LTC6401-26 [Linear]

1.6GHz Low Noise, Low Distortion Differential ADC Driver for DC-140MHz; 1.6GHz的低噪声,低失真差分ADC驱动器为DC- 140MHz的
LTC6401-26
型号: LTC6401-26
厂家: Linear    Linear
描述:

1.6GHz Low Noise, Low Distortion Differential ADC Driver for DC-140MHz
1.6GHz的低噪声,低失真差分ADC驱动器为DC- 140MHz的

驱动器
文件: 总16页 (文件大小:224K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6401-26  
1.6GHz Low Noise,  
Low Distortion Differential  
ADC Driver for DC-140MHz  
FEATURES  
DESCRIPTION  
The LTC®6401-26 is a high-speed differential amplifier  
targeted at processing signals from DC to 140MHz. The  
part has been specifically designed to drive 12-, 14- and  
16-bitADCswithlownoiseandlowdistortion,butcanalso  
be used as a general-purpose broadband gain block.  
1.6GHz –3dB Bandwidth  
Fixed Gain of 20V/V (26dB)  
–85dBc IMD3 at 70MHz (Equivalent OIP3 = 46.5dBm)  
–72dBc IMD3 at 140MHz (Equivalent OIP3 = 40dBm)  
1nV/√Hz Internal Op Amp Noise  
1.5nV/√Hz Total Input Referred Noise  
The LTC6401-26 is easy to use, with minimal support  
circuitry required. The output common mode voltage is  
set using an external pin, independent of the inputs, which  
eliminates the need of transformers or AC-coupling ca-  
pacitors in many applications. The gain is internally fixed  
at 26dB (20V/V).  
6.8dB Noise Figure  
Differential Inputs and Outputs  
50Ω Input Impedance  
2.85V to 3.5V Supply Voltage  
45mA Supply Current (135mW)  
1V to 1.6V Output Common Mode, Adjustable  
The LTC6401-26 saves space and power compared to  
alternative solutions using IF gain blocks and transform-  
ers. The LTC6401-26 is packaged in a compact 16-lead  
3mm × 3mm QFN package and operates over the –40°C  
to 85°C temperature range.  
DC- or AC-Coupled Operation  
Max Differential Output Swing 4.7V  
P-P  
Small 16-Lead 3mm × 3mm × 0.75mm QFN Package  
APPLICATIONS  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Differential ADC Driver  
Differential Driver/Receiver  
Single Ended to Differential Conversion  
IF Sampling Receivers  
SAW Filter Interfacing  
TYPICAL APPLICATION  
Equivalent OIP3 vs Frequency  
Single-Ended to Differential ADC Driver at 140MHz IF  
60  
3.3V  
3.3V  
DIFFERENTIAL INPUT  
(NOTE 7)  
50  
0.1μF  
1000pF  
33pF  
40  
30  
+
V
0.1μF  
0.1μF  
15Ω  
15Ω  
10Ω  
10Ω  
V
DD  
+
+OUT  
AIN  
V
+IN  
IN  
L1  
24nH  
150Ω  
20  
10  
0
LTC6401-26  
33pF  
33pF  
LTC2208  
–IN  
–OUT  
AIN  
V
CM  
V
NO R  
L
OCM  
37.4Ω  
COILCRAFT  
0603CS  
R
L
= 200Ω  
LTC2208  
130Msps  
16-BIT ADC  
V
0
50  
100  
150  
200  
1.25V  
640126 TA01a  
FREQUENCY (MHz)  
100Ω  
640126 TA01b  
0.1μF  
640126f  
1
LTC6401-26  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
+
Supply Voltage (V – V )..........................................3.6V  
Input Current (Note 2).......................................... 10mA  
Operating Temperature Range  
16 15 14 13  
+
V
1
2
3
4
12 V  
(Note 3) ............................................... –40°C to 85°C  
Specified Temperature Range  
(Note 4) ............................................... –40°C to 85°C  
Storage Temperature Range................... –65°C to 150°C  
Maximum Junction Temperature .......................... 150°C  
V
11 ENABLE  
+
OCM  
+
17  
V
V
V
10  
9
V
5
6
7
8
UD PACKAGE  
16-LEAD (3mm × 3mm) PLASTIC QFN  
= 150°C, θ = 68°C/W, θ = 4.2°C/W  
T
JMAX  
JA  
JC  
EXPOSED PAD (PIN 17) IS V , MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC6401CUD-26#PBF  
LTC6401IUD-26#PBF  
TAPE AND REEL  
PART MARKING*  
PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
LTC6401CUD-26#TRPBF LCDG  
LTC6401IUD-26#TRPBF LCDG  
16-Lead (3mm × 3mm) Plastic QFN  
16-Lead (3mm × 3mm) Plastic QFN  
0°C to 70°C  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
LTC6400 AND LTC6401 SELECTOR GUIDE Please check each datasheet for complete details.  
PART NUMBER  
GAIN  
(dB)  
GAIN  
(V/V)  
Z
IN  
(DIFFERENTIAL)  
I
CC  
(mA)  
(Ω)  
LTC6401-8  
LTC6401-20  
LTC6401-26  
LTC6400-20  
LTC6400-26  
8
2.5  
10  
20  
10  
20  
400  
200  
50  
45  
20  
26  
20  
26  
50  
45  
200  
50  
90  
85  
In addition to the LTC6401 family of amplifiers, a lower distortion LTC6400 family is available. The LTC6400 is pin compatible to the LTC6401, and has the  
same low noise performance. The low distortion of the LTC6400 comes at the expense of higher power consumption. Please refer to the separate LTC6400  
data sheets for complete details. Other gain versions from 8dB to 14dB will follow.  
640126f  
2
LTC6401-26  
DC ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 3V, V= 0V, +IN = –IN = VOCM = 1.25V, ENABLE = 0V, No RL unless  
otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input/Output Characteristic (+IN, –IN, +OUT, OUT, +OUTF, OUTF)  
G
Gain  
V
V
=
=
50mV Differential  
50mV Differential  
25  
26  
0.003  
0.09  
2.43  
4.7  
27  
dB  
dB/°C  
V
DIFF  
IN  
TC  
Gain Temperature Drift  
Output Swing Low  
Output Swing High  
Maximum Differential Output Swing  
Output Current Drive  
GAIN  
IN  
V
V
V
Each Output, V  
Each Output, V  
=
=
200mV Differential  
200mV Differential  
0.15  
SWINGMIN  
SWINGMAX  
OUTDIFFMAX  
OUT  
IN  
IN  
2.3  
4.3  
10  
V
1dB Compressed  
Each Output, V  
V
P-P  
I
=
200mV,  
mA  
IN  
V
OUT  
> 2V  
P-P  
V
Input Offset Voltage  
Differential  
Differential  
–2.5  
2.5  
1
mV  
μV/°C  
V
OS  
TCV  
Input Offset Voltage Drift  
1
OS  
VRMIN  
VRMAX  
I
I
Input Common Mode Voltage Range, MIN  
Input Common Mode Voltage Range, MAX  
Input Resistance (+IN, –IN)  
1.6  
V
Ω
R
Differential  
42.5  
50  
1
57.5  
INDIFF  
INDIFF  
C
Input Capacitance (+IN, –IN)  
Differential, Includes Parasitic  
Differential  
pF  
Ω
R
R
Output Resistance (+OUT, OUT)  
Filtered Output Resistance (+OUTF, OUTF)  
18  
85  
25  
100  
2.7  
75  
32  
OUTDIFF  
OUTFDIFF  
OUTFDIFF  
Ω
Differential  
115  
C
Filtered Output Capacitance (+OUTF, OUTF) Differential, Includes Parasitic  
pF  
CMRR  
Common Mode Rejection Ratio  
Input Common Mode Voltage  
1.1V to1.4V  
50  
dB  
Output Common Mode Control  
G
Common Mode Gain  
V
= 1V to 1.6V  
1
V/V  
CM  
OCM  
OCM  
V
V
V
Output Common Mode Range, MIN  
1
V
V
OCMMIN  
1.1  
Output Common Mode Range, MAX  
1.6  
1.5  
V
V
OCMMAX  
Common Mode Offset Voltage  
V
= 1.1V to 1.5V  
–15  
15  
15  
mV  
μV/°C  
μA  
OSCM  
TCV  
Common Mode Offset Voltage Drift  
3
5
OSCM  
IV  
V
Input Current  
OCM  
OCM  
ENABLE Pin  
V
V
ENABLE Input Low Voltage  
ENABLE Input High Voltage  
ENABLE Input Low Current  
ENABLE Input High Current  
0.8  
V
V
IL  
2.4  
IH  
I
IL  
I
IH  
ENABLE = 0.8V  
ENABLE = 2.4V  
0.5  
3
μA  
μA  
1.4  
Power Supply  
V
Operating Supply Range  
Supply Current  
2.85  
35  
3
3.5  
60  
V
S
I
S
ENABLE = 0V, Both Inputs and  
Outputs Floating  
45  
mA  
I
Shutdown Supply Current  
ENABLE = 3V, Both Inputs and  
Outputs Floating  
0.8  
3
mA  
dB  
SHDN  
PSRR  
Power Supply Rejection Ratio (Differential  
Outputs)  
2.85V to 3.5V  
60  
95.5  
640126f  
3
LTC6401-26  
AC ELECTRICAL CHARACTERISTICS Specifications are at TA = 25°C. V+ = 3V, V= 0V, VOCM = 1.25V,  
ENABLE = 0V, No RL unless otherwise noted.  
SYMBOL  
–3dBBW  
0.5dBBW  
0.1dBBW  
1/f  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1.6  
0.5  
0.22  
16  
MAX  
UNITS  
GHz  
GHz  
GHz  
kHz  
V/μs  
ns  
–3dB Bandwidth  
200mV  
200mV  
200mV  
(Note 6)  
(Note 6)  
(Note 6)  
1.2  
P-P,OUT  
P-P,OUT  
P-P,OUT  
Bandwidth for 0.5dB Flatness  
Bandwidth for 0.1dB Flatness  
1/f Noise Corner  
SR  
Slew Rate  
Differential V  
= 2V Step (Note 6)  
3300  
3
OUT  
t
t
t
t
1% Settling Time  
Overdrive Recovery Time  
Turn-On Time  
V
OUT  
V
OUT  
= 2V (Note 6)  
P-P  
S1%  
OVDR  
ON  
= 1.9V (Note 6)  
19  
ns  
P-P  
+OUT, OUT Within 10% of Final Values  
Falls to 10% of Nominal  
93  
ns  
Turn-Off Time  
I
140  
14.7  
ns  
OFF  
CC  
–3dBBW  
V
Pin Small Signal –3dB BW  
0.1V at V , Measured Single-Ended  
OCM  
MHz  
VOCM  
OCM  
P-P  
at Output (Note 6)  
10MHz Input Signal  
HD2,10M/HD3,10M Second/Third Order Harmonic Distortion  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
= 2V , R = 200Ω  
–95/–81  
–93/–96  
–80  
dBc  
dBc  
dBc  
dBc  
dBm  
P-P  
L
= 2V , No R  
P-P  
L
IMD3,10M  
OIP3,10M  
Third-Order Intermodulation  
(f1 = 9.5MHz f2 = 10.5MHz)  
= 2V Composite, R = 200Ω  
P-P L  
= 2V Composite, No R  
–97  
P-P  
L
Equivalent Third-Order Output Intercept  
Point (f1 = 9.5MHz f2 = 10.5MHz)  
= 2V Composite, No R (Note 7)  
52.5  
P-P  
L
P
1dB Compression Point  
R = 375Ω (Notes 5, 7)  
17.3  
6.8  
1.5  
30  
dBm  
dB  
1dB,10M  
L
NF  
Noise Figure  
R = 375Ω (Note 5)  
L
10M  
e
e
Input Referred Voltage Noise Density  
Output Referred Voltage Noise Density  
Includes Resistors (Short Inputs)  
Includes Resistors (Short Inputs)  
nV/√Hz  
nV/√Hz  
IN,10M  
ON,10M  
70MHz Input Signal  
HD2,70M/HD3,70M Second/Third Order Harmonic Distortion  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
= 2V , R = 200Ω  
–83/–66  
–86/–81  
–74  
dBc  
dBc  
dBc  
dBc  
dBm  
P-P  
L
= 2V , No R  
P-P  
L
IMD3,70M  
OIP3,70M  
Third-Order Intermodulation  
(f1 = 69.5MHz f2 = 70.5MHz)  
= 2V Composite, R = 200Ω  
P-P L  
= 2V Composite, No R  
–85  
P-P  
L
Equivalent Third-Order Output Intercept  
Point (f1 = 69.5MHz f2 = 70.5MHz)  
= 2V Composite, No R (Note 7)  
46.5  
P-P  
L
P
1dB Compression Point  
R = 375Ω (Notes 5, 7)  
17.2  
6.7  
dBm  
dB  
1dB,70M  
L
NF  
Noise Figure  
R = 375Ω (Note 5)  
L
70M  
e
e
Input Referred Voltage Noise Density  
Output Referred Voltage Noise Density  
Includes Resistors (Short Inputs)  
Includes Resistors (Short Inputs)  
1.44  
28.8  
nV/√Hz  
nV/√Hz  
IN,70M  
ON,70M  
640126f  
4
LTC6401-26  
AC ELECTRICAL CHARACTERISTICS Specifications are at TA = 25°C. V+ = 3V, V= 0V, VOCM = 1.25V,  
ENABLE = 0V, No RL unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
140MHz Input Signal  
HD2,140M/  
HD3,140M  
Second/Third Order Harmonic Distortion  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
= 2V , R = 200Ω  
–81/–54  
–85/–69  
–64  
dBc  
dBc  
dBc  
dBc  
dBm  
P-P  
L
= 2V , No R  
P-P  
L
IMD3,140M  
Third-Order Intermodulation  
(f1 = 139.5MHz f2 = 140.5MHz)  
= 2V Composite, R = 200Ω  
P-P L  
= 2V Composite, No R  
–72  
P-P  
L
OIP3,140M  
Equivalent Third-Order Output Intercept  
Point(f1 = 139.5MHz f2 = 140.5MHz)  
= 2V Composite, No R (Note 7)  
40  
P-P  
L
P
1dB Compression Point  
R = 375Ω (Notes 5, 7)  
17.4  
6.5  
dBm  
dB  
1dB,140M  
L
NF  
Noise Figure  
R = 375Ω (Note 5)  
L
140M  
N,140M  
ON,140M  
e
e
Input Referred Voltage Noise Density  
Output Referred Voltage Noise Density  
Includes Resistors (Short Inputs)  
Includes Resistors (Short Inputs)  
1.43  
28.6  
–70  
nV/√Hz  
nV/√Hz  
dBc  
IMD  
Third-Order Intermodulation  
(f1 = 130MHz f2 = 150MHz)  
Measure at 170MHz  
V
= 2V Composite, R = 375Ω  
–62  
3,130M/150M  
OUT  
P-P  
L
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: Input pins (+IN, –IN) are protected by steering diodes to either  
supply. If the inputs go beyond either supply rail, the input current should  
be limited to less than 10mA.  
temperatures. The LTC6401I is guaranteed to meet specified performance  
from –40°C to 85°C.  
Note 5: Input and output baluns used. See Test Circuit A.  
Note 6: Measured using Test Circuit B. R = 87.5Ω per output.  
L
Note 7: Since the LTC6401-26 is a feedback amplifier with low output  
impedance, a resistive load is not required when driving an AD converter.  
Therefore, typical output power is very small. In order to compare the  
LTC6401-26 with amplifiers that require 50Ω output load, the output  
Note 3: The LTC6401C and LTC6401I are guaranteed functional over the  
operating temperature range of –40°C to 85°C  
voltage swing driving a given R is converted to OIP and P as if it were  
L
3
1dB  
Note 4: The LTC6401C is guaranteed to meet specified performance from  
0°C to 70°C. It is designed, characterized and expected to meet specified  
performance from –40°C to 85°C but is not tested or QA sampled at these  
driving a 50Ω load. Using this modified convention, 2V is by definition  
P-P  
equal to 10dBm, regardless of actual R .  
L
640126f  
5
LTC6401-26  
TYPICAL PERFORMANCE CHARACTERISTICS  
Frequency Response  
Gain 0.1dB Flatness  
30  
25  
20  
15  
10  
5
1.0  
0.8  
TEST CIRCUIT B  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
TEST CIRCUIT B  
0
10  
100  
FREQUENCY (MHz)  
1000  
3000  
10  
100  
1000  
3000  
FREQUENCY (MHz)  
640126 G02  
640126 G01  
Input and Output Reflection and  
Reverse Isoloation vs Frequency  
S21 Phase and Group Delay vs  
Frequency  
0
–50  
0.8  
0.6  
0.4  
0.2  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
TEST CIRCUIT B  
S11  
S22  
S12  
GROUP DELAY  
–100  
–150  
–200  
PHASE  
TEST CIRCUIT B  
0
200  
400  
600  
800  
1000  
10  
100  
1000  
3000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
640126 G04  
640126 G03  
Input and Output Impedance vs  
Frequency  
PSRR and CMRR vs Frequency  
180  
150  
120  
90  
60  
50  
40  
30  
20  
10  
0
120  
Z
Z
Z
Z
MAG  
IN  
OUT  
MAG  
PHASE  
IN  
OUT  
100  
80  
60  
40  
20  
0
PSRR  
CMRR  
PHASE  
60  
30  
0
10  
100  
FREQUENCY (MHz)  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
640126 G05  
640126 G06  
640126f  
6
LTC6401-26  
TYPICAL PERFORMANCE CHARACTERISTICS  
Noise Figure and Input Referred  
Noise Voltage vs Frequency  
Small Signal Transient Response  
1.35  
1.30  
1.25  
1.20  
1.15  
9
8
7
6
5
2.0  
1.5  
1.0  
0.5  
0
R
= 87.5Ω PER OUTPUT  
L
TEST CIRCUIT B  
+OUT  
EN  
–OUT  
NOISE FIGURE  
0
2
4
6
8
10  
1000  
10  
100  
TIME (ns)  
FREQUENCY (MHz)  
640126 G07  
640126 G08  
Overdriven Transient Response  
Large Signal Transient Response  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
R
L
= 87.5Ω PER OUTPUT  
R
= 87.5Ω PER OUTPUT  
L
TEST CIRCUIT B  
–OUT  
2.0  
1.5  
1.0  
0.5  
0
+OUT  
–OUT  
+OUT  
TEST CIRCUIT B  
50  
0
100  
150  
200  
250  
0
4
8
12  
16  
20  
TIME (ns)  
TIME (ns)  
640126 G10  
640126 G09  
1% Settling Time for  
2V Output Step  
Harmonic Distortion vs Frequency  
–40  
–50  
5
DIFFERENTIAL INPUT  
V
OUT  
= 2V  
4
3
P-P  
–60  
2
1
–70  
0
–80  
–1  
–2  
–3  
–4  
–5  
–90  
HD2 NO R  
L
HD2 R = 200Ω  
L
–100  
–110  
HD3 NO R  
R
= 87.5Ω PER OUTPUT  
L
L
HD3 R = 200Ω  
TEST CIRCUIT B  
L
200  
0
1
2
3
4
5
0
50  
100  
150  
TIME (ns)  
FREQUENCY (MHz)  
640126 G11  
640126 G12  
640126f  
7
LTC6401-26  
TYPICAL PERFORMANCE CHARACTERISTICS  
Third Order Intermodulation  
Distortion vs Frequency  
Third Order Intermodulation  
Distortion vs Frequency  
Harmonic Distortion vs Frequency  
–40  
–50  
–40  
–50  
–40  
–50  
DIFFERENTIAL INPUT  
SINGLE-ENDED INPUT  
SINGLE-ENDED INPUT  
V
= 2V COMPOSITE  
V
= 2V COMPOSITE  
V
= 2V  
OUT  
P-P  
OUT  
P-P  
OUT  
P-P  
–60  
–60  
–60  
–70  
–70  
–70  
–80  
–80  
–80  
–90  
–90  
–90  
HD2 NO R  
L
HD2 R = 200Ω  
L
–100  
–110  
–100  
–110  
–100  
–110  
NO R  
L
NO R  
L
L
HD3 NO R  
L
L
R
= 200Ω  
R
= 200Ω  
HD3 R = 200Ω  
L
200  
0
50  
100  
150  
200  
200  
0
50  
100  
150  
0
150  
50  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
640126 G13  
640126 G14  
640126 G15  
Output 1dB Compression Point vs  
Frequency  
Equivalent Output Third Order  
Intercept Point vs Frequency  
60  
50  
19.0  
18.5  
DIFFERENTIAL INPUT  
(NOTE 7)  
DIFFERENTIAL INPUT  
R
= 375Ω  
L
TEST CIRCUIT A  
(NOTE 7)  
40  
30  
18.0  
17.5  
20  
10  
0
17.0  
16.5  
16.0  
NO R  
L
L
R
= 200Ω  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
640126 G17  
640126 G16  
Turn-On Time  
Turn-Off Time  
3.5  
3.0  
2.5  
2.0  
70  
60  
50  
40  
3.5  
3.0  
2.5  
2.0  
70  
R
L
= 87.5Ω PER OUTPUT  
R
L
= 87.5Ω PER OUTPUT  
60  
50  
40  
ENABLE  
I
CC  
–OUT  
–OUT  
+OUT  
1.5  
1.0  
30  
20  
1.5  
1.0  
30  
20  
+OUT  
0.5  
0
10  
0
0.5  
0
10  
0
I
CC  
ENABLE  
–0.5  
–10  
–0.5  
–10  
0
100  
300  
0
100  
300  
–100  
400  
500  
–100  
400  
500  
200  
200  
TIME (ns)  
TIME (ns)  
640126 G19  
640126 G18  
640126f  
8
LTC6401-26  
PIN FUNCTIONS  
V (Pins 1, 3, 10): Positive Power Supply (Normally tied  
to 3V or 3.3V). All three pins must be tied to the same  
voltage. Bypass each pin with 1000pF and 0.1μF capaci-  
tors as close to the pins as possible.  
+
–OUTF, +OUTF (Pins 6, 7): Filtered Outputs. These pins  
have 50Ω series resistors and a 2.7pF shunt capacitor.  
ENABLE (Pin 11): This pin is a logic input referenced to  
V . If low, the part is enabled. If high, the part is disabled  
EE  
V
(Pin 2): This pin sets the output common mode  
and draws very low standby current while the internal op  
OCM  
voltage. An 0.1μF external bypass capacitor is recom-  
amp has high output impedance.  
mended.  
+IN (Pins 13, 14): Positive Input. Pins 13 and 14 are  
internally shorted together.  
V (Pins 4, 9, 12, 17): Negative Power Supply. All four  
pins must be connected to same voltage/ground.  
–IN (Pins 15, 16): Negative Input. Pins 15 and 16 are  
internally shorted together.  
–OUT, +OUT (Pins 5, 8): Unfiltered Outputs. These pins  
have series 12.5Ω resistors R  
.
OUT  
Exposed Pad (Pin 17): V . The Exposed Pad must be  
connected to same voltage/ground as pins 4, 9, 12.  
BLOCK DIAGRAM  
+
V
ENABLE  
V
V
12  
11  
10  
9
BIAS CONTROL  
R
F
500Ω  
R
R
OUT  
12.5Ω  
G
+IN  
13  
+OUT  
25Ω  
8
R
FILT  
+OUTF  
50Ω  
+IN  
–IN  
IN+  
IN–  
OUT–  
7
14  
15  
C
FILT  
R
FILT  
2.7pF  
–OUTF  
–OUT  
50Ω  
6
5
OUT+  
R
R
G
25Ω  
R
OUT  
12.5Ω  
F
–IN  
16  
500Ω  
2k  
COMMON  
MODE CONTROL  
5.3pF  
640126 BD  
1
2
3
4
+
+
V
V
V
V
OCM  
640126f  
9
LTC6401-26  
APPLICATIONS INFORMATION  
Circuit Operation  
them if the source is differential (Figure 1). Another ap-  
proach is to employ a wideband transformer if the source  
is single ended (Figure 2). Both methods provide a wide-  
band match. Alternatively, one could apply a narrowband  
impedance match at the inputs of the LTC6401-26 for  
frequency selection and/or noise reduction.  
The LTC6401-26 is a low noise and low distortion fully  
differential op amp/ADC driver with:  
• Operation from DC to 1.6GHz –3dB bandwidth  
• Fixed gain of 20V/V (26dB)  
ReferringtoFigure3,LTC6401-26canbeeasilyconfigured  
for single-ended input and differential output without a  
balun. The signal is fed to one of the inputs through a  
matchingnetworkwhiletheotherinputisconnectedtothe  
samematchingnetworkandasourceresistor.Becausethe  
return ratios of the two feedback paths are equal, the two  
outputshavethesamegainandthussymmetricalswing.In  
general,thesingle-endedinputimpedanceandtermination  
• Differential input impedance 50Ω  
• Differential output impedance 25Ω  
• Differential impedance of output filter 100Ω  
TheLTC6401-26iscomposedofafullydifferentialamplifier  
with on chip feedback and output common mode voltage  
control circuitry. Differential gain and input impedance  
are set by 25Ω/500Ω resistors in the feedback network.  
Smalloutputresistorsof12.5Ωimprovethecircuitstability  
over various load conditions. They also provide a possible  
external filtering option, which is often desirable when the  
load is an ADC.  
resistor R are determined by the combination of R , R  
T
S
G
and R . For example, when R is 50Ω, it is found that the  
F
S
single-ended input impedance is 75Ω and R is 150Ω in  
T
order to match to a 50Ω source impedance.  
LTC6401-26  
500Ω  
25Ω  
25Ω  
12.5Ω  
50Ω  
Filter resistors of 50Ω are available for additional filtering.  
Lowpass/bandpassltersareeasilyimplementedwithjust  
a couple of external components. Moreover, they offer  
single-ended 50Ω matching in wideband applications and  
no external resistor is needed.  
13 +IN  
+OUT  
8
IN+  
IN–  
OUT–  
+OUTF  
7
V
IN  
14 +IN  
15 –IN  
+
50Ω  
2.7pF  
–OUTF  
6
5
OUT+  
500Ω  
The LTC6401-26 is very flexible in terms of I/O coupling.  
It can be AC- or DC-coupled at the inputs, the outputs or  
both. Due to the internal connection between input and  
output, users are advised to keep input common mode  
voltage between 1V and 1.6V for proper operation. If the  
inputs are AC-coupled, the input common mode voltage  
25Ω  
25Ω  
12.5Ω  
16 –IN  
–OUT  
640126 F01  
Figure 1. Input Termination for Differential 50Ω Input Impedance  
is automatically biased close to V  
and thus no external  
OCM  
LTC6401-26  
500Ω  
50Ω  
25Ω  
12.5Ω  
50Ω  
circuitry is needed for bias. The LTC6401-26 provides an  
output common mode voltage set by V , which allows  
13 +IN  
+OUT  
8
OCM  
driving ADC directly without external components such as  
transformer or AC coupling capacitors. The input signal  
can be either single-ended or differential with only minor  
difference in distortion performance.  
IN+  
IN–  
OUT–  
1:1  
+OUTF  
7
V
IN  
14 +IN  
15 –IN  
+
50Ω  
2.7pF  
–OUTF  
6
5
OUT+  
500Ω  
25Ω  
12.5Ω  
16 –IN  
–OUT  
640126 F02  
Input Impedance and Matching  
M/A-COM  
MABA-007159-000000  
ThedifferentialinputimpedanceoftheLTC6401-26is50Ω.  
The interface between the input of LTC6401-26 and 50Ω  
source is straightforward. One way is to directly connect  
Figure 2. Input Termination for Differential 50Ω Input Impedance  
Using a Balun  
640126f  
10  
LTC6401-26  
APPLICATIONS INFORMATION  
R
S
LTC6401-26  
The internal low pass filter outputs at +OUTF/–OUTF have  
a –3dB bandwidth of 590MHz. External capacitors can  
reduce the low pass filter bandwidth as shown in Figure  
5. A bandpass filter is easily implemented with only a  
few components as shown in Figure 6. Three 39pF ca-  
pacitors and 16nH inductor create a bandpass filter with  
165MHz center frequency, –3dB frequencies at 138MHz  
and 200MHz.  
0.1μF  
500Ω  
50Ω  
25Ω  
12.5Ω  
13 +IN  
+OUT  
8
V
IN  
+
50Ω  
R
T
IN+  
IN–  
OUT–  
150Ω  
+OUTF  
7
14 +IN  
15 –IN  
0.1μF  
50Ω  
2.7pF  
–OUTF  
6
5
OUT+  
500Ω  
0.1μF  
25Ω  
12.5Ω  
16 –IN  
–OUT  
640126 F03  
37.4Ω  
Output Common Mode Adjustment  
Figure 3. Input Termination for Single-Ended 50Ω Input  
The LTC6401-26’s output common mode voltage is set  
Impedance  
by the V  
pin, which is a high impedance input. The  
OCM  
The LTC6401-26 is unconditionally stable, i.e. differential  
stability factor Kf>1 and stability measure B1>0. However,  
the overall differential gain is affected by both source  
impedance and load impedance as shown in Figure 4:  
output common mode voltage is capable of tracking V  
OCM  
control is  
in a range from 1V to 1.6V. Bandwidth of V  
OCM  
typically 15MHz, which is dominated by a low pass filter  
connected to the V pin and is aimed to reduce com-  
OCM  
mon mode noise generation at the outputs. The internal  
common mode feedback loop has a –3dB bandwidth of  
400MHz, allowing fast rejection of any common mode  
VOUT  
RL  
RS +50 25+RL  
1000  
AV =  
=
V
IN  
output voltage disturbance. The V  
pin should be tied  
OCM  
The noise performance of the LTC6401-26 also depends  
upon the source impedance and termination. A trade-off  
between gain and noise is obvious when constant noise  
figure circle and constant gain circle are plotted within  
the same input Smith Chart, based on which users can  
choose the optimal source impedance for a given gain  
and noise requirement.  
to a DC bias voltage with a 0.1μF bypass capacitor. When  
interfacing with 3V A/D converters such as the LTC22xx  
families, the V  
of the ADC.  
pin can be connected to the V pin  
OCM  
CM  
Driving A/D Converters  
TheLTC6401-26hasbeenspecificallydesignedtointerface  
directlywithhighspeedA/Dconverters.Figure7showsthe  
LTC6401-26withsingle-endedinputdrivingtheLTC2208,  
whichisa16-bit,130MspsADC.Twoexternal5Ωresistors  
help eliminate potential resonance associated with bond  
Output Impedance Match and Filter  
TheLTC6401-26candriveanADCdirectlywithoutexternal  
output impedance matching. Alternatively, the differential  
output impedance of 25Ω can be made larger, e.g. 50Ω,  
by series resistors or LC network.  
wires of either the ADC input or the driver output. V  
OCM  
LTC6401-26  
LTC6401-26  
500Ω  
500Ω  
1/2 R  
25Ω  
12.5Ω  
50Ω  
1/2 R  
25Ω  
12.5Ω  
50Ω  
S
L
13 +IN  
+OUT  
8
13 +IN  
+OUT  
8
8pF  
IN+  
IN–  
OUT–  
IN+  
IN–  
OUT–  
+OUTF  
7
+OUTF  
7
V
IN  
FILTERED OUTPUT  
(87.5MHz)  
14 +IN  
15 –IN  
14 +IN  
15 –IN  
V
OUT  
+
12pF  
8pF  
50Ω  
50Ω  
2.7pF  
2.7pF  
–OUTF  
6
5
–OUTF  
6
5
OUT+  
500Ω  
OUT+  
500Ω  
1/2 R  
25Ω  
12.5Ω  
1/2 R  
25Ω  
12.5Ω  
S
L
16 –IN  
–OUT  
16 –IN  
–OUT  
640126 F04  
640126 F05  
Figure 4. Calculate Differential Gain  
Figure 5. LTC6401-26 Internal Filter Topology Modified for Low  
Filter Bandwidth (Three External Capacitors)  
640126f  
11  
LTC6401-26  
APPLICATIONS INFORMATION  
–40  
–50  
SINGLE-ENDED INPUT  
= 122.8Msps  
F
S
DRIVER V  
= 2V COMPOSITE  
OUT  
P-P  
–60  
39pF  
LTC6401-26  
12.5Ω  
–70  
500Ω  
25Ω  
10Ω  
4.99Ω  
13 +IN  
+OUT  
8
–80  
50Ω  
IN+  
IN–  
OUT–  
+OUTF  
7
–90  
14 +IN  
15 –IN  
16nH  
39pF  
LTC2208  
1.7pF  
50Ω  
–100  
–110  
OUT+  
500Ω  
–OUTF  
6
5
25Ω  
12.5Ω  
10Ω  
4.99Ω  
200  
0
50  
100  
150  
16 –IN  
–OUT  
640126 F06  
FREQUENCY (MHz)  
39pF  
640126 F08  
Figure 6. LTC6401-26 with 165MHz Output Bandpass Filter  
Figure 8. IMD3 for the Combination of LTC6401-26 and LTC2208  
of the LTC6401-26 is connected to V of the LTC2208  
Test Circuit B uses a 4-port network analyzer to measure  
S-parameters and gain/phase response. This removes the  
effects of the wideband baluns and associated circuitry,  
for a true picture of the >1GHz S-parameters and AC  
characteristics.  
CM  
at 1.25V. Alternatively, a single-ended input signal can be  
converted to a differential signal via a balun and fed to the  
input of the LTC6401-26. Figure 8 summarizes the IMD3  
performance of the whole system as shown in Figure 7.  
Test Circuits  
Due to the fully-differential design of the LTC6401 and  
its usefulness in applications with differing characteristic  
specifications, two test circuits are used to generate the  
information in this datasheet. Test Circuit A is DC987B,  
a two-port demonstration circuit for the LTC6401 family.  
The silkscreen is shown in Figure 9. This circuit includes  
input and output transformers (baluns) for single-ended-  
to-differential conversion and impedance transformation,  
allowing direct hook-up to a 2-port network analyzer.  
There are also series resistors at the output to present the  
LTC6401witha375Ωdifferentialload,optimizingdistortion  
performance.Duetotheinputandoutputtransformers,the  
–3dB bandwidth is reduced from 1.6GHz to 1.37GHz.  
1.25V  
0.1μF  
0.1μF  
V
OCM  
4.99Ω  
4.99Ω  
+IN  
V
+
CM  
IF IN  
150Ω  
+OUT  
AIN  
AIN  
+OUTF  
–OUTF  
LTC6401-26  
LTC2208  
0.1μF  
–IN  
ENABLE  
–OUT  
37.4Ω  
LTC2208 130Msps  
16-Bit ADC  
26dB GAIN  
640126 F07  
Figure 7. Single-Ended Input to LTC6401-26 and LTC2208  
Figure 9. Top Silkscreen for DC987B, Test Circuit A  
640126f  
12  
LTC6401-26  
TYPICAL APPLICATION  
Demo Circuit 987B Schematic (Test Circuit A)  
V
CC  
ENABLE  
DIS  
1
3
V
CC  
2
JP1  
C17  
1000pF  
C18  
0.1μF  
R16  
0Ω  
12  
11  
10  
+
9
V
ENABLE  
V
V
R10  
R2  
(1)  
R14  
(1)  
86.6Ω  
13  
14  
15  
16  
8
7
6
5
+IN  
+IN  
–IN  
+OUT  
+OUTF  
–OUTF  
–OUT  
R6  
R12  
T2  
R8  
(1)  
C2  
0.1μF  
C4  
0Ω  
0Ω  
R4  
(2)  
T1  
(2)  
5
4
1
2
3
3
2
1
TCM 4:19  
1:4  
4
J1  
+IN  
J4  
+OUT  
0.1μF  
C21  
0.1μF  
R24  
(1)  
SL1  
(2)  
SL2  
(2)  
R7  
(1)  
LTC6401-26  
R5  
(1)  
R11  
(1)  
SL3  
0dB  
6
(2)  
J2  
–IN  
R3  
(2)  
C1  
0.1μF  
C3  
0.1μF  
J5  
–OUT  
R9  
86.6Ω  
–IN  
V
R13  
0Ω  
C22  
R1  
0Ω  
+
+
V
OCM  
V
V
0.1μF  
1
2
3
4
V
V
CC  
CC  
C10  
0.1μF  
C9  
1000pF  
C12  
1000pF  
C13  
0.1μF  
V
CC  
R19  
1.5k  
TP5  
V
OCM  
R20  
1k  
C7  
0.1μF  
T3  
TCM 4:19  
1:4  
T4  
TCM 4:19  
1:4  
R17  
R18  
0Ω  
0Ω  
6
4
1
2
3
3
2
1
4
J6  
TEST IN  
J7  
C23  
C5  
C19  
0.1μF  
C20  
0.1μF  
TEST OUT  
0.1μF  
0.1μF  
R21  
(1)  
R22  
(1)  
R25  
0Ω  
R26  
0Ω  
C24  
0.1μF  
C6  
0.1μF  
6
V
CC  
TP2  
V
CC  
NOTE: UNLESS OTHERWISE SPECIFIED.  
(1) DO NOT STUFF.  
C14  
4.7μF  
C15  
1μF  
2.85V TO 3.5V  
(2) VERSION  
-H  
SL = SIGNAL LEVEL  
IC  
R3  
R4  
T1  
SL1  
SL2  
SL3  
TP3  
GND  
LTC6401UD-26 OPEN OPEN M/A-COM MABA-007159-000000 0dB  
20dB 14dB  
640126 TA02  
640126f  
13  
LTC6401-26  
TYPICAL APPLICATION  
Test Circuit B, 4-Port Analysis  
+
V
0.1μF  
1000pF  
+
V
ENABLE  
V
V
12  
G
11  
10  
9
BIAS CONTROL  
R
F
500Ω  
R
R
OUT  
+IN  
13  
+OUT  
37.4Ω  
24.9Ω  
25Ω  
12.5Ω  
PORT 1  
PORT 3  
8
(50Ω)  
(50Ω)  
R
FILT  
0.1μF  
0.1μF  
+OUTF  
50Ω  
+IN  
–IN  
IN+  
IN–  
OUT–  
7
14  
15  
1/2  
AGILENT  
E5O71A  
1/2  
AGILENT  
E5O71A  
C
FILT  
R
50Ω  
FILT  
1.7pF  
–OUTF  
–OUT  
6
5
OUT+  
R
R
G
25Ω  
R
OUT  
12.5Ω  
F
–IN  
16  
500Ω  
24.9Ω  
37.4Ω  
PORT 2  
(50Ω)  
PORT 4  
(50Ω)  
0.1μF  
0.1μF  
COMMON  
MODE CONTROL  
640126 TA03  
1
2
3
4
+
+
V
V
V
V
OCM  
1000pF  
0.1μF  
0.1μF  
+
V
V
OCM  
640126f  
14  
LTC6401-26  
PACKAGE DESCRIPTION  
UD Package  
16-Lead Plastic QFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1691)  
0.70 0.05  
3.50 0.05  
2.10 0.05  
1.45 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.20 TYP  
OR 0.25 × 45° CHAMFER  
R = 0.115  
TYP  
0.75 0.05  
3.00 0.10  
(4 SIDES)  
15 16  
PIN 1  
TOP MARK  
(NOTE 6)  
0.40 0.10  
1
2
1.45 0.10  
(4-SIDES)  
(UD16) QFN 0904  
0.200 REF  
0.25 0.05  
0.50 BSC  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WEED-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
640126f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LTC6401-26  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
High-Speed Differential Amplifiers/Differential Op Amps  
LT®1993-2  
LT1993-4  
LT1993-10  
LT1994  
800MHz Differential Amplifier/ADC Driver  
900MHz Differential Amplifier/ADC Driver  
700MHz Differential Amplifier/ADC Driver  
Low Noise, Low Distortion Differential Op Amp  
A = 2V/V, OIP3 = 38dBm at 70MHz  
V
A = 4V/V, OIP3 = 40dBm at 70MHz  
V
A = 2V/V, OIP3 = 40dBm at 70MHz  
V
16-Bit SNR and SFDR at 1MHz, Rail-to-Rail Outputs  
LT5514  
Ultralow Distortion IF Amplifier/ADC Driver with Digitally  
Controlled Gain  
OIP3 = 47dBm at 100MHz, Gain Control Range 10.5dB to 33dB  
LT5524  
Low Distortion IF Amplifier/ADC Driver with Digitally  
Controlled Gain  
OIP3 = 40dBm at 100MHz, Gain Control Range 4.5dB to 37dB  
LTC6400-20  
LTC6400-26  
LTC6401-8  
LTC6401-20  
LT6402-6  
1.8GHz Low Noise, Low Distortion, Differential ADC Driver  
1.9GHz Low Noise, Low Distortion, Differential ADC Driver  
2.2GHz Low Noise, Low Distortion, Differential ADC Driver  
1.3GHz Low Noise, Low Distortion, Differential ADC Driver  
300MHz Differential Amplifier/ADC Driver  
A = 20dB, 90mA Supply Current, IMD3 = –65dBc at 300MHz  
V
A = 26dB, 85mA Supply Current, IMD3 = –71dBc at 300MHz  
V
A = 8dB, 45mA Supply Current, IMD3 = –80dBc at 140MHz  
V
A = 20dB, 50mA Supply Current, IMD3 = –74dBc at 140MHz  
V
A = 6dB, Distortion < –80dBc at 25MHz  
V
LT6402-12  
LT6402-20  
LTC6406  
300MHz Differential Amplifier/ADC Driver  
A = 12dB, Distortion < –80dBc at 25MHz  
V
300MHz Differential Amplifier/ADC Driver  
A = 20dB, Distortion < –80dBc at 25MHz  
V
3GHz Rail-to-Rail Input Differential Op Amp  
1.6nV/√Hz Noise, –72dBc Distortion at 50MHz, 18mA  
LT6411  
Low Power Differential ADC Driver/Dual Selectable Gain  
Amplifier  
16mA Supply Current, IMD3 = –83dBc at 70MHz, A = 1, –1 or 2  
V
High-Speed Single-Ended Output Op Amps  
LT1812/LT1813/ High Slew Rate Low Cost Single/Dual/Quad Op Amps  
LT1814  
8nV/√Hz Noise, 750V/μs, 3mA Supply Current  
6nV/√Hz Noise, 1500V/μs, 6.5mA Supply Current  
6nV/√Hz Noise, 2500V/μs, 9mA Supply Current  
LT1815/LT1816/ Very High Slew Rate Low Cost Single/Dual/Quad Op Amps  
LT1817  
LT1818/LT1819 Ultra High Slew Rate Low Cost Single/Dual Op Amps  
LT6200/LT6201 Rail-to-Rail Input and Output Low Noise Single/Dual Op Amps 0.95nV/√Hz Noise, 165MHz GBW, Distortion = –80dBc at 1MHz  
LT6202/LT6203/ Rail-to-Rail Input and Output Low Noise Single/Dual/Quad  
LT6204 Op Amps  
1.9nV/√Hz Noise, 3mA Supply Current, 100MHz GBW  
1.1nV/√Hz Noise, 3.5mA Supply Current, 215MHz GBW  
1.9nV/√Hz Noise, 1.2mA Supply Current, 60MHz GBW  
LT6230/LT6231/ Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps  
LT6232  
LT6233/LT6234/ Rail-to-Rail Output Low Noise Single/Dual/Quad Op Amps  
LT6235  
Integrated Filters  
LTC1562-2  
LT1568  
Very Low Noise, 8th Order Filter Building Block  
Very Low Noise, 4th Order Filter Building Block  
Linear Phase, Tunable 10th Order Lowpass Filter  
Very Low Noise Differential 2.5MHz Lowpass Filter  
Very Low Noise Differential 5MHz Lowpass Filter  
Very Low Noise Differential 10MHz Lowpass Filter  
Very Low Noise Differential 15MHz Lowpass Filter  
Very Low Noise Differential 20MHz Lowpass Filter  
Lowpass and Bandpass Filters up to 300kHz  
Lowpass and Bandpass Filters up to 10MHz  
Single-Resistor Programmable Cut-Off to 300kHz  
SNR = 86dB at 3V Supply, 4th Order Filter  
SNR = 82dB at 3V Supply, 4th Order Filter  
SNR = 82dB at 3V Supply, 4th Order Filter  
SNR = 76dB at 3V Supply, 4th Order Filter  
SNR = 76dB at 3V Supply, 4th Order Filter  
LTC1569-7  
LT6600-2.5  
LT6600-5  
LT6600-10  
LT6600-15  
LT6600-20  
640126f  
LT 0108 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC6401-8

2.2GHz Low Noise, Low Distortion Differential ADC Driver for DC-140MHz
Linear

LTC6401CUD-14

2GHz Low Noise, Low Distortion Differential ADC Driver for DC-140MHz
Linear System

LTC6401CUD-14-PBF

2GHz Low Noise, Low Distortion Differential ADC Driver for DC-140MHz
Linear

LTC6401CUD-14-TRPBF

2GHz Low Noise, Low Distortion Differential ADC Driver for DC-140MHz
Linear

LTC6401CUD-20#PBF

LTC6401-20 - 1.3GHz Low Noise, Low Distortion Differential ADC Driver for 140MHz IF; Package: QFN; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6401CUD-20#TRPBF

LTC6401-20 - 1.3GHz Low Noise, Low Distortion Differential ADC Driver for 140MHz IF; Package: QFN; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6401CUD-20PBF

1.3GHz Low Noise, Low Distortion Differential ADC Driver for 140MHz IF
Linear

LTC6401CUD-20TRPBF

1.3GHz Low Noise, Low Distortion Differential ADC Driver for 140MHz IF
Linear

LTC6401CUD-26

LTC6401-26 - 1.6GHz Low Noise, Low Distortion Differential ADC Driver for DC-140MHz; Package: QFN; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6401CUD-26#PBF

LTC6401-26 - 1.6GHz Low Noise, Low Distortion Differential ADC Driver for DC-140MHz; Package: QFN; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6401CUD-26#TR

LTC6401-26 - 1.6GHz Low Noise, Low Distortion Differential ADC Driver for DC-140MHz; Package: QFN; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6401CUD-26#TRPBF

LTC6401-26 - 1.6GHz Low Noise, Low Distortion Differential ADC Driver for DC-140MHz; Package: QFN; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear