125 150  
–75 –50 –25  
0
25 50  
75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LTC4210 • G01  
LTC4210 • G02  
LTC4210 • G03  
V
GATE  
vs Supply Voltage  
V
vs Temperature  
GATE  
I
vs Supply Voltage  
GATEUP  
16  
15  
14  
13  
12  
11  
10  
9
16  
15  
14  
13  
12  
11  
10  
9
–8.0  
–8.5  
TA = 25°C  
V
= 5V  
= 3V  
–9.0  
CC  
–9.5  
–10.0  
–10.5  
–11  
V
CC  
8
8
–11.5  
–12.0  
7
7
6
6
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
SUPPLY VOLTAGE (V)  
–75 –50 –25  
0
25 50 75 100 125 150  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
LTC4210 • G04  
LTC4210 • G05  
LTC4210 • G06  
421034fa  
3
LTC4210-3/LTC4210-4  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
V  
vs Supply Voltage  
I
vs Temperature  
V  
vs Temperature  
GATE  
GATEUP  
GATE  
12  
11  
10  
9
12  
11  
10  
9
–8.0  
–8.5  
–9.0  
V
V
= 5V  
= 3V  
CC  
–9.5  
8
8
7
7
–10.0  
–10.5  
–11  
CC  
V
V
= 3V  
= 5V  
CC  
CC  
6
6
5
5
4
4
–11.5  
–12.0  
3
3
2
2
25 50  
2.5 3.0 3.5 4.0  
5.0  
6.0 6.5 7.0  
–75 –50 –25  
0
50  
100 125 150  
75  
–75 –50 –25  
0
75 100 125 150  
4.5  
5.5  
25  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LTC4210 • G07  
LTC4210 • G08  
LTC4210 • G09  
I
(In Initial Cycle)  
I
(In Initial Cycle)  
I
(During Circuit Breaker  
TIMERUP  
TIMERUP  
TIMERUP  
vs Supply Voltage  
vs Temperature  
Delay) vs Supply Voltage  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
TA = 25°C  
V
= 5V  
TA = 25 °C  
CC  
–75 –50 –25  
0
25 50 75 100 125 150  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
SUPPLY VOLTAGE (V)  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
LTC4210 • G11  
LTC4210 • G12  
LTC4210 • G10  
I
(In Cool-Off Cycle)  
I
(In Cool-Off Cycle)  
I
(During Circuit Breaker  
TIMERDN  
TIMERDN  
TIMERUP  
vs Temperature  
vs Supply Voltage  
Delay) vs Temperature  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
= 5V  
TA = 25°C  
V
= 5V  
CC  
CC  
25 50  
SUPPLY VOLTAGE (V)  
2.5 3.0 3.5 4.0  
5.0  
6.0 6.5 7.0  
–75 –50 –25  
0
50  
100 125 150  
75  
TEMPERATURE (°C)  
–75 –50 –25  
0
75 100 125 150  
4.5  
5.5  
25  
SUPPLY VOLTAGE (V)  
LTC4210 • G13  
LTC4210 • G14  
LTC4210 • G15  
421034fa  
4
LTC4210-3/LTC4210-4  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
TIMER High Threshold  
vs Temperature  
TIMER High Threshold  
vs Supply Voltage  
TIMER Low Threshold  
vs Supply Voltage  
0.24  
1.38  
1.36  
1.34  
1.32  
1.30  
1.28  
1.26  
1.24  
1.22  
1.38  
1.36  
1.34  
1.32  
1.30  
1.28  
1.26  
1.24  
1.22  
TA = 25°C  
V
= 5V  
TA = 25°C  
CC  
0.23  
0.22  
0.21  
0.20  
0.19  
0.18  
0.17  
0.16  
4.5 5.0  
25 50  
TEMPERATURE (°C)  
4.5 5.0  
5.5 6.0 6.5 7.0  
2.5 3.0 3.5 4.0  
5.5 6.0 6.5 7.0  
–75 –50 –25  
0
75 100 125 150  
2.5 3.0 3.5 4.0  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
LTC4210 • G16  
LTC4210 • G17  
LTC4210 • G18  
TIMER Low Threshold  
vs Temperature  
ON Pin Threshold  
vs Supply Voltage  
ON Pin Threshold  
vs Temperature  
0.24  
0.23  
0.22  
0.21  
0.20  
0.19  
0.18  
0.17  
0.16  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
V
CC  
= 5V  
TA = 25°C  
V
= 5V  
CC  
HIGH THRESHOLD  
HIGH THRESHOLD  
LOW THRESHOLD  
LOW THRESHOLD  
25 50  
4.5 5.0  
25 50  
0
TEMPERATURE (°C)  
–75 –50 –25  
0
75 100 125 150  
2.5 3.0 3.5 4.0  
5.5 6.0 6.5 7.0  
–75 –50 –25  
75 100 125 150  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
LTC4210 • G19  
LTC4210 • G20  
LTC4210 • G21  
t
vs Supply Voltage  
t
vs Temperature  
OFF(ONLOW)  
OFF(ONLOW)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
TA = 25°C  
v
= 5v  
= 3v  
cc  
cc  
v
0
0
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
SUPPLY VOLTAGE (V)  
–75 –50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
LTC4210 • G22  
LTC4210 • G23  
421034fa  
5
LTC4210-3/LTC4210-4  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
V
vs Supply Voltage  
CB  
V
CB  
vs Temperature  
58  
56  
54  
52  
50  
48  
46  
44  
42  
58  
56  
54  
52  
50  
48  
46  
44  
42  
TA = 25°C  
V
= 5V  
CC  
4.5 5.0  
25 50  
TEMPERATURE (°C)  
2.5 3.0 3.5 4.0  
5.5 6.0 6.5 7.0  
–75 –50 –25  
0
75 100 125 150  
SUPPLY VOLTAGE (V)  
LTC4210 • G24  
LTC4210 • G25  
U
U
U
PI FU CTIO S  
TIMER (Pin 1): Timer Input Pin. An external capacitor  
CTIMERsetsa272.9ms/µFinitialtimingdelayanda21.7ms/  
µF circuit breaker delay. The GATE pin turns off whenever  
the TIMER pin is pulled beyond the COMP2 threshold,  
such as for overvoltage detection with an external zener.  
(EA) controls the external MOSFET to maintain a constant  
load current. An external R-C compensation network  
should be connected to this pin for current limit loop  
stability.  
SENSE (Pin 5): Current Limit Sense Input Pin. A sense  
resistor between the VCC and SENSE pins sets the analog  
current limit. In overload, the EA controls the external  
MOSFET gate to maintain the SENSE pin voltage at 50mV  
below VCC. When the EA is maintaining current limit, the  
TIMER circuit breaker mode is activated. The current limit  
loop/circuit breaker mode can be disabled by connecting  
the SENSE pin to the VCC pin.  
GND (Pin 2): Ground Pin.  
ON (Pin 3): ON Input Pin. The ON pin comparator has a  
low-to-high threshold of 1.3V with 80mV hysteresis and a  
glitch filter. When the ON pin is low, the LTC4210 is reset.  
When the ON pin goes high, the GATE turns on after the  
initial timing cycle.  
GATE (Pin 4): GATE Output Pin. This pin is the high side  
gate drive of an external N-channel MOSFET. An internal  
charge pump provides a 10µA pull-up current with Zener  
clamps to VCC and ground. In overload, the error amplifier  
VCC (Pin 6): Positive Supply Input Pin. The operating  
supply voltage range is between 2.7V to 7V. An undervolt-  
age lockout (UVLO) circuit with a glitch filter resets the  
LTC4210 when a low supply voltage is detected.  
421034fa  
6
LTC4210-3/LTC4210-4  
W
BLOCK DIAGRA  
6
5
V
SENSE  
CC  
+
50mV  
INITIAL UP/LATCH OFF  
CURRENT LIMIT  
UVLO  
+
EA  
5µA  
60µA  
GLITCH  
FILTER  
0.2V  
+
COMP1  
CHARGE  
PUMP  
TIMER  
1
LOGIC  
Z1  
12V  
10µA  
4k  
+
GATE  
4
COMP2  
SHUTDOWN  
Z2  
26V  
M5  
1.3V  
INITIAL DOWN/NORMAL  
GLITCH  
FILTER  
2µA  
100µA  
GND  
2
COOL OFF  
COMP3  
+
ON  
1.3V  
3
4210 BD  
W U U  
U
APPLICATIO S I FOR ATIO  
Hot Circuit Insertion  
Overview  
When circuit boards are inserted into live backplanes, the  
supply bypass capacitors can draw large transient cur-  
rents from the backplane power bus as they charge. Such  
transient currents can cause permanent damage to con-  
nector pins, glitches on the system supply or reset other  
boards in the system.  
The LTC4210-3/LTC4210-4 is designed to operate over a  
range of supplies from 2.7V to 7V. Upon insertion, an  
undervoltage lockout circuit determines if sufficient sup-  
plyvoltageispresent. WhentheONpingoeshighaninitial  
timing cycle assures that the board is fully seated in the  
backplane before the MOSFET is turned on. A single timer  
capacitor sets the periods for all of the timer functions.  
After the initial timing cycle the LTC4210 can either start  
up in current limit or with a lower load current. Once the  
external MOSFET is fully enhanced and the supply has  
rampedup,theLTC4210monitorstheloadcurrentthrough  
an external sense resistor. Overcurrent faults are actively  
limited to 50mV/RSENSE for a specified circuit breaker  
timer limit. The LTC4210-3 will automatically retry after a  
current limit fault while the LTC4210-4 latches off. The  
LTC4210-3 timer function limits the retry duty cycle to  
The LTC4210 is designed to turn a printed circuit board’s  
supply voltage ON and OFF in a controlled manner, allow-  
ing the circuit board to be safely inserted into or removed  
from a live backplane. The LTC4210 can reside either on  
the backplane or on the daughter board for hot circuit  
insertion applications.  
3.8% for MOSFET cooling.  
421034fa  
7
LTC4210-3/LTC4210-4  
W U U  
U
APPLICATIO S I FOR ATIO  
Undervoltage Lockout  
Current Limit Circuit Breaker Function  
An internal undervoltage lockout (UVLO) circuit resets the  
LTC4210 if the VCC supply is too low for normal operation.  
The UVLO has a low-to-high threshold of 2.5V, a 100mV  
hysteresis and a high-to-low glitch filter of 30µs. Above  
2.5V supply voltage, the LTC4210 will start if the ON pin  
conditions are met. A short supply dip below 2.4V for less  
than 30µs is ignored to allow for bus supply transients.  
The LTC4210 features a current limiting circuit breaker  
instead of a traditional comparator circuit breaker. When  
there is a sudden load current surge, such as a low  
impedance fault, the bus supply voltage can drop signifi-  
cantly to a point where the power to an adjacent card is  
affected, causing system malfunctions. The LTC4210 fast  
response error amplifier (EA) instantly limits current by  
reducing the external MOSFET GATE pin voltage. This  
minimizes the bus supply voltage drop and permits power  
budgeting and fault isolation without affecting neighbor-  
ing cards. A compensation circuit should be connected to  
the GATE pin for current limit loop stability.  
ON Function  
The ON pin is the input to a comparator which has a low-  
to-high threshold of 1.3V, an 80mV hysteresis and a high-  
to-lowglitchfilterof30µs. AlowinputontheONpinresets  
the LTC4210 TIMER status and turns off the external  
MOSFET by pulling the GATE pin to ground. A low-to-high  
transition on the ON pin starts an initial cycle followed by  
a start-up cycle. A 10k pull-up resistor connecting the ON  
pintothesupplyisrecommended.The10kresistorshunts  
any potential static charge on the backplane and reduces  
the overvoltage stress at the ON pin during live insertion.  
Alternatively, an external resistor divider at the ON pin can  
be used to program an undervoltage lockout value higher  
than the internal UVLO circuit. An RC filter can be added at  
theONpintoincreasethedelaytimeatcardinsertionifthe  
internal glitch filter delay is insufficient.  
Sense Resistor Consideration  
The nominal fault current limit is determined by a sense  
resistor connected between VCC and the SENSE pin as  
given by Equation 1.  
V
50mV  
RSENSE(NOM) RSENSE(NOM)  
CB(NOM)  
ILIMIT(NOM)  
=
=
(1)  
The power rating of the sense resistor should be rated at  
the fault current level.  
For proper circuit breaker operation, Kelvin-sense PCB  
connections between the sense resistor and the LTC4210  
VCC and SENSE pins are strongly recommended. The  
drawing in Figure 1 illustrates the connections between  
the LTC4210 and the sense resistor. PCB layout should be  
balanced and symmetrical to minimize wiring errors. In  
addition, the PCB layout for the sense resistor should  
includegoodthermalmanagementtechniquesforoptimal  
sense resistor power dissipation.  
GATE Function  
During hot insertion of the PCB, an abrupt application of  
supply voltage charges the external MOSFET drain/gate  
capacitance. This can cause an unwanted gate voltage  
spike. An internal proprietary circuit holds GATE low  
before the internal circuitry wakes up. This reduces the  
MOSFET current surges substantially at insertion. The  
GATE pin is held low in reset mode and during the initial  
timingcycle. Inthestart-upcycletheGATEpinispulledup  
by a 10µA current source. During an overcurrent fault  
condition, the error amplifier servoes the GATE pin to  
maintain a constant current to the load until the circuit  
breaker trips. When the circuit breaker trips, the GATE pin  
shuts down abruptly.  
CURRENT FLOW  
TO LOAD  
CURRENT FLOW  
TO LOAD  
SENSE RESISTOR  
TRACK WIDTH W:  
0.03" PER AMP  
ON 1 OZ COPPER  
W
4210 F01  
TO  
CC  
TO  
SENSE  
V
Figure 1. Making PCB Connections to the Sense Resistor  
421034fa  
8
LTC4210-3/LTC4210-4  
W U U  
APPLICATIO S I FOR ATIO  
U
Calculating Current Limit  
withCC =47nFandRC =100. Despitethewirelength, the  
general rule for AC stability required is CC 8nF and RC ≤  
1k.  
For a selected RSENSE, the nominal load current is given by  
Equation 1. The minimum load current is given by  
Equation 2:  
Method 2  
V
The compensation network in Figure 2b is similar to the  
circuitry used in method 1 but with an additional gate  
resistor RG. The RG resistor helps to minimize high  
frequencyparasiticoscillationsfrequentlyassociatedwith  
the power MOSFET. In some applications, the user may  
find that RG helps in short-circuit transient recovery as  
well. However, too large of an RG value will slow down the  
turn-off time. The recommended RG range is between 5Ω  
and 500. RG limits the current flow into the GATE pin’s  
internal zener clamp during transient events. The recom-  
mended RC and CC values are the same as method 1. The  
parasiticcompensationcapacitorCPisrequiredwhen0.2µF  
< load capacitance CL < 9µF, otherwise it is optional.  
44mV  
CB(MIN)  
ILIMIT(MIN)  
=
=
(2)  
RSENSE(MAX) RSENSE(MAX)  
where  
RSENSE(MAX) = RSENSE • 1+  
RTOL  
100  
The maximum load current is given by Equation 3:  
V
56mV  
RSENSE(MIN) RSENSE(MIN)  
CB(MAX)  
ILIMIT(MAX)  
where  
RSENSE(MIN) = RSENSE • 1–  
=
=
(3)  
R
Q1  
Si4410DY  
RTOL  
100  
SENSE  
0.007  
V
IN  
5V  
V
OUT  
+
6
5
C
L
V
SENSE  
LTC4210*  
GATE  
If a 7msense resistor with ±1% tolerance is used for  
CC  
current limiting, the nominal current limit is 7.14A.  
4
From Equations 2 and 3, I  
LIMIT(MAX)  
= 6.22A and  
LIMIT(MIN)  
R
C
100Ω  
C
I
=8.08A.Forproperoperation,theminimum  
C
10nF  
*ADDITIONAL DETAILS  
OMITTED FOR CLARITY  
**USE C IF 0.2µF < C < 9µF,  
OTHERWISE NOT REQUIRED  
current limit must exceed the circuit maximum operat-  
(2a)  
Method 1  
ing load current with margin. The sense resistor power  
P
L
2
rating must exceed V  
/R  
.
CB(MAX)  
SENSE(MIN)  
R
Q1  
SENSE  
0.007  
Si4410DY  
V
IN  
V
OUT  
Frequency Compensation  
12V  
+
6
5
C
L
A compensation circuit should be connected to the GATE  
pin for current limit loop stability.  
V
SENSE  
LTC4210*  
GATE  
CC  
C **  
R
G
200Ω  
P
2.2nF  
4
R
C
100  
C
Method 1  
C
10nF  
The simplest frequency compensation network consists  
of RC and CC (Figure 2a). The total GATE capacitance is:  
(2b)  
Method 2  
4210 F02  
C
GATE = CISS + CC  
(4)  
Figure 2. Frequency Compensation  
Generally, the compensation value in Figure 2a is suffi-  
cient for a pair of input wires less than a foot in length.  
Applications with longer input wires may require the RC or  
CC value to be increased for better fault transient perfor-  
mance. For a pair of three foot input wires, users can start  
Parasitic MOSFET Oscillation  
There are two possible parasitic oscillations when the  
MOSFET operates as a source follower when ramping at  
421034fa  
9
LTC4210-3/LTC4210-4  
W U U  
U
APPLICATIO S I FOR ATIO  
power-up or during current limiting. The first type of oscil- pin is low. GATE is pulled low and the TIMER pin is pulled  
lation occurs at high frequencies, typically above 1MHz. low with a 100µA source. At time point 2, the short pin  
ThishighfrequencyoscillationiseasilydampedwithRG as makes contact and ON is pulled high. At this instant, a  
mentioned in method 2.  
start-up check requires that the supply voltage be above  
UVLO,theONpinbeabove1.3VandtheTIMERpinvoltage  
be less than 0.2V. When these three conditions are ful-  
filled, the initial cycle begins and the TIMER pin is pulled  
high with 5µA. At time point 3, the TIMER reaches the  
COMP2 threshold and the first portion of the initial cycle  
ends. The 100µA current source then pulls down the  
TIMER pin until it reaches 0.2V at time point 4. The initial  
cycle delay (time point 2 to time point 4) is related to  
The second type of oscillation occurs at frequencies  
between 200kHz and 800kHz due to the load capacitance  
being between 0.2µF and 9µF, the presence of RG and RC  
resistance, the absence of a drain bypass capacitor, a  
combinationofbuswiringinductanceandbussupplyoutput  
impedance. There are several ways to prevent this second  
type of oscillation. The simplest way is to avoid load  
capacitance below 10µF™, the second choice is connect-  
ing an external CP > 1.5nF.  
C
TIMER by equation:  
tINITIAL 272.9 • CTIMER ms/µF  
(5)  
Whichever method of compensation is used, board level  
short-circuit testing is highly recommended as board  
layoutcanaffecttransientperformance. Besidefrequency  
When the initial cycle terminates, a start-up cycle is  
activated and the GATE pin ramps high. The TIMER pin  
compensation, the total gate capacitance CGATE also continues to be pulled down towards ground.  
determines the GATE start-up as in Equation 6. The CGATE  
should be kept below 0.15µF at high supply operation as  
1
2
3 4 5  
6
7
thecapacitiveenergy(0.5CGATE VGATE2 )isdischarged  
by the LTC4210 internal pull-down transistor. This pre-  
vents the internal pull-down transistor from overheating  
when the GATE turns off and/or is serving during current  
limiting.  
>2.5V  
V
IN  
>1.3V  
V
ON  
Timer Function  
COMP2  
100µA  
COMP1  
V
TIMER  
The TIMER pin handles several key functions with an  
external capacitor, CTIMER. There are two comparator  
thresholds: COMP1 (0.2V) and COMP2 (1.3V). The four  
timing current sources are:  
5µA  
10µA  
V
GATE  
V
TH  
DISCHARGE  
BY LOAD  
V
OUT  
5µA pull-up  
4210 F03  
60µA pull-up  
2µA pull-down  
100µA pull-down  
RESET  
MODE  
INITIAL  
CYCLE  
START-UP  
CYCLE  
NORMAL  
CYCLE  
Figure 3. Normal Operating Sequence  
The100µAisanonidealcurrentsourceapproximatinga7k  
resistor below 0.4V.  
Start-Up Cycle Without Current Limit  
Initial Timing Cycle  
The GATE is released with a 10µA pull-up at time point 4  
of Figure 3. At time point 5, GATE reaches the external  
MOSFET threshold VTH and VOUT starts to follow the  
Whenthecardisbeinginsertedintothebusconnector, the  
long pins mate first which brings up the supply VIN at time  
point1ofFigure3. TheLTC4210isinresetmodeastheON  
421034fa  
10  
LTC4210-3/LTC4210-4  
W U U  
APPLICATIO S I FOR ATIO  
U
GATE ramp up. If the RSENSE current is below the current  
limit, the GATE ramps at a constant rate of:  
Gate Start-Up Time  
The start-up time without current limit is given by:  
VGATE IGATE  
VTH + V  
IGATE  
IN  
=
(6)  
tSTARTUP = CGATE  
tSTARTUP = CGATE  
(10)  
T  
CGATE  
VTH  
IGATE  
V
IGATE  
IN  
where CGATE is the total capacitance at the GATE pin.  
+ CGATE  
The current through RSENSE can be divided into two  
components; ICLOAD due to the total load capacitance  
(CLOAD) and ILOAD due to the noncapacitive load elements.  
The capacitive load typically dominates.  
1
2
3
4
5
5A 5B  
6
7
>2.5V  
V
IN  
For a successful start-up without current limit, IRSENSE  
ILIMIT  
<
>1.3V  
:
V
ON  
IRSENSE = ICLOAD + ILOAD < ILIMIT  
COMP2  
100µA  
2µA  
60µA  
V
TIMER  
VOUT  
T  
COMP1  
100µA  
5µA  
IRSENSE = CLOAD  
+ ILOAD < ILIMIT  
10µA  
(7)  
<10µA  
10µA  
V
GATE  
Due to the voltage follower configuration, the VOUT ramp  
rate approximately tracks VGATE  
V
TH  
DISCHARGE  
BY LOAD  
:
V
OUT  
VOUT ICLOAD VGATE IGATE  
REGULATED AT 50mV/R  
SENSE  
=
=
(8)  
T  
CLOAD  
T  
CGATE  
I
RSENSE  
4210 F04  
RESET  
MODE  
INITIAL  
CYCLE  
START-UP  
CYCLE  
NORMAL  
CYCLE  
At time point 6, VOUT is approximately VIN but GATE ramp-  
up continues until it reaches a maximum voltage. This  
maximum voltage is determined either by the charge  
pump or the internal clamp.  
Figure 4. Operating Sequence with  
Current Limiting at Start-Up Cycle  
Start-Up Cycle With Current Limit  
During current limiting, the second term in Equation 10 is  
partly modified from C • V /I to C  
IN CLOAD  
LOAD  
If the duration of the current limit is brief during start-up  
(Figure 4) and it did not last beyond the circuit breaker  
function time out, the GATE behaves the same as in start-  
up without current limit except for the time interval be-  
tweentimepoint5Aandtimepoint5B. Theservoamplifier  
limits IRSENSE by decreasing the IGATE current (<10µA).  
GATE  
IN GATE  
V /I  
. The start-up time is now given by:  
VTH  
IGATE  
VTH  
V
IN  
ICLOAD  
tSTARTUP = CGATE  
= CGA  
+ CLOAD  
+ CLOAD  
(11)  
V
IN  
TE  
IGATE  
IRSENSE ILOAD  
50mV  
RSENSE  
IRSENSE = ILIMIT  
=
(9)  
For successful completion of current limit start-up cycle  
there must be a net current to charge CLOAD and the  
current limit duration must be less than tCBDELAY. The  
second term in Equation 11 has to fulfill Equation 12.  
Equations7and8areapplicablebutwithalowerGATEand  
VOUT ramp rate.  
421034fa  
11  
LTC4210-3/LTC4210-4  
W U U  
U
APPLICATIO S I FOR ATIO  
A
B
CIRCUIT BREAKER  
TRIPS  
V
IN  
CLOAD  
< tCBDELAY  
(12)  
COMP2  
IRSENSE ILOAD  
LATCHED OFF (5µA PULL-UP)  
OR RETRY (2µA PULL-DOWN)  
V
TIMER  
60µA  
Circuit Breaker Timer Operation  
COMP1  
100µA  
When a current limit fault is encountered at time point A in  
Figure5, thecircuitbreakertimingisactivatedwitha60µA  
pull-up. The circuit breaker trips at time point B if the fault  
is still present and the TIMER pin voltage reaches the  
COMP2 threshold and the LTC4210 shuts down. For a  
continuous fault, the circuit breaker delay is:  
4210 F05  
NORMAL  
MODE  
FAULT  
MODE  
Figure 5. A Continuous Fault Timing  
CTIMER  
60µA  
tCBDELAY = 1.3V •  
A1  
B1  
A2  
B2  
A3 B3  
(13)  
~50mV/R  
SENSE  
I
LOAD  
Intermittent overloads may exceed the current limit as in  
Figure 6, but if the duration is sufficiently short, the TIMER  
pin may not reach the COMP2 threshold and the LTC4210  
will not shut down. To handle this situation, the TIMER  
discharges with 2µA whenever (VCC – SENSE) voltage is  
below the 50mV limit and the TIMER voltage is between  
the COMP1 and COMP2 thresholds. When the TIMER  
voltage falls below the COMP1 threshold, the TIMER pin is  
discharged with an equivalent 7k resistor (normal mode,  
100µA source) when (VCC – SENSE) voltage is below the  
50mV limit. If the TIMER pin does not drop below the  
COMP1 threshold, any intermittent overload with an ag-  
gregate duty cycle of more than 3.8% will eventually trip  
the circuit breaker. Figure 7 shows the circuit breaker  
response time in seconds normalized to 1µF. The asym-  
metric charging and discharging of TIMER is a fair gauge  
of MOSFET heating.  
CIRCUIT BREAKER  
TRIPS  
60µA  
60µA  
2µA  
COMP2  
TIMER  
60µA  
V
COMP1  
2µA  
LATCHED OFF (5µA PULL-UP)  
OR RETRY (2µA PULL-DOWN)  
V
10µA  
10µA  
GATE  
4210 F06  
CB  
FAULT  
CB  
CB  
FAULT  
FAULT  
Figure 6. Mulitple Intermittent Overcurrent Conditon  
1
t
1.3V • 1µF  
60µA • D – 2µA  
(s/µF) =  
C
TIMER  
t
1.3V 1µF  
(s / µF)=  
(14)  
0.1  
CTIMER  
60µA D 2µA  
(
)
When the circuit breaker trips, the GATE pin is pulled low.  
The TIMER enters latchoff mode with a 5µA pull-up for the  
LTC4210-4(latched-offversion),whileanautoretrycool-  
off” cycle begins with a 2µA pull-down for the LTC4210-3  
(autoretry version). An autoretry cool-off delay of the  
LTC4210-3betweenCOMP2andCOMP1thresholdstakes:  
0.01  
10 20  
40  
60 70 80  
100  
0
30  
50  
90  
OVERLOAD DUTY CYCLE, D (%)  
4210 F07  
Figure 7. Circuit Breaker Timer Response  
for Intermittent Overload  
CTIMER  
tCOOLOFF = 1.1V •  
(15)  
2µA  
421034fa  
12  
LTC4210-3/LTC4210-4  
W U U  
APPLICATIO S I FOR ATIO  
U
Autoretry After Current Fault (LTC4210-3)  
A
B
C
V
Figure8showsthewaveformsoftheLTC4210-3(autoretry  
version)duringacircuitbreakerfault. AttimepointB1, the  
TIMER trips the COMP2 threshold of 1.3V. The GATE pin  
pullstogroundwhileTIMERbeginsacool-offcyclewith  
a 2µA pull-down to the COMP1 threshold of 0.2V. At time  
point C1, the TIMER pin pulls down with approximately a  
7kresistortogroundandaGATEstart-upcycleisinitiated.  
If the fault persists, the fault autoretry duty cycle is  
approximately 3.8%. Pulling the ON pin low for more than  
30µs will stop the autoretry function and put the LTC4210  
in reset mode.  
CLAMP  
COMP2  
60µA  
V
TIMER  
COMP1  
V
GATE  
0V  
0V  
V
OUT  
REGULATING AT 50mV/R  
SENSE  
I
LOAD  
A1 B1  
C1  
A2 B2  
2µA  
2µA  
COMP2  
COMP1  
60µA  
60µA  
V
TIMER  
NORMAL  
MODE  
LATCHED OFF CYCLE  
2410 F09  
100µA  
CB  
FAULT  
V
GATE  
Figure 9. Latchoff After Overcurrent Fault  
V
OUT  
Normal Mode/External Timer Control  
REGULATING AT 50mV/R  
SENSE  
Whenever the TIMER pin voltage drops below the COMP1  
threshold, but is not in reset mode, the TIMER enters  
normal (100µA source) mode with an equivalent 7k resis-  
I
LOAD  
tive pull-down. Table 1 shows the relationship of tINITIAL  
tCBDELAY, tCOOLOFF vs CTIMER  
,
NORMAL  
MODE  
COOL OFF  
CYCLE  
COOL OFF  
CYCLE  
.
CB  
FAULT  
CB  
FAULT  
4210 F08  
If the TIMER pin is pulled beyond the COMP2 threshold,  
the GATE pin is pulled to ground immediately. This allows  
the TIMER pin to be used for overvoltage detection, see  
Figure 11.  
Figure 8. Automatic Retry After Overcurrent Fault  
Latch-Off After Current Fault (LTC4210-4)  
ExternallyforcingtheTIMERpinbelowtheCOMP1thresh-  
Figure9showsthewaveformsoftheLTC4210-4(latch-off old will reset the TIMER to normal mode. During over-  
version) during a circuit breaker fault. At time point B, the voltage detection, the TIMER’s 100µA pull-down current  
TIMER trips the COMP2 threshold. The GATE pin pulls to will continue to be on if (VCC – SENSE) voltage is below  
ground while the TIMER pin is latched high by a 5µA pull- 50mV.Ifthe(VCC SENSE)voltageexceeds50mVduring  
up. The TIMER pin eventually reaches the soft-clamped the overvoltage detection, the TIMER current will be the  
voltage (VCLAMP) of 2.3V. To clear the latchoff mode, the same as described for latched-off or autoretry mode. See  
user can either pull the TIMER pin to below 0.2V externally the section OVERVOLTAGE DETECTION USING TIMER  
or cycle the ON pin low for more than 30µs.  
PIN for details of the application.  
421034fa  
13  
LTC4210-3/LTC4210-4  
W U U If one of U the conditions cannot be met, an external Zener  
APPLICATIO S I FOR ATIO  
clampshownonFigure10aorFigure10bcanbeused. The  
selection of RG should be within the allowed LTC4210  
package dissipation when discharging VOUT via the Zener  
clamp.  
Table 1. t  
, t  
, t  
vs C  
INITIAL CBDELAY COOLOFF  
TIMER  
C
(µF)  
t
(ms)  
t
(ms)  
t
(ms)  
COOLOFF  
TIMER  
INITIAL  
CBDELAY  
0.033  
9.0  
0.7  
18.2  
0.047  
0.068  
0.082  
0.1  
12.8  
18.6  
1
25.9  
37.4  
45.1  
55  
In addition to the MOSFET gate drive rating and VGS  
1.5  
absolute maximum rating, other criteria such as VBDSS  
,
22.4  
1.8  
ID(MAX), RDS(ON), PD, θJA, TJ(MAX) and maximum safe  
operating area should also be carefully reviewed. VBDSS  
should exceed the maximum supply voltage inclusive of  
spikes and ringing. ID(MAX) should be greater than the  
current limit, ILIMIT. RDS(ON) determines the MOSFET VDS  
whichtogetherwithVCB yieldsanerrorintheVOUT voltage.  
At2.7Vsupplyvoltage, thetotalofVDS +VCB of0.1Vyields  
3.7% VOUT error.  
27.3  
2.2  
0.22  
0.33  
0.47  
0.68  
0.82  
1
60.0  
4.8  
121  
90.1  
7.2  
181.5  
258.5  
374  
128.3  
185.6  
223.8  
272.9  
600.5  
900.7  
10.2  
14.7  
17.8  
21.7  
47.7  
71.5  
451  
550  
2.2  
1210  
1815  
The maximum power dissipated in the MOSFET is  
ILIMIT2 • RDS(ON) and this should be less than the maxi-  
mum power dissipation, PD allowed in that package.  
Given power dissipation, the MOSFET junction tempera-  
ture, TJ can be computed from the operating temperature  
(TA) and the MOSFET package thermal resistance (θJA).  
The operating TJ should be less than the TJ(MAX) specifi-  
cation.  
3.3  
Power-Off Cycle  
The system can be reset by toggling the ON pin low for  
more than 30µs as shown at time point 7 of Figure 3. The  
GATE pin is pulled to ground. The TIMER capacitor is also  
dischargedtoground. CLOAD dischargesthroughtheload.  
Alternatively,theTIMERpincanbeexternallydrivenabove  
the COMP2 threshold to turn off the GATE pin.  
Next review the short-circuit condition under maximum  
supply VIN(MAX) conditions and maximum current limit,  
ILIMIT(MAX) during the circuit breaker time-out interval of  
tCBDELAY with the maximum safe operating area of the  
MOSFET. Theoperationduringoutputshort-circuitcondi-  
tions must be well within the manufacturer’s recom-  
mended safe operating region with sufficient margin. To  
ensure a reliable design, fault tests should be evaluated in  
the laboratory.  
POWER MOSFET SELECTION  
Power MOSFETs can be classified by RDSON at VGS gate  
drive ratings of 10V, 4.5V, 2.5V and 1.8V. Use the typical  
curves VGATE vs Supply Voltage and VGATE vs Tem-  
perature to determine whether the gate drive voltage is  
adequate for the selected MOSFET at the operating volt-  
age.  
VIN TRANSIENT PROTECTION  
In addition, the selected MOSFET should fulfill two VGS  
criteria:  
Unlike most circuits, Hot Swap controllers typically are  
not allowed the good engineering practice of supply  
bypass capacitors, since controlling the surge current to  
bypass capacitors at plug-in is the primary motivation for  
the Hot Swap controller. Although wire harness, back-  
plane and PCB trace inductances are usually small, these  
cancreatespikeswhencurrentsaresuddenlydrawn, cut-  
off or limited. The transient associated with the GATE turn  
1. Positive VGS absolute maximum rating > LTC4210-3/  
LTC4210-4 maximum VGATE, and  
2. Negative VGS absolute maximum rating > supply  
voltage. The gate of the MOSFET can discharge faster  
thanVOUT whenshuttingdowntheMOSFETwithalarge  
CLOAD  
.
421034fa  
14  
LTC4210-3/LTC4210-4  
W U U  
APPLICATIO S I FOR ATIO  
U
off can be controlled with a snubber and/or transient  
voltage suppressor. RC snubber networks are effective  
for LTC4210-3/LTC4210-4 applications. The choice of  
RC is usually determined experimentally. The value of the  
snubber capacitor is usually chosen between 10 to 100  
timestheMOSFETCOSS.Thevalueofthesnubberresistor  
is typically between 3to 100. A snubber network is  
normally sufficient to protect against transient voltages.  
However, when input wires are long or EMI beads exist in  
the wire harness, a transient suppressor should be used  
in conjuction with the snubber to clip off voltage spikes  
and reduce ringing. In many cases, a simple short-circuit  
test can be performed to determine the need of the  
transient voltage suppressor.  
OVERVOLTAGE DETECTION USING THE TIMER PIN  
Figure 11 shows a supply side overvoltage detection  
circuit. A Zener diode, a diode and COMP2 threshold sets  
the overvoltage threshold. Resistor RB biases the Zener  
diode voltage. Diode D1 blocks forward current in the  
Zener during start-up or output short-circuit. RTIMER with  
CTIMER sets the overload noise filter.  
RELATED PARTS  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
2.80 BSC  
3.85 MAX 2.62 REF  
(NOTE 4)  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
421034fa  
15  
LTC4210-3/LTC4210-4  
U
W U U  
U
APPLICATIO S I FOR ATIO  
R
SENSE  
R
SENSE  
Q1  
Q1  
V
CC  
V
OUT  
V
CC  
V
OUT  
D1*  
D1*  
D2*  
*USER SELECTED VOLTAGE CLAMP  
(A LOW BIAS CURRENT ZENER DIODE  
IS RECOMMENDED)  
1N4688 (5V)  
R
R
G
200  
G
200Ω  
GATE  
GATE  
(10a)  
(10b)  
Figure 10. Gate Protection Zener Clamp  
BACKPLANE PCB EDGE  
CONNECTOR CONNECTOR  
(FEMALE)  
(MALE)  
R
Q1  
Si4410DY  
SENSE  
0.01  
V
5V  
4A  
OUT  
LONG  
V
IN  
5V  
R
R
+
X
B
10k  
Z2  
C
LOAD  
10Ω  
Z1  
470µF  
C
X
6
5
0.1µF  
D1  
1N4148  
R
G
100  
V
SENSE  
GATE  
CC  
4
R
TIMER  
18  
R
ON1  
20k  
R4  
SHORT  
LONG  
3
1
LTC4210-3  
100  
ON  
C
R
ON2  
10k  
C
10nF  
TIMER  
GND  
2
C
TIMER  
0.22µF  
GND  
GND  
4210 F11  
Z1: SMAJ10A Z2: BZX84C6V2  
Figure 11. Supply Side Overvoltage Protection  
RELATED PARTS  
PART NUMBER  
LTC1421  
DESCRIPTION  
COMMENTS  
Two Channel, Hot Swap Controller  
Operates from 3V to 12V and Supports –12V  
Operates from 2.7V to 12V, Reset Output  
LTC1422  
Single Channel, Hot Swap Controller in SO-8  
Negative Voltage Hot Swap Controller in SO-8  
Single Channel, Hot Swap Controller  
LT1640AL/LT1640AH  
LTC1642  
Operates from –10V to –80V  
Overvoltage Protection to 33V, Foldback Current Limiting  
3.3V, 5V, Internal FETs for ±12V  
LTC1643AL/LTC1643AH PCI Hot Swap Controller  
LTC1647  
LTC4211  
LTC4230  
LTC4251  
LTC4252  
LTC4253  
Dual Channel, Hot Swap Controller  
Operates from 2.7V to 16.5V, Separate ON pins for Sequencing  
2.5V to 16.5V, Multifunction Current Control  
1.7V to 16.5V, Multifunction Current Control  
Floating Supply, Three-Level Current Limiting  
Floating Supply, Power Good, Three-Level Current Limiting  
Floating Supply, Three-Level Current Limiting  
Single Channel, Hot Swap Controller  
Triple Channel, Hot Swap Controller  
–48V Hot Swap Controller in SOT-23  
–48V Hot Swap Controller in MSOP  
–48V Hot Swap Controller with Triple Supply Sequencing  
421034fa  
LT 1106 REV A• PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2006  

相关型号:

LTC4210-4CS6

Hot Swap Controller in 6-Lead SOT-23 Package
Linear

LTC4210-4CS6#PBF

LTC4210-3 and -4 - Hot Swap Controller in 6-Lead SOT-23 Package; Package: SOT; Pins: 6; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC4210-4CS6#TR

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO6, PLASTIC, MO-193, TSOT-23, 6 PIN, Power Management Circuit
Linear

LTC4210-4CS6#TRMPBF

LTC4210-3 and -4 - Hot Swap Controller in 6-Lead SOT-23 Package; Package: SOT; Pins: 6; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC4210-4IS6

Hot Swap Controller in 6-Lead SOT-23 Package
Linear

LTC4210-4IS6#PBF

LTC4210-3 and -4 - Hot Swap Controller in 6-Lead SOT-23 Package; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC4210-4IS6#TR

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO6, PLASTIC, MO-193, TSOT-23, 6 PIN, Power Management Circuit
Linear

LTC4210-4IS6#TRM

暂无描述
Linear
Linear

LTC4210-4_15

Hot Swap Controller in 6-Lead SOT-23 Package
Linear

LTC4211

Negative 48V Hot Swap Controller
Linear

LTC4211CMS

Hot Swap Controller with Multifunction Current Control
Linear