LTC5544 [Linear]

4GHz to 6GHz High Dynamic Range Downconverting Mixer; 4GHz的6GHz的高动态范围下变频混频器
LTC5544
型号: LTC5544
厂家: Linear    Linear
描述:

4GHz to 6GHz High Dynamic Range Downconverting Mixer
4GHz的6GHz的高动态范围下变频混频器

文件: 总16页 (文件大小:360K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC5544  
4GHz to 6GHz  
High Dynamic Range  
Downconverting Mixer  
FeaTures  
DescripTion  
TheLTC®5544ispartofafamilyofhighdynamicrange,high  
gainpassivedownconvertingmixerscoveringthe600MHz  
to 6GHz frequency range. The LTC5544 is optimized for  
4GHz to 6GHz RF applications. The LO frequency must  
fall within the 4.2GHz to 5.8GHz range for optimum  
performance. A typical application is a WiMAX receiver  
with a 5.15GHz to 5.35GHz RF input and low side LO.  
n
Conversion Gain: 7.4dB at 5250MHz  
n
IIP3: 25.9dBm at 5250MHz  
n
Noise Figure: 11.3dB at 5250MHz  
n
High Input P1dB  
n
IF Bandwidth Up to 1GHz  
n
640mW Power Consumption  
n
Shutdown Pin  
n
50Ω Single-Ended RF and LO Inputs  
TheLTC5544isdesignedfor3.3Voperation, however;the  
IF amplifier can be powered with 5V for the higher P1dB.  
n
+2dBm LO Drive Level  
n
High LO-RF and LO-IF Isolation  
n
n
n
TheLTC5544’shighlevelofintegrationminimizesthetotal  
solution cost, board space and system-level variation,  
while providing the highest dynamic range for demanding  
receiver applications.  
–40°C to 105°C Operation (T )  
C
Small Solution Size  
16-Lead (4mm × 4mm) QFN package  
applicaTions  
High Dynamic Range Downconverting Mixer Family  
n
5GHz WiMAX/WLAN Receiver  
PART#  
RF RANGE  
LO RANGE  
n
4.9GHz Public Safety Bands  
LTC5540  
LTC5541  
LTC5542  
LTC5543  
LTC5544  
600MHz to 1.3GHz  
1.3GHz to 2.3GHz  
1.6GHz to 2.7GHz  
2.3GHz to 4GHz  
4GHz to 6GHz  
700MHz to 1.2GHz  
1.4GHz to 2.0GHz  
1.7GHz to 2.5GHz  
2.4GHz to 3.6GHz  
4.2GHz to 5.8GHz  
n
4.9GHz to 6GHz Military Communications  
n
Point-to-Point Broadband Communications  
n
Radar Systems  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Typical applicaTion  
Wideband Conversion Gain, IIP3  
and NF vs IF Output Frequency  
Wideband Receiver  
240MHz  
SAW  
1nF  
LTC6416  
LTC2208  
8.5  
8.3  
8.1  
7.9  
7.7  
7.5  
7.3  
7.1  
6.9  
6.7  
6.5  
29  
27  
25  
23  
21  
19  
17  
15  
13  
11  
9
V
IF  
CCIF  
1nF  
150nH  
ADC  
AMP  
3.3V or 5V  
150nH  
22pF  
IIP3  
1µF  
+
f
= 5010MHz  
LO  
LO  
IF  
IF  
P
= 2dBm  
RF = 5250 35MHz  
TEST CIRCUIT IN FIGURE 1  
LTC5544  
IMAGE  
BPF  
IF  
1.2pF  
0.6pF  
RF  
5150MHz  
TO  
G
C
RF  
SYNTH  
LNA  
LO  
5350MHz  
LO  
5010MHz  
2.2nH  
NF  
SHDN  
(0V/3.3V)  
BIAS  
SHDN  
205 215 225 235 245 255 265 275  
V
V
CC2  
CC1  
IF OUTPUT FREQUENCY (MHz)  
5544 TA01b  
V
3.3V  
CC  
1µF  
22pF  
5544 TA01a  
5544f  
1
LTC5544  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Note 1)  
TOP VIEW  
Mixer Supply Voltage (V , V )...........................4.0V  
CC1 CC2  
+
IF Supply Voltage (IF , IF ) ......................................5.5V  
Shutdown Voltage (SHDN)................–0.3V to V +0.3V  
CC  
16 15 14 13  
IF Bias Adjust Voltage (IFBIAS).........–0.3V to V +0.3V  
GND  
RF  
1
2
3
4
12 TEMP  
11 GND  
CC  
LO Bias Adjust Voltage (LOBIAS)......–0.3V to V +0.3V  
CC  
17  
GND  
CT  
LO  
10  
9
LO Input Power (4GHz to 6GHz)...........................+9dBm  
LO Input DC Voltage............................................... 0.1V  
RF Input Power (4GHz to 6GHz)......................... +15dBm  
RF Input DC Voltage............................................... 0.1V  
TEMP Diode Continuous DC Input Current.............10mA  
TEMP Diode Input Voltage ........................................ 1V  
SHDN  
GND  
5
6
7
8
UF PACKAGE  
16-LEAD (4mm × 4mm) PLASTIC QFN  
Operating Temperature Range (T )........ –40°C to 105°C  
T
= 150°C, θ = 8°C/W  
JC  
EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB  
C
JMAX  
Storage Temperature Range .................. –65°C to 150°C  
Junction Temperature (T ) .................................... 150°C  
J
orDer inForMaTion  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
16-Lead (4mm x 4mm) Plastic QFN  
CASE TEMPERATURE RANGE  
–40°C to 105°C  
LTC5544IUF#PBF  
LTC5544IUF#TRPBF  
5544  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ac elecTrical characTerisTics VCC = 3.3V, VCCIF = 3.3V, SHDN = Low, TC = 25°C, PLO = 2dBm,  
unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LO Input Frequency Range  
RF Input Frequency Range  
4200 to 5800  
MHz  
Low Side LO  
High Side LO  
4200 to 6000  
4000 to 5800  
MHz  
MHz  
IF Output Frequency Range  
RF Input Return Loss  
LO Input Return Loss  
IF Output Impedance  
LO Input Power  
Requires External Matching  
5 to 1000  
>12  
MHz  
dB  
Z = 50Ω, 4000MHz to 6000MHz  
O
Z = 50Ω, 4200MHz to 5800MHz  
O
>12  
dB  
||  
||  
R C  
Differential at 240MHz  
332Ω 1.7pF  
f
f
f
f
f
= 4200MHz to 5800MHz  
–1  
2
5
dBm  
dBm  
dBm  
dB  
LO  
LO  
LO  
RF  
RF  
LO to RF Leakage  
= 4200MHz to 5800MHz, Requires C2  
= 4200MHz to 5800MHz  
<–30  
<–21  
>38  
LO to IF Leakage  
RF to LO Isolation  
RF to IF Isolation  
= 4000MHz to 6000MHz  
= 4000MHz to 6000MHz  
>29  
dB  
5544f  
2
LTC5544  
ac elecTrical characTerisTics VCC = 3.3V, VCCIF = 3.3V, SHDN = Low, TC = 25°C, PLO = 2dBm,  
PRF = –3dBm (–3dBm/tone for 2-tone tests),unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3)  
Low Side LO Downmixer Application: RF = 4200MHz to 6000MHz, IF = 240MHz, f = f – f  
LO  
RF  
IF  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Conversion Gain  
RF = 4900MHz  
RF = 5250MHz  
RF = 5800MHz  
7.9  
7.4  
6.4  
6.0  
dB  
Conversion Gain Flatness  
RF = 5250MHz 30MHz, LO = 5010MHz, IF = 240 30MHz  
0.15  
dB  
Conversion Gain vs Temperature  
T = –40°C to 105°C, RF = 5250MHz  
C
–0.007  
dB/°C  
rd  
2-Tone Input 3 Order Intercept  
RF = 4900MHz  
RF = 5250MHz  
RF = 5800MHz  
25.4  
25.9  
25.8  
(∆f = 2MHz)  
dBm  
dBm  
nd  
2-Tone Input 2 Order Intercept  
f
f
= 5371MHz, f = 5130MHz,  
43.2  
RF1  
RF2  
(∆f = 241MHz, f = f – f  
)
= 5010MHz  
LO  
IM2  
RF1  
RF2  
SSB Noise Figure  
RF = 4900MHz  
RF = 5250MHz  
RF = 5800MHz  
10.3  
11.3  
12.8  
dB  
dB  
SSB Noise Figure Under Blocking  
2RF – 2LO Output Spurious Product  
f
f
= 5250MHz, f = 5010MHz,  
BLOCK  
16.9  
–58.3  
–77  
RF  
LO  
= 4910MHz, P  
= 5dBm  
BLOCK  
f
= 5130MHz at –10dBm, f = 5010MHz, f = 240MHz  
dBc  
dBc  
RF  
RF  
LO  
IF  
(f = f + f /2)  
RF  
LO  
IF  
3RF – 3LO Output Spurious Product  
(f = f + f /3)  
f
= 5090MHz at –10dBm, f = 5010MHz, f = 240MHz  
LO IF  
RF  
LO  
IF  
Input 1dB Compression  
RF = 5250MHz, V  
RF = 5250MHz, V  
= 3.3V  
= 5V  
11.4  
14.6  
dBm  
CCIF  
CCIF  
High Side LO Downmixer Application: RF = 4000MHz to 5800MHz, IF = 240MHz, f = f + f  
IF  
LO  
RF  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Conversion Gain  
RF = 4500MHz  
RF = 4900MHz  
RF = 5250MHz  
8.0  
7.7  
7.3  
dB  
Conversion Gain Flatness  
RF = 4900MHz 30MHz, LO = 5356MHz, IF = 456 30MHz  
0.15  
dB  
Conversion Gain vs Temperature  
T = –40°C to 105°C, RF = 4900MHz  
C
–0.005  
dB/°C  
rd  
2-Tone Input 3 Order Intercept  
RF = 4500MHz  
RF = 4900MHz  
RF = 5250MHz  
24.2  
25.1  
24.0  
(∆f = 2MHz)  
dBm  
dBm  
nd  
2-Tone Input 2 Order Intercept  
f
f
= 4779MHz, f = 5020MHz,  
39.8  
RF1  
RF2  
(∆f = 241MHz, f = f – f  
)
= 5140MHz  
LO  
IM2  
RF2  
RF1  
SSB Noise Figure  
RF = 4500MHz  
RF = 4900MHz  
RF = 5250MHz  
10.7  
11.0  
11.7  
dB  
dBc  
2LO – 2RF Output Spurious Product  
(f = f – f  
f = 5020MHz at –10dBm, f = 5140MHz  
RF  
f = 240MHz  
IF  
–55  
LO  
)
IF/2  
RF  
LO  
3LO – 3RF Output Spurious Product  
(f = f – f  
f
RF  
f
IF  
= 5060MHz at –10dBm, f = 5140MHz  
–75  
dBc  
LO  
)
IF/3  
= 240MHz  
RF  
LO  
Input 1dB Compression  
RF = 4900MHz, V  
RF = 4900MHz, V  
= 3.3V  
= 5V  
11.3  
14.5  
dBm  
CCIF  
CCIF  
5544f  
3
LTC5544  
Dc elecTrical characTerisTics VCC = 3.3V, VCCIF = 3.3V, SHDN = Low, TC = 25°C, unless otherwise  
noted. Test circuit shown in Figure 1. (Note 2)  
PARAMETER  
Power Supply Requirements (V , V  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
)
CC CCIF  
V
V
Supply Voltage (Pins 5 and 7)  
3.1  
3.1  
3.3  
3.3  
3.5  
5.3  
V
V
CC  
Supply Voltage (Pins 14 and 15)  
CCIF  
V
V
Supply Current (Pins 5 + 7)  
96  
98  
194  
116  
122  
238  
CC  
Supply Current (Pins 14 + 15)  
CCIF  
mA  
µA  
Total Supply Current (V + V  
)
CC  
CCIF  
Total Supply Current – Shutdown  
SHDN = High  
500  
Shutdown Logic Input (SHDN) Low = On, High = Off  
SHDN Input High Voltage (Off)  
3.0  
V
V
SHDN Input Low Voltage (On)  
0.3  
30  
SHDN Input Current  
Turn On Time  
–0.3V to V + 0.3V  
–20  
µA  
µs  
µs  
CC  
0.6  
0.6  
Turn Off Time  
Temperature Sensing Diode (TEMP)  
DC Voltage at T = 25°C  
I
IN  
I
IN  
= 10µA  
= 80µA  
726.1  
782.5  
mV  
mV  
J
Voltage Temperature Coefficient  
I
IN  
I
IN  
= 10µA  
= 80µA  
–1.73  
–1.53  
mV/°C  
mV/°C  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: SSB Noise Figure measurements performed with a small-signal  
noise source, bandpass filter and 6dB matching pad on RF input, 6dB  
matching pad on the LO input, bandpass filter on the IF output and no  
other RF signals applied.  
Note 2: The LTC5544 is guaranteed functional over the –40°C to 105°C  
case temperature range.  
Typical Dc perForMance characTerisTics SHDN = Low, Test circuit shown in Figure 1.  
VCC Supply Current vs Supply  
Voltage (Mixer and LO Buffer)  
VCCIF Supply Current  
Total Supply Current  
vs Supply Voltage (IF Amplifier)  
vs Temperature (VCC + VCCIF)  
102  
100  
135  
125  
220  
210  
200  
190  
180  
170  
T
T
= 105°C  
= 85°C  
C
T
= 85°C  
C
V
CC  
= 3.3V, V  
= 5V  
CCIF  
C
(DUAL SUPPLY)  
98  
96  
94  
115  
105  
95  
T
T
= 105°C  
= –40°C  
C
V
= V  
= 3.3V  
CCIF  
T
= 25°C  
CC  
C
T
C
= 25°C  
(SINGLE SUPPLY)  
C
92  
90  
85  
75  
T
C
= –40°C  
60 80  
CASE TEMPERATURE (°C)  
120  
100  
3.0 3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4  
SUPPLY VOLTAGE (V)  
–40 –20  
0
20 40  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
V
CCIF  
V
CC  
SUPPLY VOLTAGE (V)  
5544 G02  
5544 G03  
5544 G01  
5544f  
4
LTC5544  
Typical ac perForMance characTerisTics Low Side LO  
V
CC = 3.3V, VCCIF = 3.3V, SHDN = Low, TC = 25°C, PLO = 2dBm, PRF = –3dBm (–3dBm/tone for two-tone IIP3 tests, f = 2MHz),  
IF = 240MHz, unless otherwise noted. Test circuit shown in Figure 1.  
Conversion Gain and IIP3  
vs RF Frequency  
Conversion Gain and IIP3  
vs RF Frequency  
15  
15  
13  
11  
9
27  
27  
25  
23  
IIP3  
IIP3  
13  
11  
9
25  
23  
V
CC  
= V  
V
CCIF  
P
LO  
P
LO  
P
LO  
= –1dBm  
= 2dBm  
= 5dBm  
= 3.1V  
CC  
CC  
CC  
V
V
= 3.3V  
= 3.5V  
21  
19  
17  
G
C
21  
19  
17  
G
C
7
7
5
5
4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0  
4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
5544 G04  
5544 G05  
Conversion Gain and IIP3  
vs RF Frequency  
Input P1dB vs RF Frequency  
15  
13  
11  
9
16  
27  
15  
14  
13  
12  
11  
10  
9
IIP3  
25  
23  
V
= 5V  
CCIF  
T = –40°C  
C
T = 25°C  
C
T = 85°C  
C
T = 105°C  
C
21  
19  
17  
G
C
V
= 3.3V  
CCIF  
7
P
LO  
P
LO  
P
LO  
= –1dBm  
= 2dBm  
= 5dBm  
5
4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0  
4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
5544 G07  
5544 G06  
SSB NF and DSB NF  
vs RF Frequency  
5250MHz Conversion Gain,  
IIP3 and NF vs LO Power  
16  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
22  
IIP3  
SSB NF  
20  
18  
16  
14  
12  
10  
8
14  
12  
10  
8
DSB NF  
NF  
6
T
= –40°C  
= 25°C  
= 85°C  
C
T
6
C
4
T
= –40°C  
= 25°C  
= 85°C  
= 105°C  
C
T
C
T
4
C
G
2
C
T
C
2
T
C
0
6
0
4.6 4.8 5.0 5.2 5.4  
6.0  
5.6 5.8  
4.2 4.4  
–3  
–1  
0
1
2
3
4
5
6
7
–2  
LO INPUT POWER (dBm)  
RF FREQUENCY (GHz)  
5544 G09  
5544 G08  
5544f  
5
LTC5544  
Typical ac perForMance characTerisTics Low Side LO (continued)  
VCC = 3.3V, VCCIF = 3.3V, SHDN = Low, TC = 25°C, PLO = 2dBm, PRF = –3dBm (–3dBm/tone for two-tone IIP3 tests, f = 2MHz),  
IF = 240MHz, unless otherwise noted. Test circuit shown in Figure 1.  
Conversion Gain, IIP3 and RF Input  
P1dB vs Temperature  
Single-Tone IF Output Power, 2 × 2  
and 3 × 3 Spurs vs RF Input Power  
2 × 2 and 3 × 3 Spurs  
vs LO Power  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
20  
10  
–40  
–50  
–60  
–70  
–80  
IIP3  
IF  
OUT  
(RF = 5250MHz)  
RF = 5250MHz  
P
= –10dBm  
RF  
0
2RF – 2LO  
(RF = 5130MHz)  
RF = 5250MHz  
LO = 5010MHz  
V
CCIF  
V
CCIF  
= 5V  
= 3.3V  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
P1dB  
2RF – 2LO  
(RF = 5130MHz)  
3RF – 3LO  
(RF = 5090MHz)  
3RF – 3LO  
(RF = 5090MHz)  
G
C
6
–45  
–5 15 35 55 75 95 115  
–25  
–12 –9 –6 –3  
0
3
6
9
12 15  
–6  
–4  
–2  
0
2
4
6
CASE TEMPERATURE (°C)  
RF INPUT POWER (dBm)  
5544 G10  
5544 G11  
LO INPUT POWER (dBm)  
5544 G12  
SSB Noise Figure  
vs RF Blocker Level  
RF/LO Isolation  
LO to RF Leakage vs LO Frequency  
0
–10  
–20  
–30  
–40  
–50  
60  
50  
40  
30  
20  
20  
19  
18  
17  
16  
15  
14  
13  
12  
RF = 5250MHz  
LO = 5010MHz  
BLOCKER = 4910MHz  
P
= –1dBm  
LO  
C2 = OPEN  
RF TO LO  
P
= 2dBm  
LO  
RF TO IF  
LO TO IF  
C2 = 0.4pF  
P
= 5dBm  
0
C2 = 0.6pF  
C2 = 1pF  
LO  
11  
10  
4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8  
4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0  
–25  
–20  
–15  
–10  
–5  
5
LO FREQUENCY (GHz)  
RF/LO FREQUENCY (GHz)  
RF BLOCKER POWER (dBm)  
5544 G14  
5544 G15  
5544 G13  
5250MHz Conversion Gain  
Histogram  
5250MHz IIP3 Histogram  
5250MHz SSB NF Histogram  
45  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
T = 85°C  
T
C
= 85°C  
= 25°C  
= –40°C  
RF = 5250MHz  
RF=5250MHz  
C
T
= 85°C  
= 25°C  
= –40°C  
RF = 5250MHz  
C
T = 25°C  
C
T
T
C
C
T =40°C  
C
T
T
C
C
0
0
0
9.9 10.3 10.7 11.1 11.5 11.9 12.3 12.7  
6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9  
CONVERSION GAIN (dB)  
23.7 24.1 24.5 24.9 25.3 25.7 26.1 26.5 26.9  
IIP3 (dBm)  
SSB NOISE FIGURE (dB)  
5544 G18  
5544 G16  
5544 G17  
5544f  
6
LTC5544  
Typical ac perForMance characTerisTics High Side LO  
VCC = 3.3V, VCCIF = 3.3V, SHDN = Low, TC = 25°C, PLO = 2dBm, PRF = –3dBm (–3dBm/tone for two-tone IIP3 tests, f = 2MHz),  
IF = 240MHz, unless otherwise noted. Test circuit shown in Figure 1.  
Conversion Gain and IIP3  
vs RF Frequency  
Conversion Gain and IIP3  
vs RF Frequency  
15  
13  
11  
9
15  
13  
11  
9
26  
24  
22  
26  
24  
22  
IIP3  
IIP3  
20  
18  
16  
20  
18  
16  
G
C
G
C
V
CC  
= V  
V
CCIF  
7
7
P
LO  
P
LO  
P
LO  
= –1dBm  
= 2dBm  
= 5dBm  
= 3.1V  
CC  
CC  
CC  
V
= 3.3V  
= 3.5V  
V
5
5
4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8  
4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
5544 G19  
5544 G20  
Conversion Gain and IIP3  
vs RF Frequency  
Input P1dB vs RF Frequency  
16  
15  
14  
13  
12  
11  
10  
9
15  
26  
24  
22  
IIP3  
V
CCIF  
= 5V  
13  
11  
9
T = –40°C  
C
T = 25°C  
C
V
CCIF  
= 3.3V  
20  
18  
16  
T = 85°C  
C
G
C
T = 105°C  
C
7
P
LO  
P
LO  
P
LO  
= –1dBm  
= 2dBm  
= 5dBm  
5
4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8  
4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8  
RF FREQUENCY (GHz)  
5544 G22  
RF FREQUENCY (GHz)  
5544 G21  
SSB NF and DSB NF  
vs RF Frequency  
5250MHz Conversion Gain,  
IIP3 and NF vs LO Power  
16  
25  
23  
21  
19  
17  
15  
13  
11  
9
20  
18  
16  
14  
12  
10  
8
SSB NF  
14  
12  
10  
8
IIP3  
NF  
DSB NF  
T = –40°C  
6
C
T = 25°C  
C
6
T = 85°C  
C
4
T = –40°C  
C
4
T = 25°C  
C
G
C
2
T = 85°C  
C
7
2
T = 105°C  
C
5
0
0
4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0  
–3  
–1  
0
1
2
3
4
5
6
7
–2  
RF FREQUENCY (GHz)  
LO INPUT POWER (dBm)  
5544 G23  
5544 G24  
5544f  
7
LTC5544  
pin FuncTions  
GND (Pins 1, 8, 9, 11, Exposed Pad Pin 17): Ground.  
These pins must be soldered to the RF ground plane on  
the circuit board. The exposed pad metal of the package  
providesbothelectricalcontacttogroundandgoodthermal  
contact to the printed circuit board.  
nected and must be externally connected to a regulated  
3.3V supply, with bypass capacitors located close to the  
pins. Typical current consumption is 96mA.  
LOBIAS (Pin 6): This Pin Allows Adjustment of the LO  
Buffer Current. Typical DC voltage is 2.2V.  
RF (Pin 2): Single-Ended Input for the RF Signal. This pin  
is internally connected to the primary side of the RF input  
transformer, which has low DC resistance to ground. A  
series DC-blocking capacitor should be used to avoid  
damage to the integrated transformer when DC voltage  
is present at the RF input. The RF input is impedance  
matched, as long as the LO input is driven with a 2dBm  
5dB source between 4.2GHz and 5.8GHz.  
LO (Pin 10): Single-Ended Input for the Local Oscillator.  
This pin is internally connected to the primary side of the  
RF input transformer, which has low DC resistance to  
ground. A series DC blocking capacitor must be used to  
avoiddamagetotheintegratedtransformerifDCvoltage  
is present at the LO input.  
TEMP (Pin 12): Temperature Sensing Diode. This pin is  
connected to the anode of a diode that may be used to  
measure the die temperature, by forcing a current and  
measuring the voltage.  
CT (Pin 3): RF Transformer Secondary Center-Tap. This  
pin may require a bypass capacitor to ground. See the  
ApplicationsInformationsection.Thispinhasaninternally  
generated bias voltage of 1.2V. It must be DC-isolated  
IFGND (Pin 13): DC Ground Return for the IF Amplifier.  
This pin must be connected to ground to complete the IF  
amplifier’s DC current path. Typical DC current is 98mA.  
from ground and V .  
CC  
SHDN (Pin 4): Shutdown Pin. When the input voltage is  
less than 0.3V, the IC is enabled. When the input voltage  
is greater than 3V, the IC is disabled. Typical SHDN pin  
input current is less than 10μA. This pin must not be  
allowed to float.  
+
IF (Pin 14) and IF (Pin 15): Open-Collector Differential  
OutputsfortheIFAmplifier.Thesepinsmustbeconnected  
to a DC supply through impedance matching inductors, or  
atransformercenter-tap.TypicalDCcurrentconsumption  
is 49mA into each pin.  
V
(Pin 5) and V  
(Pin 7): Power Supply Pins for the  
CC2  
CC1  
IFBIAS (Pin 16): This Pin Allows Adjustment of the IF  
Amplifier Current. Typical DC voltage is 2.1V.  
LO Buffer and Bias Circuits. These pins are internally con-  
block DiagraM  
16  
15  
14  
13  
IFGND  
17  
TEMP  
+
12  
10  
IFBIAS IF  
IF  
EXPOSED  
PAD  
IF  
AMP  
LO  
RF  
2
LO  
AMP  
PASSIVE  
MIXER  
CT  
3
4
SHDN  
BIAS  
V
V
LOBIAS  
CC1  
CC2  
5
7
6
5544 BD  
GND PINS ARE NOT SHOWN  
5544f  
8
LTC5544  
TesT circuiT  
IF  
OUT  
4:1  
240MHz  
50Ω  
T1  
C5  
L2  
L1  
V
CCIF  
3.1V TO 5.3V  
C8  
C4  
16  
IFBIAS  
GND  
15  
14  
13  
+
IF  
IF  
IFGND  
TEMP  
1
2
12  
11  
LTC5544  
C1  
RF  
50Ω  
IN  
RF  
GND  
L4  
17  
GND  
C3  
LO  
50Ω  
IN  
10  
9
LO  
CT  
3
4
C2  
SHDN  
(0V/3.3V)  
SHDN  
GND  
V
V
LOBIAS  
6
GND  
8
CC1  
CC2  
7
5
V
CC  
5544 F01  
3.1V TO 3.5V  
C6  
C7  
RF  
0.015”  
0.062”  
0.015”  
GND DC1885A  
BOARD  
BIAS  
STACK-UP  
(NELCO N4000-13)  
GND  
L1, L2 vs IF  
Frequencies  
REF DES  
C1  
VALUE  
0.6pF  
Open  
SIZE  
COMMENTS  
0402  
0402  
AVX ACCU-P  
IF (MHz)  
L1, L2 (nH)  
C2  
140  
190  
240  
305  
380  
456  
220  
150  
150  
82  
C3  
1.2pF  
22pF  
0402  
0402  
0402  
0603  
0603  
AVX ACCU-P  
C4, C6  
C5  
AVX  
AVX  
1000pF  
1µF  
56  
C7, C8  
L1, L2  
AVX  
39  
150nH  
Coilcraft 0603CS  
L4  
T1  
2.2nH  
0402  
Coilcraft 0402HP  
Mini-Circuits  
TC4-1W-7ALN+  
Note: For IF = 250MHz to 500MHz, use TC4-1W-17LN+ for T1  
Figure 1. Standard Downmixer Test Circuit Schematic (240MHz IF)  
5544f  
9
LTC5544  
applicaTions inForMaTion  
Introduction  
For the RF input to be matched, the LO input must  
be driven. A broadband input match is realized with  
C1 = 0.6pF and L4 = 2.2nH. The measured RF input return  
loss is shown in Figure 4 for LO frequencies of 4.4GHz,  
5GHz and 5.6GHz. These LO frequencies correspond to  
the lower, middle and upper values of the LO range. As  
shown in Figure 4, the RF input impedance is somewhat  
dependent on LO frequency.  
The LTC5544 consists of a high linearity passive double-  
balanced mixer core, IF buffer amplifier, LO buffer ampli-  
fier and bias/shutdown circuits. See the Block Diagram  
section for a description of each pin function. The RF and  
LO inputs are single-ended. The IF output is differential.  
Low side or high side LO injection can be used. The  
evaluation circuit, shown in Figure 1, utilizes bandpass IF  
output matching and an IF transformer to realize a 50Ω  
single-ended IF output. The evaluation board layout is  
shown in Figure 2.  
The RF input impedance and input reflection coefficient,  
versus RF frequency, is listed in Table 1. The reference  
plane for this data is Pin 2 of the IC, with no external  
matching, and the LO is driven at 5GHz.  
LTC5544  
TO MIXER  
C1  
RF  
IN  
RF  
CT  
2
3
L4  
C2  
5544 F02  
5544 F03  
Figure 2. Evaluation Board Layout  
Figure 3. RF Input Schematic  
RF Input  
0
5
The mixer’s RF input, shown in Figure 3, is connected to  
the primary winding of an integrated transformer. A 50Ω  
match is realized with a series capacitor (C1) and a shunt  
inductor (L4). The primary side of the RF transformer  
is DC-grounded internally and the DC resistance of the  
primary is approximately 2.4Ω. A DC blocking capacitor  
is needed if the RF source has DC voltage present.  
10  
15  
20  
25  
30  
35  
LO = 4.4GHz  
LO = 5.6GHz  
LO = 5GHz  
The secondary winding of the RF transformer is internally  
connected to the passive mixer. The center-tap of the  
transformer secondary is connected to Pin 3 (CT) to allow  
the connection of bypass capacitor, C2. The value of C2 is  
LO frequency-dependent and can be tuned for better LO  
leakage performance. When used, C2 should be located  
within2mmofPin3forproperhighfrequencydecoupling.  
The nominal DC voltage on the CT pin is 1.2V.  
4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0  
RF FREQUENCY (GHz)  
5544 F04  
Figure 4. RF Input Return Loss  
5544f  
10  
LTC5544  
applicaTions inForMaTion  
Table 1. RF Input Impedance and S11  
(at Pin 2, No External Matching, LO Input Driven at 5GHz)  
low), the internal bias circuit provides a regulated 4mA  
current to the amplifier’s bias input, which in turn causes  
the amplifiers to draw approximately 90mA of DC current.  
This 4mA reference current is also connected to LOBIAS  
(Pin 6) to allow modification of the amplifier’s DC bias  
current for special applications. The recommended ap-  
plicationcircuitsrequirenoLOamplifierbiasmodification,  
so this pin should be left open-circuited.  
S11  
FREQUENCY  
(GHz)  
INPUT  
IMPEDANCE  
MAG  
0.44  
0.41  
0.40  
0.38  
0.31  
0.21  
0.25  
0.29  
0.28  
0.25  
0.26  
ANGLE  
34.8  
31.2  
29  
4.0  
4.2  
4.4  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
85.8 + j54.1  
89.2 + j45.6  
90.9 + j41.3  
95.9 + j33.6  
91.4 + j17.1  
72.9 + j10.7  
66.7 + j24.1  
70.8 + j29.1  
73.1 + j26.2  
69.2 + j23.9  
67.3 + j25.7  
23.2  
15.6  
20.1  
43.6  
40.9  
36.6  
39.9  
43.7  
The nominal LO input level is +2dBm although the limiting  
amplifiers will deliver excellent performance over a 3dB  
input power range. LO input power greater than +5dBm  
may be used with slightly degraded performance.  
The LO input impedance and input reflection coefficient,  
versus frequency, is shown in Table 2.  
Table 2. LO Input Impedance vs Frequency  
(at Pin 10, No External Matching)  
LO Input  
S11  
FREQUENCY  
(GHz)  
INPUT  
IMPEDANCE  
The mixer’s LO input circuit, shown in Figure 5, consists  
ofabaluntransformerandatwo-stagehighspeedlimiting  
differentialamplifiertodrivethemixercore.TheLTC5544’s  
LO amplifiers are optimized for the 4.2GHz to 5.8GHz  
LO frequency range. LO frequencies above or below this  
frequencyrangemaybeusedwithdegradedperformance.  
MAG  
0.42  
0.41  
0.39  
0.35  
0.30  
0.24  
0.16  
0.09  
0.04  
0.03  
0.09  
ANGLE  
140.2  
129.9  
118.1  
106.7  
95  
4.0  
4.2  
4.4  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
5.8  
6.0  
22.7 + j14.7  
24.4 + j18.6  
28.2 + j22.5  
33.2 + j25.3  
39.7 + j26.4  
47.4 + j24.3  
52.2 + j16.9  
52 + j9.4  
82.1  
The mixer’s LO input is directly connected to the primary  
winding of an integrated transformer. A 50Ω match is  
realized with a series 1.2pF capacitor (C3). Measured LO  
input return loss is shown in Figure 6.  
73.3  
72.7  
49.9 + j3.8  
47.7 – j1  
88.8  
–156.5  
–129.4  
The LO amplifiers are powered through V  
(Pin 5 and Pin 7). When the chip is enabled (SHDN =  
and V  
CC2  
CC1  
44.2 – j6.2  
0
5
LTC5544  
LO BUFFER  
C3 LO  
IN  
LO  
10  
TO  
10  
15  
20  
25  
30  
MIXER  
4mA  
BIAS  
4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0  
LOBIAS  
V
V
CC2  
CC1  
LO FREQUENCY (GHz)  
5544 F06  
6
5
7
5544 F05  
Figure 5. LO Input Schematic  
Figure 6. LO Input Return Loss  
5544f  
11  
LTC5544  
applicaTions inForMaTion  
IF Output  
transformation. ItisalsopossibletoeliminatetheIFtrans-  
former and drive differential filters or amplifiers directly.  
The IF amplifier, shown in Figure 7, has differential  
+
The IF output impedance can be modeled as 332Ω in  
parallel with 1.7pF at IF frequencies. An equivalent small-  
signal model is shown in Figure 8. Frequency-dependent  
differential IF output impedance is listed in Table 3. This  
data is referenced to the package pins (with no external  
components) and includes the effects of IC and package  
parasitics.  
open-collector outputs (IF and IF ), a DC ground return  
pin (IFGND), and a pin for modifying the internal bias  
(IFBIAS). The IF outputs must be biased at the supply  
voltage (V ), which is applied through matching induc-  
CCIF  
tors L1 and L2. Alternatively, the IF outputs can be biased  
through the center tap of a transformer. The common  
node of L1 and L2 can be connected to the center tap of  
the transformer. Each IF output pin draws approximately  
49mA of DC supply current (98mA total). IFGND (Pin 13)  
mustbegroundedortheamplifierwillnotdrawDCcurrent.  
For the highest conversion gain, high-Q wire-wound chip  
inductorsarerecommendedforL1andL2,especiallywhen  
15  
14  
+
IF  
IF  
LTC5544  
R
C
IF  
IF  
usingV  
=3.3V.Lowcostmultilayerchipinductorsmay  
CCIF  
be substituted, with a slight degradation in performance.  
Grounding through inductor L3 may improve LO-IF and  
RF-IF leakage performance in some applications, but is  
otherwise not necessary. High DC resistance in L3 will  
reduce the IF amplifier supply current, which will degrade  
RF performance.  
5544 F08  
Figure 8. IF Output Small-Signal Model  
Table 3. IF Output Impedance vs Frequency  
DIFFERENTIAL OUTPUT  
IMPEDANCE (R || X (C ))  
FREQUENCY (MHz)  
T1  
IF  
IF IF  
IF  
OUT  
4:1  
C10  
L2  
90  
351 || –j707 (2.5pF)  
341 || –j494 (2.3pF)  
334 || –j441 (1.9pF)  
332 || –j390 (1.7pF)  
325 || –j312 (1.7pF)  
318 || –j246 (1.7pF)  
304 || –j205 (1.7pF)  
R1  
140  
190  
240  
300  
380  
456  
L1  
(OPTION TO  
REDUCE  
DC POWER)  
L3  
V
+
CCIF  
98mA  
(OR SHORT)  
C8  
16  
IFBIAS  
15  
IF  
14  
13  
IFGND  
LTC5544  
IF  
V
CC  
IF  
AMP  
Transformer-Based Bandpass IF Matching  
4mA  
BIAS  
The IF output can be matched for IF frequencies as low  
as 40MHz, or as high as 500MHz, using the bandpass IF  
matching shown in Figures 1 and 7. L1 and L2 resonate  
with the internal IF output capacitance at the desired IF  
frequency. The value of L1, L2 is calculated as follows:  
5544 F07  
Figure 7. IF Amplifier Schematic with  
Transformer-Based Bandpass Match  
2
L1, L2 = 1/[(2 π f ) • 2 • C ]  
IF  
IF  
Foroptimumsingle-endedperformance,thedifferentialIF  
outputs must be combined through an external IF trans-  
former or discrete IF balun circuit. The evaluation board  
(see Figures 1 and 2) uses a 4:1 ratio IF transformer for  
impedancetransformationanddifferentialtosingle-ended  
where C is the internal IF capacitance (listed in Table 3).  
IF  
Values of L1 and L2 are tabulated in Figure 1 for various  
IF frequencies  
5544f  
12  
LTC5544  
applicaTions inForMaTion  
Discrete IF Balun Matching  
Table 4. Performance Comparison with VCCIF = 3.3V and 5V  
(RF = 5250MHz, Low Side LO, IF = 240MHz)  
For many applications, it is possible to replace the IF  
transformer with the discrete IF balun shown in Figure 9.  
The values of L5, L6, C13 and C14 are calculated to realize  
a 180° phase shift at the desired IF frequency and provide  
a50Ωsingle-endedoutput,usingthefollowingequations.  
Inductor L7 is used to cancel the internal capacitance  
V
I
G
C
P1dB  
IIP3  
NF  
CCIF  
CCIF  
(V)  
3.3  
5.0  
(mA)  
(dB)  
(dBm)  
(dBm)  
(dB)  
98  
7.4  
11.4  
14.6  
25.9  
26.5  
11.3  
11.4  
101  
7.4  
IF  
OUT  
L5  
V
C15  
R1  
C and supplies bias voltage to the IF pin. C15 is a DC  
IF  
(OPTION TO  
REDUCE  
DC POWER)  
C14  
L3  
(OR SHORT)  
L6  
L7  
blocking capacitor.  
98mA  
CCIF  
C13  
RIF ROUT  
16  
IFBIAS  
15  
IF  
14  
IF  
13  
L5,L6=  
LTC5544  
+
IFGND  
ωIF  
1
C13, C14=  
ωIF RIF ROUT  
V
CC  
IF  
AMP  
|XIF |  
L7=  
4mA  
BIAS  
ωIF  
5544 F09  
Theseequationsgiveagoodstartingpoint, butitisusually  
necessary to adjust the component values after building  
and testing the circuit. The final solution can be achieved  
with less iteration by considering the parasitics of L7 in  
the previous calculation.  
Figure 9. IF Amplifier Schematic with Discrete IF Balun  
28  
26  
24  
22  
20  
18  
13  
11  
9
IIP3  
The typical performances of the LTC5544 using a discrete  
IF balun matching and a transformer-based IF matching  
are shown in Figure 10. With an IF frequency of 456MHz,  
the actual components values for the discrete balun are:  
G
C
7
IF = 456MHz  
LOW SIDE LO  
5
TC4-1W-17LN+ BALUN  
DISCRETE BALUN  
L5, L6 = 36nH, L7 = 82nH and C13, C14 = 3.3pF  
3
4.5 4.7 4.9 5.1 5.3 5.5 5.7 5.9 6.1 6.3  
Measured IF output return losses for transformer-based  
bandpass IF matching and discrete balun IF matching  
(456MHz IF frequency) are plotted in Figure 11. A discrete  
balun has less insertion loss than a balun transformer,  
but the IF bandwidth of a discrete balun is less than that  
of a transformer.  
RF FREQUENCY (GHz)  
5544 F10  
Figure 10. Conversion Gain and IIP3 vs RF Frequency  
0
L1, L2 = 150nH  
L1, L2 = 82nH  
L1, L2 = 39nH  
5
10  
15  
20  
25  
30  
DISCRETE BALUN 456MHz  
IF Amplifier Bias  
The IF amplifier delivers excellent performance with  
V
= 3.3V, which allows the V and V  
supplies  
CCIF  
CC  
CCIF  
to be common. With V  
increased to 5V, the RF input  
CCIF  
P1dBincreasesbymorethan3dB,attheexpenseofhigher  
power consumption. Mixer performance at 5250MHz is  
100 150 200 250 300 350 400 450 500 550 600  
shown in Table 4 with V  
= 3.3V and 5V.  
IF FREQUENCY (MHz)  
CCIF  
5544 F11  
Figure 11. IF Output Return Loss  
5544f  
13  
LTC5544  
applicaTions inForMaTion  
The IFBIAS pin (Pin 16) is available for reducing the DC  
current consumption of the IF amplifier, at the expense of  
reducedperformance.Thispinshouldbeleftopen-circuited  
for optimum performance. The internal bias circuit pro-  
duces a 4mA reference for the IF amplifier, which causes  
the amplifier to draw approximately 98mA. If resistor R1  
is connected to Pin 16 as shown in Figure 6, a portion of  
the reference current can be shunted to ground, resulting  
in reduced IF amplifier current. For example, R1 = 1kΩ  
will shunt away 1.5mA from Pin 16 and the IF amplifier  
current will be reduced by 40% to approximately 59mA.  
The nominal, open-circuit DC voltage at Pin 16 is 2.1V.  
Table 5 lists RF performance at 5250MHz versus IF ampli-  
fier current.  
LTC5544  
500Ω  
V
CC1  
5
4
SHDN  
5544 F12  
Figure 12. Shutdown Input Circuit  
Temperature Diode  
The LTC5544 provides an on-chip diode at Pin 12 (TEMP)  
forchiptemperaturemeasurement. Pin12isconnectedto  
the anode of an internal ESD diode with its cathode con-  
nected to internal ground. The chip temperature can be  
measured by injecting a constant DC current into Pin 12  
and measuring its DC voltage. The voltage vs temperature  
coefficient of the diode is about –1.73mV/°C with 10µA  
current injected into the TEMP pin. Figure 13 shows a  
typicaltemperature-voltagebehaviorwhen1Aand80µA  
currents are injected into Pin 12.  
Table 5. Mixer Performance with Reduced IF Amplifier Current  
(RF = 5250MHz, Low Side LO, IF = 240MHz, VCC = VCCIF = 3.3V)  
R1  
I
G
IIP3  
P1dB  
NF  
CCIF  
C
(kΩ)  
(mA)  
(dB)  
7.4  
7.2  
6.9  
6.3  
(dBm)  
(dBm)  
(dB)  
OPEN  
4.7  
98  
25.9  
25.7  
25.2  
23.8  
11.4  
11.5  
11.6  
11.3  
11.3  
11.4  
11.5  
11.6  
89  
2.2  
77  
1.0  
59  
(RF = 5250MHz, High Side LO, IF = 240MHz, VCC = VCCIF = 3.3V)  
R1  
I
G
IIP3  
P1dB  
NF  
CCIF  
C
900  
(kΩ)  
(mA)  
(dB)  
7.3  
7.0  
6.6  
5.8  
(dBm)  
(dBm)  
(dB)  
850  
OPEN  
4.7  
98  
24.0  
23.8  
23.5  
22.6  
11.4  
11.4  
11.4  
11.3  
11.7  
11.9  
12.2  
12.4  
80µA  
800  
750  
700  
89  
2.2  
77  
1.0  
59  
650  
10µA  
600  
Shutdown Interface  
550  
500  
450  
400  
Figure 12 shows a simplified schematic of the SHDN pin  
interface. To disable the chip, the SHDN voltage must be  
higher than 3.0V. If the shutdown function is not required,  
the SHDN pin should be connected directly to GND. The  
voltage at the SHDN pin should never exceed the power  
–40 –20  
0
20  
40  
60  
80 100  
JUNCTION TEMPERATURE (°C)  
5544 F13  
Figure 13. TEMP Diode Voltage vs Junction Temperature (TJ)  
supply voltage (V ) by more than 0.3V. If this should  
CC  
occur, the supply current could be sourced through the  
Supply Voltage Ramping  
ESD diode, potentially damaging the IC.  
Fast ramping of the supply voltage can cause a current  
glitchintheinternalESDprotectioncircuits.Dependingon  
the supply inductance, this could result in a supply volt-  
age transient that exceeds the maximum rating. A supply  
The SHDN pin must be pulled high or low. If left floating,  
then the on/off state of the IC will be indeterminate. If a  
three-state condition can exist at the SHDN pin, then a  
pull-up or pull-down resistor must be used.  
voltage ramp time of greater than 1ms is recommended.  
5544f  
14  
LTC5544  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
UF Package  
16-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1692)  
0.72 0.05  
4.35 0.05  
2.90 0.05  
2.ꢀ5 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.30 0.05  
0.65 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
PIN ꢀ NOTCH R = 0.20 TYP  
OR 0.35 × 45° CHAMFER  
0.75 0.05  
R = 0.ꢀꢀ5  
TYP  
4.00 0.ꢀ0  
(4 SIDES)  
ꢀ5  
ꢀ6  
0.55 0.20  
PIN ꢀ  
TOP MARK  
(NOTE 6)  
2
2.ꢀ5 0.ꢀ0  
(4-SIDES)  
(UFꢀ6) QFN ꢀ0-04  
0.200 REF  
0.30 0.05  
0.65 BSC  
0.00 – 0.05  
NOTE:  
ꢀ. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.ꢀ5mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN ꢀ LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
5544f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LTC5544  
Typical applicaTion  
900MHz IF Output Matching  
Conversion Gain,  
IIP3 and NF vs RF Frequency  
TM4-1  
(SYNERGY)  
IF  
OUT  
50Ω  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
10  
9
8
7
6
5
4
3
2
1
0
3.3pF  
IIP3  
1000pF  
1000pF  
22nH  
1000pF  
IF = 900MHz  
LOW SIDE LO  
22nH  
V
3.3V  
CCIF  
1µF  
22pF  
+
IF  
IF  
IFGND TEMP  
G
C
IF  
0.6pF  
1.2pF  
RF  
IN  
LO  
IN  
50Ω  
LO  
LO  
50Ω  
RF  
SSB NF  
2.2nH  
SHDN  
4.9 5.1 5.3 5.5 5.7 5.9 6.1 6.3  
SHDN  
RF FREQUENCY (GHz)  
BIAS  
5544 TA02b  
V
CC1  
V
CC2  
5544 TA02a  
V
3.3V  
CC  
1µF  
22pF  
relaTeD parTs  
PART NUMBER DESCRIPTION  
COMMENTS  
Infrastructure  
LTC554X  
LT®5527  
LT5557  
600MHz to 6GHz 3.3V Downconverting Mixers  
400MHz to 3.7GHz, 5V Downconverting Mixer  
8dB Gain, 26dBm IIP3, 10dB NF, 3.3V/200mA Supply  
2.3dB Gain, 23.5dBm IIP3 and 12.5dB NF at 1900MHz, 5V/78mA Supply  
2.9dB Gain, 24.7dBm IIP3 and 11.7dB NF at 1950MHz, 3.3V/82mA Supply  
400MHz to 3.8GHz, 3.3V Downconverting Mixer  
LTC559x  
LTC5569  
LTC6400-X  
LTC6416  
LTC6412  
LT5554  
600MHz to 4.5GHz Dual Downconverting Mixer Family 8.5dB Gain, 26.5dBm IIP3, 9.9dB NF, 3.3V/380mA Supply  
300MHz to 4GHz 3.3V Dual Downconverting Mixer  
300MHz Low Distortion IF Amp/ADC Driver  
2GHz 16-Bit ADC Buffer  
2dB Gain, 26.8dBm IIP3 and 11.7dB NF at 1950MHz, 3.3V/180mA Supply  
Fixed Gain of 8dB, 14dB, 20dB and 26dB; >36dBm OIP3 at 300MHz, Differential I/O  
40dBm OIP3 to 300MHz, Programmable Fast Recovery Output Clamping  
35dBm OIP3 at 240MHz, Continuous Variable Gain Range –14dB to 17dB  
48dBm OIP3 at 200MHz, 2dB to 18dB Gain Range, 0.125dB Gain Steps  
27dBm OIP3 at 900MHz, 24.2dBm at 1.95GHz, Integrated RF Transformer  
27.3dBm OIP3 at 2.14GHz, NF = 9.9dB, 3.3V Supply, Single-Ended LO and RF Ports  
31dBm OIP3 at 2.14GHz, –160.6dBm/Hz Noise Floor  
31dB Linear Analog VGA  
Ultralow Distort IF Digital VGA  
LT5578  
400MHz to 2.7GHz Upconverting Mixer  
1.5GHz to 3.8GHz Upconverting Mixer  
200MHz to 6GHz I/Q Modulator  
LT5579  
LTC5588-1  
RF Power Detectors  
LTC5587  
LT5581  
6GHz RMS Detector with 12-Bit ADC  
40dB Dynamic Range, 1dB Accuracy Over Temperature, 3mA Current, 500ksps  
40dB Dynamic Range, 1dB Accuracy Over Temperature, 1.5mA Supply Current  
57dB Dynamic Range, 0.5dB Accuracy Over Temperature, 0.2dB Linearity Error  
Up to 60dB Dynamic Range, 0.5dB Accuracy Over Temperature, >50dB Isolation  
6GHz Low Power RMS Detector  
40MHz to 10GHz RMS Detector  
Dual 6GHz RMS Power Detector  
LTC5582  
LTC5583  
ADCs  
LTC2208  
LTC2285  
LTC2268-14  
16-Bit, 130Msps ADC  
78dBFS Noise Floor, >83dB SFDR at 250MHz  
Dual 14-Bit, 125Msps Low Power ADC  
Dual 14-Bit, 125Msps Serial Output ADC  
72.4dB SNR, 88dB SFDR, 790mW Power Consumption  
73.1dB SNR, 88dB SFDR, 299mW Power Consumption  
5544f  
LT 0312 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
LINEAR TECHNOLOGY CORPORATION 2012  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC5544IUF#PBF

LTC5544 - 4GHz to 6GHz High Dynamic Range Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC5544IUF#TRPBF

LTC5544 - 4GHz to 6GHz High Dynamic Range Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC5548IUDB#TRMPBF

LTC5548 - 2GHz to 14GHz Microwave Mixer with Wideband DC-6GHz IF; Package: QFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC5548IUDB#TRPBF

LTC5548 - 2GHz to 14GHz Microwave Mixer with Wideband DC-6GHz IF; Package: QFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC5549IUDB#PBF

LTC5549 - 2GHz to 14GHz Microwave Mixer with Integrated LO Frequency Doubler; Package: QFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear
Linear

LTC5549IUDB#TRPBF

LTC5549 - 2GHz to 14GHz Microwave Mixer with Integrated LO Frequency Doubler; Package: QFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC554X

Dual 600MHz to 1.7GHz High Dynamic Range Downconverting Mixer
Linear

LTC5551

300MHz to 3.5GHz Ultra-High Dynamic Range Downconverting Mixer
Linear

LTC5552

300MHz to 9GHz High Linearity I/Q Demodulator with Wideband IF Amplifier
ADI

LTC5552IUDB#TRMPBF

3GHZ TO 20GHZ MICROWAVE MIXER WI
Linear

LTC5552IUDB#TRPBF

3GHZ TO 20GHZ MICROWAVE MIXER WI
Linear