LTC6652AHMS8-3.3#PBF [Linear]

LTC6652 - Precision Low Drift Low Noise Buffered Reference; Package: MSOP; Pins: 8; Temperature Range: -40°C to 125°C;
LTC6652AHMS8-3.3#PBF
型号: LTC6652AHMS8-3.3#PBF
厂家: Linear    Linear
描述:

LTC6652 - Precision Low Drift Low Noise Buffered Reference; Package: MSOP; Pins: 8; Temperature Range: -40°C to 125°C

光电二极管
文件: 总20页 (文件大小:544K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6652  
Precision Low Drift Low  
Noise Buffered Reference  
Features  
Description  
The LTC®6652 family of precision, low drift, low noise  
references is fully specified over the temperature range  
of 40°C to 125°C. High order curvature compensation  
allows these references to achieve a low drift of less than  
5ppm/°Cwithapredictabletemperaturecharacteristicand  
an output voltage accuracy of 0.05ꢀ. The performance  
overtemperatureshouldappealtoautomotive,highperfor-  
manceindustrialandotherhightemperatureapplications.  
n
Low Drift:  
A-Grade 5ppm/°C Max  
B-Grade 10ppm/°C Max (MSOP8)  
B-Grade 8ppm/°C Max (LS8)  
High Accuracy:  
n
A-Grade 0ꢀ05ꢁ Max  
B-Grade 0ꢀ1ꢁ Max  
n
n
n
n
n
n
n
n
Low Noise: 2ꢀ1ppm (0ꢀ1Hz to 10Hz)  
P-P  
100ꢁ Tested at 40°C, 25°C and 125°C  
Sinks and Sources Current: 5mA  
Low Power Shutdown: <2µA Maximum  
Thermal Hysteresis (LS8): 45ppm (40°C to 125°C)  
Long-Term Drift (LS8): 20ppm/√kHr  
Low Dropout: 300mV  
Available Output Voltage Options: 1.25V, 2.048V, 2.5V,  
3V, 3.3V, 4.096V, 5V  
8-Lead MSOP and 5mm × 5mm Surface Mount  
Hermetic Packages  
The LTC6652 voltage references can be powered from  
supply voltages up to 13.2V. They boast low noise, ex-  
cellent load regulation, source and sink capability and  
exceptional line rejection, making them a superior choice  
for demanding precision applications. A shutdown mode  
allows power consumption to be reduced when the refer-  
ence is not needed. The optional output capacitor can be  
left off when space constraints are critical.  
n
The LTC6652 references are offered in an 8-lead MSOP  
package and an 8-lead LS8 package. The LS8 is a 5mm  
× 5mm surface mount hermetic package that provides  
outstanding stability.  
applications  
n
Automotive Control and Monitoring  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
n
High Temperature Industrial  
n
High Resolution Data Acquisition Systems  
Instrumentation and Process Control  
Precision Regulators  
Medical Equipment  
n
n
n
typical application  
Output Voltage Temperature Drift  
0.050  
Basic Connection  
0.025  
0
V
OUT  
V
V
OUT  
LTC6652-2.5  
GND  
2.8V V 13.2V  
IN  
IN  
2.5V  
C
OUT  
C
IN  
SHDN  
1µF  
0.1µF  
(OPTIONAL)  
(OPTIONAL)  
6652 TA01a  
–0.025  
–0.050  
–40 –20  
0
20 40 60 80 100 125  
TEMPERATURE (°C)  
6652 TA01b  
6652fg  
1
For more information www.linear.com/LTC6652  
LTC6652  
absolute MaxiMuM ratings  
(Note 1)  
Input Voltage  
Operating Temperature Range................ –40°C to 125°C  
Storage Temperature Range (Note 2) ..... –65°C to 150°C  
Lead Temperature Range (Soldering, 10 sec)  
V to GND.......................................... –0.3V to 13.2V  
IN  
SHDN to GND ........................... –0.3V to (V + 0.3V)  
IN  
Output Voltage  
(Note 9).............................................................300°C  
V
.......................................... –0.3V to (V + 0.3V)  
IN  
OUT  
Output Short-Circuit Duration...................... Indefinite  
pin conFiguration  
TOP VIEW  
GND*  
TOP VIEW  
8
DNC  
1
2
3
7
6
5
GND*  
DNC  
1
2
3
4
8 GND*  
7 GND*  
V
IN  
V
IN  
V
OUT  
SHDN  
6 V  
OUT  
GND  
5 GND*  
SHDN  
GND*  
4
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
GND  
LS8 PACKAGE  
8-PIN LEADLESS CHIP CARRIER (5mm × 5mm)  
T
= 150°C, θ = 200°C/W  
JA  
DNC: DO NOT CONNECT  
JMAX  
*CONNECT THE PINS TO DEVICE GND (PIN 4)  
T
= 150°C, θ = 120°C/W  
JA  
JMAX  
DNC: DO NOT CONNECT  
*CONNECT THE PINS TO DEVICE GND (PIN 4)  
orDer inForMation  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING* PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
LTC6652AHMS8-1.25#PBF  
LTC6652BHMS8-1.25#PBF  
LTC6652AHMS8-2.048#PBF  
LTC6652BHMS8-2.048#PBF  
LTC6652AHMS8-2.5#PBF  
LTC6652BHMS8-2.5#PBF  
LTC6652AHMS8-3#PBF  
LTC6652BHMS8-3#PBF  
LTC6652AHMS8-3.3#PBF  
LTC6652BHMS8-3.3#PBF  
LTC6652AHMS8-4.096#PBF  
LTC6652BHMS8-4.096#PBF  
LTC6652AHMS8-5#PBF  
LTC6652BHMS8-5#PBF  
LTC6652AHMS8-1.25#TRPBF  
LTC6652BHMS8-1.25#TRPBF  
LTCVH  
LTCVH  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
LTC6652AHMS8-2.048#TRPBF LTCVJ  
LTC6652BHMS8-2.048#TRPBF LTCVJ  
LTC6652AHMS8-2.5#TRPBF  
LTC6652BHMS8-2.5#TRPBF  
LTC6652AHMS8-3#TRPBF  
LTC6652BHMS8-3#TRPBF  
LTC6652AHMS8-3.3#TRPBF  
LTC6652BHMS8-3.3#TRPBF  
LTCQV  
LTCQV  
LTCVK  
LTCVK  
LTCVM  
LTCVM  
LTC6652AHMS8-4.096#TRPBF LTCVN  
LTC6652BHMS8-4.096#TRPBF LTCVN  
LTC6652AHMS8-5#TRPBF  
LTC6652BHMS8-5#TRPBF  
LTCVP  
LTCVP  
6652fg  
2
For more information www.linear.com/LTC6652  
LTC6652  
orDer inForMation  
LEAD FREE FINISH  
PART MARKING*  
PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
–40°C to 125°C  
LTC6652AHLS8-2.5#PBF  
LTC6652BHLS8-2.5#PBF  
665225  
8-Lead Ceramic LCC 5mm × 5mm  
8-Lead Ceramic LCC 5mm × 5mm  
8-Lead Ceramic LCC 5mm × 5mm  
8-Lead Ceramic LCC 5mm × 5mm  
8-Lead Ceramic LCC 5mm × 5mm  
8-Lead Ceramic LCC 5mm × 5mm  
665225  
–40°C to 125°C  
LTC6652AHLS8-4.096#PBF  
LTC6652BHLS8-4.096#PBF  
524096  
–40°C to 125°C  
524096  
–40°C to 125°C  
LTC6652AHLS8-5#PBF  
66525  
–40°C to 125°C  
LTC6652BHLS8-5#PBF  
66525  
–40°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
available options  
OUTPUT VOLTAGE  
INITIAL ACCURACY  
TEMPERATURE COEFFICIENT  
PART NUMBER**  
1.250  
0.05ꢀ  
0.1ꢀ  
5ppm/°C  
10ppm/°C  
LTC6652AHMS8-1.25  
LTC6652BHMS8-1.25  
2.048  
2.500  
0.05ꢀ  
0.1ꢀ  
5ppm/°C  
LTC6652AHMS8-2.048  
LTC6652BHMS8-2.048  
10ppm/°C  
0.05ꢀ  
0.1ꢀ  
0.05ꢀ  
0.1ꢀ  
5ppm/°C  
10ppm/°C  
5ppm/°C  
8ppm/°C  
LTC6652AHMS8-2.5  
LTC6652BHMS8-2.5  
LTC6652AHLS8-2.5  
LTC6652BHLS8-2.5  
3.000  
3.300  
4.096  
0.05ꢀ  
0.1ꢀ  
5ppm/°C  
LTC6652AHMS8-3  
LTC6652BHMS8-3  
10ppm/°C  
0.05ꢀ  
0.1ꢀ  
5ppm/°C  
10ppm/°C  
LTC6652AHMS8-3.3  
LTC6652BHMS8-3.3  
0.05ꢀ  
0.1ꢀ  
0.05ꢀ  
0.1ꢀ  
5ppm/°C  
10ppm/°C  
5ppm/°C  
8ppm/°C  
LTC6652AHMS8-4.096  
LTC6652BHMS8-4.096  
LTC6652AHLS8-4.096  
LTC6652BHLS8-4.096  
5.000  
0.05ꢀ  
0.1ꢀ  
0.05ꢀ  
0.1ꢀ  
5ppm/°C  
10ppm/°C  
5ppm/°C  
8ppm/°C  
LTC6652AHMS8-5  
LTC6652BHMS8-5  
LTC6652AHLS8-5  
LTC6652BHLS8-5  
**See Order Information section for complete part number listing.  
electrical characteristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C, VIN = VOUT + 0ꢀ5V, unless otherwise notedꢀ  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Voltage  
LTC6652A  
LTC6652B  
–0.05  
–0.1  
0.05  
0.1  
l
l
l
Output Voltage Temperature Coefficient  
(Note 3)  
LTC6652A  
LTC6652BMS8  
LTC6652BLS8  
2
4
4
5
10  
8
ppm/°C  
ppm/°C  
ppm/°C  
Line Regulation  
V
+ 0.5V ≤ V ≤ 13.2V, SHDN = V  
IN  
2
50  
80  
ppm/V  
ppm/V  
OUT  
IN  
l
6652fg  
3
For more information www.linear.com/LTC6652  
LTC6652  
electrical characteristics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C, VIN = VOUT + 0ꢀ5V, unless otherwise notedꢀ  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Load Regulation (Note 4)  
I
= 5mA, LTC6652-1.25, LTC6652-2.048,  
20  
75  
200  
ppm/mA  
ppm/mA  
SOURCE  
l
LTC6652-2.5, LTC6652-3, LTC6652-3.3,  
LTC6652-4.096, LTC6652-5  
I
= 1mA, LTC6652-1.25, LTC6652-2.048  
80  
50  
250  
600  
ppm/mA  
ppm/mA  
SINK  
l
l
I
= 5mA, LTC6652-2.5, LTC6652-3,  
150  
450  
ppm/mA  
ppm/mA  
SINK  
LTC6652-3.3, LTC6652-4.096, LTC6652-5  
I = 5mA, V Error ≤ 0.1ꢀ  
SOURCE  
Minimum Operating Voltage (Note 5)  
OUT  
l
l
LTC6652-1.25, LTC6652-2.048  
LTC6652-2.5, LTC6652-3, LTC6652-3.3,  
LTC6652-4.096, LTC6652-5  
2.7  
OUT  
V
V
V
+ 0.3V  
Output Short-Circuit Current  
Short V  
Short V  
to GND  
16  
16  
mA  
mA  
OUT  
OUT  
to V  
IN  
l
l
Shutdown Pin (SHDN)  
Logic High Input Voltage  
Logic High Input Current  
2
V
µA  
0.1  
1
l
l
Logic Low Input Voltage  
Logic Low Input Current  
0.8  
1
V
µA  
0.1  
Supply Current  
No Load  
350  
µA  
µA  
l
l
560  
2
Shutdown Current  
SHDN Tied to GND  
0.1  
µA  
Output Voltage Noise (Note 6)  
0.1Hz ≤ f ≤ 10Hz  
LTC6652-1.25  
2.4  
2.1  
2.2  
2.3  
2.8  
3
ppm  
ppm  
ppm  
ppm  
ppm  
P-P  
P-P  
P-P  
P-P  
P-P  
LTC6652-2.048, LTC6652-2.5, LTC6652-3  
LTC6652-3.3  
LTC6652-4.096  
LTC6652-5  
10Hz ≤ f ≤ 1kHz  
ppm  
RMS  
Turn-On Time  
0.1ꢀ Settling, C  
= 0  
100  
µs  
LOAD  
Long-Term Drift of Output Voltage (Note 7) LTC6652MS8  
LTC6652LS8  
60  
20  
ppm/√kHr  
ppm/√kHr  
Hysteresis (Note 8)  
∆T = –40°C to 125°C, LTC6652MS8  
∆T = –40°C to 85°C, LTC6652MS8  
∆T = 0°C to 70°C, LTC6652MS8  
∆T = –40°C to 125°C, LTC6652LS8  
∆T = –40°C to 85°C, LTC6652LS8  
∆T = 0°C to 70°C, LTC6652LS8  
80  
75  
45  
45  
25  
10  
ppm  
ppm  
ppm  
ppm  
ppm  
ppm  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: If the parts are stored outside of the specified temperature range,  
the output may shift due to hysteresis.  
Note 7: Long-term stability typically has a logarithmic characteristic and  
therefore, changes after 1000 hours tend to be much smaller than before that  
time. Total drift in the second thousand hours is normally less than one third  
that of the first thousand hours with a continuing trend toward reduced drift  
with time. Long-term stability will also be affected by differential stresses  
between the IC and the board material created during board assembly.  
Note 8: Hysteresis in output voltage is created by package stress that  
differs depending on whether the IC was previously at a higher or lower  
temperature. Output voltage is always measured at 25°C, but the IC is  
cycled to the hot or cold temperature limit before successive measurements.  
Hysteresis is roughly proportional to the square of the temperature change.  
For instruments that are stored at well controlled temperatures (within 20  
or 30 degrees of operational temperature) it’s usually not a dominant error  
source.Typical hysteresis is the worst-case of 25°C to cold to 25°C or 25°C  
to hot to 25°C, preconditioned by one thermal cycle.  
Note 3: Temperature coefficient is measured by dividing the maximum  
change in output voltage by the specified temperature range.  
Note 4: Load regulation is measured on a pulse basis from no load to the  
specified load current. Output changes due to die temperature change  
must be taken into account separately.  
Note 5: Excludes load regulation errors.  
Note 6: Peak-to-peak noise is measured with a 3-pole highpass at 0.1Hz  
and 4-pole lowpass filter at 10Hz. The unit is enclosed in a still-air  
environment to eliminate thermocouple effects on the leads. The test  
time is 10 seconds. RMS noise is measured on a spectrum analyzer in  
a shielded environment where the intrinsic noise of the instrument is  
removed to determine the actual noise of the device.  
Note 9: The stated temperature is typical for soldering of the leads during  
manual rework. For detailed IR reflow recommendations, refer to the  
Applications section.  
6652fg  
4
For more information www.linear.com/LTC6652  
LTC6652  
typical perForMance characteristics  
Characteristic curves are similar for most  
LTC6652sꢀ Curves from the LTC6652-1ꢀ25, LTC6652-2ꢀ5 and the LTC6652-5 represent the extremes and typical of the voltage optionsꢀ  
Characteristic curves for other output voltages fall between these curves and can be estimated based on their outputꢀ  
1ꢀ25V Output Voltage  
Temperature Drift  
1ꢀ25V Line Regulation  
1ꢀ25V Load Regulation (Sourcing)  
1.2506  
1.2504  
1.2502  
1.2500  
0
–50  
1.2510  
1.2505  
1.2500  
1.2495  
1.2490  
3 TYPICAL PARTS  
–40°C  
125°C  
25°C  
–100  
–150  
–200  
–250  
125°C  
25°C  
1.2498  
1.2496  
1.2494  
–40°C  
10  
8
12  
14  
0
2
4
6
80  
TEMPERATURE (°C)  
1
10  
–80  
–40  
0
40  
120  
160  
0.1  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
6652 G18  
6652 G17  
6652 G19  
1ꢀ25V Low Frequency 0ꢀ1Hz to  
10Hz Transient Noise  
1ꢀ25V Output Voltage Noise  
Spectrum  
1ꢀ25V Load Regulation (Sinking)  
400  
350  
300  
250  
200  
150  
100  
50  
400  
300  
200  
100  
0
125°C  
25°C  
–40°C  
0
0.1  
1
10  
TIME (1 SECOND/DIV)  
0.01  
0.1  
1
10  
OUTPUT CURRENT (mA)  
FREQUENCY (kHz)  
6652 G22  
6652 G20  
6652 G21  
1ꢀ25V Stability with Output  
Capacitance  
1ꢀ25 Sinking Current Without  
Output Capacitor  
1ꢀ25 Sinking Current with Output  
Capacitor  
10µF  
1µF  
1mA  
0mA  
1mA  
0mA  
I
I
OUT  
OUT  
0.1µF  
10nF  
V
V
REGION OF  
MARGINAL  
STABILITY  
OUT  
OUT  
500mV/DIV  
500mV/DIV  
1nF  
100pF  
6652 G23  
6652 G24  
500µs/DIV  
500µs/DIV  
C
= 0µF  
C
= 1µF  
OUT  
OUT  
NO CAP  
–5  
–1  
0
5
LOAD CURRENT (mA)  
6652 G16  
6652fg  
5
For more information www.linear.com/LTC6652  
LTC6652  
typical perForMance characteristics  
Characteristic curves are similar for most  
LTC6652sꢀ Curves from the LTC6652-1ꢀ25, LTC6652-2ꢀ5 and the LTC6652-5 represent the extremes and typical of the voltage optionsꢀ  
Characteristic curves for other output voltages fall between these curves and can be estimated based on their outputꢀ  
2ꢀ5V Output Voltage  
Temperature Drift  
2ꢀ5V Line Regulation  
2ꢀ5V Load Regulation (Sourcing)  
0
–20  
2.5010  
2.5005  
2.5000  
2.4995  
2.5010  
2.5005  
2.5000  
2.4995  
2.4990  
2.4985  
3 TYPICAL PARTS  
–40°C  
–40  
–60  
125°C  
25°C  
25°C  
–80  
125°C  
–100  
–120  
–140  
–160  
–180  
–200  
–40°C  
2.4990  
2.4985  
2.4980  
0.1  
1
10  
8
12  
14  
50  
0
2
4
6
10  
–50 –25  
0
25  
75 100 125 150  
OUTPUT CURRENT (mA)  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
6652 G03  
6652 G02  
6652 G01  
2ꢀ5V Supply Current  
vs Input Voltage  
2ꢀ5V Shutdown Current  
vs Input Voltage  
2ꢀ5V Load Regulation (Sinking)  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
700  
600  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
500  
400  
125°C  
25°C  
125°C  
125°C  
25°C  
200  
100  
0
–40°C  
25°C  
–40°C  
–40°C  
0
4
6
8
10  
12  
14  
0.1  
1
10  
2
0
4
6
8
10  
12  
14  
2
INPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
INPUT VOLTAGE (V)  
6652 G05  
6652 G04  
6652 G06  
2ꢀ5V Minimum VIN-VOUT  
Differential (Sourcing)  
2ꢀ5V Minimum VOUT-VIN  
Differential (Sinking)  
10  
10  
1
1
25°C  
0.1  
0.01  
25°C  
125°C, –40°C  
125°C  
–40°C  
0.1  
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
OUTPUT-INPUT VOLTAGE (V)  
INPUT-OUTPUT VOLTAGE (V)  
6652 G10  
6652 G09  
6652fg  
6
For more information www.linear.com/LTC6652  
LTC6652  
typical perForMance characteristics  
Characteristic curves are similar for most  
LTC6652sꢀ Curves from the LTC6652-1ꢀ25, LTC6652-2ꢀ5 and the LTC6652-5 represent the extremes and typical of the voltage optionsꢀ  
Characteristic curves for other output voltages fall between these curves and can be estimated based on their outputꢀ  
2ꢀ5V Low Frequency 0ꢀ1Hz to  
10Hz Transient Noise  
2ꢀ5V Output Voltage Noise  
Spectrum  
600  
500  
400  
300  
200  
100  
0
TIME (1 SECOND/DIV)  
0.01  
0.1  
1
10  
FREQUENCY (kHz)  
6652 G12  
6652 G11  
Stability with Output Capacitance  
(LTC6652-2ꢀ5, LTC6652-3,  
LTC6652-3ꢀ3, LTC6652-4ꢀ096,  
LTC6652-5)  
Typical VOUT Distribution for  
LTC6652-2ꢀ5  
180  
160  
140  
120  
80  
10µF  
1µF  
1004 UNITS  
LTC6652A LIMITS  
0.1µF  
10nF  
REGION OF  
MARGINAL STABILITY  
60  
1nF  
100pF  
40  
20  
0
NO CAP  
2.4985  
2.4995  
2.5005  
2.5015  
–5  
0
5
OUTPUT VOLTAGE (V)  
LOAD CURRENT (mA)  
6652 G15  
6652 G14  
6652fg  
7
For more information www.linear.com/LTC6652  
LTC6652  
typical perForMance characteristics  
Characteristic curves are similar for most  
LTC6652sꢀ Curves from the LTC6652-1ꢀ25, LTC6652-2ꢀ5 and the LTC6652-5 represent the extremes and typical of the voltage optionsꢀ  
Characteristic curves for other output voltages fall between these curves and can be estimated based on their outputꢀ  
5V Output Voltage  
Temperature Drift  
5V Supply Current  
vs Input Voltage  
5V Line Regulation  
5.005  
5.003  
5.000  
4.998  
4.995  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
5.002  
5.001  
5.000  
4.999  
4.998  
3 TYPICAL PARTS  
25°C  
125°C  
–40°C  
125°C  
25°C  
–40°C  
50  
–50 –25  
0
25  
75 100 125 150  
0
4
6
8
10  
12  
14  
8
12  
14  
2
0
2
4
6
10  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
6652 G25  
6652 G27  
6652 G26  
5V Shutdown Current  
vs Input Voltage  
5V Minimum VIN to VOUT  
Differential (Sourcing)  
5V Low Frequency 0ꢀ1Hz to 10Hz  
Transient Noise  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
1
125°C  
25°C  
0.1  
0.01  
–40°C  
–40°C  
125°C  
25°C  
10  
12  
INPUT VOLTAGE (V)  
0
4
6
8
14  
0.001  
0.01  
0.1  
1
TIME (1 SECOND/DIV)  
2
INPUT-OUTPUT VOLTAGE (V)  
6652 G31  
6652 G29  
6652 G30  
5V Start-Up Response Without  
Output Capacitor  
5V Start-Up Response with Output  
Capacitor  
5V Output Voltage Noise Spectrum  
1000  
800  
600  
400  
200  
0
V
V
IN  
IN  
2V/DIV  
2V/DIV  
V
V
OUT  
2V/DIV  
OUT  
2V/DIV  
6652 G33  
6652 G34  
100µs/DIV  
100µs/DIV  
C
= 0µF  
C
OUT  
= 1µF  
OUT  
0.01  
0.1  
1
10  
FREQUENCY (kHz)  
6652 G32  
6652fg  
8
For more information www.linear.com/LTC6652  
LTC6652  
typical perForMance characteristics  
Characteristic curves are similar for most  
LTC6652sꢀ Curves from the LTC6652-1ꢀ25, LTC6652-2ꢀ5 and the LTC6652-5 represent the extremes and typical of the voltage optionsꢀ  
Characteristic curves for other output voltages fall between these curves and can be estimated based on their outputꢀ  
Power Supply Rejection Ratio  
vs Frequency  
SHDN Input Voltage Thresholds  
Output Impedance vs Frequency  
vs VIN  
100  
0
–10  
–20  
–30  
2.5  
2.0  
1.5  
1.0  
0.5  
0
C
= 0µF  
OUT  
C
= 0µF  
OUT  
V
TH(UP)  
10  
1
C
= 1µF  
OUT  
–40  
–50  
V
TH(DN)  
C
= 1µF  
OUT  
C
= 10µF  
–60  
–70  
OUT  
C
= 10µF  
OUT  
–80  
–90  
0.1  
–100  
8
12  
14  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
2
4
6
10  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
V
(V)  
IN  
6652 G13  
6652 G08  
6652 G07  
pin Functions  
DNC (Pin 1): Do Not Connect.  
GND (Pin 4): Device Ground.  
(Pin 6): Output Voltage. An output capacitor is not  
required.Forsomeapplications,acapacitorbetween0.1µF  
to 10µF can be beneficial. See the graphs in the Typical  
Performance Characteristics section for further details.  
V (Pin 2): Power Supply. The minimum supply input is  
V
IN  
OUT  
OUT  
V
+300mVor2.7V;whicheverishigher.Themaximum  
supply is 13.2V. Bypassing V with a 0.1µF capacitor to  
GND will improve PSRR.  
IN  
SHDN (Pin 3): Shutdown Input. This active low input  
GND (Pins 5,7,8): Internal Function. Ground these pins.  
powers down the device to <2µA. For normal operation  
tie this pin to V .  
IN  
6652fg  
9
For more information www.linear.com/LTC6652  
LTC6652  
block DiagraM  
V
IN  
2
+
V
OUT  
SHDN  
BANDGAP  
3
6
GND  
4
6652 BD  
applications inForMation  
Bypass and Load Capacitors  
The transient response for a 0.5V step on V with and  
IN  
without an output capacitor is shown in Figures 2 and 3,  
The LTC6652 voltage references do not require an input  
capacitor, but a 0.1µF capacitor located close to the part  
improves power supply rejection.  
respectively.  
The LTC6652 references with an output of 2.5V and above  
are guaranteed to source and sink 5mA. The 1.25V and  
2.048V versions are guaranteed to source 5mA and sink  
1mA. The test circuit for transient load step response is  
shown in Figure 1. Figures 4 and 5 show a 5mA source  
and sink load step response without a load capacitor,  
respectively.  
TheLTC6652voltagereferencesarestablewithorwithout  
acapacitiveload. Forapplicationswhereanoutputcapaci-  
tor is beneficial, a value of 0.1µF to 10µF is recommended  
depending on load conditions. The Typical Performance  
Characteristics section includes a plot illustrating a region  
of marginal stability. Either no or low value capacitors for  
anyloadcurrentareacceptable. Forloadsthatsinkcurrent  
orlightloadsthatsourcecurrent,a0.1µFto1Fcapacitor  
has stable operation. For heavier loads that source current  
a 0.5µF to 10µF capacitor range is recommended.  
Start-Up  
The start-up characteristic of the LTC6652 is shown in  
Figures 8 and 9. Note that the turn-on time is affected by  
the value of the output capacitor.  
100Ω  
2, 3  
6
V
IN  
LTC6652-2.5  
3V  
C
IN  
C
OUT  
1µF  
0.5V  
V
GEN  
0.1µF  
4, 5, 7, 8  
6652 F01  
Figure 1ꢀ Transient Load Test Circuit  
6652fg  
10  
For more information www.linear.com/LTC6652  
LTC6652  
applications inForMation  
3.5V  
5mA  
0mA  
V
IN  
I
OUT  
3V  
V
OUT  
500mV/DIV  
V
OUT  
200mV/DIV  
6652 F05  
6652 F02  
C
= 0µF  
250µs/DIV  
C
= 0µF  
500µs/DIV  
OUT  
OUT  
Figure 2ꢀ Transient Response Without  
Output Capacitor  
Figure 5ꢀ LTC6652-2ꢀ5 Sinking Current  
Without Output Capacitor  
0mA  
3.5V  
I
OUT  
V
IN  
–5mA  
3V  
V
OUT  
500mV/DIV  
V
OUT  
200mV/DIV  
6652 F03  
6652 F06  
C
= 1µF  
500µs/DIV  
C
= 1µF  
250µs/DIV  
OUT  
OUT  
Figure 3ꢀ Transient Response with 1µF  
Output Capacitor  
Figure 6ꢀ LTC6652-2ꢀ5 Sourcing Current  
with Output Capacitor  
5mA  
0mA  
I
I
OUT  
OUT  
0mA  
–5mA  
V
OUT  
V
OUT  
50mV/DIV  
200mV/DIV  
6652 F07  
6652 F04  
C
= 1µF  
250µs/DIV  
C
= 0µF  
250µs/DIV  
OUT  
OUT  
Figure 4ꢀ LTC6652-2ꢀ5 Sourcing  
Current Without Output Capacitor  
Figure 7ꢀ LTC6652-2ꢀ5 Sinking Current  
with Output Capacitor  
6652fg  
11  
For more information www.linear.com/LTC6652  
LTC6652  
applications inForMation  
2.8V V 13.2V  
IN  
V
IN  
C1  
1µF  
R1  
20k  
2V/DIV  
V
IN  
LTC6652-2.5  
SHDN  
V
V
OUT  
OUT  
V
OUT  
GND  
1V/DIV  
TO µC  
6652 F10  
C2  
1µF  
2N7002  
6652 F08  
C
= 0µF  
100µs/DIV  
OUT  
Figure 8ꢀ Start-Up Response without  
Output Capacitor  
Figure 10ꢀ Open-Drain Shutdown Circuit  
V
IN  
2V/DIV  
SHDN  
1V/DIV  
V
OUT  
V
OUT  
1V/DIV  
1V/DIV  
6652 F09  
6652 F11  
C
= 1µF  
100µs/DIV  
I
= 5mA  
1ms/DIV  
OUT  
LOAD  
Figure 9ꢀ Start-Up Response with 1µF  
Output Capacitor  
Figure 11ꢀ Shutdown Response with  
5mA Load  
In Figure 8, ripple momentarily appears just after the  
leading edge of powering on. This brief one time event is  
caused by calibration circuitry during initialization. When  
anoutputcapacitorisused, therippleisvirtuallyundetect-  
able as shown in Figure 9.  
an output impedance of 20k 2.5 = 50kΩ. For normal  
operation, SHDN should be greater than or equal to 2.0V.  
For use with a microcontroller, use a pull-up resistor to  
V
and an open-drain output driver as shown in Figure  
IN  
10. The LTC6652’s response into and out of shutdown  
mode is shown in Figure 11.  
Shutdown Mode  
ThetripthresholdsonSHDNhavesomedependenceonthe  
Shutdown mode is enabled by tying SHDN low which  
places the part in a low power state (i.e., <2µA). In shut-  
down mode, the output pin takes the value 20k (rated  
output voltage). For example, an LTC6652-2.5 will have  
voltageappliedtoV asshownintheTypicalPerformance  
IN  
Characteristics section. Be careful to avoid leaving SHDN  
ata voltage between the thresholds asthis willlikely cause  
anincreaseinsupplycurrentduetoshoot-throughcurrent.  
6652fg  
12  
For more information www.linear.com/LTC6652  
LTC6652  
applications inForMation  
80  
80  
60  
LTC6652-2.5 MS8 PACKAGE  
LTC6652-2.5 LS8 PACKAGE  
4 TYPICAL PARTS  
A
3 TYPICAL PARTS  
T
= 35°C  
T
= 30°C  
60  
40  
A
40  
20  
20  
0
0
–20  
–40  
–20  
–40  
0
300  
600  
900  
1200  
1500  
0
200  
400  
600  
800  
1000  
HOURS  
HOURS  
6652 F12a  
6652 F12b  
Figure 12aꢀ MS8 Long-Term Drift  
Figure 12bꢀ LS8 Long-Term Drift  
35  
30  
25  
20  
15  
10  
5
9
8
7
6
5
4
3
2
1
0
25°C TO 125°C TO 25°C 25°C TO –40°C TO 25°C  
25°C TO 125°C TO 25°C 25°C TO –40°C TO 2  
5°C  
0
–250  
–150  
–50  
50  
150  
–110 –80 –50 –20  
0 20 50 80 110  
DISTRIBUTION (ppm)  
DISTRIBUTION (ppm)  
6652 F13a  
6652 F13b  
Figure 13aꢀ MS8 Hysteresis Plot  
–40°C to 125°C  
Figure 13bꢀ LS8 Hysteresis Plot  
–40°C to 125°C  
Long-Term Drift  
Hysteresis  
Long-termdriftcannotbeextrapolatedfromaccelerated  
hightemperaturetestingThiserroneoustechniquegives  
drift numbers that are wildly optimisticꢀ The only way  
long-term drift can be determined is to measure it over  
thetimeintervalofinterestTheLTC6652long-termdrift  
data was collected on more than 100 parts that were sol-  
dered into PC boards similar to a “real world” application.  
The boards were then placed into a constant temperature  
The hysteresis data shown in Figure 13 represents the  
worst-case data collected on parts from 40°C to 125°C.  
The output is capable of dissipating relatively high power,  
i.e., for the LTC6652-2.5, P = 10.7V 5.5mA = 58.85mW.  
D
The thermal resistance of the MS8 package is 200°C/W  
and this dissipation causes a 11.8°C internal rise. This  
could increase the junction temperature above 125°C and  
may cause the output to shift due to thermal hysteresis.  
oven with T = 35°C, their outputs were scanned regularly  
A
and measured with an 8.5 digit DVM. Long-term drift is  
shown below in Figure 12.  
6652fg  
13  
For more information www.linear.com/LTC6652  
LTC6652  
applications inForMation  
PC Board Layout  
expectedusingaconvectionreflowoven.Inourexperiment,  
the serialized parts were run through the reflow process  
twice. The results indicate that the standard deviation of  
the output voltage increases with a slight positive mean  
shift of 0.003ꢀ as shown in Figure 15. While there can  
be up to 0.016ꢀ of output voltage shift, the overall drift  
of the LTC6652 after IR reflow does not vary significantly.  
The mechanical stress of soldering a surface mount volt-  
age reference to a PC board can cause the output voltage  
to shift and temperature coefficient to change. These two  
changes are not correlated. For example, the voltage may  
shift, but the temperature coefficient may not.  
To reduce the effects of stress-related shifts, mount the  
reference near the short edge of the PC board or in a  
corner. In addition, slots can be cut into the board on two  
sides of the device.  
Power Dissipation  
Power dissipation in the LTC6652 is dependent on V ,  
IN  
load current, and package. The LTC6652 package has  
The capacitors should be mounted close to the package.  
a thermal resistance, or θ , of 200°C/W. A curve that  
JA  
The GND and V  
traces should be as short as possible  
illustrates allowed power dissipation vs temperature for  
OUT  
to minimize I R drops. Excessive trace resistance directly  
this package is shown in Figure 16.  
impacts load regulation.  
The power dissipation of the LTC6652-2.5V as a function  
of input voltage is shown in Figure 17. The top curve  
showspowerdissipationwitha5mAloadandthebottom  
curve shows power dissipation with no load.  
IR Reflow Shift  
Thedifferentexpansionandcontractionratesofthemateri-  
als that make up the lead-free LTC6652 package cause the  
outputvoltagetoshiftafterundergoingIRreflow.Lead-free  
reflow profiles reach over 250°C, considerably more than  
their leaded counterparts. The lead-free IR reflow profile  
used to experimentally measure output voltage shift in the  
LTC6652-2.5 is shown in Figure 14. Similar results can be  
When operated within its specified limits of V = 13.2V  
IN  
andsourcing5mA,theLTC6652-2.5consumesjustunder  
60mW at room temperature. At 125°C the quiescent cur-  
rent will be slightly higher and the power consumption  
increases to just over 60mW. The power-derating curve  
in Figure 16 shows the LTC6652-2.5 can safely dissipate  
125mW at 125°C about half the maximum power con-  
sumption of the package.  
300  
380s  
T
= 260°C  
P
RAMP  
DOWN  
T
= 217°C  
L
225  
150  
75  
Humidity Sensitivity  
T
= 200°C  
S(MAX)  
t
T
= 190°C  
P
S
30s  
Plastic mould compounds absorb water. With changes  
in relative humidity, plastic packaging materials change  
the amount of pressure they apply to the die inside,  
which can cause slight changes in the output of a volt-  
age reference, usually on the order of 100ppm. The LS8  
packageishermetic, soitisnotaffectedbyhumidity, and  
is therefore more stable in environments where humidity  
may be a concern.  
T = 150°C  
t
L
RAMP TO  
150°C  
130s  
40s  
120s  
4
0
0
2
6
8
10  
MINUTES  
6652 F14  
Figure 14ꢀ Lead-Free Reflow Profile  
6652fg  
14  
For more information www.linear.com/LTC6652  
LTC6652  
applications inForMation  
10  
8
7
6
5
4
3
2
1
0
1X  
3X  
6
4
2
0
–0.014 –0.006  
0.002  
0.010  
0.018  
–0.1  
–0.06 –0.02 0 0.02  
0.06  
0.1  
OUTPUT VOLTAGE SHIFT DUE TO IR REFLOW (%)  
OUTPUT VOLTAGE SHIFT DUE TO IR REFLOW (%)  
6652 F15a  
6652 F15b  
Figure 15aꢀ MS8 Output Voltage  
Shift Due to IR Reflow  
Figure 15bꢀ LS8 Output Voltage  
Shift Due to IR Reflow  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.06  
T
= 25°C  
A
0.05  
0.04  
0.03  
0.02  
0.01  
0
5mA LOAD  
NO LOAD  
0
20  
40  
60  
140  
2
4
6
8
14  
80 100 120  
10  
12  
TEMPERATURE (°C)  
V
(V)  
IN  
6652 F16  
6652 F17  
Figure 16ꢀ Maximum Recommended  
Dissipation for LTC6652  
Figure 17ꢀ Typical Power Dissipation  
of the LTC6652  
6652fg  
15  
For more information www.linear.com/LTC6652  
LTC6652  
typical applications  
Extended Supply Range Reference  
Extended Supply Range Reference  
6V TO 160V  
4V TO 30V  
R1  
R1  
330k  
R2  
4.7k  
ON SEMI  
MMBT5551  
V
V
OUT  
LTC6652-2.5  
GND  
V
OUT  
IN  
V
SHDN  
IN  
SHDN  
C1  
0.1µF  
BZX84C18  
C2  
OPTIONAL  
6652 TA02  
V
V
LTC6652-2.5  
GND  
OUT  
OUT  
BZX84C18  
C2  
OPTIONAL  
C1  
0.1µF  
6652 TA03  
Negative Rail Circuit  
Boosted Output Current  
V
≥ 1.75V  
2, 3  
+
CC  
V
(V  
+ 1.8V)  
OUT  
R1  
220Ω  
C1  
1µF  
C1  
0.1µF  
2N2905  
V
SHDN  
IN  
6
LTC6652-2.5  
V
OUT  
V
OUT  
LTC6652-2.5  
GND  
C2  
1µF  
4, 5, 7, 8  
500Ω  
≤ –3V  
V
OUT  
6652 TA04  
–2.5V  
1µF  
6652 TA06  
V
EE  
6652fg  
16  
For more information www.linear.com/LTC6652  
LTC6652  
package Description  
Please refer to http://wwwꢀlinearꢀcom/product/LTC6652#packaging for the most recent package drawingsꢀ  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660 Rev G)  
0.889 0.127  
(.035 .005)  
5.10  
3.20 – 3.45  
(.201)  
(.12ꢀ – .13ꢀ)  
MIN  
3.00 0.102  
(.118 .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
0.ꢀ5  
(.025ꢀ)  
BSC  
0.42 0.038  
(.01ꢀ5 .0015)  
TYP  
8
7 ꢀ 5  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 0.102  
(.118 .004)  
(NOTE 4)  
4.90 0.152  
(.193 .00ꢀ)  
DETAIL “A”  
0.254  
(.010)  
0° – ꢀ° TYP  
GAUGE PLANE  
1
2
3
4
0.53 0.152  
(.021 .00ꢀ)  
1.10  
(.043)  
MAX  
0.8ꢀ  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
0.101ꢀ 0.0508  
(.009 – .015)  
(.004 .002)  
0.ꢀ5  
(.025ꢀ)  
BSC  
TYP  
MSOP (MS8) 0213 REV G  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.00ꢀ") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.00ꢀ") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6652fg  
17  
For more information www.linear.com/LTC6652  
LTC6652  
package Description  
Please refer to http://wwwꢀlinearꢀcom/product/LTC6652#packaging for the most recent package drawingsꢀ  
LS8 Package  
8-Pin Leadless Chip Carrier (5mm × 5mm)  
(Reference LTC DWG # 05-08-1852 Rev B)  
8
2.50 0.15  
PACKAGE OUTLINE  
7
1
0.5  
2
3
6
2.54 0.15  
1.4  
1.50 0.15  
XYY ZZ  
ABCDEF  
4
Q12345  
0.70 0.05 × 8  
COMPONENT  
PIN “A1”  
5.00 SQ 0.15  
5.80 SQ 0.15  
TRAY PIN 1  
BEVEL  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
PACKAGE IN TRAY LOADING ORIENTATION  
5.00 SQ 0.15  
4.20 SQ 0.10  
8
1.45 0.10  
0.95 0.10  
5.00 SQ 0.15  
8
R0.20 REF  
2.00 REF  
PIN 1  
1
2
1
2
7
6
7
6
TOP MARK  
(SEE NOTE 5)  
0.5  
2.54 0.15  
4.20 0.10  
1.4  
5
3
3
5
R0.20 REF  
1.00 × 7 TYP  
LS8 0113 REV B  
4
4
0.70 TYP  
0.10 TYP  
0.64 × 8 TYP  
NOTE:  
1. ALL DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS PACKAGE DO NOT INCLUDE PLATING BURRS  
PLATING BURRS, IF PRESENT, SHALL NOT EXCEED 0.30mm ON ANY SIDE  
4. PLATING—ELECTO NICKEL MIN 1.25UM, ELECTRO GOLD MIN 0.30UM  
5. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
6652fg  
18  
For more information www.linear.com/LTC6652  
LTC6652  
revision history (Revision history begins at Rev C)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
C
11/09 Change to Typical Performance Characteristics.  
Change to Typical Application.  
6
14  
D
8/12  
Addition of 5mm × 5mm Hermetic LS8 Package.  
Update to Electrical Characteristics to Include LS8 Package.  
Addition of Long Term Drift, Hysteresis, IR Drift Plots for LS8 Package.  
Addition of Humidity Sensitivity Information.  
1, 2, 3, 12, 18  
4
13, 15  
14  
E
F
1/13  
7/15  
Correction to pin labeling of LS8 Package  
2
Order Information updated to include 4.096V and 5V options in LS8 package.  
MS8 and LS8 package descriptions updated.  
3
17, 18  
3
G
10/15 Correction to the Electrical Characteristics Table: Output Voltage Temperature Coefficient for LTC6652BMS8  
specification applies over the full operating temperature range.  
6652fg  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnectionof itscircuits asdescribedhereinwill notinfringeon existing patent rights.  
19  
LTC6652  
typical application  
Improved Reference Supply Rejection in a Data Converter Application  
LTC1657  
16  
D/A  
REF  
DATA  
VDAC  
V
CC  
GND  
V
IN  
R1  
50k  
V
OUT  
LTC6652  
REF  
A/D  
LTC1605  
SHDN  
V1  
16  
C1  
0.1µF  
V2  
V3  
V4  
D
OUT  
C2  
C
OUT  
10µF  
1µF  
GND  
GND  
6652 TA05  
relateD parts  
PART NUMBER DESCRIPTION  
COMMENTS  
LT1460  
LT1461  
LT1790  
LT6650  
LT6660  
LT6654  
Micropower Series References  
Micropower Series Low Dropout  
Micropower Precision Series References  
0.075% Max, 10ppm/°C Max, 20mA Output Current  
0.04% Max, 3ppm/°C Max, 50mA Output Current  
0.05% Max, 10ppm/°C Max, 60µA Supply, SOT23 Package  
0.5% Max, 5.6µA Supply, SOT23 Package  
Micropower Reference with Buffer Amplifier  
Tiny Micropower Series Reference  
0.2% Max, 20ppm/°C Max, 20mA Output Current, 2mm × 2mm DFN  
Precision Wide Supply High Output Drive Low Noise Reference 0.05% Max, 10ppm/°C Max, 10mA Output Current,  
1.6ppm Noise, SOT23 and LS8 Packages, –55°C to 125°C  
P-P  
LTC6655  
Precision, Low Drift, Low Noise Reference  
0.025% Max, 2ppm/°C Max, 5mA Output Current,  
0.25ppm Noise, –40°C to 125°C  
P-P  
6652fg  
LT 1015 REV G • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC6652  
LINEAR TECHNOLOGY CORPORATION 2007  

相关型号:

Linear

LTC6652AHMS8-3.3-PBF

Precision Low Drift Low Noise Buffered Reference
Linear

LTC6652AHMS8-3.3-TRPBF

Precision Low Drift Low Noise Buffered Reference
Linear

LTC6652AHMS8-4.096

Precision Low Drift Low Noise Buffered Reference
Linear

LTC6652AHMS8-4.096#PBF

LTC6652 - Precision Low Drift Low Noise Buffered Reference; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC6652AHMS8-4.096-PBF

Precision Low Drift Low Noise Buffered Reference
Linear

LTC6652AHMS8-4.096-TRPBF

Precision Low Drift Low Noise Buffered Reference
Linear

LTC6652AHMS8-5

Precision Low Drift Low Noise Buffered Reference
Linear
Linear

LTC6652AHMS8-5-PBF

Precision Low Drift Low Noise Buffered Reference
Linear

LTC6652AHMS8-5-TRPBF

Precision Low Drift Low Noise Buffered Reference
Linear

LTC6652BHLS8-4.096#PBF

LTC6652 - Precision Low Drift Low Noise Buffered Reference; Package: LCC; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear