LTC6991HS6PBF [Linear]

TimerBlox: Resettable, Low Frequency Oscillator; TimerBlox系列:可重置,低频振荡器
LTC6991HS6PBF
型号: LTC6991HS6PBF
厂家: Linear    Linear
描述:

TimerBlox: Resettable, Low Frequency Oscillator
TimerBlox系列:可重置,低频振荡器

振荡器
文件: 总24页 (文件大小:327K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6991  
TimerBlox: Resettable, Low  
Frequency Oscillator  
FeaTures  
DescripTion  
The LTC®6991 is a silicon oscillator with a programmable  
periodrangeof1.024msto9.54hours(29.1µHzto977Hz),  
specifically intended for long duration timing events. The  
LTC6991 is part of the TimerBlox™ family of versatile  
silicon timing devices.  
n
Period Range: 1ms to 9.5 Hours  
n
Configured with 1 to 3 Resistors  
n
<1.5% Maximum Frequency Error  
n
Output Reset Function  
n
2.25V to 5.5V Single Supply Operation  
n
55µA to 80µA Supply Current  
A single resistor, R , programs the LTC6991’s internal  
SET  
(2ms to 9.5hr Clock Period)  
master oscillator frequency. The output clock period  
n
500µs Start-Up Time  
is determined by this master oscillator and an internal  
n
CMOS Output Driver Sources/Sinks 20mA  
frequency divider, N , programmable to eight settings  
DIV  
n
–40°C to 125°C Operating Temperature Range  
21  
from 1 to 2 .  
n
Available in Low Profile (1mm) SOT-23 (ThinSOT™)  
NDIV •RSET  
and 2mm × 3mm DFN Packages  
tOUT  
=
1.024ms, NDIV =1,8,64,...,221  
50kΩ  
applicaTions  
In normal operation, the LTC6991 oscillates with a 50%  
duty cycle. A reset function is provided to truncate the  
pulse (reducing the duty cycle). The reset pin can also be  
used to prevent the output from oscillating.  
n
“Heartbeat” Timers  
n
Watchdog Timers  
n
Intervalometers  
Periodic “Wake-Up” Call  
High Vibration, High Acceleration Environments  
Portable and Battery-Powered Equipment  
n
The RST and OUT pins can be configured for active-low  
or active-high operation using a polarity function.  
n
n
POL BIT  
RST PIN  
OUTPUT STATE  
Oscillating  
0 (reset)  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
ThinSOT and TimerBlox are trademarks of Linear Technology Corporation. All other trademarks  
are the property of their respective owners.  
0
0
1
1
0
1
0
1
1 (reset)  
Oscillating  
The LTC6991 is available in the 6-lead SOT-23 (ThinSOT)  
package or a 6-lead 2mm × 3mm DFN.  
Clock Period Range over Eight Divider Settings  
10Hr  
Typical applicaTion  
Low Frequency Pulse Generator  
1Hr  
10Min  
1µs PULSE WIDTH  
OUT  
60 SECONDS  
R
PW  
1Min  
2.26k  
10Sec  
RST  
GND  
SET  
OUT  
6991 TA01a  
C
PW  
LTC6991  
1Sec  
100ms  
10ms  
1ms  
2.25V TO 5.5V  
470pF  
+
V
0.1µF  
R1  
1M  
R
SET  
715k  
DIV  
R2  
392k  
1.25  
DIV PIN VOLTAGE, V (V)  
0
0.625  
1.875  
2.5  
6991 TA01b  
t
≈ R • C ≈ 1µs  
PW PW  
DIV  
PULSE  
6991f  
LTC6991  
absoluTe MaxiMuM raTings (Note 1)  
+
Supply Voltage (V ) to GND........................................6V  
Specified Temperature Range (Note 3)  
Maximum Voltage  
LTC6991C ................................................ 0°C to 70°C  
LTC6991I .............................................–40°C to 85°C  
LTC6991H.......................................... –40°C to 125°C  
Junction Temperature ........................................... 150°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
+
on Any Pin ................(GND – 0.3V) ≤ V ≤ (V + 0.3V)  
PIN  
Operating Temperature Range (Note 2)  
LTC6991C ............................................–40°C to 85°C  
LTC6991I .............................................–40°C to 85°C  
LTC6991H.......................................... –40°C to 125°C  
S6 Package...........................................................300°C  
pin conFiguraTion  
TOP VIEW  
TOP VIEW  
+
6
5
4
OUT  
GND  
RST  
V
1
2
3
RST 1  
GND 2  
SET 3  
6 OUT  
7
DIV  
SET  
+
5 V  
4 DIV  
DCB PACKAGE  
6-LEAD (2mm s 3mm) PLASTIC DFN  
S6 PACKAGE  
6-LEAD PLASTIC TSOT-23  
T
JMAX  
= 150°C, θ = 192°C/W, θ = 51°C/W  
T
= 150°C, θ = 64°C/W, θ = 10.6°C/W  
JA  
JC  
JMAX  
JA  
JC  
EXPOSED PAD (PIN 7) CONNECTED TO GND,  
PCB CONNECTION OPTIONAL  
orDer inForMaTion  
LEAD FREE FINISH  
LTC6991CDCB#PBF  
LTC6991IDCB#PBF  
LTC6991HDCB#PBF  
LTC6991CS6#PBF  
LTC6991IS6#PBF  
LTC6991HS6#PBF  
TAPE AND REEL  
PART MARKING*  
LDWZ  
PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
0°C to 70°C  
LTC6991CDCB#TRPBF  
LTC6991IDCB#TRPBF  
LTC6991HDCB#TRPBF  
LTC6991CS6#TRPBF  
LTC6991IS6#TRPBF  
LTC6991HS6#TRPBF  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead Plastic TSOT-23  
LDWZ  
–40°C to 85°C  
LDWZ  
–40°C to 125°C  
0°C to 70°C  
LTDWY  
LTDWY  
6-Lead Plastic TSOT-23  
–40°C to 85°C  
LTDWY  
6-Lead Plastic TSOT-23  
–40°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
6991f  
LTC6991  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. Test conditions are V+ = 2.25V to 5.5V, RST = 0V, DIVCODE = 0 to 15  
(NDIV = 1 to 221), RSET = 50k to 800k, RLOAD = 5k, CLOAD = 5pF unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
1.024m  
29.1µ  
TYP  
MAX  
34,360  
977  
UNITS  
Seconds  
Hz  
t
f
Output Clock Period  
Output Frequency  
OUT  
OUT  
Frequency Accuracy (Note 4)  
29.1µHz ≤ f  
≤ 977Hz  
0.8  
1.5  
2.2  
%
%
f  
OUT  
OUT  
l
l
Frequency Drift Over Temperature  
Frequency Drift Over Supply  
0.005  
%/°C  
f /T  
OUT  
+
l
l
V = 4.5V to 5.5V  
0.23  
0.06  
0.55  
0.16  
%/V  
%/V  
+
V = 2.25V to 4.5V  
Period Jitter (Note 10)  
N
DIV  
N
DIV  
= 1  
= 8  
15  
7
ppm  
ppm  
RMS  
RMS  
BW  
Frequency Modulation Bandwidth  
0.4 • f  
Hz  
OUT  
t
Frequency Change Settling Time (Note 9)  
1
Cycle  
S
Analog Inputs  
l
l
l
l
l
V
Voltage at SET Pin  
0.97  
1.00  
75  
1.03  
800  
V
µV/°C  
kΩ  
SET  
V
Drift Over Temperature  
V /T  
SET  
SET  
R
Frequency-Setting Resistor  
DIV Pin Voltage  
50  
0
SET  
DIV  
+
V
V
V
+
DIV Pin Valid Code Range (Note 5)  
Deviation from Ideal  
DIV  
1.5  
%
V /V  
DIV  
+
V
/V = (DIVCODE + 0.5)/16  
l
DIV Pin Input Current  
10  
nA  
Power Supply  
+
l
l
V
Operating Supply Voltage Range  
Power-On Reset Voltage  
Supply Current  
2.25  
5.5  
V
V
1.95  
+
+
l
l
I
R = ∞, R = 50k  
V = 5.5V  
135  
105  
170  
135  
µA  
µA  
S
L
SET  
V = 2.25V  
+
+
l
l
R = ∞, R = 100k  
V = 5.5V  
100  
80  
130  
105  
µA  
µA  
L
SET  
V = 2.25V  
+
+
l
l
R = ∞, R = 800k  
V = 5.5V  
65  
55  
100  
85  
µA  
µA  
L
SET  
V = 2.25V  
6991f  
LTC6991  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. Test conditions are V+ = 2.25V to 5.5V, RST = 0V, DIVCODE = 0 to 15  
(NDIV = 1 to 221), RSET = 50k to 800k, RLOAD = , CLOAD = 5pF unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Digital I/O  
RST Pin Input Capacitance  
RST Pin Input Current  
2.5  
pF  
nA  
V
+
RST = 0V to V  
(Note 6)  
10  
+
l
l
V
V
High Level RST Pin Input Voltage  
Low Level RST Pin Input Voltage  
Output Output Current  
0.7 • V  
IH  
+
(Note 6)  
+
0.3 • V  
V
IL  
I
V = 2.7V to 5.5V  
20  
mA  
OUT(MAX)  
+
l
l
V
High Level Output Voltage (Note 7)  
V = 5.5V  
I
I
= –1mA  
5.45  
4.84  
5.48  
5.15  
V
V
OH  
OUT  
OUT  
= –16mA  
+
l
l
V = 3.3V  
I
I
= –1mA  
= –10mA  
3.24  
2.75  
3.27  
2.99  
V
V
OUT  
OUT  
+
l
l
V = 2.25V  
I
I
= –1mA  
= –8mA  
2.17  
1.58  
2.21  
1.88  
V
V
OUT  
OUT  
+
l
l
V
OL  
Low Level Output Voltage (Note 7)  
Reset Propagation Delay  
V = 5.5V  
I
I
= 1mA  
= 16mA  
0.02  
0.26  
0.04  
0.54  
V
V
OUT  
OUT  
+
l
l
V = 3.3V  
I
I
= 1mA  
= 10mA  
0.03  
0.22  
0.05  
0.46  
V
V
OUT  
OUT  
+
l
l
V = 2.25V  
I
I
= 1mA  
= 8mA  
0.03  
0.26  
0.07  
0.54  
V
V
OUT  
OUT  
+
t
V = 5.5V  
16  
24  
40  
ns  
ns  
ns  
RST  
+
V = 3.3V  
+
V = 2.25V  
+
t
t
Minimum Input Pulse Width  
Output Rise Time (Note 8)  
V = 3.3V  
5
ns  
WIDTH  
r
+
V = 5.5V  
1.1  
1.7  
2.7  
ns  
ns  
ns  
+
V = 3.3V  
+
V = 2.25V  
+
t
Output Fall Time (Note 8)  
V = 5.5V  
1.0  
1.6  
2.4  
ns  
ns  
ns  
f
+
V = 3.3V  
+
V = 2.25V  
Note 6: The RST pin has hysteresis to accommodate slow rising or falling  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
+
signals. The threshold voltages are proportional to V . Typical values can  
+
be estimated at any supply voltage using V  
≈ 0.55 • V + 185mV  
RST(RISING)  
+
and V  
≈ 0.48 • V – 155mV.  
RST(FALLING)  
Note 7: To conform to the Logic IC Standard, current out of a pin is  
arbitrarily given a negative value.  
Note 2: The LTC6991C is guaranteed functional over the operating  
temperature range of –40°C to 85°C.  
Note 8: Output rise and fall times are measured between the 10% and the  
90% power supply levels with 5pF output load. These specifications are  
based on characterization.  
Note 3: The LTC6991C is guaranteed to meet specified performance from  
0°C to 70°C. The LTC6991C is designed, characterized and expected to  
meet specified performance from –40°C to 85°C but it is not tested or  
QA sampled at these temperatures. The LTC6991I is guaranteed to meet  
specified performance from –40°C to 85°C. The LTC6991H is guaranteed  
to meet specified performance from –40°C to 125°C.  
Note 9: Settling time is the amount of time required for the output to settle  
within 1% of the final frequency after a 0.5× or 2× change in I  
.
SET  
Note 10: Jitter is the ratio of the deviation of the period to the mean of the  
period. This specification is based on characterization and is not 100%  
tested.  
Note 4: Frequency accuracy is defined as the deviation from the f  
OUT  
equation, assuming R is used to program the frequency.  
SET  
Note 5: See Operation section, Table 1 and Figure 2 for a full explanation  
of how the DIV pin voltage selects the value of DIVCODE.  
6991f  
LTC6991  
Typical perForMance characTerisTics  
V+ = 3.3V, RSET = 200k, TA = 25°C unless otherwise noted.  
Frequency Error vs Temperature  
Frequency Error vs Temperature  
Frequency Error vs Temperature  
3
2
1
0
3
2
1
0
3
2
1
0
GUARANTEED MAX OVER TEMPERATURE  
GUARANTEED MAX OVER TEMPERATURE  
GUARANTEED MAX OVER TEMPERATURE  
R
= 800k  
R
= 50k  
R
= 200k  
SET  
SET  
SET  
3 PARTS  
3 PARTS  
3 PARTS  
–1  
–2  
–3  
–1  
–2  
–3  
–1  
–2  
–3  
GUARANTEED MIN OVER TEMPERATURE  
GUARANTEED MIN OVER TEMPERATURE  
GUARANTEED MIN OVER TEMPERATURE  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
6991 G03  
6991 G01  
6991 G02  
Frequency Error vs RSET  
Frequency Drift vs Supply Voltage  
Typical VSET Distribution  
250  
200  
150  
100  
50  
0.5  
0.4  
3
2
2 LOTS  
DFN AND SOT-23  
1274 UNITS  
GUARANTEED MAX OVER TEMPERATURE  
3 PARTS  
0.3  
0.2  
1
0
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–1  
–2  
–3  
+
REFERENCED TO V = 4.5V  
R
SET  
R
SET  
R
SET  
= 50k  
= 200k  
= 800k  
GUARANTEED MIN OVER TEMPERATURE  
0
4
6
0.98  
0.988  
0.996  
V
1.004  
(V)  
1.012  
1.02  
0
200  
400  
(kΩ)  
600  
800  
2
3
5
SUPPLY VOLTAGE (V)  
R
SET  
SET  
6991 G06  
6991 G04  
6991 G05  
VSET Drift vs ISET  
VSET Drift vs Supply  
VSET vs Temperature  
1.0  
0.8  
1.020  
1.015  
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
0.980  
1.0  
0.8  
3 PARTS  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
+
REFERENCED TO V = 4V  
REFERENCED TO I  
= 10µA  
SET  
0
10  
(µA)  
20  
2
3
4
5
6
–50  
–25  
0
25  
50  
75 100 125  
15  
5
SUPPLY (V)  
TEMPERATURE (°C)  
I
SET  
6991 G08  
6991 G09  
6992 G07  
6991f  
LTC6991  
Typical perForMance characTerisTics  
V+ = 3.3V, RSET = 200k, TA = 25°C unless otherwise noted.  
Supply Current  
vs RST Pin Voltage  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
250  
200  
150  
100  
50  
150  
125  
150  
125  
100  
75  
R
= 800k  
SET  
R
= 50k  
SET  
5V  
5V  
RST FALLING  
RST RISING  
5V, R  
= 100k  
SET  
100  
75  
R
SET  
= 100k  
2.5V, R  
= 100k  
SET  
R
R
= 200k  
= 800k  
SET  
3.3V  
3.3V  
RST RISING  
5V, R  
= 800k  
= 800k  
SET  
RST FALLING  
SET  
50  
25  
0
2.5V, R  
50  
25  
0
SET  
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
2
3
4
5
6
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
+
SUPPLY VOLTAGE (V)  
V
/V (V/V)  
RST  
6991 G12  
6991 G10  
6991 G11  
RST Threshold Voltage  
vs Supply Voltage  
Supply Current vs RSET  
Typical ISET Current Limit vs V+  
1000  
800  
600  
400  
200  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
150  
125  
SET PIN SHORTED TO GND  
+
POSITIVE-GOING  
V
= 5V  
100  
75  
+
V
= 3.3V  
= 2.5V  
NEGATIVE-GOING  
+
V
50  
25  
0
2
3
4
5
6
2
3
4
5
6
0
200  
400  
600  
800  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
R
SET  
(kΩ)  
6991 G15  
6991 G14  
6991 G13  
Reset Propagation Delay (tRST  
vs Supply Voltage  
)
Rise and Fall Time  
vs Supply Voltage  
50  
45  
40  
35  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
C
= 5pF  
C
= 5pF  
LOAD  
LOAD  
30  
25  
20  
15  
10  
5
t
RISE  
t
FALL  
0
2
3
4
5
6
2
3
4
5
6
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
6991 G17  
6991 G16  
6991f  
LTC6991  
Typical perForMance characTerisTics  
V+ = 3.3V, RSET = 200k, TA = 25°C unless otherwise noted.  
Output Resistance  
vs Supply Current  
50  
Typical Start-Up with POL = 1  
45  
40  
+
V
35  
30  
25  
20  
15  
10  
5
1V/DIV  
OUTPUT SOURCING CURRENT  
1µs (t  
) WIDE  
MASTER  
INITIAL PULSE  
500µs  
OUT  
1V/DIV  
OUTPUT SINKING CURRENT  
0
+
6991 G19  
2
3
4
5
6
V
= 2.5V  
DIVCODE = 15  
= 50k  
250µs/DIV  
SUPPLY VOLTAGE (V)  
6991 G22  
R
SET  
pin FuncTions (DCB/S6)  
V (Pin1/Pin5):SupplyVoltage(2.25Vto5.5V).Thissup-  
ply should be kept free from noise and ripple. It should be  
bypassed directly to the GND pin with a 0.1µF capacitor.  
+
50ppm/°C or better temperature coefficient. For lower ac-  
curacy applications an inexpensive 1% thick film resistor  
may be used.  
DIV (Pin 2/Pin 4): Programmable Divider and Polarity  
Limit the capacitance on the SET pin to less than 10pF  
to minimize jitter and ensure stability. Capacitance less  
than 100pF maintains the stability of the feedback circuit  
+
Input. A V referenced A/D converter monitors the DIV  
pin voltage (V ) to determine a 4-bit result (DIVCODE).  
DIV  
+
V
may be generated by a resistor divider between V  
regulating the V voltage.  
DIV  
SET  
and GND. Use 1% resistors to ensure an accurate result.  
The DIV pin and resistors should be shielded from the  
OUT pin or any other traces that have fast edges. Limit  
the capacitance on the DIV pin to less than 100pF so that  
+
V
RST  
OUT  
LTC6991  
+
V
+
GND  
SET  
V
V
settles quickly. The MSB of DIVCODE (POL) deter-  
DIV  
C1  
0.1µF  
R1  
R2  
mines the polarity of the RST and OUT pins. If POL = 0,  
RST is active-high, and forces OUT low. If POL = 1, RST  
is active-low and forces OUT high.  
DIV  
6991 PF  
R
SET  
SET (Pin 3/Pin 3): Frequency-Setting Input. The voltage  
on the SET pin (V ) is regulated to 1V above GND. The  
SET  
RST (Pin 4/Pin 1): Output Reset. The behavior of the RST  
pin is dependent on the polarity bit (POL). The POL bit is  
configuredviatheDIVCODEsetting.WhenPOL=0,setting  
RST high forces OUT low and setting RST low allows the  
output to oscillate. When POL = 1, RST is active low. In  
that case, setting RST low forces OUT high and setting  
RST high allows the output to oscillate.  
amount of current sourced from the SET pin (I ) pro-  
SET  
grams the master oscillator frequency. The I  
current  
SET  
range is 1.25µA to 20µA. The output oscillation will stop  
if I drops below approximately 500nA. A resistor con-  
SET  
nected between SET and GND is the most accurate way to  
set the frequency. For best performance, use a precision  
metal or thin film resistor of 0.5% or better tolerance and  
6991f  
LTC6991  
pin FuncTions (DCB/S6)  
GND(Pin5/Pin2):Ground.Tietoalowinductanceground  
plane for best performance.  
30Ω. When driving an LED or other low impedance load a  
series output resistor should be used to limit source/sink  
current to 20mA.  
OUT (Pin 6/Pin 6): Oscillator Output. The OUT pin swings  
+
fromGNDtoV withanoutputresistanceofapproximately  
(S6 package pin numbers shown)  
block DiagraM  
5
+
V
R1  
POL BIT  
DIV  
4-BIT A/D  
CONVERTER  
DIGITAL  
FILTER  
4
R2  
OUT  
OUTPUT  
POLARITY  
6
+
V
t
OUT  
MASTER OSCILLATOR  
D
Q
1µs  
V
SET  
FIXED  
DIVIDER  
÷ 1024  
MCLK  
=
t
=
PROGRAMMABLE  
DIVIDER  
MASTER  
50kΩ  
I
SET  
R
÷1, 8, 64, 512  
15 18 21  
4096, 2 , 2 , 2  
INPUT  
POLARITY  
HALT OSCILLATOR  
IF I < 500nA  
POR  
SET  
I
SET  
+
+
1V  
GND  
V
SET  
= 1V  
RST  
1
SET  
3
2
6991 BD  
I
SET  
R
SET  
6991f  
LTC6991  
operaTion  
The LTC6991 is built around a master oscillator with a  
DIVCODE  
1MHz maximum frequency. The oscillator is controlled  
+
TheDIVpinconnectstoaninternal,V referenced4-bitA/D  
converter that determines the DIVCODE value. DIVCODE  
programs two settings on the LTC6991:  
by the SET pin current (I ) and voltage (V ), with a  
SET  
SET  
1MHz • 50k conversion factor that is accurate to 0.8%  
under typical conditions.  
1. DIVCODE determines the output frequency divider set-  
ISET  
VSET  
1
ting, N .  
fMASTER  
=
=1MHz 50k•  
DIV  
tMASTER  
2. DIVCODE determines the polarity of the RST and OUT  
pins, via the POL bit.  
A feedback loop maintains V at 1V 30mV, leaving I  
SET  
SET  
+
as the primary means of controlling the output frequency.  
The simplest way to generate I is to connect a resistor  
V
may be generated by a resistor divider between V  
DIV  
SET  
and GND as shown in Figure 1.  
(R ) between SET and GND, such that I = V /R .  
SET  
SET  
SET SET  
2.25V TO 5.5V  
The master oscillator equation reduces to:  
+
V
1
1MHz 50kΩ  
LTC6991  
R1  
R2  
fMASTER  
=
=
tMASTER  
RSET  
DIV  
From this equation, it is clear that V drift will not affect  
SET  
GND  
theoutputfrequencywhenusingasingleprogramresistor  
6991 F01  
(R ). Error sources are limited to R tolerance and the  
SET  
SET  
Figure 1. Simple Technique for Setting DIVCODE  
inherent frequency accuracy f  
of the LTC6991.  
OUT  
R
may range from 50k to 800k (equivalent to I  
SET  
SET  
Table 1 offers recommended 1% resistor values that ac-  
curatelyproducethecorrectvoltagedivisionaswellasthe  
between 1.25µA and 20µA).  
Before reaching the OUT pin, the oscillator frequency  
passes through a fixed ÷1024 divider. The LTC6991 also  
includes a programmable frequency divider which can  
correspondingN andPOLvaluesfortherecommended  
DIV  
resistor pairs. Other values may be used as long as:  
+
1. The V /V ratio is accurate to 1.5% (including resis-  
DIV  
15  
further divide the frequency by 1, 8, 64, 512, 4096, 2 ,  
tor tolerances and temperature effects)  
18  
21  
2 or 2 . The divider ratio N is set by a resistor divider  
DIV  
2. The driving impedance (R1||R2) does not exceed  
500kΩ.  
attached to the DIV pin.  
ISET  
1MHz 50kΩ  
fOUT  
tOUT  
=
=
, or  
If the voltage is generated by other means (i.e., the output  
1024NDIV VSET  
VSET  
fOUT 50kISET  
+
of a DAC) it must track the V supply voltage. The last  
NDIV  
1
column in Table 1 shows the ideal ratio of V  
to the  
DIV  
=
1.024ms  
supply voltage, which can also be calculated as:  
VDIV  
V+  
DIVCODE+0.5  
with R in place of V /I the equation reduces to:  
SET  
SET SET  
=
±1.5%  
16  
NDIV •RSET  
tOUT  
=
1.024ms  
Forexample,ifthesupplyis3.3VandthedesiredDIVCODE  
50kΩ  
is 4, V = 0.281 • 3.3V = 928mV 50mV.  
DIV  
Figure2illustratestheinformationinTable1,showingthat  
N
is symmetric around the DIVCODE midpoint.  
DIV  
6991f  
LTC6991  
operaTion  
Table 1. DIVCODE Programming  
+
DIVCODE  
POL  
0
N
RECOMMENDED t  
R1 (kΩ)  
Open  
976  
R2 (kΩ)  
Short  
102  
V
/V  
DIV  
DIV  
OUT  
0
1
1
1.024ms to 16.384ms  
8.192ms to 131ms  
65.5ms to 1.05sec  
524ms to 8.39sec  
4.19sec to 67.1sec  
33.6sec to 537sec  
268sec to 4,295sec  
2,147sec to 34,360sec  
2,147sec to 34,360sec  
268sec to 4,295sec  
33.6sec to 537sec  
4.19sec to 67.1sec  
524ms to 8.39sec  
65.5ms to 1.05sec  
8.192ms to 131ms  
1.024ms to 16.384ms  
≤0.03125 0.015  
0.09375 0.015  
0.15625 0.015  
0.21875 0.015  
0.28125 0.015  
0.34375 0.015  
0.40625 0.015  
0.46875 0.015  
0.53125 0.015  
0.59375 0.015  
0.65625 0.015  
0.71875 0.015  
0.78125 0.015  
0.84375 0.015  
0.90625 0.015  
≥0.96875 0.015  
0
8
2
0
64  
512  
976  
182  
3
0
1000  
1000  
1000  
1000  
1000  
887  
280  
4
0
4,096  
32,768  
262,144  
2,097,152  
2,097,152  
262,144  
32,768  
4,096  
512  
392  
5
0
523  
6
0
681  
7
0
887  
8
1
1000  
1000  
1000  
1000  
1000  
976  
9
1
681  
10  
11  
12  
13  
14  
15  
1
523  
1
392  
1
280  
1
64  
182  
1
8
102  
976  
1
1
Short  
Open  
POL BIT = 0  
POL BIT = 1  
10000  
1000  
100  
10  
7
8
6
9
5
10  
11  
4
12  
3
1
2
13  
0.1  
1
14  
0.01  
0.001  
0
15  
+
+
0V  
0.5•V  
V
INCREASING V  
DIV  
6991 F02  
Figure 2. Frequency Range and POL Bit vs DIVCODE  
6991f  
ꢀ0  
LTC6991  
operaTion  
RST Pin and Polarity (POL) Bit  
If POL = 0, the reset pin is active high and the output latch  
is not inverted. Therefore, pulling the RST pin high will  
reset the output latch and force the OUT pin low. Pulling  
RST low will allow the output to oscillate, with the next  
rising edge dependent on the internal oscillator.  
The RST pin controls the state of the LTC6991’s output  
as seen on the OUT pin. The active/inactive voltage levels  
depend on the POL bit setting.  
Table 2. Output States  
If POL = 1, the reset pin is active low and the output latch  
is inverted. Therefore, pulling the RST pin low will reset  
the output latch and force the OUT pin high. Pulling RST  
high will allow the output to oscillate, with the next falling  
edge dependent on the internal oscillator.  
POL BIT  
RST PIN  
OUTPUT STATE  
Oscillating  
0 (reset)  
0
0
1
1
0
1
0
1
1 (reset)  
Oscillating  
Note that the master oscillator frequency and phase are  
not affected by the RST pin; The LTC6991 continues to  
oscillate, internally, even when RST is active. While the  
reset function can block an output pulse, its exact place-  
ment in time can only be changed by power cycling the  
LTC6991.  
Each period of the LTC6991’s internal oscillator clocks the  
outputstatelatch(seeBlockDiagram).Theresetpin(RST)  
can reset or hold off the output latch. The active state of  
the reset pin is determined by the polarity function (POL).  
Similarly, the output latch is followed by a buffer that can  
invert the output. The output polarity is also controlled  
by the POL bit.  
t
WIDTH  
RST  
OUT  
INTERNAL  
OSCILLATOR  
t
RST  
6991 F03  
t
OUT  
Figure 3. RST Timing Diagram (POL = 0)  
RST  
OUT  
t
RST  
6991 F04  
INTERNAL  
OSCILLATOR  
t
OUT  
Figure 4. RST Timing Diagram (POL = 1)  
6991f  
ꢀꢀ  
LTC6991  
operaTion  
Changing DIVCODE After Start-Up  
start-up time may increase if the supply or DIV pin volt-  
ages are not stable. For this reason, it is recommended to  
minimize the capacitance on the DIV pin so it will properly  
Following start-up, the A/D converter will continue  
monitoring V for changes. The LTC6991 will respond  
DIV  
+
track V . Less than 100pF will not affect performance.  
to DIVCODE changes in less than one cycle.  
t
< 500 • t  
< t  
OUT  
Start-Up Behavior  
DIVCODE  
MASTER  
The output may have an inaccurate pulse width during the  
frequency transition. But the transition will be glitch-free  
and no high or low pulse can be shorter than the mas-  
ter clock period. A digital filter is used to guarantee the  
DIVCODEhassettledtoanewvaluebeforemakingchanges  
to the output.  
When first powered up, the output is held low. If the po-  
larity is set for non-inversion (POL = 0) and the output is  
enabled (RST = 0) at the end of the start-up time, OUT will  
begin oscillating. If the output is being reset (RST = 1) at  
the end of the start-up time, the first pulse will be skipped.  
Subsequent pulses will also be skipped until RST = 0.  
In inverted operation (POL = 1), the start-up sequence is  
similar. However, the LTC6991 does not know the correct  
DIVCODE setting when first powered up, so the output  
Start-Up Time  
When power is first applied, the power-on reset (POR)  
circuit will initiate the start-up time, t  
. The OUT pin  
defaults low. At the end of t  
, the value of DIVCODE is  
START  
START  
is held low during this time. The typical value for t  
recognizedandOUTgoeshigh(inactive)becausePOL = 1.  
If RST = 1 (inactive) then OUT will quickly fall after a single  
START  
ranges from 0.5ms to 8ms depending on the master oscil-  
lator frequency (independent of N ):  
t
cycle. If RST = 0 at the end of the start-up time,  
DIV  
MASTER  
the output is held in reset and remains high.  
t
= 500 • t  
MASTER  
START(TYP)  
Figures7to10detailthefourpossiblestart-upsequences.  
Duringstart-up,theDIVpinA/Dconvertermustdetermine  
the correct DIVCODE before the output is enabled. The  
+
V
1V/DIV  
DIV  
200mV/DIV  
500µs  
OUT  
OUT  
1V/DIV  
1V/DIV  
+
6991 F06  
V
= 2.5V  
250µs/DIV  
DIVCODE = 0  
= 50k  
+
6991 F05  
V
R
= 3.3V  
= 200k  
10ms/DIV  
R
SET  
SET  
Figure 5. DIVCODE Change from 1 to 0  
Figure 6. Typical Start-Up  
6991f  
ꢀꢁ  
LTC6991  
operaTion  
RST  
OUT  
6991 F07  
t
t
t
t
OUT  
START  
Figure 7. Start-Up Timing Diagram (RST = 0, POL = 0)  
RST  
OUT  
6991 F08  
OUTPUT DISABLED FOR  
INTEGER MULTIPLE OF t  
START  
OUT  
Figure 8. Start-Up Timing Diagram (RST = 1, POL = 0)  
RST  
OUT  
6991 F09  
OUTPUT DISABLED FOR  
INTEGER MULTIPLE OF t  
START  
OUT  
t
MASTER  
Figure 9. Start-Up Timing Diagram (RST = 0, POL = 1)  
RST  
OUT  
6991 F10  
t
t
OUT  
START  
t
MASTER  
Figure 10. Start-Up Timing Diagram (RST = 1, POL = 1)  
6991f  
ꢀꢂ  
LTC6991  
applicaTions inForMaTion  
Basic Operation  
Example: Design a 1Hz oscillator with minimum power  
consumption and active-high reset input.  
The simplest and most accurate method to program the  
LTC6991 is to use a single resistor, R , between the SET  
Step 1: Select the POL Bit Setting  
SET  
and GND pins. The design procedure is a 3-step process.  
For noninverted (active-high) functionality, choose  
POL = 0.  
FirstselectthePOLbitsettingandN value,thencalculate  
DIV  
the value for the R resistor.  
SET  
Step 2: Select the N Frequency Divider Value  
DIV  
Step 1: Select the POL Bit Setting  
Choose an N  
value that meets the requirements of  
DIV  
TheLTC6991canoperateinnormal(active-high)orinverted  
(active-low) modes, depending on the setting of the POL  
bit. The best choice depends on the the application.  
Equation (1), using t  
= 1000ms:  
OUT  
61.04 ≤ N ≤ 976.6  
DIV  
Potential settings for N include 64 and 512. N = 64  
DIV  
DIV  
Step 2: Select the N Frequency Divider Value  
DIV  
is the best choice, as it minimizes supply current by us-  
ing a large R resistor. POL = 0 and N = 64 requires  
As explained earlier, the voltage on the DIV pin sets the  
DIVCODE which determines both the POL bit and the  
SET  
DIV  
DIVCODE = 2. Using Table 1, choose R1 = 976k and  
R2 = 182k values to program DIVCODE = 2.  
N
value. For a given output clock period, N should  
DIV  
DIV  
be selected to be within the following range.  
Step 3: Select R  
SET  
tOUT  
16.384ms  
tOUT  
1.024ms  
NDIV  
(1)  
Calculate the correct value for R using Equation (2).  
SET  
50k  
1.024ms  
1000ms  
64  
Tominimizesupplycurrent,choosethelowestN value  
DIV  
RSET  
=
= 763k  
(generally recommended). Alternatively, use Table 1  
as a guide to select the best N  
application.  
value for the given  
DIV  
Since 763k is not available as a standard 1% resistor,  
substitute 768k if a –0.7% frequency shift is acceptable.  
Otherwise, select a parallel or series pair of resistors such  
as 576k + 187k to attain a more precise resistance.  
With POL already chosen, this completes the selection of  
DIVCODE. Use Table 1 to select the proper resistor divider  
+
or V /V ratio to apply to the DIV pin.  
DIV  
The completed design is shown in Figure 11.  
Step 3: Calculate and Select R  
SET  
The final step is to calculate the correct value for R  
using the following equation.  
SET  
RST  
RST  
GND  
SET  
OUT  
LTC6991  
2.25V TO 5.5V  
+
V
tOUT  
50k  
R1  
976k  
RSET  
=
(2)  
1.024ms NDIV  
DIVCODE = 2  
DIV  
R
R2  
SET  
Select the standard resistor value closest to the calculated  
value.  
763k  
182k  
6991 F11  
Figure 11. 1Hz Oscillator  
6991f  
ꢀꢃ  
LTC6991  
applicaTions inForMaTion  
LTC6991 as “Wake-Up Timer”  
input to filter start-up glitches from the system as it is  
powered on.  
The output latch reset function provided by the RST pin  
allows the LTC6991 to enable a larger system at regular  
intervals. The on-time can be controlled by the system.  
Thisallowsthesystemtoshutitselfdownimmediatelyafter  
performing its tasks, reducing power consumption.  
If the LTC6991 is enabling a switching regulator that can  
operate on supplies greater than 5.5V, it will be necessary  
to limit the supply voltage provided to the LTC6991. If  
the LTC6991 output is not heavily loaded, and if a large  
R
resistor is used, the supply current will not be much  
SET  
Figure 12 shows an example using “black boxes” for a  
switching regulator and the system being duty-cycled.  
In some cases, an RC filter may be necessary at the RST  
larger than 100µA, so a simple regulator circuit can be  
constructed using a Zener diode.  
3V TO 20V  
V
REG  
V
V
OUT  
IN  
t
OUT  
R
SWITCHING  
REGULATOR  
SUPPLY  
3570 SECONDS  
4.99k  
+
SHDN  
V
OUT  
1N4733A  
5.1V  
R1  
1M  
0.1µF  
LTC6991  
+
V
DIV  
GND  
R2  
681k  
SYSTEM  
DONE  
R
R
SET  
FILT  
665k  
100k  
SET  
RST  
C
FILT  
6991 F12  
0.1µF  
THE SYSTEM CAN EXTEND t AS LONG AS NEEDED (UP TO 50% OF t  
)
OUT  
ON  
t
ON  
t
ON  
t
ON  
V
REG  
DONE/RST  
LTC6991 OUT  
t
t
t
OUT  
OUT  
OUT  
Figure 12. Powering Up a System Once an Hour  
6991f  
ꢀꢄ  
LTC6991  
applicaTions inForMaTion  
Self-Resetting Circuits  
OUT  
R
PW  
2.26k  
TheRSTpinhashysteresistoaccommodateslow-changing  
inputvoltages.Furthermore,thetrippointsareproportional  
to the supply voltage (see Note 6 and the RST Threshold  
Voltage vs Supply Voltage curve in Typical Performance  
Characteristics). This allows an RC time constant at the  
RST input to generate a delay that is nearly independent  
of the supply voltage.  
RST  
GND  
SET  
OUT  
C
PW  
LTC6991  
2.25V TO 5.5V  
470pF  
+
V
0.1µF  
R1  
1M  
R
SET  
715k  
DIV  
R2  
392k  
V
RST(RISING)  
A simple application of this technique allows the LTC6991  
output to reset itself, producing a well-controlled pulse  
once each cycle. Figures 13a and 13b show circuits that  
produce approximately 1µs pulses once a minute. The  
only difference is in the POL bit setting, which controls  
whether the pulse is positive or negative.  
t
= –R • C • In 1–  
PULSE  
PW  
PW  
+
V
t
t
≈ –2.26kΩ • 470pF • In(1 – 0.61)  
≈ 1µs  
PULSE  
PULSE  
1µs PULSE WIDTH  
60 SECONDS  
6991 F13a  
Voltage Controlled Frequency  
Figure 13a. Self-Resetting Circuit (DIVCODE = 4)  
Withoneadditionalresistor,theLTC6991outputfrequency  
can be manipulated by an external voltage. As shown in  
OUT  
R
PW  
Figure 14, voltage V  
sources/sinks a current through  
2.26k  
CTRL  
RST  
GND  
SET  
OUT  
R
VCO  
to vary the I current, which in turn modulates the  
SET  
C
PW  
LTC6991  
2.25V TO 5.5V  
output frequency as described in Equation (3).  
470pF  
+
V
0.1µF  
R1  
R
715k  
RVCO VCTRL  
1MHz 50kΩ  
1024NDIV •RVCO  
SET  
(3)  
392k  
fOUT  
=
• 1+  
DIV  
RSET VSET  
R2  
1M  
Digital Frequency Control  
V
RST(FALLING)  
t
= –R • C • In  
PW PW  
PULSE  
+
V
The control voltage can be generated by a DAC (digital-  
to-analog converter), resulting in a digitally-controlled  
frequency. Many DACs allow for the use of an external  
t
t
≈ –2.26kΩ • 470pF • In(0.43)  
≈ 0.9µs  
PULSE  
PULSE  
0.9µs PULSE WIDTH  
60 SECONDS  
reference. If such a DAC is used to provide the V  
CTRL  
voltage, the V dependency can be eliminated by buffer-  
SET  
ing V  
and using it as the DAC’s reference voltage, as  
SET  
6991 F13b  
shown in Figure 15. The DAC’s output voltage now tracks  
any V variation and eliminates it as an error source.  
Figure 13b. Self-Resetting Circuit (DIVCODE = 11)  
SET  
The SET pin cannot be tied directly to the reference input  
of the DAC because the current drawn by the DAC’s REF  
input would affect the frequency.  
RST  
GND  
SET  
OUT  
+
LTC6991  
V
+
V
C1  
0.1µF  
R1  
I
Extremes (Master Oscillator Frequency Extremes)  
SET  
R
VCO  
V
DIV  
CTRL  
When operating with I  
outside of the recommended  
SET  
R
SET  
R2  
1.25µA to 20µA range, the master oscillator operates  
outside of the 62.5kHz to 1MHz range in which it is most  
accurate.  
6991 F14  
Figure 14. Voltage-Controlled Oscillator  
6991f  
ꢀꢅ  
LTC6991  
applicaTions inForMaTion  
RST  
GND  
SET  
OUT  
+
LTC6991  
V
+
+
V
V
C1  
0.1µF  
0.1µF  
R1  
DIV  
+
1/2  
LTC6078  
R2  
+
V
6991 F15  
0.1µF  
1MHz • 50kΩ  
R
D
IN  
4096  
VCO  
SET  
f
=
• 1 +  
OUT  
1024 • N • R  
R
DIV  
VCO  
V
REF  
CC  
D
= 0 TO 4095  
IN  
D
IN  
R
VCO  
V
OUT  
µP  
LTC1659  
CLK  
CS/LD  
R
SET  
GND  
Figure 15. Digitally-Controlled Oscillator  
ignores C  
(valid for C  
< 1nF) and assumes the  
The oscillator can still function with reduced accuracy  
LOAD  
LOAD  
output has 50% duty cycle.  
for I < 1.25µA. At approximately 500nA, the oscillator  
SET  
output will be frozen in its current state. The output could  
halt in a high or low state. This avoids introducing short  
pulses when frequency modulating a very low frequency  
output.  
V+  
V+  
IS(TYP) V+ • fMASTER 7.8pF +  
+ 1.8ISET +50µA  
+
420k2RLOAD  
At the other extreme, it is not recommended to operate  
the master oscillator beyond 2MHz because the accuracy  
of the DIV pin ADC will suffer.  
Supply Bypassing and PCB Layout Guidelines  
The LTC6991 is a 2.2% accurate silicon oscillator when  
used in the appropriate manner. The part is simple to use  
and by following a few rules, the expected performance  
is easily achieved. Adequate supply bypassing and proper  
PCB layout are important to ensure this.  
Frequency Modulation and Settling Time  
The LTC6991 will respond to changes in I up to a –3dB  
SET  
bandwidth of 0.4 • f  
.
OUT  
Figure18showsexamplePCBlayoutsforboththeTSOT-23  
and DFN packages using 0603 sized passive components.  
The layouts assume a two layer board with a ground plane  
layer beneath and around the LTC6991. These layouts are  
a guide and need not be followed exactly.  
Following a 2× or 0.5× step change in I , the output  
SET  
frequency takes less than one cycle to settle to within 1%  
of the final value.  
Power Supply Current  
The power supply current varies with frequency, supply  
voltage and output loading. It can be estimated under  
any condition using the following equation. This equation  
6991f  
ꢀꢆ  
LTC6991  
applicaTions inForMaTion  
RST  
GND  
SET  
OUT  
LTC6991  
+
+
V
V
C1  
0.1µF  
R1  
R2  
DIV  
R
SET  
+
V
+
C1  
V
R1  
C1  
+
V
OUT  
GND  
RST  
RST  
OUT  
+
DIV  
SET  
GND  
SET  
V
R2  
DIV  
R1  
R
SET  
R
SET  
R2  
6991 F18  
DFN PACKAGE  
TSOT-23 PACKAGE  
Figure 18. Supply Bypassing and PCB Layout  
+
1. Connect the bypass capacitor, C1, directly to the V and  
GND pins using a low inductance path. The connection  
3. Place R  
as close as possible to the SET pin and  
SET  
make a direct, short connection. The SET pin is a  
current summing node and currents injected into this  
pin directly modulate the operating frequency. Having  
a short connection minimizes the exposure to signal  
pickup.  
+
from C1 to the V pin is easily done directly on the top  
layer. For the DFN package, C1’s connection to GND is  
also simply done on the top layer. For the TSOT-23, OUT  
can be routed through the C1 pads to allow a good C1  
GND connection. If the PCB design rules do not allow  
that,C1’sGNDconnectioncanbeaccomplishedthrough  
multiple vias to the ground plane. Multiple vias for both  
the GND pin connection to the ground plane and the  
C1 connection to the ground plane are recommended  
to minimize the inductance. Capacitor C1 should be a  
0.1µF ceramic capacitor.  
4. Connect R directly to the GND pin. Using a long path  
SET  
or vias to the ground plane will not have a significant  
affect on accuracy, but a direct, short connection is  
recommended and easy to apply.  
5. Use a ground trace to shield the SET pin. This provides  
another layer of protection from radiated signals.  
6. Place R1 and R2 close to the DIV pin. A direct, short  
connection to the DIV pin minimizes the external signal  
coupling.  
2. Place all passive components on the top side of the  
board. This minimizes trace inductance.  
6991f  
ꢀꢇ  
LTC6991  
Typical applicaTions  
5 Second On/Off Timed Relay Driver  
12V  
0.1µF  
L
C
1
D1  
NO  
1N4148  
RESET  
R4  
15k  
RUN  
RELAY ENABLE  
COTO 1022 RELAY  
9001-12-01  
Q1  
RST  
GND  
SET  
OUT  
2N2219A  
LTC6991  
5V  
+
V
C2  
R1  
1M  
0.1µF  
DIV  
R2  
392k  
R3  
118k  
6991 TA02  
1.5ms Radio Control Servo Reference Pulse Generator  
5V  
20ms  
FRAME RATE  
GENERATOR  
1.5ms  
REFERENCE  
PULSE  
R7  
10k  
20ms PERIOD  
RESET = OPEN  
RUN = GND  
RST  
OUT  
TRIG  
OUT  
1.5ms PULSE  
LTC6991  
LTC6993-1  
5V  
5V  
+
+
GND  
SET  
V
GND  
SET  
V
C1  
0.01µF  
C2  
0.1µF  
R4  
976k  
R1  
1M  
DIV  
DIV  
R6  
121k  
R3  
146k  
R5  
102k  
R2  
280k  
6991 TA03  
6991f  
ꢀꢈ  
LTC6991  
Typical applicaTions  
Cycling (10 Seconds On/Off) Symmetrical Power Supplies  
M2  
Si4435DY  
15V  
15V  
IN  
OUT  
R6  
20k  
R2  
1k  
M3  
R11  
5k  
RST  
GND  
SET  
OUT  
Si9410  
LTC6991  
+
5V  
V
C1  
R8  
0.1µF  
1M  
M4  
DIV  
Si4435DY  
R10  
237k  
R9  
392k  
R1  
100k  
R3  
50k  
–15V  
–15V  
OUT  
IN  
M1  
Si9410  
F6991 TA04  
Isolated AC Load Flasher  
5V  
0.1µF  
R3  
5
+
R4  
R5  
U2  
40W LAMP  
10k  
215Ω  
5.94k  
MOC3041M  
V
1
2
1
6
4
6
4
OPEN = OFF  
GND = ON  
HOT  
117V AC  
RST  
OUT  
R1  
LTC6991  
R7  
100Ω  
1M  
3
U3  
NTE5642  
SET  
DIV  
5V  
ZERO  
CROSSING  
GND  
2
R
SET  
R2  
392k  
C2  
0.022µF  
237k  
R6  
10k  
NEUTRAL  
AC  
10 SECONDS ON/OFF  
6991 TA05  
ISOLATION BARRIER = 7500V  
6991f  
ꢁ0  
LTC6991  
Typical applicaTions  
Interval (Wiper) Timer  
2s  
5s  
15s  
30s  
5V  
+
V
1m  
2m  
4m  
OFF  
OUTPUT  
0.1µF  
RST  
GND  
SET  
OUT  
TRIG  
OUT  
66.5k  
280k  
182k  
2s  
LTC6991  
LTC6993-1  
+
+
+
+
2s  
V
V
V
GND  
SET  
V
5s  
15s  
t
0.1µF  
INTERVAL  
1M  
1M  
2 SECONDS TO  
4 MINUTES  
30s  
DIV  
DIV  
1m  
2m  
4m  
383k  
681k  
2s  
18.2k  
182k  
OFF  
6991 TA06  
2s  
280k  
113k  
133k  
5s  
15s  
30s  
1m  
2m  
4m  
OFF  
6991f  
ꢁꢀ  
LTC6991  
package DescripTion  
DCB Package  
6-Lead Plastic DFN (2mm × 3mm)  
(Reference LTC DWG # 05-08-1715 Rev A)  
0.70 p0.05  
1.65 p0.05  
3.55 p0.05  
(2 SIDES)  
2.15 p0.05  
PACKAGE  
OUTLINE  
0.25 p 0.05  
0.50 BSC  
1.35 p0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
TYP  
2.00 p0.10  
(2 SIDES)  
0.40 p 0.10  
R = 0.05  
TYP  
4
6
3.00 p0.10 1.65 p 0.10  
(2 SIDES)  
(2 SIDES)  
PIN 1 BAR  
TOP MARK  
(SEE NOTE 6)  
PIN 1 NOTCH  
R0.20 OR 0.25  
s 45o CHAMFER  
(DCB6) DFN 0405  
3
1
0.25 p 0.05  
0.50 BSC  
0.75 p0.05  
0.200 REF  
1.35 p0.10  
(2 SIDES)  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (TBD)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
6991f  
ꢁꢁ  
LTC6991  
package DescripTion  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
2.80 BSC  
3.85 MAX 2.62 REF  
(NOTE 4)  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302 REV B  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
6991f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
ꢁꢂ  
LTC6991  
Typical applicaTion  
Intervalometer for Time-Lapse Photography  
ACTIVATES SHUTTER AT  
8SEC TO 8.5MIN INTERVALS  
R
PW  
100k  
SHUTTER  
RST  
GND  
SET  
OUT  
C
PW  
LTC6991  
33µF  
+
V
1µF  
R1A  
R1B  
1M  
R
S3  
332k  
95.3k  
DIV  
“SLOW RANGE”  
1.1MIN TO 8.5 MIN  
8SEC TO  
64SEC  
R
R
S1  
S2  
1M  
2M  
R2  
130k  
6991 TA07  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1799  
1MHz to 33MHz ThinSOT Silicon Oscillator  
1MHz to 20MHz ThinSOT Silicon Oscillator  
Wide Frequency Range  
Low Power, Wide Frequency Range  
LTC6900  
LTC6906/LTC6907  
LTC6930  
10kHz to 1MHz or 40kHz ThinSOT Silicon Oscillators  
Fixed Frequency Oscillator, 32.768kHz to 8.192MHz  
TimerBlox: Voltage-Controlled Silicon Oscillator  
Micropower, I  
= 35µA at 400kHz  
SUPPLY  
0.09% Accuracy, 110µs Start-Up Time, 105µA at 32kHz  
Fixed-Frequency or Voltage-Controlled Operation  
Simple PWM with Wide Frequency Range  
LTC6990  
LTC6992  
TimerBlox: Voltage-Controlled Pulse Width Modulator (PWM)  
TimerBlox: Monostable Pulse Generator (One Shot)  
TimerBlox: Delay Block/Debouncer  
LTC6993  
Resistor Programmable Pulse Width of 1µs to 34sec  
Delays Rising, Falling or Both Edges 1µs to 34sec  
LTC6994  
6991f  
LT 0910 • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
ꢁꢃ  
LINEAR TECHNOLOGY CORPORATION 2010  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC6991IDCBPBF

TimerBlox: Resettable, Low Frequency Oscillator
Linear

LTC6991IS6#TRMPBF

LTC6991 - TimerBlox: Resettable, Low Frequency Oscillator; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC6991IS6PBF

TimerBlox: Resettable, Low Frequency Oscillator
Linear

LTC6992

TimerBlox: Long Timer, Low Frequency Oscillator
Linear

LTC6992-1

TimerBlox Voltage-Controlled Pulse Width Modulator (PWM)
Linear

LTC6992-1_15

Voltage-Controlled Pulse Width Modulator
Linear

LTC6992-2

TimerBlox Voltage-Controlled Pulse Width Modulator (PWM)
Linear

LTC6992-2_15

Voltage-Controlled Pulse Width Modulator
Linear

LTC6992-3

TimerBlox Voltage-Controlled Pulse Width Modulator (PWM)
Linear

LTC6992-3_15

Voltage-Controlled Pulse Width Modulator
Linear

LTC6992-4

TimerBlox Voltage-Controlled Pulse Width Modulator (PWM)
Linear

LTC6992-4_15

Voltage-Controlled Pulse Width Modulator
Linear