LTC6912CDE-2#TR [Linear]

LTC6912 - Dual Programmable Gain Amplifiers with Serial Digital Interface; Package: DFN; Pins: 12; Temperature Range: 0°C to 70°C;
LTC6912CDE-2#TR
型号: LTC6912CDE-2#TR
厂家: Linear    Linear
描述:

LTC6912 - Dual Programmable Gain Amplifiers with Serial Digital Interface; Package: DFN; Pins: 12; Temperature Range: 0°C to 70°C

放大器
文件: 总24页 (文件大小:409K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6912  
Dual Programmable  
Gain Amplifiers with  
Serial Digital Interface  
U
FEATURES  
DESCRIPTIO  
The LTC®6912 is a family of dual channel, low noise,  
digitally programmable gain amplifiers (PGA) that are  
easy to use and occupy very little PC board space. The  
gains for both channels are independently programmable  
using a 3-wire SPI interface to select voltage gains of 0, 1,  
2, 5, 10, 20, 50, and 100V/V (LTC6912-1 ); and 0, 1, 2, 4,  
8, 16, 32, and 64V/V (LTC6912-2). All gains are inverting.  
2 Channels with Independent Gain Control  
LTC6912-1: (0, 1, 2, 5, 10, 20, 50, and 100V/V)  
LTC6912-2: (0, 1, 2, 4, 8, 16, 32, and 64V/V)  
Offset Voltage = 2mV Max (–40°C to 85°C)  
Channel-to-Channel Gain Matching of 0.1dB Max  
3-Wire SPITM Interface  
Extended Gain-Bandwidth at High Gains  
Wired-OR Outputs Possible (2:1 Analog MUX  
The LTC6912 family consists of 2 matched amplifiers with  
rail-to-rail outputs. When operated with unity gain, they  
will also process rail-to-rail input signals. A half-supply  
reference generated internally at the AGND pin supports  
single power supply applications. Operating from single  
or split supplies from 2.7V to 10.5V total, the LTC6912-X  
family is offered in tiny SSOP and DFN-12 Packages.  
Function)  
Low Power Hardware Shutdown (GN-16 Only,  
2µA Max at 2.7V)  
Rail-to-Rail Input Range  
Rail-to-Rail Output Swing  
Single or Dual Supply: 2.7V to 10.5V Total  
Input Noise: 12.6nV/Hz  
Total System Dynamic Range to 115dB  
16-Pin GN (SSOP) or 12-Pin DFN Package Options  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
APPLICATIO S  
Data Acquisition Systems  
Dynamic Gain Changing  
Automatic Ranging Circuits  
Automatic Gain Control  
U
TYPICAL APPLICATIO  
A Dual, Matched Low Noise PGA (16-Lead SSOP Package)  
3V  
0.1µF  
LTC6912-2  
Frequency Response  
12  
+
14  
V
V
40  
V
V
=
IN  
±2.5V  
GAIN OF 64  
GAIN OF 32  
GAIN OF 16  
GAIN OF 8  
GAIN OF 4  
GAIN OF 2  
GAIN OF 1  
S
= 10mV  
RMS  
2
3
4
15  
13  
INA  
OUT A  
V
V
= GAIN • V  
A
INA  
OUTA  
OUTB  
INA  
30  
20  
1µF  
LTC6912-X  
AGND  
INB  
OUT B  
10  
V
= GAIN • V  
B
V
INB  
INB  
0
–10  
CHB  
SHDN  
CHA  
DGND  
5
6
7
8
0.1  
10  
100  
1000 10000  
1
SHDN  
CS/LD  
DATA  
CLK  
10  
FREQUENCY (kHz)  
CS/LD  
3-WIRE  
SPI  
INTERFACE  
6912 TA01b  
D
IN  
9
D
OUT  
6912 TA01a  
6912fa  
1
LTC6912  
W W U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
Specified Temperature Range (Note 3)  
Total Supply Voltage (V+ to V)............................... 11V  
Input Current ...................................................... ±10mA  
Operating Temperature Range (Note 2)  
LTC6912C-1, LTC6912C-2 ..................–40°C to 85°C  
LTC6912I-1, LTC6912I-2.....................–40°C to 85°C  
LTC6912H-1, LTC6912H-2  
LTC6912C-1, LTC6912C-2 ..................–40°C to 85°C  
LTC6912I-1, LTC6912I-2.....................–40°C to 85°C  
LTC6912H-1, LTC6912H-2  
(GN-16 Only) .....................................–40°C to 125°C  
Storage Temperature Range ..................–65°C to 150°C  
UE Package ....................................... –65°C to 125°C  
Lead Temperature (Soldering, 10sec)................... 300°C  
(GN-16 Only) .....................................–40°C to 125°C  
U
W
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
TOP VIEW  
NC  
INA  
1
2
3
4
5
6
7
8
16 NC  
INA  
AGND  
INB  
1
2
3
4
5
6
12 OUTA  
15 OUT A  
11  
V
AGND  
INB  
14  
13  
12  
11  
10  
9
V
10 OUTB  
+
13  
OUT B  
CS/LD  
DIN  
9
8
7
V
+
SHDN  
CS/LD  
V
DGND  
DOUT  
NC  
CLK  
D
DGND  
IN  
UE12 PACKAGE  
CLK  
D
OUT  
12-LEAD (4mm × 3mm) PLASTIC DFN  
EXPOSED PAD IS CONNECTED TO V (PIN 13),  
GN PACKAGE  
MUST BE SOLDERED TO PCB  
16-LEAD NARROW PLASTIC SSOP  
TJMAX = 125°C, θJA = 160°C/W  
TJMAX = 150°C, θJA = 120°C/W  
ORDER PART  
NUMBER  
DFN PART*  
MARKING  
ORDER PART  
NUMBER  
GN PART  
MARKING  
LTC6912CGN-1  
LTC6912IGN-1  
LTC6912HGN-1  
LTC6912CGN-2  
LTC6912IGN-2  
LTC6912HGN-2  
69121  
LTC6912CDE-1  
LTC6912IDE-1  
LTC6912CDE-2  
LTC6912IDE-2  
69121  
69121  
69122  
69122  
6912I1  
6912H1  
69122  
6912I2  
6912H2  
Order Options Tape and Reel: Add #TR Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
6912fa  
2
LTC6912  
U
U
U
GAI SETTI GS A D PROPERTIES  
Table 1. LTC6912-1 GAIN SETTINGS AND PROPERTIES  
UPPER/LOWER  
NIBBLE  
NOMINAL  
VOLTAGE GAIN  
MAXIMUM LINEAR INPUT RANGE (V  
)
P-P  
Q7  
Q3  
Q6  
Q2  
Q5  
Q1  
Q4  
Q0  
Dual 5V  
Supply  
Single 5V  
Supply  
Single 3V  
Supply  
NOMINAL INPUT NOMINAL OUTPUT  
IMPEDANCE (k) IMPEDANCE ()  
Volts/Volt  
dB  
–120  
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
1
0
0
1
1
0
0
1
1
X
X
0
1
0
1
0
1
0
1
X
X
0
–1  
10  
5
5
3
3
(Open)  
0.4  
0.7  
10  
10  
–2  
6
5
2.5  
1
1.5  
0.6  
0.3  
0.15  
0.06  
0.03  
3
5
3.4  
–5  
14  
2
2
3.4  
–10  
–20  
–50  
–100  
0
20  
1
0.5  
0.25  
0.1  
0.05  
5
1
3.4  
26  
0.5  
1
6.4  
34  
0.2  
1
1
15  
40  
0.1  
10  
30  
–120  
(Open)  
(Open)  
Not Used (Note 11)  
Not Used  
Table 2. LTC6912-2 GAIN SETTINGS AND PROPERTIES  
UPPER/LOWER  
NIBBLE  
NOMINAL  
VOLTAGE GAIN  
MAXIMUM LINEAR INPUT RANGE (V  
)
P-P  
Q7  
Q3  
Q6  
Q2  
Q5  
Q1  
Q4  
Q0  
Dual 5V  
Supply  
Single 5V  
Supply  
Single 3V  
Supply  
NOMINAL INPUT NOMINAL OUTPUT  
IMPEDANCE (k) IMPEDANCE ()  
Volts/Volt  
dB  
–120  
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
1
0
0
1
1
0
0
1
1
X
X
0
1
0
1
0
1
0
1
X
X
0
10  
5
5
3
(Open)  
10  
0.4  
0.7  
–1  
10  
3
–2  
6
5
2.5  
1.5  
5
3.4  
–4  
–8  
12  
2.5  
1.25  
0.625  
0.3125  
0.156  
0.078  
5
0.75  
0.375  
0.188  
0.094  
0.047  
3
2.5  
3.4  
18.1  
24.1  
30.1  
36.1  
–120  
1.25  
0.625  
1.25  
1.25  
1.25  
1.25  
(Open)  
3.4  
–16  
–32  
–64  
0
6.4  
0.3125  
15  
0.156  
30  
10  
(Open)  
Not Used (Note 11)  
Not Used  
6912fa  
3
LTC6912  
ELECTRICAL CHARACTERISTICS  
otherwise noted.  
The  
denotes the specifications that apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V = 5V, AGND = 2.5V, Gain = 1, R = 10k to midsupply point, unless  
A
S
L
C, I GRADES  
H GRADE  
TYP  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
MAX  
UNITS  
Specifications for Both the LTC6912-1 and the LTC6912-2  
Total Supply Voltage (V )  
2.7  
10.5  
2.7  
10.5  
V
S
Supply Current per Channel  
Both Amplifiers Active (Gain = 1)  
V = 2.7V, V = V = V  
1.75  
2.0  
2.25  
2.75  
3.0  
3.5  
1.75  
2.0  
2.25  
3.0  
3.25  
3.75  
mA  
mA  
mA  
S
INA  
INB  
AGND  
V = 5V, V = V = V  
S
INA  
INB  
AGND  
V = ±5V, V = V = 0V  
S
INA  
INB  
Supply Current per Channel  
(Software Shutdown)  
Both Amplifiers Inactive (State 1000)  
V = 2.7V, V = V = V  
150  
200  
265  
255  
325  
750  
150  
200  
265  
280  
350  
750  
µA  
µA  
µA  
S
INA  
INB  
AGND  
V = 5V, V = V = V  
S
INA  
INB  
AGND  
V = ±5V, V = V = 0V  
S
INA  
INB  
Total-Supply Current  
(Hardware Shutdown,  
GN-16 Package Only)  
V = 2.7V, V  
= 2.43V  
= 4.5V  
= 4.5V  
0.3  
3.6  
20  
2
10  
50  
0.3  
3.6  
20  
5
10  
50  
µA  
µA  
µA  
S
SHDN  
V = 5V, V  
S
SHDN  
V = ±5V, V  
S
SHDN  
Output Voltage Swing LOW  
(Note 4)  
V = 2.7V, R = 10k Tied to Midsupply Point  
12  
60  
30  
110  
12  
50  
35  
125  
mV  
mV  
S
L
V = 2.7V, R = 500Tied to Midsupply Point  
S
L
V = 5V, R = 10k Tied to Midsupply Point  
20  
100  
40  
170  
20  
90  
45  
190  
mV  
mV  
S
L
V = 5V, R = 500Tied to Midsupply Point  
S
L
V = ±5V, R = 10k Tied to 0V  
30  
190  
50  
260  
30  
80  
60  
290  
mV  
mV  
S
L
V = ±5V, R = 500Tied to 0V  
S
L
Output Voltage Swing HIGH  
(Note 4)  
V = 2.7V, R = 10k Tied to Midsupply Point  
10  
50  
20  
80  
10  
50  
25  
90  
mV  
mV  
S
L
V = 2.7V, R = 500Tied to Midsupply Point  
S
L
V = 5V, R = 10k Tied to Midsupply Point  
15  
90  
30  
160  
15  
80  
35  
175  
mV  
mV  
S
L
V = 5V, R = 500Tied to Midsupply Point  
S
L
V = ±5V, R = 10k Tied to 0V  
20  
180  
40  
250  
20  
180  
45  
270  
mV  
mV  
S
L
V = ±5V, R = 500Tied to 0V  
S
L
Output Short-Circuit Current  
(Note 5)  
V = 2.7V  
V = ±5V  
S
±27  
±35  
±27  
±35  
mA  
mA  
S
AGND Open-Circuit Voltage  
(GN-16 Package Only)  
V = Single 5V Supply, V  
V = Single 5V Supply, V  
S
= 0.5V  
= 4.5V  
2.45  
2.5  
2.65  
2.55  
2.45  
2.5  
2.65  
2.55  
V
V
S
SHDN  
SHDN  
AGND (Common Mode)  
Input Voltage Range  
V = Single 2.7V Supply  
0.55  
0.75  
–4.3  
1.6  
3.65  
3.2  
0.55  
0.75  
–4.3  
1.6  
3.65  
3.2  
V
V
V
S
V = Single 5V Supply  
S
V = ±5V  
S
AGND Rejection (i.e., Common  
Mode Rejection or CMRR)  
V = 2.7V, V  
V = ±5V, V  
S
= 1.1V to 1.6V  
= –2.5V to 2.5V  
55  
55  
80  
75  
50  
50  
80  
75  
dB  
dB  
S
AGND  
AGND  
Power Supply Rejection Ratio (PSRR) V =2.7V to ±5V  
60  
80  
57  
80  
dB  
S
Slew Rate  
Gain = 1  
V = 5V, V  
= V = 1.1V to 3.9V  
OUTB  
12  
16  
12  
16  
V/µs  
V/µs  
S
OUTA  
V = ±5V, V  
S
= V  
= ±1.4V  
OUTA  
OUTB  
Gain = 10 (–1), Gain = 8 (–2)  
V = 5V, V = V = 1.1V to 3.9V  
20  
26  
20  
26  
V/µs  
V/µs  
S
OUTA  
OUTB  
V = ±5V, V  
= V  
= ±1.4V  
S
OUTA  
OUTB  
Signal Attenuation at Gain = 0 Setting Gain = 0 (Digital Inputs 0000),  
f = 200kHz  
–120  
–120  
dB  
Signal Attenuation in Software  
Shutdown  
(State = 1000)  
–120  
–120  
dB  
6912fa  
4
LTC6912  
ELECTRICAL CHARACTERISTICS  
otherwise noted.  
The  
denotes the specifications that apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V = 5V, AGND = 2.5V, Gain = 1, R = 10k to midsupply point, unless  
A
S
L
C, I GRADES  
TYP  
H GRADE  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
Specifications for Both the LTC6912-1 and the LTC6912-2  
SHDN Input High Voltage  
(GN-16 Package Only)  
V = Single 2.7V  
2.43  
4.5  
4.5  
2.43  
4.5  
4.5  
V
V
V
S
V = Single 5V  
S
V = ±5V  
S
SHDN Input Low Voltage  
(GN-16 Package Only)  
V = Single 2.7V  
0.27  
0.5  
0.5  
0.27  
0.5  
0.5  
V
V
V
S
V = Single 5V  
S
V = ±5V  
S
SHDN Pin 5, Input High Current  
(GN-16 Package Only)  
V = Single 2.7V  
0.2  
1
1
0.2  
1
1
µA  
µA  
µA  
S
V = Single 5V  
S
V = ±5V  
S
SHDN Pin 5, Input Low Current  
(GN-16 Package Only)  
V = Single 2.7V  
0.2  
1
1
0.2  
1
1
µA  
µA  
µA  
S
V = Single 5V  
S
V = ±5V  
S
Specifications for the LTC6912-1 ONLY  
Voltage Gain (Note 6)  
V = 2.7V, Gain = 1, R = 10k  
–0.07  
–0.11  
5.94  
13.85  
19.7  
19.55  
25.75  
33.5  
0
0.07  
0.07  
6.08  
14.05  
20.1  
20.05  
26.1  
34.05  
40.0  
–0.08  
–0.13  
5.93  
0
0.07  
0.07  
6.08  
14.05  
20.1  
20.05  
26.1  
34.05  
40.0  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
S
L
V = 2.7V, Gain = 1, R = 500Ω  
–0.02  
6.01  
13.95  
19.93  
19.85  
25.94  
33.8  
–0.02  
6.01  
13.95  
19.93  
19.85  
25.94  
33.8  
S
L
V = 2.7V, Gain = 2, R = 10k  
S
L
V = 2.7V, Gain = 5, R = 10k  
13.8  
S
L
V = 2.7V, Gain = 10, R =10k  
19.65  
19.35  
25.65  
33.40  
39.0  
S
L
V = 2.7V, Gain = 10, R = 500Ω  
S
L
V = 2.7V, Gain = 20, R = 10k  
S
L
V = 2.7V, Gain = 50, R = 10k  
S
L
V = 2.7V, Gain = 100, R = 10k  
39.2  
37.3  
39.6  
38.9  
39.6  
38.9  
S
L
V = 2.7V, Gain = 100, R = 500Ω  
39.7  
36.20  
39.7  
S
L
V = 5V, Gain = 1, R = 10k  
–0.08  
–0.11  
5.95  
13.8  
19.8  
19.6  
25.78  
33.5  
39.3  
37.75  
0.01  
–0.01  
6.02  
13.96  
19.94  
19.87  
25.94  
33.84  
39.7  
0.08  
0.07  
6.09  
14.1  
20.1  
20.1  
26.08  
34.1  
40.1  
39.85  
–0.09  
–0.13  
5.94  
13.78  
19.75  
19.45  
25.75  
33.4  
0.01  
–0.01  
6.02  
13.96  
19.94  
19.87  
25.94  
33.84  
39.7  
0.08  
0.07  
6.09  
14.1  
20.1  
20.1  
26.08  
34.1  
40.1  
39.85  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
S
L
V = 5V, Gain = 1, R = 500Ω  
S
L
V = 5V, Gain = 2, R = 10k  
S
L
V = 5V, Gain = 5, R = 10k  
S
L
V = 5V, Gain = 10, R = 10k  
S
L
V = 5V, Gain = 10, R = 500Ω  
S
L
V = 5V, Gain = 20, R = 10k  
S
L
V = 5V, Gain = 50, R = 10k  
S
L
V = 5V, Gain = 100, R = 10k  
39.1  
36.6  
S
L
V = 5V, Gain = 100, R = 500Ω  
39.2  
39.2  
S
L
V = ±5V, Gain = 1, R = 10k  
–0.06  
–0.10  
5.95  
0.01  
0
0.08  
0.08  
6.09  
–0.07  
–0.11  
5.94  
13.79  
19.75  
19.58  
25.73  
33.60  
39.25  
37.6  
0.01  
0
0.08  
0.08  
6.09  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
S
L
V = ±5V, Gain = 1, R = 500Ω  
S
L
V = ±5V, Gain = 2, R = 10k  
6.02  
13.96  
19.94  
19.91  
25.95  
33.87  
39.8  
39.5  
6.02  
13.96  
19.94  
19.91  
25.95  
33.87  
39.8  
39.5  
S
L
V = ±5V, Gain = 5, R = 10k  
13.8  
14.1  
14.1  
S
L
V = ±5V, Gain = 10, R = 10k  
19.78  
19.68  
25.78  
33.65  
39.4  
20.08  
20.05  
26.08  
34.05  
40.2  
20.08  
20.05  
26.08  
34.05  
40.2  
S
L
V = ±5V, Gain = 10, R = 500Ω  
S
L
V = ±5V, Gain = 20, R = 10k  
S
L
V = ±5V, Gain = 50, R = 10k  
S
L
V = ±5V, Gain = 100, R = 10k  
S
L
V = ±5V, Gain = 100, R = 500Ω  
38.6  
39.9  
39.9  
S
L
6912fa  
5
LTC6912  
ELECTRICAL CHARACTERISTICS  
otherwise noted.  
The  
denotes the specifications that apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V = 5V, AGND = 2.5V, Gain = 1, R = 10k to midsupply point, unless  
A
S
L
C, I GRADES  
TYP  
H GRADE  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
Specifications for the LTC6912-1 ONLY  
Channel-to-Channel  
Voltage Gain Match  
(Note 6)  
V = 2.7V, Gain = 1, R = 10k  
–0.1  
–0.1  
–0.1  
–0.15  
–0.15  
–0.15  
–0.15  
–0.15  
–0.2  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
0.1  
0.1  
0.1  
0.15  
0.15  
0.15  
0.15  
0.15  
0.2  
–0.1  
–0.1  
–0.1  
–0.15  
–0.15  
–0.2  
–0.15  
–0.15  
–0.2  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
0.1  
0.1  
0.1  
0.15  
0.15  
0.2  
0.15  
0.15  
0.2  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
S
L
V = 2.7V, Gain = 1, R = 500Ω  
S
L
V = 2.7V, Gain = 2, R = 10k  
S
L
V = 2.7V, Gain = 5, R = 10k  
S
L
V = 2.7V, Gain = 10, R = 10k  
S
L
V = 2.7V, Gain = 10, R = 500Ω  
S
L
V = 2.7V, Gain = 20, R = 10k  
S
L
V = 2.7V, Gain = 50, R = 10k  
S
L
V = 2.7V, Gain = 100, R = 10k  
S
L
V = 2.7V, Gain = 100, R = 500Ω  
–1.0  
1.0  
–1.5  
1.5  
S
L
V = 5V, Gain = 1, R = 10k  
–0.1  
–0.1  
–0.1  
–0.15  
–0.15  
–0.15  
–0.15  
–0.15  
–0.2  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
0.1  
0.1  
0.1  
0.15  
0.15  
0.15  
0.15  
0.15  
0.2  
–0.1  
–0.1  
–0.1  
–0.15  
–0.15  
–0.15  
–0.15  
–0.15  
–0.2  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
0.1  
0.1  
0.1  
0.15  
0.15  
0.15  
0.15  
0.15  
0.2  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
S
L
V = 5V, Gain = 1, R = 500Ω  
S
L
V = 5V, Gain = 2, R = 10k  
S
L
V = 5V, Gain = 5, R = 10k  
S
L
V = 5V, Gain = 10, R = 10k  
S
L
V = 5V, Gain = 10, R = 500Ω  
S
L
V = 5V, Gain = 20, R = 10k  
S
L
V = 5V, Gain = 50, R = 10k  
S
L
V = 5V, Gain = 100, R = 10k  
S
L
V = 5V, Gain = 100, R = 500Ω  
–0.8  
0.8  
–1.2  
1.2  
S
L
V = ±5V, Gain = 1, R = 10k  
–0.1  
–0.1  
–0.1  
–0.15  
–0.15  
–0.15  
–0.15  
–0.15  
–0.2  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
0.1  
0.1  
0.1  
0.15  
0.15  
0.15  
0.15  
0.15  
0.2  
–0.1  
–0.1  
–0.1  
–0.15  
–0.15  
–0.15  
–0.15  
–0.15  
–0.2  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
0.1  
0.1  
0.1  
0.15  
0.15  
0.15  
0.15  
0.15  
0.2  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
S
L
V = ±5V, Gain = 1, R = 500Ω  
S
L
V = ±5V, Gain = 2, R = 10k  
S
L
V = ±5V, Gain = 5, R = 10k  
S
L
V = ±5V, Gain = 10, R = 10k  
S
L
V = ±5V, Gain = 10, R = 500Ω  
S
L
V = ±5V, Gain = 20, R = 10k  
S
L
V = ±5V, Gain = 50, R = 10k  
S
L
V = ±5V, Gain = 100, R = 10k  
S
L
V = ±5V, Gain = 100, R = 500Ω  
–0.6  
0.6  
–0.9  
0.9  
S
L
Gain Temperature Coefficient  
(Note 6)  
V = 5V, Gain = 1, R = OPEN  
2
2
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
S
L
V = 5V, Gain = 2, R = OPEN  
–1.5  
–11  
–30  
–40  
–70  
–140  
–1.5  
–11  
–30  
–40  
–70  
–140  
S
L
V = 5V, Gain = 5, R = OPEN  
S
L
V = 5V, Gain = 10, R = OPEN  
S
L
V = 5V, Gain = 20, R = OPEN  
S
L
V = 5V, Gain = 50, R = OPEN  
S
L
V = 5V, Gain = 100, R = OPEN  
S
L
Channel-to-Channel Gain  
Temperature Coefficient Match  
(Gain Specified in dB’s)  
(Note 6)  
V = 5V, Gain = 1, R = OPEN  
1
1
1
1
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
S
L
V = 5V, Gain = 2, R = OPEN  
S
L
V = 5V, Gain = 5, R = OPEN  
0.2  
–1  
–1  
–3  
–3  
0.2  
–1  
–1  
–3  
–3  
S
L
V = 5V, Gain = 10, R = OPEN  
S
L
V = 5V, Gain = 20, R = OPEN  
S
L
V = 5V, Gain = 50, R = OPEN  
S
L
V = 5V, Gain = 100, R = OPEN  
S
L
Channel-to-Channel Isolation  
(Note 7)  
f = 200kHz,  
V = 5V, Gain = 1, R = 10k  
113  
108  
89  
113  
108  
89  
dB  
dB  
dB  
S
L
V = 5V, Gain = 10, R = 10k  
S
L
V = 5V, Gain = 100, R = 10k  
S
L
6912fa  
6
LTC6912  
ELECTRICAL CHARACTERISTICS  
otherwise noted.  
The  
denotes the specifications that apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V = 5V, AGND = 2.5V, Gain = 1, R = 10k to midsupply point, unless  
A
S
L
C, I SUFFIXES  
TYP  
H SUFFIX  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
Specifications for the LTC6912-1 ONLY  
Offset Voltage Magnitude  
(Internal Op-Amp, Note 8)  
Gain = 1  
0.125  
2
0.125  
3.5  
mV  
Offset Voltage Magnitude  
Referred to INA or INB Pins  
(Note 8)  
Gain = 1  
Gain = 10  
0.25  
0.14  
3.5  
2
0.25  
0.14  
6.5  
4
mV  
mV  
Input Offset Voltage Drift,  
Internal Op Amp  
6
10  
µV/°C  
DC Input Resistance at  
INA or INB Pins (Note 9)  
DC V or V = 0V  
INA INB  
Gain = 0  
State = 8, Software Shutdown  
Gain = 1  
Gain = 2  
Gain = 5  
Gain > 5  
>10  
>10  
10  
5
2
1
>10  
>10  
10  
5
2
1
MΩ  
MΩ  
kΩ  
kΩ  
kΩ  
kΩ  
DC Input Resistance Drift at  
INA or INB Pins (Note 9)  
Gain = 1  
Gain = 2  
Gain = 5  
Gain = 10  
Gain = 20  
Gain = 50  
Gain = 100  
85  
90  
100  
120  
130  
150  
190  
95  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
100  
110  
130  
140  
160  
200  
DC Input Resistance Match  
Gain = 1  
Gain = 2  
Gain = 5  
Gain > 5  
10  
5
5
10  
5
5
R -R  
INA INB  
5
5
DC Small Signal Output Resistance DC V or V = 0V  
INA  
INB  
at OUT A or OUT B Pins  
Gain = 0  
0.4  
0.7  
1.0  
1.9  
3.4  
6.4  
15  
0.4  
0.7  
1.0  
1.9  
3.4  
6.4  
15  
Gain = 1  
Gain = 2  
Gain = 5  
Gain = 10  
Gain = 20  
Gain = 50  
Gain = 100  
30  
>1  
30  
>1  
State = 8, Software Shutdown  
MΩ  
Gain Bandwidth Product  
Gain = 100  
18  
33  
50  
16  
33  
50  
MHz  
Wideband Noise  
(Referred to Input)  
f = 1kHz to 200kHz  
Gain = 0 (Output Noise only)  
Gain = 1  
8.9  
15.6  
11.1  
8.3  
7.4  
7.0  
8.9  
15.6  
11.1  
8.3  
7.4  
7.0  
µV  
µV  
µV  
µV  
µV  
µV  
µV  
µV  
RMS  
RMS  
RMS  
RMS  
RMS  
RMS  
RMS  
RMS  
Gain = 2  
Gain = 5  
Gain = 10  
Gain = 20  
Gain = 50  
Gain = 100  
6.7  
6.3  
6.7  
6.3  
6912fa  
7
LTC6912  
ELECTRICAL CHARACTERISTICS  
otherwise noted.  
The  
denotes the specifications that apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V = 5V, AGND = 2.5V, Gain = 1, R = 10k to midsupply point, unless  
A
S
L
C, I GRADES  
TYP  
H GRADE  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
Specifications for the LTC6912-1 ONLY  
Voltage Noise Density  
(Referred to Input)  
f = 50kHz  
Gain = 1  
Gain = 2  
Gain = 5  
Gain = 10  
Gain = 20  
Gain = 50  
Gain = 100  
35.6  
24.8  
19.1  
16.7  
16  
15.4  
15.1  
35.6  
24.8  
19.1  
16.7  
16  
15.4  
15.1  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
Total Harmonic Distortion  
Gain = 10, f = 10kHz, V  
= 1V  
–90  
0.003  
–90  
0.003  
dB  
%
IN  
OUT  
RMS  
Gain = 10, f = 100kHz,  
–82  
0.008  
–82  
0.008  
dB  
%
IN  
V
= 1V  
OUT  
RMS  
Specifications for the LTC6912-2 ONLY  
Voltage Gain (Note 6)  
V = 2.7V, Gain = 1, R = 10k  
–0.07  
–0.11  
5.94  
11.9  
17.8  
17.65  
23.8  
29.7  
35.4  
0
0.07  
0.07  
6.08  
12.12  
18.15  
18.15  
24.25  
30.2  
–0.08  
–0.13  
5.93  
11.88  
17.75  
17.50  
23.75  
29.65  
35.15  
33.40  
0
0.07  
0.07  
6.08  
12.12  
18.15  
18.15  
24.25  
30.2  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
S
L
V = 2.7V, Gain = 1, R = 500Ω  
–0.02  
6.01  
–0.02  
6.01  
S
L
V = 2.7V, Gain = 2, R = 10k  
S
L
V = 2.7V, Gain = 4, R = 10k  
12.02  
18.0  
17.94  
24.01  
30.0  
35.8  
35.3  
12.02  
18.0  
17.94  
24.01  
30.0  
35.8  
35.3  
S
L
V = 2.7V, Gain = 8, R = 10k  
S
L
V = 2.7V, Gain = 8, R = 500Ω  
S
L
V = 2.7V, Gain = 16, R =10k  
S
L
V = 2.7V, Gain = 32, R = 10k  
S
L
V = 2.7V, Gain = 64, R = 10k  
36.2  
36.0  
36.2  
36.0  
S
L
V = 2.7V, Gain = 64, R = 500Ω  
34.15  
S
L
V = 5V, Gain = 1, R = 10k  
–0.08  
–0.1  
5.95  
11.85  
17.85  
17.65  
23.85  
29.70  
35.5  
0
0.08  
0.08  
6.09  
12.15  
18.15  
18.15  
24.15  
30.2  
36.25  
36.0  
–0.09  
–0.12  
5.94  
11.83  
17.83  
17.50  
23.80  
29.65  
35.40  
33.8  
0
0.08  
0.08  
6.09  
12.15  
18.15  
18.15  
24.15  
30.2  
36.25  
36.0  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
S
L
V = 5V, Gain = 1, R = 500Ω  
–0.01  
6.02  
–0.01  
6.02  
S
L
V = 5V, Gain = 2, R = 10k  
S
L
V = 5V, Gain = 4, R = 10k  
12.02  
18.01  
17.96  
24.02  
30.02  
35.9  
12.02  
18.01  
17.96  
24.02  
30.02  
35.9  
S
L
V = 5V, Gain = 8, R = 10k  
S
L
V = 5V, Gain = 8, R = 500Ω  
S
L
V = 5V, Gain = 16, R = 10k  
S
L
V = 5V, Gain = 32, R = 10k  
S
L
V = 5V, Gain = 64, R = 10k  
S
L
V = 5V, Gain = 64, R = 500Ω  
34.6  
35.6  
35.6  
S
L
V = ±5V, Gain = 1, R = 10k  
–0.06  
–0.1  
5.95  
0.01  
0
0.08  
0.08  
6.09  
12.15  
18.15  
18.15  
24.15  
30.2  
36.20  
36.10  
–0.07  
–0.11  
5.94  
11.88  
17.83  
17.73  
23.82  
29.8  
0.01  
0
0.08  
0.08  
6.09  
12.15  
18.15  
18.15  
24.15  
30.20  
36.20  
36.10  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
S
L
V = ±5V, Gain = 1, R = 500Ω  
S
L
V = ±5V, Gain = 2, R = 10k  
6.02  
12.03  
18.02  
17.99  
24.03  
30.0  
36.0  
35.8  
6.02  
12.03  
18.02  
17.99  
24.03  
30.0  
36.0  
35.8  
S
L
V = ±5V, Gain = 4, R = 10k  
11.9  
S
L
V = ±5V, Gain = 8, R = 10k  
17.85  
17.80  
23.85  
29.85  
35.65  
35.15  
S
L
V = ±5V, Gain = 8, R = 500Ω  
S
L
V = ±5V, Gain = 16, R = 10k  
S
L
V = ±5V, Gain = 32, R = 10k  
S
L
V = ±5V, Gain = 64, R = 10k  
35.55  
34.45  
S
L
V = ±5V, Gain = 64, R = 500Ω  
S
L
6912fa  
8
LTC6912  
ELECTRICAL CHARACTERISTICS  
otherwise noted.  
The  
denotes the specifications that apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V = 5V, AGND = 2.5V, Gain = 1, R = 10k to midsupply point, unless  
A
S
L
C, I GRADES  
TYP  
H GRADE  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
Specifications for the LTC6912-2 ONLY  
Channel-to-Channel  
Voltage Gain Match  
(Note 6)  
V = 2.7V, Gain = 1, R = 10k  
–0.1  
–0.1  
–0.1  
–0.15  
–0.15  
–0.15  
–0.15  
–0.15  
–0.2  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
0.1  
0.1  
0.1  
0.15  
0.15  
0.15  
0.15  
0.15  
0.2  
–0.1  
–0.1  
–0.1  
–0.15  
–0.15  
–0.2  
–0.15  
–0.15  
–0.2  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
0.1  
0.1  
0.1  
0.15  
0.15  
0.2  
0.15  
0.15  
0.2  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
S
L
V = 2.7V, Gain = 1, R = 500Ω  
S
L
V = 2.7V, Gain = 2, R = 10k  
S
L
V = 2.7V, Gain = 4, R = 10k  
S
L
V = 2.7V, Gain = 8, R = 10k  
S
L
V = 2.7V, Gain = 8, R = 500Ω  
S
L
V = 2.7V, Gain = 16, R = 10k  
S
L
V = 2.7V, Gain = 32, R = 10k  
S
L
V = 2.7V, Gain = 64, R = 10k  
S
L
V = 2.7V, Gain = 64, R = 500Ω  
–0.7  
0.7  
–1.0  
1.0  
S
L
V = 5V, Gain = 1, R = 10k  
–0.1  
–0.1  
–0.1  
–0.15  
–0.15  
–0.15  
–0.15  
–0.15  
–0.15  
–0.6  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
0.1  
0.1  
0.1  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.6  
–0.1  
–0.1  
–0.1  
–0.15  
–0.15  
–0.15  
–0.15  
–0.15  
–0.15  
–0.8  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
0.1  
0.1  
0.1  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.8  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
S
L
V = 5V, Gain = 1, R = 500Ω  
S
L
V = 5V, Gain = 2, R = 10k  
S
L
V = 5V, Gain = 4, R = 10k  
S
L
V = 5V, Gain = 8, R = 10k  
S
L
V = 5V, Gain = 8, R = 500Ω  
S
L
V = 5V, Gain = 16, R = 10k  
S
L
V = 5V, Gain = 32, R = 10k  
S
L
V = 5V, Gain = 64, R = 10k  
S
L
V = 5V, Gain = 64, R = 500Ω  
S
L
V = ±5V, Gain = 1, R = 10k  
–0.1  
–0.1  
–0.1  
–0.15  
–0.15  
–0.15  
–0.15  
–0.15  
–0.15  
–0.4  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
0.1  
0.1  
0.1  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.4  
–0.1  
–0.1  
–0.1  
–0.15  
–0.15  
–0.15  
–0.15  
–0.15  
–0.15  
–0.6  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
±0.02  
0.1  
0.1  
0.1  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.6  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
S
L
V = ±5V, Gain = 1, R = 500Ω  
S
L
V = ±5V, Gain = 2, R = 10k  
S
L
V = ±5V, Gain = 4, R = 10k  
S
L
V = ±5V, Gain = 8, R = 10k  
S
L
V = ±5V, Gain = 8, R = 500Ω  
S
L
V = ±5V, Gain = 16, R = 10k  
S
L
V = ±5V, Gain = 32, R = 10k  
S
L
V = ±5V, Gain = 64, R = 10k  
S
L
V = ±5V, Gain = 64, R = 500Ω  
S
L
Gain Temperature Coefficient  
(Note 6)  
V = 5V, Gain = 1, R = OPEN  
2
–4  
–10  
–24  
–30  
–40  
–120  
2
–4  
–10  
–24  
–30  
–40  
–120  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
S
L
V = 5V, Gain = 2, R = OPEN  
S
L
V = 5V, Gain = 4, R = OPEN  
S
L
V = 5V, Gain = 8, R = OPEN  
S
L
V = 5V, Gain = 16, R = OPEN  
S
L
V = 5V, Gain = 32, R = OPEN  
S
L
V = 5V, Gain = 64, R = OPEN  
S
L
Channel-to-Channel Gain  
Temperature Coefficient Match  
(Note 6)  
V = 5V, Gain = 1, R = OPEN  
0
–0.5  
0
0
–0.5  
0
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
S
L
V = 5V, Gain = 2, R = OPEN  
S
L
V = 5V, Gain = 4, R = OPEN  
S
L
V = 5V, Gain = 8, R = OPEN  
0
0
S
L
V = 5V, Gain = 16, R = OPEN  
–1  
–4  
–4  
–1  
–4  
–4  
S
L
V = 5V, Gain = 32, R = OPEN  
S
L
V = 5V, Gain = 64, R = OPEN  
S
L
Channel-to-Channel Isolation  
(Note 7)  
f = 200kHz,  
V = 5V, Gain = 1, R = 10k  
117  
110  
92  
117  
110  
92  
dB  
dB  
dB  
S
L
V = 5V, Gain = 8, R = 10k  
S
L
V = 5V, Gain = 64, R = 10k  
S
L
Offset Voltage Magnitude  
(Internal Op-Amp, Note 8)  
Gain = 1  
0.125  
2
0.125  
3.5  
mV  
6912fa  
9
LTC6912  
ELECTRICAL CHARACTERISTICS  
otherwise noted.  
The  
denotes the specifications that apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V = 5V, AGND = 2.5V, Gain = 1, R = 10k to midsupply point, unless  
A
S
L
C, I GRADES  
TYP  
H GRADE  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
Specifications for the LTC6912-2 ONLY  
Offset Voltage Magnitude  
Referred to INA or INB Pins  
(Note 8)  
Gain = 1  
Gain = 8  
0.25  
0.14  
3.5  
2
0.25  
0.14  
6.5  
4
mV  
mV  
Input Offset Voltage Drift,  
Internal Op Amp  
6
10  
µV/°C  
DC Input Resistance at  
INA or INB Pins (Note 9)  
DC V or V = 0V  
INA INB  
Gain = 0  
State = 8, Software Shutdown  
Gain = 1  
Gain = 2  
Gain = 4  
Gain > 4  
>10  
>10  
10  
5
2.5  
>10  
>10  
10  
5
2.5  
MΩ  
MΩ  
kΩ  
kΩ  
kΩ  
kΩ  
1.25  
1.25  
DC Input Resistance Drift at  
INA or INB Pins (Note 9)  
Gain = 1  
85  
90  
95  
120  
130  
140  
170  
95  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
Gain = 64  
100  
105  
130  
140  
150  
180  
DC Input Resistance Match  
Gain = 1  
Gain = 2  
Gain = 4  
Gain > 4  
10  
5
5
10  
5
5
R -R  
INA INB  
5
5
DC Small Signal Output Resistance DC V or V = 0V  
INA  
INB  
at OUT A or OUT B Pins  
Gain = 0  
0.4  
0.7  
1.0  
1.9  
3.4  
6.4  
15  
0.4  
0.7  
1.0  
1.9  
3.4  
6.4  
15  
Gain = 1  
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
Gain = 64  
30  
>1  
30  
>1  
State = 8, Software Shutdown  
MΩ  
Gain Bandwidth Product  
Gain = 64  
17  
30  
50  
15  
30  
50  
MHz  
Wideband Noise  
(Referred to Input)  
f = 1kHz to 200kHz  
Gain = 0 (Output Noise Only)  
Gain = 1  
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
Gain = 64  
8.1  
13.8  
9.6  
7.5  
6.4  
6.0  
5.8  
5.6  
8.1  
13.8  
9.6  
7.5  
6.4  
6.0  
5.8  
5.6  
µV  
µV  
µV  
µV  
µV  
µV  
µV  
µV  
RMS  
RMS  
RMS  
RMS  
RMS  
RMS  
RMS  
RMS  
6912fa  
10  
LTC6912  
ELECTRICAL CHARACTERISTICS  
otherwise noted.  
The  
denotes the specifications that apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V = 5V, AGND = 2.5V, Gain = 1, R = 10k to midsupply point, unless  
A
S
L
C, I GRADES  
TYP  
H GRADE  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
Specifications for the LTC6912-2 ONLY  
Voltage Noise Density  
(Referred to Input)  
f = 50kHz  
Gain = 1  
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
Gain = 64  
31.1  
22.8  
17  
14.6  
13.2  
12.9  
12.6  
31.1  
22.8  
17  
14.6  
13.2  
12.9  
12.6  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
nV/Hz  
Total Harmonic Distortion  
Gain = 8, f = 10kHz, V  
= 1V  
RMS  
–84  
0.006  
–84  
0.006  
dB  
%
IN  
OUT  
Gain = 8, f = 100kHz, V  
= 1V  
RMS  
–82  
0.008  
–82  
0.008  
dB  
%
IN  
OUT  
U
U
SERIAL I TERFACE SPECIFICATIO S  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Digital I/O Logic Levels, All Digital I/O Voltage Referenced to DGND  
V
V
V
V
Digital Input High Voltage  
Digital Input Low Voltage  
Digital Output High Voltage  
Digital Output Low Voltage  
2
V
V
V
V
IH  
0.8  
0.3  
IL  
+
Sourcing 500µA  
Sinking 500µA  
V – 0.3  
OH  
OL  
+
Serial Interface Timing, V = 2.7V ~ 4.5V, V = 0V (Note 10)  
t
t
t
t
t
t
t
t
t
D
D
Valid to CLK Setup  
Valid to CLK Hold  
60  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
2
3
4
5
6
7
8
9
IN  
IN  
CLK Low  
100  
100  
60  
CLK High  
CS/LD Pulse Width  
LSB CLK to CS/LD  
CS/LD Low to CLK  
60  
30  
D
OUT  
Output Delay  
C = 15pF  
L
125  
CLK Low to CS/LD Low  
0
+
Serial Interface Timing, V = 4.5V ~ 5.5V, V = 0V (Note 10)  
t
t
t
t
t
t
t
t
t
D
D
Valid to CLK Setup  
Valid to CLK Hold  
30  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
2
3
4
5
6
7
8
9
IN  
IN  
CLK Low  
50  
50  
40  
40  
20  
CLK High  
CS/LD Pulse Width  
LSB CLK to CS/LD  
CS/LD Low to CLK  
D
OUT  
Output Delay  
C = 15pF  
L
85  
CLK Low to CS/LD Low  
0
6912fa  
11  
LTC6912  
U
U
SERIAL I TERFACE SPECIFICATIO S  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Serial Interface Timing, Dual ±4.5V ~ ±5.5V Supplies (Note 10)  
t
t
t
t
t
t
t
t
t
D
D
Valid to CLK Setup  
Valid to CLK Hold  
30  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
2
3
4
5
6
7
8
9
IN  
IN  
CLK High  
50  
50  
40  
40  
20  
CLK Low  
CS/LD Pulse Width  
LSB CLK to CS/LD  
CS/LD Low to CLK  
D
OUT  
Output Delay  
C = 15pF  
L
85  
CLK Low to CS/LD Low  
0
t
t
t
t
t
t
7
1
2
4
3
6
CLK  
t
9
D7 • • • D4  
D3  
D2  
D31  
D0  
D3  
D
IN  
t
5
CS/LD  
t
8
D
D7 • • • D4  
CURRENT BYTE  
D4  
D3  
D2  
D31  
D0  
D3  
OUT  
PREVIOUS BYTE  
6912 TD  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of the device may be impaired.  
Note 7: Channel-to-channel isolation is measured by applying a 200kHz  
input signal to one channel so that its output varies 1V , and measuring  
RMS  
the output voltage RMS of the other channel relative to AGND with its  
Note 2: The LTC6912-1C and LTC6912-1I are guaranteed functional over  
the operating temperature range of –40°C to 85°C. The LTC6912-1H is  
guaranteed functional over the operating temperature range of –40°C to  
125°C.  
input tied to AGND. Isolation is calculated:  
10  
Isolation = 20 • log (V  
/V  
) or  
)
B
OUTA OUTB  
10  
Isolation = 20 • log (V  
/V  
OUTB OUTA  
A
Note 3: The LTC6912-1C is guaranteed to meet specified performance  
from 0°C to 70°C. The LTC6912-1C is designed, characterized and  
expected to meet specified performance from – 40°C to 85°C but is not  
tested or QA sampled at these temperatures. The LTC6912-1I is  
guaranteed to meet specified performance from –40°C to 85°C. The  
LTC6912-1H is guaranteed to meet specified performance from –40°C to  
125°C.  
Note 4: Output voltage swings are measured as differences between the  
output and the respective supply rail.  
Note 5: Extended operation with output shorted may cause junction  
temperature to exceed the 150°C limit for GN package and 125°C for a  
DFN package is not recommended.  
High channel-to-channel isolation is strongly dependent on proper circuit  
layout. See Applications Information.  
Note 8: Offset voltage referred to the INA or INB input is (1 + 1/|GAIN|)  
times the offset voltage of the internal op amp, where GAIN is the nominal  
gain magnitude. The typical offset voltage values are for 25°C only. See  
Applications Information.  
Note 9: Input resistance can vary by approximately ±30% part-to-part at a  
given gain setting.  
Note 10: Guaranteed by design, not subject to test.  
Note 11: States 13, 14 and 15 (binary 11xx) are not used. Programming a  
channel to states 8 or higher will configure that particular channel into a  
low power shutdown state. In addition, programming a channel into  
state 15 (binary 1111) will cause that particular channel to draw up to  
20mA of supply current and is not recommended.  
Note 6: Gain is measured with a large signal DC test using an output  
excursion between approximately 30% and 70% of supply voltage.  
6912fa  
12  
LTC6912  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC6912-1 –3dB Bandwidth vs  
Gain Setting  
LTC6912-1 Channel Gain  
Matching vs Frequency  
LTC6912-1 Frequency Response  
6
1
50  
40  
30  
20  
10  
0
0.10  
0.05  
V
V
=
IN  
5V  
V
=
IN  
5V  
= 10mV  
RMS  
V
= 10mV  
RMS  
S
S
IN  
= 10mV  
V
RMS  
GAIN OF 100  
GAIN OF 50  
GAIN OF 100  
GAIN OF 10  
GAIN OF 1  
V
= 5V  
S
0
GAIN OF 20  
GAIN OF 10  
GAIN OF 5  
–0.05  
–0.10  
–0.15  
–0.20  
V
= 2.7V  
S
GAIN OF 2  
GAIN OF 1  
0.1  
–10  
1
10  
100  
1000  
FREQUENCY (kHz)  
10000  
1
10  
GAIN (V/V)  
100  
1
10  
100  
FREQUENCY (Hz)  
1000  
10000  
6912 G01  
6912 G02  
6912 G03  
LTC6912-1 Noise Density vs  
Frequency  
LTC6912-1 Channel Isolation vs  
Frequency  
LTC6912-1 Power Supply  
Rejection vs Frequency  
100  
10  
1
125  
120  
115  
110  
105  
100  
95  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 5V  
V
V
=
OUT  
5V  
= 1V  
S
S
GAIN = 1  
RMS  
GAIN OF 1  
GAIN OF 1  
GAIN OF 10  
GAIN OF 100  
+SUPPLY  
–SUPPLY  
GAIN OF 10  
GAIN OF 100  
90  
V
=
2.5V  
S
A
85  
T
= 25°C  
INPUT REFERRED  
80  
100  
1000  
1
10  
FREQUENCY (kHz)  
100  
1
10  
100  
1000  
10000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
6912 G04  
6912 G05  
6912 G06  
LTC6912-1 THD Plus Noise vs  
Input Voltage  
LTC6912-1 Distortion vs  
Frequency with Light Loading  
LTC6912-1 Distortion vs  
Frequency with Heavy Loading  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
R
= 10k  
2.5V  
= 1V  
L
GAIN OF 100  
V
V
=
GAIN OF 100  
S
OUT  
(2.83)V  
P-P  
RMS  
GAIN OF 10  
GAIN OF 100  
GAIN  
OF 10  
GAIN OF 1  
GAIN OF 10  
V
= 5V  
= 10k  
S
L
GAIN OF 1  
150  
R
= 500  
L
R
V
V
=
2.5V  
= 1V  
S
OUT  
f
= 1kHz  
BW = 22kHz  
IN  
GAIN OF 1  
(2.83)V  
150  
RMS  
P-P  
0.001  
0.01  
0.1  
1
)
10  
0
50  
100  
FREQUENCY (kHz)  
200  
0
50  
100  
200  
INPUT VOLTAGE (V  
FREQUENCY (kHz)  
P-P  
6912 G07  
6912 G08  
6912 G09  
6912fa  
13  
LTC6912  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC6912-1 Hardware Shutdown  
Total Supply Current vs  
Temperature  
LTC6912-1 Software Shutdown  
Total Supply Current vs  
Temperature  
LTC6912-1 Total Supply Current  
vs Temperature (Both Amplifiers  
Active)  
700  
600  
500  
400  
300  
200  
100  
5.00  
4.75  
4.50  
4.25  
4.00  
3.75  
3.50  
3.25  
3.00  
HARDWARE SHUTDOWN (GN-16 ONLY)  
BOTH AMPLIFIERS IN  
SOFTWARE SHUTDOWN  
BOTH AMPLIFIERS  
PROGRAMMED TO GAIN = 1  
L
V
= 5V  
S
V
S
= 5V  
R
= 10k  
R = 10k  
L
V
= 5V  
S
10  
1
V
= 5V  
S
V
S
= 5V  
V
S
= 5V  
V
= 2.7V  
S
V
= 3V  
S
V
= 2.7V  
25  
S
V
= 2.7V  
25  
S
0.1  
50  
100 125  
–50 –25  
0
75  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
50  
75 100 125  
–50 –25  
0
25  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6912 G10  
6912 G11  
6912 G12  
LTC6912-1 Gain Shift vs  
Temperature (Heavy Load)  
LTC6912-1 Gain Shift vs  
Temperature (Light Load)  
LTC6912-2  
Frequency Response  
0.5  
0
0.10  
0.05  
40  
30  
20  
10  
0
V
V
=
IN  
5V  
V
= 5V  
GAIN OF 64  
GAIN OF 32  
GAIN OF 16  
GAIN OF 8  
GAIN OF 4  
GAIN OF 2  
GAIN OF 1  
S
V
= 5V  
S
L
S
L
= 10mV  
R
= 10k  
RMS  
R
= 500  
GAIN OF 1  
GAIN OF 1  
0
GAIN OF 10  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
GAIN OF 10  
–0.5  
–1.0  
–1.5  
GAIN OF 100  
GAIN OF 100  
–10  
50  
TEMPERATURE (°C)  
100 125  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
–50 –25  
0
25  
75  
1
10  
100  
1000  
FREQUENCY (kHz)  
10000  
6912 G14a  
6912 G13  
6912 G14  
LTC6912-2 Channel Isolation vs  
Frequency  
LTC6912-2 Channel Gain  
Matching vs Frequency  
LTC6912-2 –3dB Bandwidth vs  
Gain Setting  
8.0  
0.100  
125  
120  
115  
110  
105  
100  
95  
V
V
=
5V  
= 10mV  
V
IN  
= 10mV  
GAIN = 1  
V
V
= 5V  
S
OUT  
S
RMS  
V
V
=
5V  
S
S
6.0  
= 1V  
IN  
= 10kΩ  
RMS  
RMS  
0.075  
0.050  
0.025  
0
R
L
= 2.7V  
4.0  
GAIN = 8  
GAIN OF 1  
GAIN OF 8  
2.0  
–0.025  
–0.050  
–0.075  
–0.100  
GAIN = 64  
GAIN OF 64  
1.0  
0.8  
90  
0.6  
85  
0.4  
80  
1
10  
100  
100  
1000  
1
10000  
10  
100  
FREQUENCY (kHz)  
1000  
GAIN (V/V)  
FREQUENCY (kHz)  
6912 G16  
6912 G17  
6912 G15  
6912fa  
14  
LTC6912  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC6912-2 Distortion vs  
Frequency with Light Loading  
(R = 10k)  
LTC6912-2 Power Supply  
Rejection vs Frequency  
LTC6912-2 Noise Density vs  
Frequency  
L
100  
10  
1
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
V
= 5V  
V
T
=
2.5V  
V
V
=
OUT  
2.5V  
= 1V  
S
S
A
S
GAIN = 1  
= 25°C  
(2.83V )  
P-P  
RMS  
INPUT REFERRED  
GAIN = 1  
GAIN = 8  
GAIN = 64  
GAIN = 64  
+SUPPLY  
SUPPLY  
GAIN = 8  
GAIN = 1  
1
10  
FREQUENCY (kHz)  
100  
0
50  
100  
FREQUENCY (kHz)  
150  
200  
1
10000  
10  
100  
1000  
FREQUENCY (kHz)  
6912 G19  
6912 G20  
6912 G18  
LTC6912-2 Distortion vs  
LTC6912-2 Hardware Shutdown  
Total Supply Current vs  
Temperature  
Frequency with Heavy Loading  
LTC6912-2 THD + Noise vs  
Input Voltage  
(R = 500)  
L
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
HARDWARE SHUTDOWN (GN-16 ONLY)  
V
V
=
OUT  
2.5V  
= 1V  
S
(2.83V )  
P-P  
RMS  
V
= 5V  
S
GAIN = 64  
10  
1
GAIN = 64  
GAIN = 8  
V
S
= 5V  
GAIN = 8  
GAIN = 1  
V
= 3V  
S
GAIN = 1  
V
= 2.7V  
25  
S
V
= 5V  
= 10k  
= 1kHz  
S
L
R
f
IN  
0.1  
50  
100 125  
0
50  
100  
FREQUENCY (kHz)  
150  
200  
0.001  
0.01  
0.1  
1
10  
–50 –25  
0
75  
INPUT VOLTAGE (V  
)
P-P  
TEMPERATURE (°C)  
6912 G21  
6912 G22  
6912 G22A  
LTC6912-2 Software Shutdown  
Total Supply Current vs  
Temperature  
LTC6912-2 Total Supply Current  
vs Temperature (Both Amplifiers  
Active)  
LTC6912-2 Gain Shift vs  
Temperature (Light Load)  
800  
700  
600  
500  
400  
300  
200  
100  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
0.100  
0.075  
0.050  
0.025  
0
BOTH AMPLIFIERS  
BOTH AMPLIFIERS  
ACTIVE : GAIN = 1  
V
= 5V  
S
L
PROGRAMMED TO STATE = 8  
R
= 10k  
R
L
= 10k  
R
= 10k  
L
V
S
=
5V  
V
S
= 5V  
GAIN = 1  
GAIN = 8  
–0.025  
–0.050  
–0.075  
–0.100  
–0.125  
–0.150  
–0.175  
–0.200  
V
S
= 5V  
V
S
= 5V  
V
S
= 2.7V  
V
S
= 2.7V  
GAIN = 64  
50  
TEMPERATURE (°C)  
100 125  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
–50 –25  
0
25  
75  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
6912 G23  
6912 G24  
6912 G25  
6912fa  
15  
LTC6912  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC6912-2 Gain Shift vs  
Temperature (Heavy Load)  
0.25  
V
= 5V  
= 500  
S
L
R
GAIN = 1  
0
–0.25  
–0.50  
–0.75  
–1.00  
GAIN = 8  
GAIN = 64  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
6912 G26  
U
U
U
PI FU CTIO S  
INA, INB: Analog Inputs. The input signal to the A channel  
amplifier of the LTC6912-X is the voltage difference be-  
tweentheINApinandAGNDpin. Likewise, theinputsignal  
to the B channel amplifier of the LTC6912-X is the voltage  
difference between the INB pin and AGND pin. The INA (or  
INB) pin connects internally to a digitally controlled resis-  
tance whose other end is a current summing point at the  
same potential as the AGND pin (Figure 1). At unity gain,  
the value of this input resistance is approximately 10kΩ  
and the INA (or INB) pin voltage range is rail-to-rail (V+ to  
V). At gain settings above unity, the input resistance falls.  
The linear input range at INA and INB also falls inversely  
proportional to the programmed gain. Tables 1 and 2  
summarizethisbehavior.Thehighergainsaredesignedto  
boost lower level signals with good noise performance. In  
the “zero” gain state (state = 0), or in software shutdown  
(state = 8) analog switches disconnect the INA or INB pin  
internally and this pin presents a very high input resis-  
tance. In the “zero” gain state (state = 0), the input may  
vary from rail to rail but the output is insensitive to it and  
is forced to the AGND potential. Circuitry driving the INA  
and INB pins must consider the LTC6912-X’s input resis-  
tance, its process variance, and the variation of this  
resistancefromgainsettingtogainsetting.Signalsources  
with significant output resistance may introduce a gain  
error as the source’s output resistance and the LTC6912-  
X’s input resistance forms a voltage divider. This is espe-  
cially true at higher gain settings where the input resis-  
tance is the lowest.  
In single supply voltage applications, the LTC6912-X’s DC  
ground reference for both input and output is AGND, not  
V–. With increasing gains, the LTC6912-X’s input voltage  
range for an unclipped output is no longer rail-to-rail but  
diminishes inversely to gain, centered about the AGND  
potential.  
NC  
1
2
16  
NC  
INA  
INPUT R ARRAY  
FEEDBACK R ARRAY  
+
V
OUT A  
15  
14  
MOS INPUT  
100k  
100k  
+
OP AMP  
V
3
4
AGND  
INB  
MOS INPUT  
OP AMP  
+
OUT B  
13  
V
+
12  
11  
V
INPUT R ARRAY  
CHANNEL A  
FEEDBACK R ARRAY  
CHANNEL B  
NC  
LOWER  
NIBBLE  
UPPER  
NIBBLE  
8-BIT  
LATCH  
DGND  
10  
9
+
V
D
OUT  
Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7  
5
6
7
8
SHDN  
CS/LD  
DATA  
CLK  
8-BIT  
SHIFT-REGISTER  
6912 BD  
Figure 1. GN-16 Block Diagram  
6912fa  
16  
LTC6912  
U
U
U
PI FU CTIO S  
AGND: Analog Ground. The AGND pin is at the midpoint of  
an internal resistive voltage divider, developing a potential  
halfway between the V+ and Vpins. In normal operation,  
the AGND pin has an equivalent input resistance of nomi-  
nally 50k (Figure 1). In order to reduce the quiescent  
supply current in hardware shutdown (SHDN pin pulled to  
V+, GN-16 only), the equivalent series resistance of this  
pin significantly increases (to a value on the order of  
800kwith 5V supplies, but is highly supply voltage,  
temperature, and process dependent). AGND is the  
noninverting input to both the internal channel A and  
channel B amplifiers. This makes AGND the ground refer-  
ence voltage for the INA, INB, OUTA, and OUTB pins.  
Recommended analog ground plane connection depends  
on how power is applied to the LTC6912-X (See Figures 2,  
3, and 4). Single power supply applications typically use  
Vfor the system signal ground. The analog ground plane  
in single-supply applications should therefore tie to V,  
andtheAGNDpinshouldbebypassedtothisgroundplane  
by a high quality capacitor of at least 0.1µF (Figure 2). The  
AGND pin provides an internal analog reference voltage at  
half the V+ supply voltage. Dual supply applications with  
symmetricalsupplies(suchas±5V)haveanaturalsystem  
groundplanepotentialofzerovolts,inwhichtheAGNDpin  
can be directly tied to, making the zero volt ground plane  
the input and output reference voltage for the LTC6912-X  
(Figure3). Finally, ifdualasymmetricalpowersuppliesare  
used, the supply ground is still the natural ground plane  
voltage. To maximize signal swing capability with an  
asymmetricalsupply,however,itisoftendesirabletorefer  
the LTC6912-X’s analog input and output to a voltage  
equidistantfromthetwosupplyrailsV+ andV.TheAGND  
pin will provide such a potential when open-circuited and  
bypassed with a capacitor (Figure 4). In noise sensitive  
applications where AGND does not tie directly to a ground  
plane, as in Figures 2 and 4, it is important to AC-bypass  
the AGND pin. Otherwise channel to channel isolation is  
degraded, and wideband noise will enter the signal path  
from the thermal noise of the internal voltage divider  
resistors which present a Thévenin equivalent resistance  
of approximately 50k. This noise can reduce SNR by at  
least 15dB at high gain settings. An external capacitor  
from AGND to the ground plane, whose impedance is well  
below 50kat frequencies of interest, will filter and  
suppress this noise. A 0.1µF high quality capacitor is  
effective for frequencies down to 1kHz. Larger capacitors  
will extend this suppression to lower frequencies. This  
issue does not arise in dual supply applications because  
the AGND pin ties directly to ground. In applications  
requiring an analog ground reference other than half the  
total supply voltage, the user can override the built-in  
analog ground reference by tying the AGND pin to a  
referencevoltagewiththeAGNDvoltagerangespecifiedin  
theElectricalCharacteristicsTable.TheAGNDpinwillload  
the external reference with approximately 50kreturned  
to the half-supply potential. AGND should still be capaci-  
tively bypassed to a ground plane as noted above. Do not  
connect the AGND pin to the Vpin.  
ANALOG GROUND PLANE  
ANALOG GROUND PLANE  
+
V
REFERENCE  
1
2
3
4
5
6
7
8
16  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
2
15  
0.1µF  
0.1µF  
0.1µF  
LTC6912-X  
LTC6912-X  
+
14 V  
13  
SINGLE-POINT  
SYSTEM GND  
0.1µF  
SINGLE-POINT  
SYSTEM GND  
12 V  
11  
+
V
SERIAL  
INTERFACE  
10  
SERIAL  
INTERFACE  
9
DIGITAL GROUND PLANE  
DIGITAL GROUND PLANE  
6912 F03  
6912 F02  
Figure 2. Single Supply Ground Plane Connection  
Figure 3. Symmetrical Dual Supply Ground Plane Connection  
6912fa  
17  
LTC6912  
U
U
U
PI FU CTIO S  
ANALOG GROUND PLANE  
16  
DIN: TTL/CMOS Compatible Logic Serial Data Input. The  
serial interface is synchronously loaded MSB first via DIN  
on the rising edge of CLK with CS/LD asserted low.  
+
V
+ V  
2
REFERENCE  
1
2
3
4
5
6
7
8
15  
0.1µF  
0.1µF  
LTC6912-X  
14 V  
13  
CLK: TTL/CMOS Compatible Logic Input. With CS/LD  
asserted low, the clock synchronizes the loading of the  
serial shift register on its rising and falling edges. Data is  
shiftedinatDIN ontherisingedgeofCLKandisshiftedout  
on DOUT on the falling edge of CLK.  
0.1µF  
SINGLE-POINT  
SYSTEM GND  
+
12 V  
11  
10  
9
SERIAL  
INTERFACE  
DIGITAL GROUND PLANE  
6912 F04  
DOUT: TTL/CMOS Compatible Logic Output. The MSB of  
the shift register contents is shifted out at DOUT on the  
fallingedgeofCLK. TheoutputatDOUT swingsbetweenV+  
and DGND, and is rated to drive approximately 15pF.  
Figure 4. Asymmetrical Dual Supply Ground Plane Connection  
SHDN (GN-16 ONLY): CMOS Compatible Logic Hardware  
ShutdownInput.TheLTC6912-Xhastwoshutdownmodes.  
One is a software shutdown state which can be software  
programmed into either Channel A, Channel B, or both.  
Thesoftwareshutdown, whenprogrammedtoaparticular  
channel (state = 8), will disable that channel’s amplifier  
and tri-state open its analog input and analog output. The  
serial interface, however is still active. A hardware shut-  
down occurs when the SHDN pin is pulled to the positive  
rail. In this condition, both amplifiers and serial interface  
are disabled. The SHDN pin is allowed to swing from Vto  
10.5VaboveV,regardlessofV+ solongasthelogiclevels  
meettheminimumrequirementsspecifiedintheElectrical  
Characteristics table. The SHDN pin is a high impedance  
CMOS logic input, but has a small pull-down current  
source (<10µA) which will force SHDN low if the logic  
input is externally floated. On initial power up (with SHDN  
open), or coming out of the hardware shutdown mode  
(pulling SHDN to V), both amplifiers are reset into the  
power-onresetstate(softwareshutdownmode, state=8)  
for both channels.  
DGND:DigitalGround:TheDGNDpindefinesthepotential  
from which LOGIC levels VIH and VIL for the 3-wire serial  
digital interface are referenced. The recommended con-  
nection of DGND depends on how power is applied to the  
LTC6912 (See Figures 2, 3, and 4). (CAVEAT: Under no  
conditions is DGND to exceed either supply pins V+ and  
V, which could result in damage to the IC if not current  
limited.)  
Single power supply applications typically use Vfor the  
systemsignalground.ThepreferredconnectionforDGND  
is therefore V(See Figure 2).  
Dual supply applications with symmetrical supplies (such  
as ±5V) have a natural system ground potential of zero  
volts, in which the DGND pin can be tied to, making the  
zero volt ground plane the logic reference (Figure 3).  
Finally, if dual asymmetrical power supplies are used, the  
system ground is still the natural ground plane voltage.  
V, V+: Power Supply Pins. The V+ and Vpins should be  
bypassed with 0.1µF capacitors to an adequate analog  
ground plane using the shortest possible wiring. Electri-  
cally clean supplies and a low impedance ground are  
important for the high dynamic range available from the  
LTC6912 (see further details under the AGND pin descrip-  
tion). Low noise linear power supplies are recommended.  
Switching power supplies require special care to prevent  
switching noise coupling into the signal path, reducing  
dynamic range.  
CS/LD: TTL/CMOS Compatible Logic Input. When this pin  
is asserted low, the CLK pin is enabled, and the 8-bit shift  
register serially shifts the shift register contents and  
whatever data is present on the DIN pin into the shift  
register on the rising edge of CLK. On the rising edge of  
CS/LD, the contents of the shift register data are loaded  
into the eight bit latch which configures the gain state of  
both channel A and channel B amplifiers. A logic high on  
CS/LD inhibits the CLK signal internally to the IC.  
6912fa  
18  
LTC6912  
U
U
U
PI FU CTIO S  
OUT A, OUT B: Analog Output. These pins are the output  
of the A and B channel amplifiers respectively. Each  
operational amplifier can swing rail-to-rail (V+ to V) as  
specified in the Electrical Characteristics table. For best  
performance, loading the output as lightly as possible will  
minimize signal distortion and gain error. The Electrical  
Characteristics table shows performance at output cur-  
rentsupto10mA, andthecurrentlimitswhichoccurwhen  
the output is shorted midsupply at 2.7V and ±5V supplies.  
Output current above 10mA is possible but current-limit-  
ing circuitry will begin to affect amplifier performance at  
approximately 20mA. Long-term operation above 20mA  
output is not recommended. Do not exceed maximum  
junction temperature of 150°C for a GN and 125°C for a  
DFN package. The output will drive capacitive loads up to  
50pF. Capacitances higher than 50pF should be isolated  
by a series resistor (10or higher).  
U
W U U  
APPLICATIO S I FOR ATIO  
Functional Description  
Description of the 3-Wire SPI Interface  
The LTC6912-X is a small outline, wideband, inverting  
two-channel amplifier with voltage gains that are indepen-  
dently programmable. Each delivers a choice of eight  
voltage gains, configurable through a 3-wire serial digital  
interface, which accepts TTL or CMOS logic levels (See  
Figure 5). Tables 1 and 2 list the nominal gains for the  
LTC6912-1 and LTC6912-2 respectively. Gain control  
within the amplifier occurs by switching resistors from a  
matched array in or out of a closed-loop op amp circuit  
using MOS analog switches (Figure 1). The bandwidths of  
the individual amplifiers depend on gain setting. The  
Typical Performance Characteristics section shows mea-  
sured frequency responses.  
Gain control of each amplifier is independently program-  
mable using the 3-wire SPI interface (see Figure 5). Logic  
levels for the LTC6912 3-wire serial interface are TTL/  
CMOS compatible. When CS/LD is low, the serial data on  
DIN is shifted into an 8-bit shift-register on the rising edge  
of the clock, with the MSB transferred first. Serial data on  
DOUT isshiftedoutontheclock’sfallingedge.Arisingedge  
on CS/LD will latch the shift-register’s contents into an 8-  
bit D-latch and disable the clock internally on the IC. The  
upper nibble of the D-latch (4 most significant bits),  
configure the gain for the B-channel amplifier. The lower  
nibble of the D-latch (4 least significant bits), configures  
the gain for the A-channel amplifier. Tables 1 and 2 detail  
thenominalgainsandrespectivegaincodes.Caremustbe  
taken to ensure CLK is taken low before CS/LD is pulled  
low to avoid an extra internal clock pulse to the input of the  
8-bit shift-register (See Figure 5).  
CHANNEL A  
CHANNEL B  
RESET  
8-BIT LATCH  
UPPER NIBBLE  
LE  
LOWER NIBBLE  
DOUT is active in all states, therefore DOUT cannot be  
“wire-OR’d” to other SPI outputs.  
Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7  
LSB MSB  
D
IN  
An LTC6912 may be daisy-chained with other LTC6912s  
or other devices having serial interfaces by connecting the  
DOUT to the DIN of the next chip while CLK and CS/LD  
remain common to all chips in the daisy chain. The serial  
data is clocked to all the chips then the CS/LD signal is  
pulled high to update all of them simultaneously. Figure 6  
showsanexampleoftwoLTC6912sinadaisychainedSPI  
8-BIT  
CLK  
CS/LD  
SHDN  
SHIFT-REGISTER  
D
OUT  
RESET  
6912 F05  
Figure 5. Serial Digital Interface Block Diagram  
6912fa  
19  
LTC6912  
W U U  
U
APPLICATIO S I FOR ATIO  
configuration. It is recommended the serial interface sig-  
nals should remain idle in between data transfers in order  
to minimize digital noise coupling into the analog path.  
Timing Constraints  
Settling time in the CMOS gain-control logic is typically  
several nanoseconds and is faster than the analog signal  
path. When the amplifier gain changes, the limiting timing  
is analog. As with any programmable-gain amplifier, each  
gain change causes an output transient as the amplifier’s  
output moves, with finite speed, toward a differently  
scaled version of the input signal. The LTC6912-X analog  
path settles with a characteristic time constant or time  
scale, τ, that is roughly the standard value for a first order  
band limited response:  
Power On Reset  
On the initial application of power, the power on reset  
state of both amplifiers is low power software shutdown  
(state = 8) (see Tables 1 and 2). In this state, both analog  
amplifiers are disabled and have their inputs and outputs  
opened. This will facilitate the application of using the  
device as a 2:1 analog MUX, in that the amplifier’s outputs  
may be wired-OR together and the LTC6912 can alter-  
nately select between A and B channels. Care must be  
taken if the outputs are wired-OR’d to ensure the software  
shutdown state (state = 8) is always programmed in one  
of the two channels.  
τ = 0.35/f–3dB  
See the –3dB BW vs Gain Setting graph in the Typical  
Performance Characteristics section.  
ANALOG GROUND PLANE  
1
2
3
4
5
6
7
8
16  
1
2
3
4
5
6
7
8
16  
SINGLE-POINT  
SYSTEM GND  
15  
15  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
LTC6912-X  
LTC6912-X  
+
+
14 V  
13  
14 V  
13  
12 V  
11  
12 V  
11  
SHDN  
SHDN  
CS/LD  
DATA  
CLK  
CS/LD  
CS/LD  
10  
10  
µP  
D
D
DGND  
DGND  
IN  
IN  
9
9
D
OUT  
D
OUT  
DIGITAL GROUND PLANE  
CLK  
D15  
D11  
D10  
D9  
D8  
D7  
D3  
D2  
D1  
D0  
D
IN  
CS/LD  
6912 F06  
Figure 6. Two LTC6912s (Four PGAs) in Daisy Chain Configuration  
6912fa  
20  
LTC6912  
W U U  
APPLICATIO S I FOR ATIO  
U
Offset Voltage vs Gain Setting  
Note that operating the LTC6912 family in “zero” gain  
mode (digital state 0000) open circuits both the INA and  
INB pins and this demands some care if employed with a  
series AC coupling input capacitor. When the chip enters  
the zero gain mode, the opened INA or INB pin tends to  
sample and freeze the voltage across the capacitor to the  
value it held just before the zero gain state. This can place  
the INA or INB pin at or near the DC potential of a supply  
rail. (The INA or INB pin may also drift to a supply potential  
in this state due to small leakage currents.) To prevent  
driving the INA or INB pin outside the supply limit and  
potentially damaging the chip, avoid AC input signals in  
the zero gain state with an AC coupling capacitor. Also,  
switching later to a non-zero gain value will cause a  
transient pulse at the output of the LTC6912-1 (with a time  
constantsetbythecapacitorvalueandthenewLTC6912-1  
input resistance value). This occurs because the INA and  
INB pins return to the AGND potential forcing transient  
current sourced by the amplifier output to charge the AC  
coupling capacitor to its proper DC blocking value.  
The electrical tables list DC offset (error), VOS(OA), at the  
inputs of the internal op amp (See Figure 1). The electrical  
tables also show the resulting, gain dependent offset  
voltage referred to the INA, or INB pins, VOS(IN). The two  
measures are related through the feedback/input resistor  
ratio, which equals the nominal gain-magnitude setting,  
|GAIN|:  
VOS(IN) = (1 + 1/|GAIN|) VOS(OA)  
Offsetvoltagesatanygainsettingcanbeinferredfromthis  
relationship. For example, an internal amplifier offset  
V
OS(OA) of 1mV will appear referred to the INA, INB pins as  
2mV at a gain setting of 1, or 1.5mV at a gain setting of 2.  
At high gains, VOS(IN) approaches VOS(OA). (Offset voltage  
is random and can have either polarity centered on 0V).  
The MOS input circuitry of the internal op amp in Figure 1  
draws negligible input currents (less than 10µA), so only  
VOS(OA) and the GAIN affect the overall amplifier’s offset.  
AC-Coupled Operation  
SNR and Dynamic Range  
Adding capacitors in series with the INA and INB pins  
converts the LTC6912-X into a dual AC-coupled inverting  
amplifier,suppressingtheinputsignal’sDClevel(andalso  
adding the additional benefit of reducing the offset voltage  
from the LTC6912-X’s amplifier itself). No further compo-  
nents are required because the input of the LTC6912-X  
biases itself correctly when a series capacitor is added.  
The INA and INB analog input pins connect internally to a  
resistor whose nominal value varies between 10kand  
1kdepending on the version of LTC6912 used (see the  
rightmost column of Tables 1 and 2). Therefore, the low  
frequency cutoff will vary with capacitor and gain setting.  
If, for example, a low frequency corner of 1kHz (or lower)  
on the LTC6912-1 is desired, use a series capacitor of  
0.16µF or larger. 0.16µF has a reactance of 1kat 1kHz,  
giving a 1kHz lower –3dB frequency for gain settings of  
10V/V through 100V/V. If the LTC6912-1 is operated at  
lower gain settings with a 0.16µF capacitor, the higher  
input resistance will reduce the lower corner frequency  
downto100Hzatagainsettingof1V/V.Thesefrequencies  
scale inversely with the value of input capacitor used.  
The term “dynamic range” is much used (and abused)  
with signal paths. Signal-to-noise (SNR) is an unambigu-  
ous comparison of signal and noise levels, measured in  
thesamewayandunderthesameoperatingconditions. In  
avariablegainamplifier,however,furthercharacterization  
is useful because both noise and maximum signal level in  
the amplifier will vary with the gain setting, in general. In  
the LTC6912-X, maximum output signal is independent of  
gain (and is near the full power supply voltage, as detailed  
in the swing sections of the Electrical Characteristics  
table). The maximum input level falls with increasing gain,  
and the input-referred noise falls as well (listed also in the  
table). To summarize the useful signal range in such an  
amplifier, we define dynamic range (DR) as the ratio of  
maximum input (at unity gain) to minimum input-referred  
noise (at maximum gain). This DR has a physical interpre-  
tation as the range of signal levels that will experience an  
SNR above unity V/V or 0dB. At a 10V total power supply,  
DR in the LTC6912-X (gains 0V/V to 100V/V), the DR is  
typically 115dB (the ratio of 9.9 VP-P, or 3.5VRMS, maxi-  
mum input to the 6.3µVRMS high gain input noise). The  
6912fa  
21  
LTC6912  
W U U  
U
APPLICATIO S I FOR ATIO  
SNR from an amplifier is the ratio of input level to input-  
referred noise, and can be 108dB with the LTC6912 family  
at unity gain.  
decoupling from a clean, low inductance power source.  
But several centimeters of wire (i.e., a few µH of induc-  
tance) from the power supplies, unless decoupled by  
substantial capacitance (>10µF) near the chip, can create  
a parasitic high-Q LC resonant circuit in the hundreds of  
kHz range in the chip’s supplies or ground reference. This  
may impair circuit performance at those frequencies. A  
compact, carefully laid out printed circuit board with a  
good ground plane makes a significant difference in mini-  
mizing distortion. Finally, equipment to measure perfor-  
mance can itself introduce distortion or noise floors.  
Checking for these limits with wired shorts from INA to  
OUTA and INB to OUTB in place of the chip is a prudent  
routine procedure.  
Construction and Instrumentation Cautions  
Electrically clean construction is important in applications  
seeking the full dynamic range of the LTC6912 family of  
dualamplifiers. ItisabsolutelycriticaltohaveAGNDeither  
AC bypassed or wired directly using the shortest possible  
wiring,toalowimpedancegroundreturnforbestchannel-  
to-channel isolation. Short, direct wiring minimizes para-  
sitic capacitance and inductance. High quality supply  
bypass capacitors of 0.1µF near the chip provide good  
U
TYPICAL APPLICATIO  
Low Noise AC Amplifier with Programmable Gain and  
Bandwidth  
an integrating lowpass loop with capacitor C2 to set the  
programmable upper corner frequency. The LT1884 also  
supports rail-to-rail output swings over the total supply  
voltage range of 2.7V to 10.5V. AC coupling through  
capacitor C1 establishes a fixed low frequency corner of  
1Hz, which can be adjusted by changing C1. Alternatively,  
shorting C1 makes the amplifier DC coupled. If DC gain is  
not needed, the AC coupling cap C1 serves to suppress  
severalerrorsources:anyshiftinDClevels, lowfrequency  
noise, and DC offset voltages (not including the LT1884’s  
low internal offset).  
Analogdataacquisitioncanexploitbandlimitingaswellas  
gain to suppress unwanted signals or noise. Tailoring an  
analog front end to both the level and bandwidth of each  
source maximizes the resulting SNR. Figure 7 shows a  
block diagram for a low noise amplifier with gain and  
bandwidth independently programmable over a 100:1  
range. Channels A and B of the LTC6912-1 are used to  
independently control the gain and bandwidth respec-  
tively over a 100:1 range. The LT1884 dual op amp forms  
R2  
15.8k  
C2  
1µF  
R
GAIN  
CONTROL  
1M  
BANDWIDTH  
CONTROL  
PGA  
PGA  
C1  
R1  
15.8k  
10µF  
V
GAINA  
IN  
R
INA  
OUTA  
GAINB  
1/2 LT1884  
INB  
OUTB  
V
1/2 LT1884  
LTC6912-1  
CHANNEL A  
+
OUT  
LTC6912-1  
CHANNEL B  
+
1/2 LT1884  
6912 F07  
R2  
= GAINA  
R1  
1
1
R2  
V
OUT  
V
IN  
–3dB BANDWIDTH RANGE IS FROM  
TO  
2πR1C1  
2π  
(
)
C2  
GAINB  
Figure 7. Block Diagram of an AC Amplifier with Programmable Gain and Bandwidth  
6912fa  
22  
LTC6912  
U
PACKAGE DESCRIPTIO  
DE/UE Package  
12-Lead Plastic DFN (4mm × 3mm)  
(Reference LTC DWG # 05-08-1695)  
0.38 ± 0.10  
4.00 ±0.10  
(2 SIDES)  
R = 0.115  
TYP  
7
12  
0.65 ±0.05  
R = 0.20  
TYP  
3.50 ±0.05  
2.20 ±0.05 (2 SIDES)  
1.70 ±0.05  
3.00 ±0.10 1.70 ± 0.10  
(2 SIDES)  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
PIN 1  
NOTCH  
PACKAGE OUTLINE  
(UE12/DE12) DFN 0603  
6
0.25 ± 0.05  
1
0.75 ±0.05  
0.200 REF  
0.25 ± 0.05  
0.50  
BSC  
0.50  
BSC  
3.30 ±0.10  
(2 SIDES)  
3.30 ±0.05  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING PROPOSED TO BE A VARIATION OF VERSION  
(WGED) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
GN Package  
16-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.189 – .196*  
(4.801 – 4.978)  
.045 ±.005  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 ± .0015  
.0250 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 ± .004  
(0.38 ± 0.10)  
× 45°  
.0532 – .0688  
(1.35 – 1.75)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
GN16 (SSOP) 0204  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
6912fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
23  
LTC6912  
U
TYPICAL APPLICATIO  
A 2:1 PGA MUX  
+
V
0.1µF  
12  
+
14  
V
V
2
3
4
15  
13  
INA  
OUT A  
V
CHANNEL A  
INPUT  
OUT  
(TO ADC)  
1µF  
LTC6912-X  
AGND  
INB  
OUT B  
CHANNEL B  
INPUT  
CHB  
SHDN  
CHA  
DGND  
5
6
7
8
SHDN  
CS/LD  
DATA  
CLK  
10  
CS/LD  
3-WIRE  
SPI  
INTERFACE  
D
9
IN  
D
OUT  
6912 TA02  
MUX OPERATION: IF THE LOWER NIBBLE (Q3, Q2, Q1, Q0) IS (1, 0, 0, 0) THEN OUTA IS IN  
TRI-STATE AND THE UPPER NIBBLE (Q7, Q6, Q5, Q4) CONTROLS THE ACTIVE CHANNEL B.  
IF THE UPPER NIBBLE IS (1, 0, 0, 0) THEN OUTB IS IN TRI-STATE  
AND THE LOWER NIBBLE CONTROLS ACTIVE CHANNEL A.  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1228  
100MHZ Gain Controlled Transconductance Amplifier  
40Mhz Video Fader and Gain Controlled Amplifier  
10kHz to 150kHz Digitally Controlled Filter and PGA  
Differential Input, Continuous Analog Gain Control  
LT1251/LT1256  
LTC1564  
Two Input, One Output, Continuous Analog Gain Control  
Continuous Time, Low Noise 8th Order Filter and 4-Bit PGA  
Single Programmable Gain Amplifier, 3-Bit Parallel Digital Interface  
LTC6910-1/-2/-3  
Digitally Controlled Programmable Gain Amplifier  
in SOT-23  
LTC6911-1/-2  
LTC6915  
Dual Digitally Controlled Programmable Gain Amplifier  
in MSOP-10  
Dual Programmable Gain Amplifiers, 3-Bit Parallel Digital Interface  
Gains 0 - 4096V/V, 116dB CMRR  
Zero Drift Instrumentation Amp  
with Digitally Programmable Gain  
6912fa  
LT/LT 1005 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

LTC6912CGN-1

Dual Programmable Gain Amplifiers with Serial Digital Interface
Linear

LTC6912CGN-1#TR

LTC6912 - Dual Programmable Gain Amplifiers with Serial Digital Interface; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6912CGN-2

Dual Programmable Gain Amplifiers with Serial Digital Interface
Linear

LTC6912CGN-2#TR

LTC6912 - Dual Programmable Gain Amplifiers with Serial Digital Interface; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6912HGN-1

Dual Programmable Gain Amplifiers with Serial Digital Interface
Linear

LTC6912HGN-2

Dual Programmable Gain Amplifiers with Serial Digital Interface
Linear

LTC6912HGN-2#PBF

LTC6912 - Dual Programmable Gain Amplifiers with Serial Digital Interface; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC6912HGN-2#TR

LTC6912 - Dual Programmable Gain Amplifiers with Serial Digital Interface; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC6912IDE-1

Dual Programmable Gain Amplifiers with Serial Digital Interface
Linear

LTC6912IDE-1#PBF

暂无描述
Linear

LTC6912IDE-1#TR

LTC6912 - Dual Programmable Gain Amplifiers with Serial Digital Interface; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC6912IDE-2

Dual Programmable Gain Amplifiers with Serial Digital Interface
Linear