LTC6990CS6-PBF [Linear]

TimerBlox: Voltage Controlled Silicon Oscillator; TimerBlox系列:压控硅振荡器
LTC6990CS6-PBF
型号: LTC6990CS6-PBF
厂家: Linear    Linear
描述:

TimerBlox: Voltage Controlled Silicon Oscillator
TimerBlox系列:压控硅振荡器

振荡器
文件: 总28页 (文件大小:311K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Electrical Specifications Subject to Change  
LTC6990  
TimerBlox: Voltage  
Controlled Silicon Oscillator  
FEATURES  
DESCRIPTION  
The LTC®6990 is a precision silicon oscillator with a pro-  
grammable frequency range of 488Hz to 2MHz. It can be  
used as a fixed-frequency or voltage-controlled oscillator  
(VCO). The LTC6990 is part of the TimerBlox™ family of  
versatile silicon timing devices.  
n
Fixed-Frequency or Voltage-Controlled Operation  
Fixed: Single Resistor Programs Frequency  
with <2.2% Max Error  
VCO: Two Resistors Set VCO Center  
Frequency and Tuning Range  
n
Frequency Range: 488Hz to 2MHz  
A single resistor, R , programs the LTC6990’s inter-  
SET  
n
2.25V to 5.5V Single Supply Operation  
nal master oscillator frequency. The output frequency  
n
72μA Supply Current at 100kHz  
is determined by this master oscillator and an internal  
n
500μs Start-Up Time  
frequency divider, N , programmable to eight settings  
DIV  
n
VCO Bandwidth >300kHz at 1MHz  
from 1 to 128.  
n
CMOS Logic Output Sources/Sinks 20mA  
n
50% Duty Cycle Square Wave Output  
1MHz 50kΩ  
NDIV RSET  
fOUT  
=
,NDIV = 1, 2, 4 …128  
n
Output Enable (Selectable Low or Hi-Z When Disabled)  
n
–40°C to 125°C Operating Temperature Range  
Optionally,asecondresistorattheSETinputprovideslinear  
voltage control of the output frequency and can be used  
for frequency modulation. A narrow or wide VCO tuning  
range can be configured by the appropriate selection of  
the two resistors.  
n
Available in Low Profile (1mm) SOT-23 (ThinSOT™)  
and 2mm × 3mm DFN Package  
APPLICATIONS  
n
Low Cost Precision Programmable Oscillator  
n
Voltage-Controlled Oscillator  
The LTC6990 includes an enable function that is synchro-  
nizedwiththemasteroscillatortoensureclean,glitch-free  
output pulses. The disabled output can be configured to  
be high impedance or forced low.  
n
High Vibration, High Acceleration Environments  
n
Replacement for Fixed Crystal and Ceramic Oscillators  
n
Portable and Battery-Powered Equipment  
L, LT, LTC and LTM, Linear Technology and the Linear logo are registered trademarks of  
Linear Technology Corporation. TimerBlox and ThinSOT are trademarks of Linear Technology  
Corporation. All other trademarks are the property of their respective owners. Protected by U.S.  
Patents including 6342817, 6614313.  
The LTC6990 is available in the 6-lead SOT-23 (ThinSOT)  
package or a 6-lead 2mm × 3mm DFN.  
TYPICAL APPLICATION  
Voltage Controlled Oscillator with 16:1 Frequency Range  
VCO Transfer Function  
1000  
MHz  
V
f
1MHz V • 0.5  
CTRL  
+
OUT  
V
750  
500  
250  
0
OE  
OUT  
LTC6990  
+
V
+
GND  
V
C1  
0.1μF  
R
VCO  
100k  
V
SET  
DIV  
CTRL  
6990 TA01a  
R
SET  
100k  
0
0.5  
1
1.5  
2
V
CTRL  
(V)  
6990 TA01b  
6990p  
1
LTC6990  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V ) to GND ........................................6V  
(Note 1)  
+
Specified Temperature Range (Note 3)  
Maximum Voltage on Any Pin  
LTC6990C................................................ 0°C to 70°C  
LTC6990I.............................................–40°C to 85°C  
LTC6990H.......................................... –40°C to 125°C  
Junction Temperature ........................................... 150°C  
Storage Temperature Range ..................–65°C to 150°C  
Lead Temperature (Soldering, 10sec) ...................300°C  
+
.............................(GND – 0.3V) ≤ V ≤ (V + 0.3V)  
PIN  
Operating Temperature Range (Note 2)  
LTC6990C............................................–40°C to 85°C  
LTC6990I.............................................–40°C to 85°C  
LTC6990H.......................................... –40°C to 125°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
+
6
5
4
OUT  
GND  
OE  
V
1
2
3
OE 1  
GND 2  
SET 3  
6 OUT  
7
DIV  
SET  
+
5 V  
4 DIV  
DCB PACKAGE  
6-LEAD (2mm × 3mm) PLASTIC DFN  
S6 PACKAGE  
6-LEAD PLASTIC TSOT-23  
T
= 150°C, θ = 230°C/W  
T
= 150°C, θ = 64°C/W  
JA  
JMAX  
JA  
JMAX  
EXPOSED PAD (PIN 7) CONNECTED TO GND,  
PCB CONNECTION OPTIONAL  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC6990CDCB#PBF  
LTC6990IDCB#PBF  
LTC6990HDCB#PBF  
LTC6990CS6#PBF  
LTC6990IS6#PBF  
LTC6990HS6#PBF  
TAPE AND REEL  
PART MARKING*  
LDWX  
PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
0°C to 70°C  
LTC6990CDCB#TRPBF  
LTC6990IDCB#TRPBF  
LTC6990HDCB#TRPBF  
LTC6990CS6#TRPBF  
LTC6990IS6#TRPBF  
LTC6990HS6#TRPBF  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead Plastic TSOT-23  
LDWX  
–40°C to 85°C  
LDWX  
–40°C to 125°C  
0°C to 70°C  
LTDWW  
LTDWW  
LTDWW  
6-Lead Plastic TSOT-23  
–40°C to 85°C  
6-Lead Plastic TSOT-23  
–40°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
6990p  
2
LTC6990  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. Test conditions are V+ = 2.25V to 5.5V, OE = V+, DIVCODE = 0 to 15  
(NDIV = 1 to 128), RSET = 50k to 800k, RLOAD = 5k, CLOAD = 5pF unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
Output Frequency  
Recommended Range: R = 50k to 800k  
0.488  
0.488  
1000  
2000  
kHz  
kHz  
OUT  
SET  
Extended Range: R = 25k to 800k  
SET  
Frequency Accuracy (Note 4)  
Recommended Range  
SET  
0.8  
1.5  
2.2  
%
%
Δf  
OUT  
l
R
= 50k to 800k  
Extended Range  
= 25k to 800k  
2.4  
3.2  
%
%
l
l
R
SET  
Frequency Drift Over Temperature  
Frequency Drift Over Supply  
0.005  
%/°C  
Δf /ΔT  
OUT  
+
+
+
l
l
V = 4.5V to 5.5V  
0.23  
0.06  
0.55  
0.16  
%/V  
%/V  
Δf /ΔV  
OUT  
V = 2.25V to 4.5V  
Period Jitter (Note 10)  
N
N
= 1  
= 2  
0.38  
%
DIV  
DIV  
P-P  
0.22  
0.027  
%
P-P  
%
%
RMS  
N
DIV  
= 128  
0.022  
0.004  
%
RMS  
P-P  
l
l
Duty Cycle  
N
DIV  
N
DIV  
= 1, R = 25k to 800k  
47  
48  
50  
50  
53  
52  
%
%
SET  
> 1, R = 25k to 800k  
SET  
BW  
Frequency Modulation Bandwidth  
0.4•f  
kHz  
μs  
OUT  
t
Frequency Change Settling Time  
(Note 9)  
t
= t /N  
OUT DIV  
6•t  
MASTER  
S
MASTER  
Analog Inputs  
l
l
V
Voltage at SET Pin  
0.97  
1.00  
75  
1.03  
V
SET  
V
V
V
Drift Over Temperature  
Drift Over Supply  
μV/°C  
μV/V  
Ω
ΔV /ΔT  
SET  
SET  
SET  
SET  
+
–150  
–7  
ΔV /ΔV  
SET  
Droop with I  
ΔV /ΔI  
SET  
SET  
SET  
l
l
R
SET  
Frequency-Setting Resistor  
Recommended Range  
Extended Range  
50  
25  
800  
800  
kΩ  
kΩ  
+
l
l
l
V
DIV Pin Voltage  
0
V
V
%
DIV  
+
+
DIV Pin Valid Code Range (Note 5) Deviation from Ideal V /V = (DIVCODE + 0.5)/16  
1.5  
10  
ΔV /V  
DIV  
DIV  
DIV Pin Input Current  
nA  
Power Supply  
+
l
l
V
Operating Supply Voltage Range  
2.25  
5.5  
V
V
Power-On Reset Voltage  
Supply Current  
R
= 25k to 800k  
1.95  
SET  
+
+
l
l
I
R = ∞, N = 1, R = 50k  
L
V = 5.5V  
235  
145  
283  
183  
μA  
μA  
S
DIV  
SET  
V = 2.25V  
+
+
l
l
R = ∞, N = 1 R = 800k  
V = 5.5V  
71  
59  
105  
92  
μA  
μA  
L
DIV  
SET  
V = 2.25V  
+
+
l
l
R = ∞, N = 128, R = 50k  
V = 5.5V  
137  
106  
180  
145  
μA  
μA  
L
DIV  
SET  
V = 2.25V  
+
+
l
l
R = ∞, N = 128, R = 800k  
V = 5.5V  
66  
56  
100  
90  
μA  
μA  
L
DIV  
SET  
V = 2.25V  
6990p  
3
LTC6990  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. Test conditions are V+ = 2.25V to 5.5V, OE = V+, DIVCODE = 0 to 15  
(NDIV = 1 to 128), RSET = 25k to 800k, RLOAD = ∞, CLOAD = 5pF unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Digital I/O  
OE Pin Input Capacitance  
OE Pin Input Current  
2.5  
pF  
nA  
V
+
l
l
l
OE = 0V to V  
10  
+
V
V
High Level OE Pin Input Voltage  
Low Level OE Pin Input Voltage  
OUT Pin Hi-Z Leakage  
(Note 6)  
0.7•V  
IH  
+
(Note 6)  
0.3•V  
10  
V
IL  
+
OE = 0V, DIVCODE ≥ 8, OUT = 0V to V  
μA  
mA  
I
Maximum Output Current  
20  
OUT(MAX)  
+
l
l
V
High Level Output Voltage  
(Note 7)  
V = 5.5V  
I
OH  
I
OH  
= –1mA  
= –16mA  
5.45  
4.84  
5.48  
5.15  
V
V
OH  
+
l
l
V = 3.3V  
I
OH  
I
OH  
= –1mA  
= –10mA  
3.24  
2.75  
3.27  
2.99  
V
V
+
l
l
V = 2.25V  
I
OH  
I
OH  
= –1mA  
= –8mA  
2.17  
1.58  
2.21  
1.88  
V
V
+
l
l
V
OL  
Low Level Output Voltage  
(Note 7)  
V = 5.5V  
I
I
= 1mA  
= 16mA  
0.02  
0.26  
0.04  
0.54  
V
V
OL  
OL  
+
l
l
V = 3.3V  
I
I
= 1mA  
= 10mA  
0.03  
0.22  
0.05  
0.46  
V
V
OL  
OL  
+
l
l
V = 2.25V  
I
OL  
I
OL  
= 1mA  
= 8mA  
0.03  
0.26  
0.07  
0.54  
V
V
+
t
PD  
Output Disable Propagation Delay V = 5.5V  
17  
26  
44  
ns  
ns  
ns  
+
V = 3.3V  
+
V = 2.25V  
t
t
Output Enable Time  
N
N
≤ 2, t  
≥ 4, t  
= 1/f  
MASTER  
t
to t  
μs  
μs  
ENABLE  
r
DIV  
DIV  
OUT  
OUT  
OUT DIV  
PD  
OUT  
= t /N  
t
to 2•t  
PD MASTER  
+
Output Rise Time (Note 8)  
V = 5.5V  
1.1  
1.7  
2.7  
ns  
ns  
ns  
+
V = 3.3V  
+
V = 2.25V  
+
t
f
Output Fall Time (Note 8)  
V = 5.5V  
1.0  
1.6  
2.4  
ns  
ns  
ns  
+
V = 3.3V  
+
V = 2.25V  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTC6990C is guaranteed functional over the operating  
temperature range of –40°C to 85°C.  
Note 5: See Operation section, Table 1 and Figure 2 for a full explanation  
of how the DIV pin voltage selects the value of DIVCODE.  
Note 6: The OE pin has hysteresis to accommodate slow rising or falling  
+
signals. The threshold voltages are proportional to V . Typical values can  
+
be estimated at any supply voltage using V  
≈ 0.55 • V + 185mV  
OE(RISING)  
+
and V  
≈ 0.48 • V – 155mV.  
OE(FALLING)  
Note 3: The LTC6990C is guaranteed to meet specified performance from  
0°C to 70°C. The LTC6990C is designed, characterized and expected to  
meet specified performance from –40°C to 85°C but it is not tested or  
QA sampled at these temperatures. The LTC6990I is guaranteed to meet  
specified performance from –40°C to 85°C. The LTC6990H is guaranteed  
to meet specified performance from –40°C to 125°C.  
Note 7: To conform to the Logic IC Standard, current out of a pin is  
arbitrarily given a negative value.  
Note 8: Output rise and fall times are measured between the 10% and the  
90% power supply levels with 5pF output load. These specifications are  
based on characterization.  
Note 9: Settling time is the amount of time required for the output to settle  
Note 4: Frequency accuracy is defined as the deviation from the f  
OUT  
within 1% of the final frequency after a 0.5x or 2x change in I  
.
SET  
equation, assuming R is used to program the frequency.  
SET  
Note 10: Jitter is the ratio of the deviation of the period to the mean of the  
period. This specification is based on characterization and is not 100%  
tested.  
6990p  
4
LTC6990  
V+ = 3.3V, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Frequency Error  
Frequency Error vs RSET  
vs Supply Voltage  
Frequency Error vs Temperature  
4
3
0.5  
0.4  
1.5  
1.0  
+
T
= 25°C  
T = 25°C  
A
V
= 3.3V  
A
DIVCODE = 4  
GUARANTEED MAX  
OVER TEMPERATURE  
0.3  
2
R
= 800k  
SET  
0.2  
0.5  
1
TYPICAL MAX  
90% OF UNITS  
TYPICAL MIN  
0.1  
R
SET  
= 50k  
R
0
0
0.0  
R
R
= 200k  
= 50k  
= 800k  
SET  
SET  
SET  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–1  
–2  
–3  
–4  
–0.5  
–1.0  
–1.5  
R
SET  
= 267k  
GUARANTEED MIN  
OVER TEMPERATURE  
10  
100  
1000  
2
3
4
5
6
–50 –25  
0
25  
50  
75 100 125  
R
(kꢀ)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
SET  
6990 G01  
6990 G02  
6990 G03  
VSET vs ISET  
VSET vs Supply Voltage  
VSET vs Temperature  
1.003  
1.002  
1.001  
1.000  
1.020  
1.015  
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
0.980  
1.003  
1.002  
1.001  
1.000  
+
V
T
= 3.3V  
= 25°C  
R
T
= 200k  
R
= 200k  
SET  
SET  
A
= 25°C  
3 TYPICAL PARTS  
A
0
10  
20  
(μA)  
30  
40  
–50 –25  
0
25  
50  
75 100 125  
2
3
4
5
6
I
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
SET  
6990 G04  
6990 G06  
6990 G05  
Typical VSET Distribution  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
T
= 25°C  
T
= 25°C  
A
A
R
= 50k, ÷1  
SET  
5.5V, R  
= 50k, ÷1  
2 LOTS  
SET  
DFN AND SOT-23  
1416 UNITS  
R
SET  
= 50k, ÷2  
2.25V, R  
5.5V, R  
= 50k, ÷1  
SET  
R
SET  
= 50k, ÷128  
= 50k, ÷128  
= 800k, ÷1  
SET  
5.5V, R  
SET  
R
R
= 800k, ÷1  
SET  
SET  
= 800k, ÷128  
2.25V, R  
= 800k, ÷128  
SET  
0
0
0
2
3
4
5
6
–50 –25  
0
25  
50  
75 100 125  
0.986 0.994  
1.002  
(V)  
1.010  
1.018  
SUPPLY VOLTAGE (V)  
V
TEMPERATURE (°C)  
SET  
6990 G05  
6990 G09  
6990 G07  
6990p  
5
LTC6990  
V+ = 3V, unless otherwise noted.  
Supply Current vs Frequency, 2.5V  
TYPICAL PERFORMANCE CHARACTERISTICS  
Supply Current vs Frequency, 5V  
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
RECOMMENDED RANGE  
EXTENDED RANGE  
RECOMMENDED RANGE  
EXTENDED RANGE  
÷2  
÷1  
÷2  
÷128  
÷1  
÷128  
+
+
V
T
= 5V  
= 25°C  
V
T
= 2.5V  
= 25°C  
A
A
0
0
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
6990 G10  
6990 G11  
Peak-to-Peak Jitter vs Frequency  
Supply Current vs OE Pin Voltage  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
200  
175  
150  
125  
100  
75  
T
= 25°C  
= 5V  
T
= 25°C  
SET  
A
A
+
V
R
= 800k  
5V, OE RISING  
PEAK-TO-PEAK PERIOD  
DEVIATION MEASURED  
OVER 30sec INTERVALS  
DIVCODE = 7  
5V, OE FALLING  
3.3V, OE FALLING  
÷1  
3.3V,  
OE RISING  
÷2  
÷4  
÷128  
50  
0.1  
1
10  
100  
1000  
0
20  
40  
60  
/V (%)  
80  
100  
+
FREQUENCY (kHz)  
V
OE  
6990 G13  
6990 G12  
OE Threshold Voltage  
vs Supply Voltage  
Output Resistance  
vs Supply Voltage  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
T
= 25°C  
T
= 25°C  
A
A
POSITIVE-GOING  
OUTPUT SOURCING CURRENT  
NEGATIVE-GOING  
OUTPUT SINKING CURRENT  
0
2
3
4
5
6
2
3
4
5
6
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
6990 G14  
6990 G16  
6990p  
6
LTC6990  
V+ = 3V, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Rise and Fall Time  
vs Supply Voltage  
Output Disable Propagation Delay  
(tPD) vs Supply Voltage  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
T
= 25°C  
LOAD  
T
= 25°C  
LOAD  
A
A
C
= 5pF  
C
= 5pF  
t
RISE  
t
FALL  
0
2
3
4
5
6
2
3
4
5
6
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
6990 G16  
6990 G17  
Typical ISET Current Limit vs V+  
Typical Output Waveform  
1000  
800  
600  
400  
200  
0
+
T
= 25°C  
V
= 3.3V  
A
SET PIN SHORTED TO GND  
DIVCODE = 2  
= 200k  
R
SET  
OE  
2V/DIV  
OUT  
2V/DIV  
6990 G19  
20μs/DIV  
2
3
4
5
6
SUPPLY VOLTAGE (V)  
6990 G18  
Frequency Modulation  
Frequency Modulation  
V
V
CTRL  
CTRL  
2V/DIV  
2V/DIV  
OUT  
2V/DIV  
OUT  
2V/DIV  
f
f
OUT  
OUT  
50kHz/DIV  
50kHz/DIV  
6990 G21  
6990 G20  
20μs/DIV  
+
20μs/DIV  
+
V
R
f
= 3.3V, DIVCODE = 0  
V
R
f
= 3.3V, DIVCODE = 0  
= 200k, R  
= 464k  
= 200k, R  
= 464k  
SET  
VCO  
SET  
VCO  
= 175kHz to 350kHz  
= 175kHz to 350kHz  
OUT  
OUT  
6990p  
7
LTC6990  
PIN FUNCTIONS (DCB/S6)  
V (Pin1/Pin5):SupplyVoltage(2.25Vto5.5V).Thissup-  
ply must be kept free from noise and ripple. It should be  
bypassed directly to the GND pin with a 0.1μF capacitor.  
+
Limit the capacitance on the SET pin to less than 10pF  
to minimize jitter and ensure stability. Capacitance less  
than 100pF maintains the stability of the feedback circuit  
regulating the V voltage.  
SET  
DIV (Pin 2/Pin 4): Programmable Divider and Hi-Z Mode  
+
+
Input. A V referenced A/D converter monitors the DIV  
V
pin voltage (V ) to determine a 4-bit result (DIVCODE).  
DIV  
OE  
OUT  
LTC6990  
+
V
DIV  
may be generated by a resistor divider between V  
+
V
and GND. Use 1% resistors to ensure an accurate result.  
The DIV pin and resistors should be shielded from the  
OUT pin or any other traces that have fast edges. Limit  
the capacitance on the DIV pin to less than 100pF so that  
+
GND  
SET  
V
C1  
0.1μF  
R1  
R2  
DIV  
6990 PF  
R
SET  
V
settles quickly. The MSB of DIVCODE (Hi-Z) deter-  
DIV  
mines the behavior of the output when OE is driven low.  
If Hi-Z = 0 the output is pulled low when disabled. If Hi-Z  
= 1 the output is placed in a high impedance condition  
when disabled.  
OE (Pin 4/Pin 1): Output Enable. Drive high to enable the  
output driver (Pin 6). Driving OE low disables the output  
asynchronously, so that the output is immediately forced  
low (Hi-Z = 0) or floated (Hi-Z = 1). When enabled, the  
output may temporarily remain low to synchronize with  
the internal oscillator in order to eliminate pulse slivers.  
SET (Pin 3/Pin 3): Frequency-Setting Input. The voltage  
on the SET pin (V ) is regulated to 1V above GND. The  
SET  
amount of current sourced from the SET pin (I ) pro-  
SET  
grams the master oscillator frequency. The I  
current  
SET  
GND(Pin5/Pin2):Ground.Tietoalowinductanceground  
plane for best performance.  
range is 1.25μA to 40μA. The output oscillation will stop  
if I drops below approximately 500nA. A resistor con-  
SET  
OUT (Pin 6/Pin 6): Oscillator Output. The OUT pin swings  
nected between SET and GND is the most accurate way to  
set the frequency. For best performance, use a precision  
metal or thin film resistor of 0.5% or better tolerance and  
50ppm/°C or better temperature coefficient. For lower ac-  
curacy applications an inexpensive 1% thick film resistor  
may be used.  
+
fromGNDtoV withanoutputresistanceofapproximately  
30ꢀ. When driving an LED or other low-impedance load a  
series output resistor should be used to limit source/sink  
current to 20mA.  
6990p  
8
LTC6990  
(S6 Package Pin Numbers Shown)  
BLOCK DIAGRAM  
+
V
OE  
1
5
R1  
Hi-Z BIT  
DIV  
4-BIT A/D  
CONVERTER  
DIGITAL  
FILTER  
4
R2  
Hi-Z WHEN  
DISABLED  
MASTER OSCILLATOR  
VSET  
1μs  
OUT  
tMASTER  
MCLK  
PROGRAMMABLE DIVIDER  
÷1, 2, 4, 8, 16, 32, 64, 128  
50k7 ISET  
6
t
OUT  
Hi-Z OUTPUT  
UNTIL SETTLED  
HALT OSCILLATOR  
IF I  
< 500nA  
SET  
I
SET  
POR  
+
+
1V  
V
= 1V  
SET  
2
3
6990 BD  
GND  
SET  
R
SET  
6990p  
9
LTC6990  
OPERATION  
The LTC6990 is built around a master oscillator with a  
DIVCODE  
1MHz maximum frequency. The oscillator is controlled  
+
The DIV pin connects to an internal, V referenced 4-bit  
by the SET pin current (I ) and voltage (V ), with a  
SET  
SET  
A/D converter that monitors the DIV pin voltage (V ) to  
DIV  
1MHz • 50k conversion factor that is accurate to 0.8%  
determine the DIVCODE value. DIVCODE programs two  
under typical conditions.  
settings on the LTC6990:  
ISET  
VSET  
1
fMASTER  
=
=1MHz • 50k •  
1. DIVCODE determines the output frequency divider  
tMASTER  
setting, N  
.
DIV  
A feedback loop maintains V at 1V 30mV, leaving I  
2. DIVCODE determines the state of the output when  
disabled, via the Hi-Z bit.  
SET  
SET  
as the primary means of controlling the output frequency.  
The simplest way to generate I is to connect a resistor  
+
SET  
V
DIV  
may be generated by a resistor divider between V  
(R ) between SET and GND, such that I = V /R .  
SET  
SET  
SET SET  
and GND as shown in Figure 1.  
The master oscillator equation reduces to:  
1
1MHz 50k  
RSET  
2.25V TO 5.5V  
fMASTER  
=
=
tMASTER  
+
V
LTC6990  
R1  
R2  
From this equation it is clear that V drift will not affect  
SET  
DIV  
theoutputfrequencywhenusingasingleprogramresistor  
(R ). Error sources are limited to R tolerance and the  
SET  
SET  
GND  
inherent frequency accuracy Δf  
of the LTC6990.  
OUT  
6990 F01  
R
values between 50k and 800k (equivalent to I  
SET  
SET  
between 1.25μA and 20μA) produce the best results,  
Figure 1. Simple Technique for Setting DIVCODE  
although R may be reduced to 25k (I = 40μA) with  
reduced accuracy.  
SET  
SET  
The LTC6990 includes a programmable frequency divider  
which can further divide the frequency by 1, 2, 4, 8, 16,  
32, 64 or 128 before driving the OUT pin. The divider ratio  
N
is set by a resistor divider attached to the DIV pin.  
DIV  
ISET  
VSET  
1
tOUT  
1MHz 50k  
NDIV  
fOUT  
=
=
With R in place of V /I the equation reduces to:  
SET  
SET SET  
1
1MHz 50k  
fOUT  
=
=
tOUT NDIV RSET  
6990p  
10  
LTC6990  
OPERATION  
Table 1. DIVCODE Programming  
+
DIVCODE  
Hi-Z  
0
N
Recommended f  
R1 (k)  
Open  
976  
R2 (k)  
Short  
102  
V
/V  
DIV  
DIV  
OUT  
0
1
1
62.5kHz to 1MHz  
31.25kHz to 500kHz  
15.63kHz to 250kHz  
7.813kHz to 125kHz  
3.906kHz to 62.5kHz  
1.953kHz to 31.25kHz  
976.6Hz to 15.63kHz  
488.3Hz to 7.813kHz  
488.3Hz to 7.813kHz  
976.6Hz to 15.63kHz  
1.953kHz to 31.25kHz  
3.906kHz to 62.5kHz  
7.813kHz to 125kHz  
15.63kHz to 250kHz  
31.25kHz to 500kHz  
62.5kHz to 1MHz  
≤ 0.03125 0.015  
0.09375 0.015  
0.15625 0.015  
0.21875 0.015  
0.28125 0.015  
0.34375 0.015  
0.40625 0.015  
0.46875 0.015  
0.53125 0.015  
0.59375 0.015  
0.65625 0.015  
0.71875 0.015  
0.78125 0.015  
0.84375 0.015  
0.90625 0.015  
≥ 0.96875 0.015  
0
2
4
8
2
0
976  
182  
3
0
1000  
1000  
1000  
1000  
1000  
887  
280  
4
0
16  
32  
64  
128  
128  
64  
32  
16  
8
392  
5
0
523  
6
0
681  
7
0
887  
8
1
1000  
1000  
1000  
1000  
1000  
976  
9
1
681  
10  
11  
12  
13  
14  
15  
1
523  
1
392  
1
280  
1
4
182  
1
2
102  
976  
1
1
Short  
Open  
Table 1 offers recommended 1% resistor values that ac-  
curatelyproducethecorrectvoltagedivisionaswellasthe  
column in Table 1 shows the ideal ratio of V  
to the  
DIV  
supply voltage, which can also be calculated as:  
correspondingN andHi-Zvaluesfortherecommended  
DIV  
VDIV  
V+  
DIVCODE + 0.5  
resistor pairs. Other values may be used as long as:  
=
1.5%  
16  
+
1. The V /V ratio is accurate to 1.5% (including resis-  
DIV  
Forexample,ifthesupplyis3.3VandthedesiredDIVCODE  
tor tolerances and temperature effects)  
is 4, V = 0.281 • 3.3V = 928mV 50mV.  
DIV  
2. The driving impedance (R1||R2) does not exceed  
500kꢀ.  
Figure2illustratestheinformationinTable1,showingthat  
N
DIV  
is symmetric around the DIVCODE midpoint.  
If the voltage is generated by other means (i.e. the output  
+
of a DAC) it must track the V supply voltage. The last  
Hi-Z BIT = 0  
Hi-Z BIT = 1  
1000  
0
15  
1
14  
13  
100  
2
3
12  
11  
4
10  
1
5
10  
6
9
7
8
RECOMMENDED RANGE  
EXTENDED RANGE  
0.1  
+
+
0V  
0.5•V  
INCREASING V  
V
DIV  
6990 F02  
Figure 2. Frequency Range and Hi-Z Bit vs DIVCODE  
6990p  
11  
LTC6990  
OPERATION  
On start-up, the DIV pin A/D converter must determine the  
correct DIVCODE before the output is enabled. If V is  
notstable,itwillincreasethestart-uptimeastheconverter  
waits for a stable result. Therefore, capacitance on the DIV  
pin should be minimized so it will settle quickly. Less than  
100pF will not affect performance.  
Figure 3 illustrates the timing for the OE function when  
Hi-Z = 0. When OE is low, the output is disabled and OUT  
is held low. Bringing OE high enables the output after a  
DIV  
delay, t  
, which synchronizes the enable to eliminate  
ENABLE  
sliver pulses and guarantee the correct width for the first  
pulse. If N = 1 or 2 this delay will be no longer than  
DIV  
the output period, t . If N > 2 the delay is limited to  
OUT  
DIV  
Output Enable  
twicethe internalmasteroscillatorperiod(or2•t  
).  
MASTER  
Forcing OE low will bring OUT low after a propagation  
The OE pin controls the state of the LTC6990’s output as  
seen on the OUT pin. Pulling the OE pin high enables the  
oscillator output. Pulling it low disables the output. When  
the output is disabled, it is either held low or placed in  
a high impedance state as dictated by the Hi-Z bit value  
(determinedbytheDIVCODEasdescribedearlier). Table2  
summarizes the output control states.  
delay, t . If the output is high when OE falls, the output  
PD  
pulse will be truncated.  
As shown in Figure 4, setting Hi-Z = 1 places the output in  
a high-impedance state when OE = 0. This feature allows  
forwired-ORconnectionsofmultipledevices.DrivingOE  
high enables the output. The output will usually be forced  
low during this time, although it is possible for OUT to  
transition directly from high-impedance to a high output,  
depending on the timing of the OE transition relative to  
the internal oscillator. Once high, the first output pulse  
will have the correct width (unless truncated by bringing  
OE low again).  
Table 2. Output States  
OE Pin  
Hi-Z  
X
OUT  
1
0
0
Enabled, Output is Active  
Disabled, Output is Hi-Z  
Disabled, Output is Held Low  
1
0
OE  
t
PD  
t
PD  
OUT  
t
ENABLE  
t
t
OUT  
ENABLE  
6990 F03  
Figure 3. OE Timing Diagram (Hi-Z = 0)  
OE  
t
t
PD  
t
t
PD  
PD  
PD  
Hi-Z  
OUT  
t
ENABLE  
t
t
OUT  
ENABLE  
6990 F04  
Figure 4. OE Timing Diagram (Hi-Z = 1)  
6990p  
12  
LTC6990  
OPERATION  
Changing DIVCODE After Start-Up  
Start-Up Time  
When power is first applied to the LTC6990 the power-on  
reset (POR) circuit will initiate the start-up time, t  
Following start-up, the A/D converter will continue  
monitoring V for changes. Changes to DIVCODE will  
.
START  
DIV  
be recognized slowly, as the LTC6990 places a priority on  
eliminating any “wandering” in the DIVCODE. The typical  
delay depends on the difference between the old and  
new DIVCODE settings and is proportional to the master  
oscillator period.  
The OUT pin is floated (high-impedance) during this time.  
The typical value for t ranges from 0.5ms to 8ms  
START  
depending on the master oscillator frequency (indepen-  
dent of N ):  
DIV  
tSTART(TYP) = 500 • tMASTER  
tDIVCODE =16 (ΔDIVCODE + 6)tMASTER  
The start-up time may be longer if the supply or DIV  
pin voltages are not stable. For this reason, it is recom-  
mended to minimize the capacitance on the DIV pin so it  
A change in DIVCODE will not be recognized until it is  
stable, and will not pass through intermediate codes. A  
digital filter is used to guarantee the DIVCODE has settled  
to a new value before making changes to the output. Then  
the output will make a clean (glitchless) transition to the  
new divider setting.  
+
will properly track V .  
576μs  
DIV  
1V/DIV  
+
V
1V/DIV  
470μs  
OUT  
1V/DIV  
OUT  
1V/DIV  
OUTPUT CONNECTED  
TO 1.25V THROUGH 25k  
TO SHOW Hi-Z  
6990 F05  
6990 F06  
100μs/DIV  
+
100μs/DIV  
+
V
R
= 3.3V  
V
= 2.5V  
DIVCODE = 4  
= 50k  
= 200k  
SET  
R
SET  
Figure 5. DIVCODE Change from 5 to 2  
Figure 6. Typical Start-Up  
6990p  
13  
LTC6990  
APPLICATIONS INFORMATION  
OE  
Hi-Z  
OUT  
1/2 t  
OUT  
t
t
OUT  
START  
6990 F07  
Figure 7. Start-Up Timing Diagram (OE = 1, NDIV = 1 or 2, Hi-Z = 0 or 1)  
OE  
Hi-Z  
OUT  
t
t
t
OUT  
START  
MASTER  
6990 F08  
Figure 8. Start-Up Timing Diagram (OE = 1, NDIV ≥ 4, Hi-Z = 0 or 1)  
OE  
Hi-Z  
OUT  
t
ENABLE  
t
t
OUT  
START  
6990 F09  
Figure 9. Start-Up Timing Diagram (OE = 0, NDIV = Any, Hi-Z = 0)  
OE  
t
PD  
Hi-Z  
OUT  
t
ENABLE  
REMAINS Hi-Z  
UNTIL OE = 1  
t
t
OUT  
START  
6990 F10  
Figure 10. Start-Up Timing Diagram (OE = 0, NDIV = Any, Hi-Z = 1)  
6990p  
14  
LTC6990  
APPLICATIONS INFORMATION  
Start-Up Behavior  
Example: Design a 20kHz Oscillator with Minimum  
Power Consumption  
When first powered up, the output is high impedance. If  
the output is enabled (OE = 1) at the end of the start-up  
Step 1: Selecting the N Frequency Divider Value  
DIV  
time, the output will go low for one t  
cycle (or half  
MASTER  
First, choose an N value that meets the requirements  
DIV  
a t  
cycle if N < 4) before the first rising edge. If the  
OUT  
DIV  
of Equation (1a).  
output is disabled (OE = 0) at the end of the start-up time,  
the output will drop to a low output if the Hi-Z bit = 0, or  
simply remain floating if Hi-Z = 1.  
3.125 ≤ N ≤ 50  
DIV  
PotentialsettingsforN include4,8,16,and32.N =4  
DIV  
DIV  
is the best choice, as it minimizes supply current by using  
Basic Fixed Frequency Operation  
a large R resistor. Using Table 1, choose the R1 and R2  
SET  
The simplest and most accurate method to program the  
LTC6990 for fixed frequency operation is to use a single  
values to program DIVCODE to either 2 or 13, depending  
on the desired behavior when the output is disabled.  
resistor, R , between the SET and GND pins. The design  
SET  
procedureisasimpletwostepprocess.FirstselecttheN  
Step 2: Select R  
DIV  
SET  
value and then calculate the value for the R resistor.  
SET  
Calculate the correct value for R using Equation (1b).  
SET  
Step 1: Selecting the N Frequency Divider Value  
1MHz • 50k  
4•20kHz  
DIV  
RSET  
=
= 625k  
As explained earlier, the voltage on the DIV pin sets the  
DIVCODE which determines both the Hi-Z bit and the  
Since 625k is not available as a standard 1% resistor,  
substitute 619k if a 0.97% frequency shift is acceptable.  
Otherwise, select a parallel or series pair of resistors such  
as 309k and 316k to attain a more precise resistance.  
N
value. For a given output frequency, N should be  
DIV  
DIV  
selected to be within the following range.  
62.5kHz  
fOUT  
1MHz  
fOUT  
NDIV  
(1a)  
Frequency Modulated Operation (Voltage-Controlled  
Oscillator)  
To minimize supply current, choose the lowest N value  
DIV  
(generallyrecommended).Forfasterstart-upordecreased  
Operating the LTC6990 as a voltage-controlled oscillator in  
itssimplestformisachievedwithoneadditionalresistor.As  
jitter,chooseahigherN setting.Alternatively,useTable1  
DIV  
as a guide to select the best N value for the given ap-  
DIV  
shown in Figure 11, voltage V  
sources/sinks a current  
CTRL  
plication. After choosing the value for N , use Table 1 to  
DIV  
through R to vary the I current, which in turn modu-  
VCO  
SET  
+
select the proper resistor divider or V /V ratio to apply  
DIV  
lates the output frequency as described in Equation (2).  
to the DIV pin.  
1MHz 50k  
NDIV RVCO  
RVCO VCTRL  
(2)  
fOUT  
=
• 1+  
Step 2: Calculate and Select R  
SET  
RSET VSET  
The final step is to calculate the correct value for R  
using the following equation.  
SET  
+
V
OE  
OUT  
1MHz • 50k  
NDIV • fOUT  
+
LTC6990  
V
RSET  
=
(1b)  
+
GND  
V
C1  
0.1μF  
R1  
Select the standard resistor value closest to the calculated  
value.  
R
VCO  
V
CTRL  
SET  
DIV  
R
6990 F08  
R2  
SET  
Figure 11. Voltage Controlled Oscillator  
6990p  
15  
LTC6990  
APPLICATIONS INFORMATION  
Equation(2)canbere-writtenasshownbelow, wheref  
K
and f  
are not device settings or resistor values  
(0V)  
is the  
VCO  
(0V)  
themselves. However, beyond their utility for the resistor  
calculations,theseparametersprovideausefulandintuitive  
is the output frequency when V  
= 0V, and K  
CTRL  
VCO  
frequency gain. Note that the gain is negative (the output  
way to look at the VCO application. The f  
parameter is  
frequency decreases as V  
increases).  
(0V)  
CTRL  
the output frequency when V  
is at 0V. Viewed another  
CTRL  
fOUT = f(0V) – KVCO • VCTRL  
way, it is the fixed output frequency when the R  
and  
VCO  
1MHz 50k  
R
resistorsareinparallel.K isactuallythefrequency  
SET  
VCO  
f(0V)  
=
gain of the circuit.  
NDIV • RSET PRVCO  
(
)
With K  
can now be calculated.  
and f  
determined, the R and R values  
VCO SET  
VCO  
(0V)  
1MHz • 50k  
KVCO  
=
NDIV • VSET RVCO  
Step 3: Calculate and Select R  
VCO  
The design procedure for a VCO is a simple four step  
process. First select the N value. Then calculate the  
The next step is to calculate the correct value for R  
using the following equation.  
VCO  
DIV  
intermediate values K  
and f . Next, calculate and  
VCO  
(0V)  
select the R  
resistor. Finally calculate and select the  
VCO  
resistor.  
1MHz • 50k  
NDIV • VSET KVCO  
RVCO  
=
R
(3d)  
SET  
Step 1: Select the N Frequency Divider Value  
DIV  
Select the standard resistor value closest to the calculated  
value.  
For best accuracy, the master oscillator frequency should  
fall between 62.5kHz and 1MHz. Since f  
= N  
MASTER  
that meets the following  
DIV  
Step 4: Calculate and Select R  
SET  
f
, choose a value for N  
OUT  
DIV  
conditions  
The final step is to calculate the correct value for R  
using the following equation:  
SET  
62.5kHz  
fOUT(MIN)  
1MHz  
fOUT(MAX)  
NDIV  
(3a)  
1MHz 50k  
RSET  
=
(3e)  
NDIV • f(0V) V KVCO  
(
)
SET  
The 16:1 frequency range of the master oscillator and  
the 2:1 divider step-size provides several overlapping fre-  
quency spans to guarantee that any 8:1 modulation range  
Select the standard resistor value closest to the calculated  
value.  
can be covered by a single N setting. R  
allows the  
DIV  
VCO  
Some applications require combinations of f  
,
OUT(MIN)  
that are not achiev-  
gain to be tailored to the application, mapping the V  
CTRL  
f
, V  
and V  
OUT(MAX) CTRL(MIN)  
CTRL(MAX)  
voltage range to the modulation range.  
able. These applications result in unrealistic or unrealiz-  
able (e.g. negative value) resistors. These applications  
Step 2: Calculate K  
and f  
(0V)  
VCO  
will require preconditioning of the V  
scaling and/or level shifting to place the V  
that yields realistic resistor values.  
signal via range  
CTRL  
CTRL  
K
and f  
define the VCO’s transfer function and  
(0V)  
into a range  
VCO  
simplify the calculation of the the R  
and R  
resis-  
VCO  
SET  
tors. Calculate these parameters using the following  
equations.  
Frequency Error in VCO Applications Due to V Error  
SET  
fOUT(MAX) fOUT(MIN)  
As stated earlier, f  
= 0V, which is the same value as would be generated by  
a single resistor between SET and GND with a value of  
represents the frequency for V  
CTRL  
(0V)  
KVCO  
=
(3b)  
(3c)  
VCTRL(MAX) VCTRL(MIN)  
) + K • V  
CTRL(MIN)  
f
= f  
R
|| R . Therefore, f  
SET  
= 0V).  
is not affected by error or  
(0V)  
OUT(MAX  
VCO  
SET  
drift in V  
VCO  
(0V)  
(i.e. ΔV  
adds no frequency error when  
SET  
V
CTRL  
6990p  
16  
LTC6990  
APPLICATIONS INFORMATION  
The accuracy of K  
does depend on V  
because the  
Example: Design a VCO with the Following Parameters  
VCO  
SET  
output frequency is controlled by the ratio of V  
to  
is ap-  
CTRL  
f
f
= 100kHz at V  
= 1V  
CTRL(MIN)  
OUT(MAX)  
OUT(MIN)  
V
. The frequency error (in Hertz) due to ΔV  
SET  
SET  
= 10kHz at V  
= 4V  
proximated by:  
CTRL(MAX)  
ΔVSET  
VSET  
Step 1: Select the N Value  
ΔfOUT KVCO • VCTRL  
DIV  
First, choose an N  
Equation (3a).  
that meets the requirements of  
DIV  
As the equation indicates, the potential for error in output  
frequency due to V error increases with K and is  
is at its maximum. Recall that  
is at its maximum, the output frequency is at  
itsminimum. Withthemaximumabsolutefrequencyerror  
(in Hertz) occurring at the lowest output frequency, the  
relative frequency error (in percent) can be significant.  
SET  
VCO  
6.25 ≤ N ≤ 10  
DIV  
at its largest when V  
CTRL  
The application’s desired frequency range is 10:1, which  
when V  
CTRL  
isn’t always possible. However, in this case N = 8 meets  
DIV  
both requirements of Equation (3).  
Step 2: Calculate K  
and f  
(0V)  
VCO  
V
is nominally 1.0V with a maximum error of 30mV  
SET  
Next,calculatetheintermediatevaluesK andf using  
Equations (3b) and (3c).  
VCO  
(0V)  
for at most a 3% error term. However, this 3% potential  
error term is multiplied by both V and K . Wide fre-  
CTRL  
VCO  
quencyrangeapplications(highK )canhavefrequency  
100kHz 10kHz  
4V 1V  
f(0V) =100kHz + 30kHz/V 1V =130kHz  
VCO  
KVCO  
=
= 30kHz/V  
errors greater than 50% at the highest V  
voltage  
CTRL  
(lowestf ). Forthisreasonthesimple, tworesistorVCO  
OUT  
circuit must be used with caution for applications where  
the frequency range is greater than 4:1. Restricting the  
range to 4:1 typically keeps the frequency error due to  
Step 3: Calculate and Select R  
VCO  
V
variation below 10%.  
The next step is to use Equation (3d) to calculate the cor-  
rect value for R  
SET  
.
VCO  
For wide frequency range applications, the non-inverting  
VCO circuit shown in Figure 13 is preferred because the  
maximum frequency error occurs when the frequency  
is highest, keeping the relative error (in percent) much  
smaller.  
1MHz • 50k  
8 1V 30kHz/V  
RVCO  
=
= 208.333k  
Select R  
= 210k.  
VCO  
100  
80  
60  
40  
20  
0
Step 4: Calculate and Select R  
SET  
The final step is to calculate the correct value for R  
using Equation (3e).  
SET  
1MHz • 50k  
8 • 130kHz 1V • 30kHz/V  
RSET  
=
= 62.5k  
(
)
Select R = 61.9k  
SET  
Inthisdesignexample,withitswide10:1frequencyrange,  
thepotentialoutputfrequencyerrorduetoV erroralone  
SET  
1
2
3
4
ranges from less than 1% when V  
is at its minimum  
CTRL  
V
(V)  
CTRL  
6990 F12  
up to 36% when V  
is at its maximum. This error  
CTRL  
must be accounted for in the system design.  
Figure 12. VCO Transfer Function  
6990p  
17  
LTC6990  
APPLICATIONS INFORMATION  
Depending on the application’s requirements, the non-  
inverting VCO circuit in Figure 13 may be preferred for  
this wide of a frequency variation as its maximum inac-  
the maximum absolute frequency error (in Hertz) now  
occurring at the highest output frequency, the relative  
frequency error (in percent) is greatly improved.  
curacy due to V error is only 9% and can be reduced  
SET  
Additionally,bychoosingtheVCO’sspecificationsshrewdly,  
to only 3% with a small change to the voltage tuning  
the frequency error (in percent) due to V variation is  
SET  
range specification.  
reduced to ΔV /V  
= 3%. To realize this improve-  
SET SET  
ment, the design must abide by three conditions. First,  
the V voltage must be positive throughout the range.  
Reducing V Error Effects in VCO Applications  
SET  
IN  
Figure 13 shows a VCO that reduces the effect of ΔV  
Second, choose V  
VCO SET  
/V  
≥ f  
/f . Last, choose  
MAX MIN  
SET  
MAX MIN  
/R ≥ R4/R3.  
by adding an op-amp to make V  
dependent on V  
.
R
CTRL  
SET  
This circuit also has a positive transfer function (the out-  
Figure 13 shows a design similar to the previous design  
example where the V voltage is now specified to be  
put frequency increases as V increases). Furthermore,  
IN  
MIN  
for positive V voltages, this circuit places the greatest  
IN  
0.4V. This satisfies the V  
/V  
≥ f  
/f  
condition  
MAX MIN  
MAX MIN  
absolute frequency error at the highest output frequency.  
Compared to the simple VCO circuit of Figure 11, the  
absolute frequency error is unchanged. However, with  
and the design assures that the output frequency error  
due to V variation is only 3%.  
SET  
10kHz TO 100kHz  
3V  
f
OUT  
OE  
OUT  
LTC6990  
3V  
+
GND  
SET  
V
C1  
0.1μF  
R1  
1M  
V
SET  
DIVCODE = 3  
DIV  
DIV  
(N = 8, Hi-Z = 0)  
3V  
6990 F13  
R2  
280k  
R
VCO  
+
V
CTRL  
75k  
1/2  
R3  
LTC6078  
100k  
0.4V TO 4V  
R
SET  
V
IN  
¨
·
¸
¥
´
249k  
RVCO  
V
V
SET  
1MHz • 50k7  
NDIV RVCO  
R4  
R3  
IN  
fOUT  
R4  
©  
1 •  
¦
µ
R
R4  
30.1k  
§
©
ª
¸
¹
SET  
RVCO  
IF  
, THE EQUATION REDUCES TO:  
R3 RSET  
C4  
33pF  
V
VSET  
1MHz • 50k7  
NDIV RSET  
IN  
fOUT  
=
V • 25kHz/V  
IN  
Figure 13. VCO with Reduced ΔVSET Sensitivity  
6990p  
18  
LTC6990  
APPLICATIONS INFORMATION  
Eliminating V Error Effects with DAC Frequency  
The oscillator will still function with reduced accuracy  
in its extended range (see the Electrical Characteristics  
section).  
SET  
Control  
Many DACs allow for the use of an external reference.  
If such a DAC is used to provide the V  
voltage, the  
The LTC6990 is designed to function normally for I  
SET  
CTRL  
V
error is eliminated by buffering V and using it as  
as low as 1.25μA. At approximately 500nA, the oscillator  
SET  
SET  
the DAC’s reference voltage, as shown in Figure 14. The  
DAC’s output voltage now tracks any V variation and  
output will be frozen in its current state. For N = 1 or 2,  
DIV  
OUT will halt in a low state. But for larger divider ratios,  
it could halt in a high or low state. This avoids introduc-  
ing short pulses while modulating a very low frequency  
output. Note that the output will not be disabled as when  
OE is low (e.g. the output will not enter a high impedance  
state if Hi-Z = 1).  
SET  
eliminates it as an error source. The SET pin cannot be  
tied directly to the reference input of the DAC because  
the current drawn by the DAC’s REF input would affect  
the frequency.  
I
Extremes (Master Oscillator Frequency Extremes)  
SET  
At the other extreme, the master oscillator frequency can  
reach 2MHz for I = 40ꢁA (R = 25k). It is not recom-  
PushingI outsideoftherecommended1.25μAto20μA  
SET  
SET  
SET  
range forces the master oscillator to operate outside of  
mended to operate the master oscillator beyond 2MHz  
because the accuracy of the DIV pin ADC will suffer.  
the 62.5kHz to 1MHz range in which it is most accurate.  
OE  
OUT  
LTC6990  
+
V
+
GND  
SET  
V
C1  
0.1μF  
+
V
R1  
DIV  
+
1/2  
LTC6078  
6990 F14  
R2  
+
V
¥
´
RVCO  
DIN  
1MHz • 50k7  
NDIV RVCO  
fOUT  
1ꢂ  
¦
µ
RSET 4096  
§
V
REF  
CC  
DIN = 0 to 4095  
D
IN  
R
VCO  
V
OUT  
CLK  
μP  
LTC1659  
CS/LD  
R
SET  
GND  
Figure 14. Digitally Controlled Oscillator with VSET Variation Eliminated  
6990p  
19  
LTC6990  
APPLICATIONS INFORMATION  
Modulation Bandwidth and Settling Time  
Power Supply Current  
The LTC6990 will respond to changes in I up to a –3dB  
The power supply current varies with frequency, supply  
voltage and output loading. It can be estimated under any  
condition using the following equation:  
SET  
bandwidth of 0.4 • f  
(see Figure 15). This makes it easy  
OUT  
to stabilize a feedback loop around the LTC6990, since it  
does not introduce a low-frequency pole.  
IS(TYP) V+• fMASTER 7pF + V+fOUT(13pF +CLOAD  
V+ V+  
480kΩ 2RLOAD  
)
Settling time depends on the master oscillator frequency.  
Following a 2x or 0.5x step change in I , the output  
SET  
+
+
+1.75ISET + 50µA  
frequency takes approximately six master clock cycles  
(6 • t  
) to settle to within 1% of the final value. An  
MASTER  
example is shown in Figure 16.  
The equation is also valid for OE = 0 (output disabled),  
with f  
= 0Hz.  
OUT  
0
V
= 0.536V + 0.278V  
MOD  
=18.75kHz 10%  
CTRL  
• SIN(2π•f  
•t)  
V
CTRL  
f
OUT  
2V/DIV  
–10  
–20  
–30  
–40  
OUT  
–3dB AT 0.4•f  
OUT  
2V/DIV  
f
OUT  
50kHz/DIV  
R
R
= 200k  
= 464k  
SET  
VCO  
DIVCODE = 4(÷16)  
6990 F16  
10μs/DIV  
= 3.3V, DIVCODE = 0  
+
V
R
0.1  
1
10  
= 200k, R  
= 464k  
SET  
VCO  
f
/f  
(Hz/Hz)  
MOD OUT  
f
= 175kHz AND 350kHz  
OUT  
6990 F15  
Figure 15. Modulation Frequency Response  
Figure 16. Settling Time  
6990p  
20  
LTC6990  
APPLICATIONS INFORMATION  
SUPPLY BYPASSING AND PCB LAYOUT GUIDELINES  
C1 connection to the ground plane are recommended  
to minimize the inductance. Capacitor C1 should be a  
0.1μF ceramic capacitor.  
The LTC6990 is a 2.2% accurate silicon oscillator when  
used in the appropriate manner. The part is simple to use  
and by following a few rules, the expected performance  
is easily achieved. The most important use issues involve  
adequate supply bypassing and proper PCB layout.  
2. Place all passive components on the top side of the  
board. This minimizes trace inductance.  
3. Place R  
as close as possible to the SET pin and  
SET  
Figure17showsexamplePCBlayoutsforboththeSOT-23  
andDCBpackagesusing0603sizedpassivecomponents.  
The layouts assume a two layer board with a ground plane  
layer beneath and around the LTC6990. These layouts are  
a guide and need not be followed exactly.  
make a direct, short connection. The SET pin is a  
current summing node and currents injected into this  
pin directly modulate the operating frequency. Having  
a short connection minimizes the exposure to signal  
pickup.  
+
1. Connect the bypass capacitor, C1, directly to the V and  
4. Connect R directly to the GND pin. Using a long path  
SET  
GND pins using a low inductance path. The connection  
from C1 to the V pin is easily done directly on the top  
or vias to the ground plane will not have a significant  
affect on accuracy, but the direct, short connection is  
recommended and easy to apply.  
+
layer. For the DCB package, C1’s connection to GND is  
also simply done on the top layer. For the SOT-23, OUT  
can be routed through the C1 pads to allow a good C1  
GND connection. If the PCB design rules do not allow  
that,C1’sGNDconnectioncanbeaccomplishedthrough  
multiple vias to the ground plane. Multiple vias for both  
the GND pin connection to the ground plane and the  
5. Use a ground trace to shield the SET pin. This provides  
another layer of protection from radiated signals.  
6. Place R1 and R2 close to the DIV pin. A direct, short  
connection to the DIV pin minimizes the external signal  
coupling.  
OE  
OUT  
LTC6990  
+
+
GND  
V
V
C1  
0.1μF  
R1  
R2  
SET  
DIV  
R
SET  
+
+
V
+
C1  
V
R1  
C1  
V
OUT  
GND  
OE  
OE  
OUT  
+
DIV  
SET  
GND  
SET  
V
R2  
DIV  
R1  
R
SET  
R
R2  
SET  
DCB PACKAGE  
TSOT-23 PACKAGE  
6990 F17  
Figure 17. Supply Bypassing and PCB Layout  
6990p  
21  
LTC6990  
TYPICAL APPLICATIONS  
Programming NDIV Using an 8-Bit DAC  
DIVCODE  
DAC CODE  
0
0
1
OE  
OUT  
LTC6990  
24  
2
40  
2.25V TO 5.5V  
3
56  
+
GND  
SET  
V
4
72  
C1  
0.1μF  
5
88  
6
104  
120  
136  
152  
168  
184  
200  
216  
232  
255  
7
DIV  
8
C2  
0.1μF  
9
R
V
CC  
SET  
SDI  
10  
11  
12  
13  
14  
15  
619k  
LTC2630-LZ8 SCK  
μP  
V
OUT  
CS/LD  
GND  
6990 TA02  
Full Range VCO with Any NDIV Setting (fMAX to fMIN for VIN = 0V to VSET  
)
5V  
R
VCO2  
26.1k  
OE  
OUT  
LTC6990  
5V  
+
R
VCO1  
GND  
SET  
V
5V  
D1  
IN4148  
C1  
0.1μF  
26.1k  
+
V
IN  
R1  
R2  
0V TO 1V  
LT1490  
DIV  
6990 TA03  
R
SET  
826k  
Full Range VCO with Any NDIV Setting (Positive Frequency Control, fMIN to fMAX for VIN = 0V to VSET  
5V  
R4  
10k  
OE  
OUT  
LTC6990  
5V  
+
R3  
10k  
GND  
SET  
V
5V  
C1  
0.1μF  
+
V
IN  
R
VCO  
53.6k  
R1  
R2  
0V TO 1V  
LT1490  
DIV  
6990 TA04  
R
SET1  
412k  
R
SET2  
412k  
6990p  
22  
LTC6990  
TYPICAL APPLICATIONS  
Speaker Alarm. Modulate Tone with RVCO within 500Hz to 8kHz Span  
5V  
8ꢀ  
IN4004  
5V  
20k  
2N2222  
OE  
OUT  
LTC6990  
50k  
+
GND  
SET  
V
5V  
1M  
R
VCO  
STEP  
DIV  
RAMP  
6990 TA05  
97.6k  
887k  
Overvoltage Detector/Alarm. Direct Drive of Piezo Alarm  
24V  
5V  
R
A
787k  
+
100k  
R
B
LT6703-3  
OE  
OUT  
LTC6990  
10.7k  
400mV  
PIEZO ALARM  
4kHz  
+
GND  
SET  
V
5V  
MURATA  
PKM29-3A0  
1M  
¥
´
R
R
A
B
DIV  
V
400mV 1ꢂ  
30V  
ALARM  
¦
µ
§
6990 TA06  
392k  
523k  
Direct Piezo Alarm Driver. Adjust Frequency for Maximum Alarm Sound Pressure  
(Maximum Annoyance for Best Effect)  
5V  
10k  
ON  
OE  
OUT  
LTC6990  
OFF  
PIEZO ALARM  
MURATA  
PKM29-340  
f = 4kHz  
+
GND  
SET  
V
5V  
1M  
DIV  
6990 TA07  
392k  
523k  
6990p  
23  
LTC6990  
TYPICAL APPLICATIONS  
Isolated V F Converter. VIN Provided by Isolated Measurement Circuit.  
5μs Rise/Fall Time of Isolator Limits fMAX to 60kHz  
3.3V  
5V  
365ꢀ  
MOC207M  
OE  
OUT  
LTC6990  
+
GND  
SET  
V
5V  
1M  
f
75k  
OUT  
412ꢀ  
V
IN  
DIV  
0V TO 5V  
6990 TA08  
157k  
523k  
Quadrature Sine Wave Oscillator. Voltage Controlled Frequency Range  
from 2Hz to 18kHz with 1VP-P Constant Output Amplitude  
SINE  
COSINE  
2.5V  
51.1k  
5V  
5.11k  
N
S1A  
BP  
LP  
124k  
+
LTC1059 OR  
1/2 LTC1060  
+
CLOCK  
5V  
S
A/B  
AGND  
10k  
50/100  
OUT  
LTC6990  
OE  
2.5V  
2k  
LT1004  
–2.5V  
+
+
1M  
5V  
V
V
GND  
5V  
R1  
R
VCO  
1M  
267k  
V
FREQ  
ADJ  
+
CC  
DIV  
SET  
OUT  
REF  
R2  
280k  
R
SET  
49.9k  
6990 TA09  
LTC1440  
HYST  
1.18V  
0.1μF  
4.12k  
1M  
6990p  
24  
LTC6990  
TYPICAL APPLICATIONS  
Temperature to Frequency Converter.  
3% Linearity from –20°C (fOUT ≈ 20kHz) to 75°C (fOUT ≈ 25kHz)  
5V  
f
OE  
OUT  
LTC6990  
OUT  
+
GND  
SET  
V
5V  
1M  
60.4k  
DIV  
22k AT 25°C  
B = 3964  
6990 TA10  
21.5k  
523k  
+
THERMISTOR: VISHAY NTHS120601N2202J  
Full Range Temperature to Frequency Converter. 16kHz to 1kHz from –20°C to 80°C  
5V  
f
OE  
OUT  
LTC6990  
OUT  
10k  
+
GND  
SET  
V
5V  
5V  
+
1M  
100k  
LT1490  
DIV  
22k AT 25°C  
B = 3964  
6990 TA11  
10k  
681k  
+
26k  
26k  
THERMISTOR: VISHAY NTHS120601N2202J  
Light to Frequency Converter. fOUT ≈ –1.4kHz per Microampere of Photo Diode Current, IPD  
1000pF  
5V  
f
OE  
OUT  
LTC6990  
OUT  
24.9k  
+
GND  
V
5V  
I
5V  
PD  
+
187k  
222k  
LT1677  
SET  
DIV  
SFH213  
6990 TA12  
619k  
1M  
6990p  
25  
LTC6990  
PACKAGE DESCRIPTION  
DCB Package  
6-Lead Plastic DFN (2mm × 3mm)  
(Reference LTC DWG # 05-08-1715)  
0.70 p0.05  
1.65 p0.05  
3.55 p0.05  
(2 SIDES)  
2.15 p0.05  
PACKAGE  
OUTLINE  
0.25 p 0.05  
0.50 BSC  
1.35 p0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
TYP  
2.00 p0.10  
(2 SIDES)  
0.40 p 0.10  
R = 0.05  
TYP  
4
6
3.00 p0.10 1.65 p 0.10  
(2 SIDES)  
(2 SIDES)  
PIN 1 BAR  
TOP MARK  
(SEE NOTE 6)  
PIN 1 NOTCH  
R0.20 OR 0.25  
s 45o CHAMFER  
(DCB6) DFN 0405  
3
1
0.25 p 0.05  
0.50 BSC  
0.75 p0.05  
0.200 REF  
1.35 p0.10  
(2 SIDES)  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (TBD)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
6990p  
26  
LTC6990  
PACKAGE DESCRIPTION  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
2.80 BSC  
3.85 MAX 2.62 REF  
(NOTE 4)  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302 REV B  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
6990p  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LTC6990  
TYPICAL APPLICATION  
Ultrasonic Frequency Sweep Generator  
f
= 500kHz TO 31.25kHz  
OUT  
OE  
OE  
OUT  
LTC6990  
+
GND  
V
2.25V TO 5.5V  
C1  
0.1μF  
R1  
976k  
SET  
DIV  
6990 TA13  
R2  
102k  
R
SET1  
74HC125  
C
49.9k  
R
750k  
SET  
0.022μF  
SET2  
SWEEPS FROM 500kHz to 31.25kHz IN A  
FEW MILLISECONDS (CONTROLLED BY C ).  
SET  
RELATED PARTS  
PART NUMBER  
LTC1799  
DESCRIPTION  
COMMENTS  
1MHz to 33MHz ThinSOT Silicon Oscillator  
1MHz to 20MHz ThinSOT Silicon Oscillator  
Wide Frequency Range  
Low Power, Wide Frequency Range  
LTC6900  
LTC6906/LTC6907 10kHz to 1MHz or 40kHz ThinSOT Silicon Oscillator  
Micropower, I  
= 35μA at 400kHz  
SUPPLY  
LTC6930  
Fixed Frequency Oscillator, 32.768kHz to 8.192MHz  
0.09% Accuracy, 110μs Start-Up Time, 105μA at 32kHz  
6990p  
LT 0510 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
28  
© LINEAR TECHNOLOGY CORPORATION 2010  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC6990CS6-TRPBF

TimerBlox: Voltage Controlled Silicon Oscillator
Linear

LTC6990CS6PBF

TimerBlox: Voltage Controlled Silicon Oscillator
Linear

LTC6990CS6TRPBF

TimerBlox: Voltage Controlled Silicon Oscillator
Linear

LTC6990HDCB-PBF

TimerBlox: Voltage Controlled Silicon Oscillator
Linear

LTC6990HDCB-TRPBF

TimerBlox: Voltage Controlled Silicon Oscillator
Linear

LTC6990HDCBPBF

TimerBlox: Voltage Controlled Silicon Oscillator
Linear

LTC6990HDCBTRPBF

TimerBlox: Voltage Controlled Silicon Oscillator
Linear

LTC6990HS6-PBF

TimerBlox: Voltage Controlled Silicon Oscillator
Linear

LTC6990HS6-TRPBF

TimerBlox: Voltage Controlled Silicon Oscillator
Linear

LTC6990HS6PBF

TimerBlox: Voltage Controlled Silicon Oscillator
Linear

LTC6990HS6TRPBF

TimerBlox: Voltage Controlled Silicon Oscillator
Linear

LTC6990IDCB-PBF

TimerBlox: Voltage Controlled Silicon Oscillator
Linear