LTC489_15 [Linear]

Quad RS485 Line Receiver;
LTC489_15
型号: LTC489_15
厂家: Linear    Linear
描述:

Quad RS485 Line Receiver

文件: 总12页 (文件大小:137K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC488/LTC489  
Quad RS485 Line Receiver  
FEATURES  
DESCRIPTION  
The LTC®488 and LTC489 are low power differential bus/  
line receivers designed for multipoint data transmission  
standard RS485 applications with extended common  
mode range (12V to –7V). They also meet the require-  
ments of RS422.  
n
Low Power: I = 7mA Typ  
CC  
n
Designed for RS485 or RS422 Applications  
n
Single 5V Supply  
n
–7V to 12V Bus Common Mode Range Permits 7V  
Ground Difference Between Devices on the Bus  
n
60mV Typical Input Hysteresis  
The CMOS design offers significant power savings over  
its bipolar counterpart without sacrificing ruggedness  
against overload or ESD damage.  
n
Receiver Maintains High Impedance in Three-State or  
with the Power Off  
28ns Typical Receiver Propagation Delay  
n
n
n
Thereceiverfeaturesthree-stateoutputs,withthereceiver  
output maintaining high impedance over the entire com-  
mon mode range.  
Pin Compatible with the SN75173 (LTC488)  
Pin Compatible with the SN75175 (LTC489)  
The receiver has a fail-safe feature which guarantees a  
high output state when the inputs are left open.  
APPLICATIONS  
n
Low Power RS485/RS422 Receivers  
Both AC and DC specifications are guaranteed 4.75V to  
5.25V supply voltage range.  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other  
trademarks are the property of their respective owners.  
n
Level Translator  
TYPICAL APPLICATION  
EN  
EN  
EN  
EN  
4
2
1
12  
DRIVER  
1/4 LTC486  
RECEIVER  
1/4 LTC488  
3
120Ω  
120Ω  
RO  
DI  
4000 FT 24 GAUGE TWISTED PAIR  
EN12  
EN12  
4
2
1
DRIVER  
1/4 LTC487  
RECEIVER  
1/4 LTC489  
3
120Ω  
120Ω  
RO  
DI  
4000 FT 24 GAUGE TWISTED PAIR  
4889 TA01  
4889fb  
1
LTC488/LTC489  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
Supply Voltage (V ) ................................................12V  
Operating Temperature Range  
CC  
Control Input Currents .......................... –25mA to 25mA  
LTC488C/LTC489C ................................... 0°C to 70°C  
LTC488I/LTC489I..................................–40°C to 85°C  
Storage Temperature Range...................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
Control Input Voltages ..................–0.5V to (V + 0.5V)  
CC  
Receiver Input Voltages .......................................... 14V  
Receiver Output Voltages..............–0.5V to (V + 0.5V)  
CC  
PIN CONFIGURATION  
LTC488  
LTC488  
TOP VIEW  
TOP VIEW  
B1  
A1  
1
2
3
4
5
6
7
8
16  
V
B1  
A1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
CC  
CC  
R
R
R
15 B4  
B4  
R
R
R
RO1  
EN  
14  
13  
12  
11  
10  
9
A4  
RO1  
EN  
A4  
RO4  
EN  
RO4  
EN  
RO2  
A2  
RO2  
A2  
RO3  
A3  
RO3  
A3  
R
B2  
B2  
R
GND  
B3  
GND  
B3  
SW PACKAGE  
16-LEAD PLASTIC (WIDE) SO  
N PACKAGE  
16-LEAD PLASTIC DIP  
T
= 150°C, θ = 90°C/W  
T
= 150°C, θ = 70°C/W  
JMAX  
JA  
JMAX  
JA  
LTC489  
LTC489  
TOP VIEW  
TOP VIEW  
B1  
A1  
1
16  
V
B1  
A1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
CC  
CC  
R
R
2
3
4
5
6
7
8
15 B4  
B4  
R
R
R
RO1  
EN12  
RO2  
A2  
14  
13  
12  
11  
10  
9
A4  
RO1  
EN12  
RO2  
A2  
A4  
RO4  
EN34  
RO3  
A3  
RO4  
EN34  
RO3  
A3  
R
R
B2  
B2  
R
GND  
B3  
GND  
B3  
SW PACKAGE  
16-LEAD PLASTIC (WIDE) SO  
= 150°C, θ = 90°C/W  
N PACKAGE  
16-LEAD PLASTIC DIP  
T
T
= 150°C, θ = 70°C/W  
JMAX  
JA  
JMAX  
JA  
4889fb  
2
LTC488/LTC489  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC488CN#PBF  
LTC488CSW#PBF  
LTC488IN#PBF  
TAPE AND REEL  
PART MARKING  
LTC488CN  
PACKAGE DESCRIPTION  
16-Lead Plastic DIP  
16-Lead Plastic SO  
16-Lead Plastic DIP  
16-Lead Plastic SO  
16-Lead Plastic DIP  
16-Lead Plastic SO  
16-Lead Plastic DIP  
16-Lead Plastic SO  
TEMPERATURE RANGE  
0°C to 70°C  
LTC488CN#TRPBF  
LTC488CSW#TRPBF  
LTC488IN#TRPBF  
LTC488ISW#TRPBF  
LTC489CN#TRPBF  
LTC489CSW#TRPBF  
LTC489IN#TRPBF  
LTC489ISW#TRPBF  
LTC488CSW  
LTC488IN  
0°C to 70°C  
–40°C to 85°C  
–40°C to 85°C  
0°C to 70°C  
LTC488ISW#PBF  
LTC489CN#PBF  
LTC489CSW#PBF  
LTC489IN#PBF  
LTC488ISW  
LTC489CN  
LTC489CSW  
LTC489IN  
0°C to 70°C  
–40°C to 85°C  
–40°C to 85°C  
LTC489ISW#PBF  
LTC489ISW  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
DC ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V (Notes 2, 3), unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
V
V
Input High Voltage  
Input Low Voltage  
Input Current  
EN, EN, EN12, EN34  
EN, EN, EN12, EN34  
EN, EN, EN12, EN34  
2.0  
V
V
INH  
INL  
0.8  
2
I
IN1  
I
IN2  
μA  
l
l
Input Current (A, B)  
V
V
= 0V or 5.25V, V = 12V  
= 0V or 5.25V, V = – 7V  
1.0  
–0.8  
mA  
mA  
CC  
CC  
IN  
IN  
l
V
Differential Input Threshold Voltage for Receiver  
Receiver Input Hysteresis  
–7V ≤ V ≤ 12V  
–0.2  
3.5  
0.2  
V
mV  
V
TH  
CM  
ΔV  
V
CM  
= 0V  
60  
7
TH  
l
l
l
l
l
l
l
l
V
OH  
V
OL  
Receiver Output High Voltage  
Receiver Output Low Voltage  
Three-State Output Current at Receiver  
Supply Current  
I = –4mA, V = 0.2V  
O ID  
I = 4mA, V = –0.2V  
0.4  
1
V
O
ID  
I
I
V
CC  
= Max 0.4V ≤ V ≤ 2.4V  
μA  
mA  
kΩ  
mA  
ns  
OZR  
CC  
O
No Load, Digital Pins = GND or V  
10  
CC  
R
Receiver Input Resistance  
–7V ≤ V ≤ 12V, V = 0V  
12  
7
IN  
CM  
CC  
I
t
t
t
Receiver Short-Circuit Current  
Receiver Input to Output  
0V ≤ V ≤ V  
CC  
85  
55  
55  
OSR  
PLH  
PHL  
SKD  
O
C = 15pF (Figures 1, 3)  
L
12  
12  
28  
28  
4
Receiver Input to Output  
C = 15pF (Figures 1, 3)  
L
ns  
| t  
– t  
|
C = 15pF (Figures 1, 3)  
L
ns  
PLH  
PHL  
Differential Receiver Skew  
The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
VCC = 5V 5ꢀ (Notes 2, 3), unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
C = 15pF (Figures 2, 4) S1 Closed  
MIN  
TYP  
30  
MAX  
60  
UNITS  
ns  
l
l
l
l
t
ZL  
t
ZH  
t
LZ  
t
HZ  
Receiver Enable to Output Low  
Receiver Enable to Output High  
Receiver Disable from Low  
Receiver Disable from High  
L
C = 15pF (Figures 2, 4) S2 Closed  
L
30  
60  
ns  
C = 15pF (Figures 2, 4) S1 Closed  
L
30  
60  
ns  
C = 15pF (Figures 2, 4) S2 Closed  
L
30  
60  
ns  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: All currents into device pins are positive; all currents out of device  
pins are negative. All voltages are referenced to device ground unless  
otherwise specified.  
Note 3: All typicals are given for V = 5V and T = 25°C.  
CC  
A
4889fb  
3
LTC488/LTC489  
TYPICAL PERFORMANCE CHARACTERISTICS  
Receiver Output Low Voltage vs  
Temperature at I = 8mA  
Receiver Output High Voltage vs  
Temperature at I = 8mA  
Receiver Output High Voltage vs  
Output Current at TA = 25°C  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
4.8  
4.6  
4.4  
–18  
–16  
–14  
–12  
–10  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
–8  
–6  
–4  
–2  
0
0
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
5
4
3
2
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
4889 G01  
4889 G02  
4889 G03  
Receiver Output Low Voltage vs  
Output Current at TA = 25°C  
TTL Input Threshold vs  
Temperature  
36  
32  
28  
24  
20  
1.63  
1.61  
1.59  
1.57  
16  
12  
8
4
1.55  
0
–50 –25  
0
25  
50  
75 100 125  
0
0.5  
1.5  
OUTPUT VOLTAGE (V)  
1.0  
2.0  
TEMPERATURE (°C)  
8889 G05  
4889 G04  
Receiver |tPLH – tPHL| vs  
Temperature  
Supply Current vs Temperature  
7.0  
6.6  
6.2  
5.8  
5
4
3
2
5.4  
1
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4889 G07  
4889 G06  
4889fb  
4
LTC488/LTC489  
PIN FUNCTIONS  
B 1 (Pin 1): Receiver 1 Input.  
GND (Pin 8): Ground Connection.  
A1 (Pin 2): Receiver 1 Input.  
B3 (Pin 9): Receiver 3 Input.  
RO1 (Pin 3): Receiver 1 Output. If the receiver output  
is enabled, then if A > B by 200mV, RO1 will be high. If  
A < B by 200mV, then RO1 will be low.  
A3 (Pin 10): Receiver 3 Input.  
RO3 (Pin 11): Receiver 3 Output. Refer to RO1.  
EN (Pin 12) LTC488: Receiver Output Disabled. See Func-  
tion Table for details.  
EN(Pin4)LTC488:ReceiverOutputEnabled.SeeFunction  
Table for details.  
EN34 (Pin 12) LTC489: Receiver 3, Receiver 4 output  
enabled. See Function Table for details.  
EN12 (Pin 4) LTC489: Receiver 1, Receiver 2 Output  
Enabled. See Function Table for details.  
RO4 (Pin 13): Receiver 4 Output. Refer to RO1.  
A4 (Pin 14): Receiver 4 Input.  
RO2 (Pin 5): Receiver 2 Output. Refer to RO1.  
A2 (Pin 6): Receiver 2 Input.  
B4 (Pin 15): Receiver 4 Input.  
B2 (Pin 7): Receiver 2 Input.  
V
(Pin 16): Positive Supply; 4.75V ≤ V ≤ 5.25V.  
CC  
CC  
FUNCTION TABLES  
LTC488  
LTC489  
DIFFERENTIAL  
ENABLES  
OUTPUT  
DIFFERENTIAL  
A – B  
ENABLES  
OUTPUT  
A – B  
EN  
EN  
RO  
EN12 or EN34  
RO  
H
?
V
≥ 0.2V  
H
X
X
L
H
H
V
≥ 0.2V  
ID  
H
H
H
L
ID  
–0.2V < V < 0.2V  
ID  
–0.2V < V < 0.2V  
H
X
X
L
?
?
ID  
V
X
≤ 0.2V  
L
ID  
Z
V
X
≤ 0.2V  
H
X
X
L
L
L
ID  
H: High Level  
L: Low Level  
X: Irrelevant  
?: Indeterminate  
Z: High Impedance (Off)  
L
H
Z
4889fb  
5
LTC488/LTC489  
TEST CIRCUITS  
100pF  
A
B
D
RO  
DRIVER  
RECEIVER  
54Ω  
C
L
100pF  
4889 F01  
Figure 1. Receiver Timing Test Circuit  
Note: The input pulse is supplied by a generator having the following characteristics:  
f = 1MHz, Duty Cycle = 50%, t < 10ns, t ≤ 10ns, Z  
= 50Ω  
r
f
OUT  
S1  
S2  
1k  
RECEIVER  
OUTPUT  
V
CC  
C
1k  
L
4889 F02  
Figure 2. Receiver Enable and Disable Timing Test Circuit  
SWITCHING TIME WAVEFORMS  
INPUT  
f = 1MHz; t ≤ 10ns; t ≤ 10ns  
V
OD2  
r
f
INPUT  
A, B  
0V  
t
0V  
–V  
OD2  
t
PHL  
PLH  
V
OH  
RO  
1.5V  
1.5V  
V
OL  
4889 F03  
Figure 3. Receiver Propagation Delays  
3V  
f = 1MHz; t ≤ 10ns; t ≤ 10ns  
r
f
EN OR  
EN12  
1.5V  
1.5V  
0V  
5V  
t
ZL  
t
LZ  
RO  
RO  
1.5V  
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
0.5V  
V
OL  
t
t
ZH  
HZ  
V
OH  
0.5V  
1.5V  
0V  
4889 F04  
Figure 4. Receiver Enable and Disable Times  
4889fb  
6
LTC488/LTC489  
APPLICATIONS INFORMATION  
Typical Application  
Cables and Data Rate  
A typical connection of the LTC488/LTC489 is shown in  
Figure 5. Two twisted-pair wires connect up to 32 driver/  
receiver pairs for half-duplex data transmission. There are  
no restrictions on where the chips are connected to the  
wires, and it isn’t necessary to have the chips connected  
at the ends. However, the wires must be terminated only  
at the ends with a resistor equal to their characteristic  
impedance, typically 120Ω. The input impedance of a  
receiver is typically 20k to GND, or 0.5 unit RS485 load,  
so in practice 50 to 60 transceivers can be connected to  
the same wires. The optional shields around the twisted-  
pair help reduce unwanted noise, and are connected to  
GND at one end.  
ThetransmissionlineofchoiceforRS485applicationsisa  
twisted-pair. There are coaxial cables (twinaxial) made for  
this purpose that contain straight-pairs, but these are less  
flexible, more bulky, and more costly than twisted-pairs.  
Many cable manufacturers offer a broad range of 120Ω  
cables designed for RS485 applications.  
Losses in a transmission line are a complex combination  
of DC conductor loss, AC losses (skin effect), leakage, and  
AClossesinthedielectric.Ingoodpolyethylenecablesuch  
as the Belden 9841, the conductor losses and dielectric  
losses are of the same order of magnitude, leading to  
relatively low overall loss (Figure 6).  
When using low loss cables, Figure 7 can be used as a  
guidelineforchoosingthemaximumlinelengthforagiven  
EN  
SHIELD  
SHIELD  
4
2
3
RX  
DX  
1/4 LTC486  
1
3
1/4 LTC488 OR  
1/4 LTC489  
DX  
120Ω  
120Ω  
RX  
1
12  
1
2
EN  
1/4 LTC488 OR  
1/4 LTC489  
RX  
3
2
12  
DX  
1/4 LTC486  
4
4889 F05  
EN  
EN  
3
1
DX  
RX  
Figure 5. Typical Connection  
10  
10k  
1k  
1
100  
10  
0.1  
2.5M  
10k  
100k  
1M  
10M  
0.1  
1
10  
100  
DATA RATE (bps)  
FREQUENCY (MHz)  
4889 F07  
4889 F06  
Figure 6. Attenuation vs Frequency for Belden 9841  
Figure 7. Cable Length vs Data Rate  
4889fb  
7
LTC488/LTC489  
APPLICATIONS INFORMATION  
datarate. WithlowerqualityPVCcables, thedielectricloss  
factor can be 1000 times worse. PVC twisted-pairs have  
terrible losses at high data rates (> 100kbps), and greatly  
reduce the maximum cable length. At low data rates how-  
ever, they are acceptable and much more economical.  
When the reflected signal returns to the driver, the ampli-  
tude will be lowered. The width of the pedestal is equal to  
twice the electrical length of the cable (about 1.5ns/foot).  
If the cable is lightly loaded (470Ω), the signal reflects  
in phase and increases the amplitude at the drive output.  
An input frequency of 30kHz is adequate for tests out to  
4000 ft. of cable.  
Cable Termination  
The proper termination of the cable is very important. If  
the cable is not terminated with its characteristic imped-  
ance, distorted waveforms will result. In severe cases,  
distorted (false) data and nulls will occur. A quick look  
at the output of the driver will tell how well the cable is  
terminated. It is best to look at a driver connected to the  
end of the cable, since this eliminates the possibility of  
getting reflections from two directions. Simply look at the  
driver output while transmitting square wave data. If the  
cable is terminated properly, the waveform will look like  
a square wave (Figure 8).  
AC Cable Termination  
Cable termination resistors are necessary to prevent un-  
wanted reflections, but they consume power. The typical  
differential output voltage of the driver is 2V when the  
cable is terminated with two 120Ω resistors, causing  
33mA of DC current to flow in the cable when no data  
is being sent. This DC current is about 60 times greater  
than the supply current of the LTC488/LTC489. One way  
to eliminate the unwanted current is by AC coupling the  
termination resistors as shown in Figure 9.  
If the cable is loaded excessively (47Ω), the signal initially  
sees the surge impedance of the cable and jumps to an  
initial amplitude. The signal travels down the cable and is  
reflectedbackoutofphasebecauseofthemistermination.  
The coupling capacitor must allow high frequency energy  
to flow to the termination, but block DC and low frequen-  
cies. The dividing line between high and low frequency  
depends on the length of the cable. The coupling capaci-  
tor must pass frequencies above the point where the line  
represents an electrical one-tenth wavelength. The value  
of the coupling capacitor should therefore be set at 16.3pF  
perfootofcablelengthfor120Ωcables. Withthecoupling  
capacitors in place, power is consumed only on the signal  
edges, and not when the driver output is idling at a 1 or 0  
state. A 100nF capacitor is adequate for lines up to 4000  
feet in length. Be aware that the power savings start to  
decrease once the data rate surpasses 1/(120Ω)(C).  
PROBE HERE  
Rt  
DRIVER  
RECEIVER  
DX  
RX  
Rt = 120Ω  
Rt = 47Ω  
120Ω  
RECEIVER  
RX  
C
Rt = 470Ω  
488/9 F09  
C = LINE LENGTH (FT)(16.3pF)  
4889 F08  
Figure 9. AC-Coupled Termination  
Figure 8. Termination Effects  
4889fb  
8
LTC488/LTC489  
APPLICATIONS INFORMATION  
Receiver Open-Circuit Fail-Safe  
The termination resistors are used to generate a DC bias  
which forces the receiver output to a known state, in this  
case a logic 0. The first method consumes about 208mW  
andthesecondabout8mW.Thelowestpowersolutionisto  
use an AC termination with a pullup resistor. Simply swap  
the receiver inputs for data protocols ending in logic 1.  
Somedataencodingschemesrequirethattheoutputofthe  
receiver maintains a known state (usually a logic 1) when  
the data is finished transmitting and all drivers on the line  
areforcedinthree-state.ThereceiveroftheLTC488/LTC489  
has a fail-safe feature which guarantees the output to be  
in a logic 1 state when the receiver inputs are left floating  
(open-circuit). When the input is terminated with 120Ω  
and the receiver output must be forced to a known state,  
the circuits of Figure 10 can be used.  
Fault Protection  
AllofLTC’sRS485productsareprotectedagainstESDtran-  
sientsupto2kVusingthehumanbodymodel(100pF,1.5k).  
However,someapplicationsneedmoreprotection.Thebest  
protectionmethodistoconnectabidirectionalTransZorb®  
from each line side pin to ground (Figure 11).  
5V  
110Ω 130Ω  
A TransZorb is a silicon transient voltage suppressor that  
has exceptional surge handling capabilities, fast response  
time, and low series resistance. They are available from  
General instruments, GSI, and come in a variety of break-  
down voltages and prices. Be sure to pick a breakdown  
voltage higher than the common mode voltage required  
for your application (typically 12V). Also, don’t forget to  
check how much the added parasitic capacitance will load  
down the bus.  
RECEIVER  
RX  
130Ω 110Ω  
5V  
1.5k  
120Ω  
1.5k  
RECEIVER  
RX  
Y
5V  
DRIVER  
120Ω  
100k  
Z
C
RECEIVER  
RX  
4889 F11  
120Ω  
Figure 11. ESD Protection with TransZorbs  
4889 F10  
Figure 10. Forcing “0” When All Drivers Are Off  
4889fb  
9
LTC488/LTC489  
PACKAGE DESCRIPTION  
N Package  
16-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
.770*  
(19.558)  
MAX  
14  
12  
10  
9
8
15  
13  
11  
16  
.255 .015*  
(6.477 0.381)  
2
1
3
4
6
5
7
.300 – .325  
(7.620 – 8.255)  
.130 .005  
(3.302 0.127)  
.045 – .065  
(1.143 – 1.651)  
.020  
(0.508)  
MIN  
.065  
(1.651)  
TYP  
.008 – .015  
(0.203 – 0.381)  
+.035  
–.015  
.325  
.120  
(3.048)  
MIN  
.018 .003  
(0.457 0.076)  
.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
–0.381  
NOTE:  
INCHES  
MILLIMETERS  
1. DIMENSIONS ARE  
N16 1002  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
4889fb  
10  
LTC488/LTC489  
PACKAGE DESCRIPTION  
SW Package  
16-Lead Plastic Small Outline (Wide .300 Inch)  
(Reference LTC DWG # 05-08-1620)  
.050 BSC .045 .005  
.030 .005  
TYP  
.398 – .413  
(10.109 – 10.490)  
NOTE 4  
15 14  
12  
10  
9
N
16  
N
13  
11  
.325 .005  
.420  
MIN  
.394 – .419  
(10.007 – 10.643)  
NOTE 3  
N/2  
8
1
2
3
N/2  
RECOMMENDED SOLDER PAD LAYOUT  
2
3
5
7
1
4
6
.291 – .299  
(7.391 – 7.595)  
NOTE 4  
.037 – .045  
(0.940 – 1.143)  
.093 – .104  
(2.362 – 2.642)  
.010 – .029  
× 45°  
(0.254 – 0.737)  
.005  
(0.127)  
RAD MIN  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.004 – .012  
.009 – .013  
(0.102 – 0.305)  
NOTE 3  
(0.229 – 0.330)  
.014 – .019  
.016 – .050  
(0.356 – 0.482)  
TYP  
(0.406 – 1.270)  
NOTE:  
1. DIMENSIONS IN  
INCHES  
(MILLIMETERS)  
S16 (WIDE) 0502  
2. DRAWING NOT TO SCALE  
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS  
4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
4889fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
11  
LTC488/LTC489  
TYPICAL APPLICATION  
RS232 Receiver  
RS232  
IN  
RECEIVER  
1/4 LTC488 OR  
1/4 LTC489  
RX  
5.6k  
4889 TA02  
RELATED PARTS  
PART NUMBER  
LTC485  
DESCRIPTION  
COMMENTS  
Low Power RS485 Transceiver  
Low Power, Half-Duplex  
LTC490  
Low Power RS485 Full-Duplex Transceiver  
3V, Ultralow Power RS485 Transceiver  
3V, Ultralow Power RS485 Transceiver  
Ultralow Power RS485 Low EMI Transceiver  
Fast RS485 Transceiver  
Full-Duplex in SO-8  
LTC1480  
LTC1481  
LTC1483  
LTC1485  
LTC1487  
LTC1685  
1μA Shutdown Mode  
Lowest Power on 5V Supply  
Low EMI/Low Power with Shutdown  
10Mbps Operation  
Ultralow Power RS485 with Low EMI and High Input Impedance  
High Speed RS485 Transceiver  
Up to 256 Nodes on a Bus  
52Mbps, Pin Compatible with LTC485  
52Mbps, Pin Compatible LTC490/LTC491  
LTC1686/LTC1687 High Speed RS485 Full-Duplex Transceiver  
4889fb  
LT 0309 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
© LINEAR TECHNOLOGY CORPORATION 1992  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC490

Differential Driver and Receiver Pair
Linear

LTC490C

Differential Driver and Receiver Pair
Linear

LTC490CN8

Differential Driver and Receiver Pair
Linear

LTC490CN8PBF

暂无描述
Linear

LTC490CS

IC LINE TRANSCEIVER, PDSO8, Line Driver or Receiver
Linear

LTC490CS8

Differential Driver and Receiver Pair
Linear

LTC490CS8#PBF

LTC490 - Differential Driver and Receiver Pair; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC490CS8#TR

LTC490 - Differential Driver and Receiver Pair; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC490CS8#TRPBF

LTC490 - Differential Driver and Receiver Pair; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC490CSW

IC LINE TRANSCEIVER, PDSO16, 0.300 INCH, PLASTIC, SO-16, Line Driver or Receiver
Linear

LTC490I

Differential Driver and Receiver Pair
Linear

LTC490IN8

Differential Driver and Receiver Pair
Linear