LTC6993 [Linear]

TimerBlox: Long Timer, Low Frequency Oscillator;
LTC6993
型号: LTC6993
厂家: Linear    Linear
描述:

TimerBlox: Long Timer, Low Frequency Oscillator

文件: 总28页 (文件大小:367K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6995-1/LTC6995-2  
TimerBlox: Long Timer, Low  
Frequency Oscillator  
FeaTures  
DescripTion  
The LTC®6995 is a silicon oscillator with a programmable  
periodrangeof1.024msto9.54hours(29.1µHzto977Hz),  
specifically intended for long duration timing events. The  
LTC6995 is part of the TimerBlox® family of versatile  
silicon timing devices.  
n
Period Range: 1ms to 9.5 Hours  
n
Timing Reset by Power-On or Reset Input  
n
Configured with 1 to 3 Resistors  
n
<1.5% Maximum Frequency Error  
n
Programmable Output Polarity  
n
2.25V to 5.5V Single Supply Operation  
A single resistor, R , programs the LTC6995’s internal  
SET  
n
55µA to 80µA Supply Current  
master oscillator frequency. The output clock period  
is determined by this master oscillator and an internal  
(2ms to 9.5hr Clock Period)  
n
500µs Start-Up Time  
frequency divider, N , programmable to eight settings  
DIV  
n
CMOS Output Driver Sources/Sinks 20mA  
21  
from 1 to 2 .  
n
–55°C to 125°C Operating Temperature Range  
NDIV RSET  
n
Available in Low Profile (1mm) SOT-23 (ThinSOT™)  
tOUT  
=
1.024ms, NDIV = 1,8,64,...,221  
and 2mm × 3mm DFN Packages  
50kΩ  
When oscillating, the LTC6995 generates a 50% duty  
cycle square wave output. A reset function is provided  
to stop the master oscillator and clear internal dividers.  
Removing reset initiates a full output clock cycle which  
is useful for programmable power on reset and watchdog  
timer applications.  
applicaTions  
n
Power-On Reset Timer  
n
Long Time One Shot  
n
“Heartbeat” Timers  
Watchdog Timers  
Periodic “Wake-Up” Call  
High Vibration, High Acceleration Environments  
n
n
The LTC6995 has two versions of reset functionality. The  
reset input is active high for the LTC6995-1 and active low  
for the LTC6995-2. The polarity of the output when reset  
is selectable for both versions.  
n
L, LT, LTC, LTM, Linear Technology, TimerBlox and the Linear logo are registered trademarks  
and ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners.  
OUTPUT (OSCILLATOR START STATE)  
RST/RST POLARITY  
LTC6995-1  
Oscillating (Low)  
0 (Reset)  
LTC6995-2  
0 (Reset)  
0
1
0
1
0
0
1
1
Oscillating (Low)  
1 (Reset)  
Oscillating (High)  
1 (Reset)  
Oscillating (High)  
Typical applicaTion  
Active Low Power-On Reset Timer  
+
RST  
GND  
SET  
OUT  
V
LTC6995-1  
+
+
V
V
5 SECONDS  
1/2 t  
0.1µF  
OUT  
TIMER STOPPED  
1M  
OUT  
DIV  
POWER-ON RESET  
(1ms TO 4.8 HOURS)  
118k  
392k  
699512 TA01  
699512f  
1
For more information www.linear.com/6995  
LTC6995-1/LTC6995-2  
absoluTe MaxiMuM raTings (Note 1)  
+
Supply Voltage (V ) to GND ........................................6V  
Specified Temperature Range (Note 3)  
Maximum Voltage  
LTC6995C................................................ 0°C to 70°C  
LTC6995I .............................................–40°C to 85°C  
LTC6995H.......................................... –40°C to 125°C  
LTC6995MP....................................... –55°C to 125°C  
Junction Temperature ........................................... 150°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
+
on Any Pin ................(GND – 0.3V) ≤ V ≤ (V + 0.3V)  
PIN  
Operating Temperature Range (Note 2)  
LTC6995C............................................–40°C to 85°C  
LTC6995I .............................................–40°C to 85°C  
LTC6995H.......................................... –40°C to 125°C  
LTC6995MP....................................... –55°C to 125°C  
S6 Package...........................................................300°C  
pin conFiguraTion  
LTC6995-1/LTC6995-2  
LTC6995-1/LTC6995-2  
TOP VIEW  
TOP VIEW  
+
6
5
4
OUT  
V
1
2
3
RST/RST 1  
GND 2  
6 OUT  
7
GND  
DIV  
SET  
GND  
+
5 V  
RST/RST  
SET 3  
4 DIV  
DCB PACKAGE  
S6 PACKAGE  
6-LEAD (2mm × 3mm) PLASTIC DFN  
= 150°C, θ = 64°C/W, θ = 9.6°C/W  
6-LEAD PLASTIC TSOT-23  
T
= 150°C, θ = 192°C/W, θ = 51°C/W  
T
JMAX  
JMAX  
JA  
JC  
JA  
JC  
EXPOSED PAD (PIN 7) CONNECTED TO GND,  
PCB CONNECTION OPTIONAL  
orDer inForMaTion  
Lead Free Finish  
TAPE AND REEL (MINI)  
LTC6995CDCB-1#TRMPBF LTC6995CDCB-1#TRPBF LGJM  
LTC6995IDCB-1#TRMPBF LTC6995IDCB-1#TRPBF LGJM  
TAPE AND REEL  
PART MARKING* PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
0°C to 70°C  
6-Lead (2mm × 3mm) Plastic DFN  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead Plastic TSOT-23  
LTC6995HDCB-1#TRMPBF LTC6995HDCB-1#TRPBF LGJM  
LTC6995CDCB-2#TRMPBF LTC6995CDCB-2#TRPBF LGJP  
LTC6995IDCB-2#TRMPBF LTC6995IDCB-2#TRPBF  
LGJP  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTC6995HDCB-2#TRMPBF LTC6995HDCB-2#TRPBF LGJP  
LTC6995CS6-1#TRMPBF LTC6995CS6-1#TRPBF  
LTC6995IS6-1#TRMPBF LTC6995IS6-1#TRPBF  
LTC6995HS6-1#TRMPBF LTC6995HS6-1#TRPBF  
LTGJN  
LTGJN  
LTGJN  
6-Lead Plastic TSOT-23  
–40°C to 85°C  
–40°C to 125°C  
–55°C to 125°C  
0°C to 70°C  
6-Lead Plastic TSOT-23  
LTC6995MPS6-1#TRMPBF LTC6995MPS6-1#TRPBF LTGJN  
6-Lead Plastic TSOT-23  
LTC6995CS6-2#TRMPBF LTC6995CS6-2#TRPBF  
LTC6995IS6-2#TRMPBF LTC6995IS6-2#TRPBF  
LTC6995HS6-2#TRMPBF LTC6995HS6-2#TRPBF  
LTGJQ  
LTGJQ  
LTGJQ  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
–40°C to 85°C  
–40°C to 125°C  
–55°C to 125°C  
6-Lead Plastic TSOT-23  
LTC6995MPS6-2#TRMPBF LTC6995MPS6-2#TRPBF LTGJQ  
6-Lead Plastic TSOT-23  
TRM = 500 pieces. *Temperature grades are identified by a label on the shipping container.  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
699512f  
2
For more information www.linear.com/6995  
LTC6995-1/LTC6995-2  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. Test conditions are V+ = 2.25V to 5.5V, RST = 0V for LTC6995-1,  
RST = V+ for LTC6995-2, DIVCODE = 0 to 15 (NDIV = 1 to 221), RSET = 50k to 800k, RLOAD = 5k, CLOAD = 5pF unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
1.024m  
29.1µ  
TYP  
MAX  
34,360  
977  
UNITS  
Seconds  
Hz  
t
f
Output Clock Period  
Output Frequency  
OUT  
OUT  
∆f  
Frequency Accuracy (Note 4)  
29.1µHz ≤ f  
≤ 977Hz  
OUT  
0.8  
1.5  
2.2  
%
%
OUT  
l
l
∆f /∆T  
Frequency Drift Over Temperature  
Frequency Drift Over Supply  
0.005  
%/°C  
OUT  
+
+
l
l
∆f /∆V  
V = 4.5V to 5.5V  
0.23  
0.06  
0.55  
0.16  
%/V  
%/V  
OUT  
+
V = 2.25V to 4.5V  
Long-Term Frequency Stability  
Period Jitter (Note 10)  
(Note 11)  
90  
ppm/√kHr  
N
DIV  
N
DIV  
= 1  
= 8  
15  
7
ppm  
ppm  
RMS  
RMS  
BW  
Frequency Modulation Bandwidth  
0.4 • f  
Hz  
OUT  
t
Frequency Change Settling Time (Note 9)  
1
Cycle  
S
Analog Inputs  
l
l
l
l
l
V
Voltage at SET Pin  
0.97  
1.00  
75  
1.03  
800  
V
µV/°C  
kΩ  
SET  
∆V /∆T  
V
Drift Over Temperature  
SET  
SET  
R
Frequency-Setting Resistor  
DIV Pin Voltage  
50  
0
SET  
DIV  
+
V
V
V
+
∆V /∆V  
DIV Pin Valid Code Range (Note 5)  
Deviation from Ideal  
DIV  
1.5  
%
DIV  
+
V
/V = (DIVCODE + 0.5)/16  
l
DIV Pin Input Current  
10  
nA  
Power Supply  
+
l
l
V
Operating Supply Voltage Range  
Power-On Reset Voltage  
Supply Current  
2.25  
5.5  
V
V
1.95  
+
+
l
l
I
R = ∞, R = 50k  
V = 5.5V  
135  
105  
170  
135  
µA  
µA  
S
L
SET  
V = 2.25V  
+
+
l
l
R = ∞, R = 100k  
V = 5.5V  
100  
80  
130  
105  
µA  
µA  
L
SET  
V = 2.25V  
+
+
l
l
R = ∞, R = 800k  
V = 5.5V  
65  
55  
100  
85  
µA  
µA  
L
SET  
V = 2.25V  
+
+
R = ∞, I = 0µA  
V = 5.5V  
60  
52  
µA  
µA  
L
SET  
V = 2.25V  
699512f  
3
For more information www.linear.com/6995  
LTC6995-1/LTC6995-2  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. Test conditions are V+ = 2.25V to 5.5V, RST = 0V for LTC6995-1,  
RST = V+ for LTC6995-2, DIVCODE = 0 to 15 (NDIV = 1 to 221), RSET = 50k to 800k, RLOAD = , CLOAD = 5pF unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Digital I/O  
RST Pin Input Capacitance  
RST Pin Input Current  
2.5  
pF  
nA  
V
+
RST = 0V to V  
(Note 6)  
10  
+
l
l
V
V
High Level RST Pin Input Voltage  
Low Level RST Pin Input Voltage  
Output Output Current  
0.7 • V  
IH  
+
(Note 6)  
+
0.3 • V  
V
IL  
I
V = 2.7V to 5.5V  
20  
mA  
OUT(MAX)  
+
l
l
V
High Level Output Voltage (Note 7)  
V = 5.5V  
I
I
= –1mA  
5.45  
4.84  
5.48  
5.15  
V
V
OH  
OUT  
OUT  
= –16mA  
+
l
l
V = 3.3V  
I
I
= –1mA  
= –10mA  
3.24  
2.75  
3.27  
2.99  
V
V
OUT  
OUT  
+
l
l
V = 2.25V  
I
I
= –1mA  
= –8mA  
2.17  
1.58  
2.21  
1.88  
V
V
OUT  
OUT  
+
l
l
V
OL  
Low Level Output Voltage (Note 7)  
Reset Propagation Delay  
V = 5.5V  
I
I
= 1mA  
= 16mA  
0.02  
0.26  
0.04  
0.54  
V
V
OUT  
OUT  
+
l
l
V = 3.3V  
I
I
= 1mA  
= 10mA  
0.03  
0.22  
0.05  
0.46  
V
V
OUT  
OUT  
+
l
l
V = 2.25V  
I
I
= 1mA  
= 8mA  
0.03  
0.26  
0.07  
0.54  
V
V
OUT  
OUT  
+
t
V = 5.5V  
16  
24  
40  
ns  
ns  
ns  
RST  
+
V = 3.3V  
+
V = 2.25V  
+
t
t
Minimum Input Pulse Width  
Output Rise Time (Note 8)  
V = 3.3V  
5
ns  
WIDTH  
r
+
V = 5.5V  
1.1  
1.7  
2.7  
ns  
ns  
ns  
+
V = 3.3V  
+
V = 2.25V  
+
t
Output Fall Time (Note 8)  
V = 5.5V  
1.0  
1.6  
2.4  
ns  
ns  
ns  
f
+
V = 3.3V  
+
V = 2.25V  
Note 7: To conform to the Logic IC Standard, current out of a pin is  
arbitrarily given a negative value.  
Note 8: Output rise and fall times are measured between the 10% and the  
90% power supply levels with 5pF output load. These specifications are  
based on characterization.  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTC6995C is guaranteed functional over the operating  
temperature range of –40°C to 85°C.  
Note 9: Settling time is the amount of time required for the output to settle  
within 1% of the final frequency after a 0.5× or 2× change in I  
.
Note 3: The LTC6995C is guaranteed to meet specified performance from  
0°C to 70°C. The LTC6995C is designed, characterized and expected to  
meet specified performance from –40°C to 85°C but it is not tested or  
QA sampled at these temperatures. The LTC6995I is guaranteed to meet  
specified performance from –40°C to 85°C. The LTC6995H is guaranteed  
to meet specified performance from –40°C to 125°C. The LTC6995MP is  
guaranteed to meet specified performance from –55°C to 125°C.  
SET  
Note 10: Jitter is the ratio of the deviation of the period to the mean of the  
period. This specification is based on characterization and is not 100%  
tested.  
Note 11: Long-term drift of silicon oscillators is primarily due to the  
movement of ions and impurities within the silicon and is tested at 30°C  
under otherwise nominal operating conditions. Long-term drift is specified  
as ppm/√kHr due to the typically nonlinear nature of the drift. To calculate  
drift for a set time period, translate that time into thousands of hours, take  
the square root and multiply by the typical drift number. For instance, a  
year is 8.77kHr and would yield a drift of 266ppm at 90ppm/√kHr. Drift  
without power applied to the device may be approximated as 1/10th of the  
drift with power, or 9ppm/√kHr for a 90ppm/√kHr device.  
Note 4: Frequency accuracy is defined as the deviation from the f  
OUT  
equation, assuming R is used to program the frequency.  
SET  
Note 5: See Operation section, Table 1 and Figure 2 for a full explanation  
of how the DIV pin voltage selects the value of DIVCODE.  
Note 6: The RST pin has hysteresis to accommodate slow rising or falling  
+
signals. The threshold voltages are proportional to V . Typical values can  
+
be estimated at any supply voltage using V  
≈ 0.55 • V + 185mV  
RST(RISING)  
+
and V  
≈ 0.48 • V – 155mV.  
RST(FALLING)  
699512f  
4
For more information www.linear.com/6995  
LTC6995-1/LTC6995-2  
Typical perForMance characTerisTics  
V+ = 3.3V, RSET = 200k, TA = 25°C unless otherwise noted.  
Frequency Error vs Temperature  
Frequency Error vs Temperature  
Frequency Error vs Temperature  
3
3
2
1
0
3
2
1
0
GUARANTEED MAX OVER TEMPERATURE  
GUARANTEED MAX OVER TEMPERATURE  
GUARANTEED MAX OVER TEMPERATURE  
2
R
= 800k  
R
= 50k  
R
= 200k  
SET  
SET  
SET  
3 PARTS  
3 PARTS  
3 PARTS  
1
0
–1  
–2  
–3  
–1  
–2  
–3  
–1  
–2  
–3  
GUARANTEED MIN OVER TEMPERATURE  
GUARANTEED MIN OVER TEMPERATURE  
GUARANTEED MIN OVER TEMPERATURE  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
699512 G03  
699512 G01  
699512 G02  
Frequency Error vs RSET  
Frequency Drift vs Supply Voltage  
Typical VSET Distribution  
0.5  
0.4  
3
2
250  
200  
150  
100  
50  
2 LOTS  
DFN AND SOT-23  
1274 UNITS  
GUARANTEED MAX OVER TEMPERATURE  
3 PARTS  
0.3  
0.2  
1
0
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–1  
–2  
–3  
+
REFERENCED TO V = 4.5V  
R
SET  
R
SET  
R
SET  
= 50k  
= 200k  
= 800k  
GUARANTEED MIN OVER TEMPERATURE  
0
0
200  
400  
(kΩ)  
600  
800  
2
3
4
5
6
0.98  
0.996  
V
1.004  
(V)  
1.012  
1.02  
0.988  
SUPPLY VOLTAGE (V)  
R
SET  
SET  
699512 G06  
699512 G04  
699512 G05  
VSET Drift vs ISET  
VSET Drift vs Supply  
VSET vs Temperature  
1.0  
0.8  
1.0  
0.8  
1.020  
1.015  
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
0.980  
3 PARTS  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
+
REFERENCED TO I  
= 10µA  
REFERENCED TO V = 4V  
SET  
0
10  
(µA)  
15  
20  
5
2
4
5
6
–50  
0
25  
50  
75 100 125  
3
–25  
I
SUPPLY (V)  
TEMPERATURE (°C)  
SET  
699512 G07  
699512 G08  
699512 G09  
699512f  
5
For more information www.linear.com/6995  
LTC6995-1/LTC6995-2  
Typical perForMance characTerisTics  
V+ = 3.3V, RSET = 200k, TA = 25°C unless otherwise noted.  
Supply Current  
vs RST Pin Voltage  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
150  
125  
100  
75  
250  
200  
150  
100  
50  
150  
125  
R
= 800k  
SET  
R
= 50k  
SET  
5V  
5V  
RST FALLING  
RST RISING  
5V, R  
= 100k  
= 100k  
SET  
100  
75  
R
SET  
= 100k  
2.5V, R  
SET  
R
R
= 200k  
= 800k  
SET  
3.3V  
3.3V  
RST RISING  
5V, R  
= 800k  
= 800k  
SET  
RST FALLING  
SET  
2.5V, R  
50  
25  
0
50  
25  
0
SET  
0
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
0
0.2  
0.4  
0.6  
0.8  
1.0  
2
3
4
5
6
+
SUPPLY VOLTAGE (V)  
V
/V (V/V)  
RST  
699512 G11  
699512 G12  
699512 G10  
RST Threshold Voltage  
vs Supply Voltage  
Supply Current vs RSET  
Typical ISET Current Limit vs V+  
150  
125  
1000  
800  
600  
400  
200  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
SET PIN SHORTED TO GND  
+
POSITIVE-GOING  
V
= 5V  
100  
75  
+
V
= 3.3V  
= 2.5V  
NEGATIVE-GOING  
+
V
50  
25  
0
0
200  
400  
(kΩ)  
600  
800  
2
3
4
5
6
2
3
4
5
6
R
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SET  
699512 G14  
699512 G15  
699512 G13  
Reset Propagation Delay (tRST  
)
Rise and Fall Time  
vs Supply Voltage  
Typical Frequency Error  
vs Time (Long-Term Drift)  
vs Supply Voltage  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
200  
150  
100  
50  
C
= 5pF  
65 UNITS  
C
LOAD  
= 5pF  
LOAD  
SOT-23 AND DFN PARTS  
T
= 30°C  
A
t
RISE  
0
–50  
t
FALL  
–100  
–150  
–200  
0
2
3
4
5
6
2
3
4
5
6
0
400 800 1200 1600 2000 2400 2800  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
TIME (h)  
699512 G17  
699512 G18  
699512 G16  
699512f  
6
For more information www.linear.com/6995  
LTC6995-1/LTC6995-2  
Typical perForMance characTerisTics  
V+ = 3.3V, RSET = 200k, TA = 25°C unless otherwise noted.  
Output Resistance  
vs Supply Current  
50  
Typical LTC6995-1 Start-Up with  
POL = 1  
45  
+
V
40  
35  
30  
25  
20  
15  
10  
5
5V/DIV  
RST  
5V/DIV  
OUTPUT SOURCING CURRENT  
RESET RELEASED,  
OUT  
5V/DIV  
100Hz OUTPUT CLOCK  
OUTPUT RESET  
4ms START-UP  
+
699512 G20  
V
= 5V  
5ms/DIV  
OUTPUT SINKING CURRENT  
DIVCODE = 15  
= 499k  
R
SET  
0
2
3
4
5
6
SUPPLY VOLTAGE (V)  
699512 G19  
pin FuncTions (DCB/S6)  
V (Pin1/Pin5):SupplyVoltage(2.25Vto5.5V).Thissup-  
ply should be kept free from noise and ripple. It should be  
bypassed directly to the GND pin with a 0.1µF capacitor.  
+
50ppm/°C or better temperature coefficient. For lower ac-  
curacy applications an inexpensive 1% thick film resistor  
may be used.  
DIV (Pin 2/Pin 4): Programmable Divider and Polarity  
Limit the capacitance on the SET pin to less than 10pF  
to minimize jitter and ensure stability. Capacitance less  
than 100pF maintains the stability of the feedback circuit  
+
Input. An internal A/D converter (referenced to V ) moni-  
tors the DIV pin voltage (V ) to determine a 4-bit result  
DIV  
(DIVCODE). V may be generated by a resistor divider  
regulating the V voltage.  
DIV  
SET  
+
between V and GND. Use 1% resistors to ensure an ac-  
curateresult. TheDIVpinandresistorsshouldbeshielded  
from the OUT pin or any other traces that have fast edges.  
Limit the capacitance on the DIV pin to less than 100pF  
RST  
LTC6995-1/  
LTC6995-2  
OUT  
+
V
+
GND  
V
C1  
0.1µF  
so that V settles quickly. The MSB of DIVCODE (POL)  
DIV  
R1  
R2  
determines the polarity of the OUT pin.  
SET  
DIV  
699512 PF  
SET (Pin 3/Pin 3): Frequency-Setting Input. The voltage  
R
SET  
on the SET pin (V ) is regulated to 1V above GND. The  
SET  
amount of current sourced from the SET pin (I ) pro-  
SET  
RST or RST (Pin 4/Pin 1): Output Reset. The reset input  
is used to stop the output oscillator and to clear internal  
dividers. When reset is released the oscillator starts with  
a full half period time interval. The output logic state when  
reset is determined by the programmed DIVCODE. The  
LTC6995-1 has an active high RST input. The LTC6995-2  
has an active low RST input.  
grams the master oscillator frequency. The I  
current  
SET  
range is 1.25µA to 20µA. The output oscillation will stop  
if I drops below approximately 500nA. A resistor con-  
SET  
nected between SET and GND is the most accurate way to  
set the frequency. For best performance, use a precision  
metal or thin film resistor of 0.5% or better tolerance and  
699512f  
7
For more information www.linear.com/6995  
LTC6995-1/LTC6995-2  
pin FuncTions (DCB/S6)  
GND(Pin5/Pin2):Ground.Tie toalowinductanceground  
plane for best performance.  
30Ω. When driving an LED or other low impedance load  
a series output resistor should be used to limit source/  
sink current to 20mA.  
OUT (Pin 6/Pin 6): Oscillator Output. The OUT pin swings  
+
fromGNDtoV withanoutputresistanceofapproximately  
(S6 package pin numbers shown)  
block DiagraM  
5
+
V
R1  
POL BIT  
DIV  
4-BIT A/D  
CONVERTER  
DIGITAL  
FILTER  
4
R2  
MASTER OSCILLATOR  
1µs  
50kΩ  
V
SET  
FIXED  
DIVIDER  
÷ 1024  
MCLK  
=
t
=
PROGRAMMABLE  
DIVIDER  
OUT  
MASTER  
OUTPUT  
POLARITY  
I
SET  
6
t
÷1, 8, 64, 512  
OUT  
15 18 21  
4096, 2 , 2 , 2  
HALT OSCILLATOR  
OUTPUT  
DIVIDER  
RESET  
IF I  
< 500nA  
SET  
I
SET  
POR  
+
LTC6995-2  
ONLY  
+
1V  
GND  
V
= 1V  
SET  
RST  
SET  
1
3
2
699512 BD  
I
SET  
R
SET  
699512f  
8
For more information www.linear.com/6995  
LTC6995-1/LTC6995-2  
operaTion  
The LTC6995 is built around a master oscillator with a  
DIVCODE  
1MHz maximum frequency. The oscillator is controlled  
+
TheDIVpinconnectstoaninternal,V referenced4-bitA/D  
converter that determines the DIVCODE value. DIVCODE  
programs two settings on the LTC6995:  
by the SET pin current (I ) and voltage (V ), with a  
SET  
SET  
1MHz • 50k conversion factor that is accurate to 0.8%  
under typical conditions.  
1. DIVCODE determines the output frequency divider set-  
1
ISET  
VSET  
ting, N  
.
fMASTER  
=
= 1MHz 50k•  
DIV  
tMASTER  
2. DIVCODE determines the polarity of the RST and OUT  
pins, via the POL bit.  
A feedback loop maintains V at 1V 30mV, leaving I  
SET  
SET  
+
as the primary means of controlling the output frequency.  
The simplest way to generate I is to connect a resistor  
V
may be generated by a resistor divider between V  
DIV  
SET  
and GND as shown in Figure 1.  
(R ) between SET and GND, such that I = V /R .  
SET  
SET  
SET SET  
2.25V TO 5.5V  
The master oscillator equation reduces to:  
+
V
1
1MHz 50kΩ  
fMASTER  
=
=
LTC6995  
R1  
R2  
tMASTER  
RSET  
DIV  
From this equation, it is clear that V drift will not affect  
SET  
GND  
theoutputfrequencywhenusingasingleprogramresistor  
699512 F01  
(R ). Error sources are limited to R  
tolerance and  
of the LTC6995.  
SET  
SET  
the inherent frequency accuracy ∆f  
Figure 1. Simple Technique for Setting DIVCODE  
OUT  
R
may range from 50k to 800k (equivalent to I  
SET  
SET  
Table 1 offers recommended 1% resistor values that ac-  
curatelyproducethecorrectvoltagedivisionaswellasthe  
between 1.25µA and 20µA).  
Before reaching the OUT pin, the oscillator frequency  
passes through a fixed ÷1024 divider. The LTC6995 also  
includes a programmable frequency divider which can  
correspondingN andPOLvaluesfortherecommended  
DIV  
resistor pairs. Other values may be used as long as:  
+
1. The V /V ratio is accurate to 1.5% (including resis-  
15  
DIV  
further divide the frequency by 1, 8, 64, 512, 4096, 2 ,  
tor tolerances and temperature effects)  
18  
21  
2 or 2 . The divider ratio N is set by a resistor divider  
DIV  
attached to the DIV pin.  
2. Thedrivingimpedance(R1||R2)doesnotexceed500kΩ.  
1MHz 50kISET  
1024 NDIV VSET  
If the voltage is generated by other means (i.e., the output  
fOUT  
=
=
, or  
+
of a DAC) it must track the V supply voltage. The last  
column in Table 1 shows the ideal ratio of V  
to the  
DIV  
1
NDIV VSET  
supply voltage, which can also be calculated as:  
tOUT  
=
1.024ms  
fOUT 50kISET  
VDIV DIVCODE+0.5  
=
1.5%  
V+  
16  
with R in place of V /I the equation reduces to:  
SET  
SET SET  
Forexample,ifthesupplyis3.3VandthedesiredDIVCODE  
NDIV RSET  
50kΩ  
tOUT  
=
1.024ms  
is 4, V = 0.281 • 3.3V = 928mV 50mV.  
DIV  
Figure 2 illustrates the information in Table 1, showing  
that N is symmetric around the DIVCODE midpoint.  
DIV  
699512f  
9
For more information www.linear.com/6995  
LTC6995-1/LTC6995-2  
operaTion  
Table 1. DIVCODE Programming  
+
DIVCODE  
POL  
0
N
RECOMMENDED t  
R1 (kΩ)  
Open  
976  
R2 (kΩ)  
Short  
102  
V
/V  
DIV  
DIV  
OUT  
0
1
1
1.024ms to 16.384ms  
8.192ms to 131ms  
65.5ms to 1.05sec  
524ms to 8.39sec  
4.19sec to 67.1sec  
33.6sec to 537sec  
268sec to 4,295sec  
2,147sec to 34,360sec  
2,147sec to 34,360sec  
268sec to 4,295sec  
33.6sec to 537sec  
4.19sec to 67.1sec  
524ms to 8.39sec  
65.5ms to 1.05sec  
8.192ms to 131ms  
1.024ms to 16.384ms  
≤0.03125 0.015  
0.09375 0.015  
0.15625 0.015  
0.21875 0.015  
0.28125 0.015  
0.34375 0.015  
0.40625 0.015  
0.46875 0.015  
0.53125 0.015  
0.59375 0.015  
0.65625 0.015  
0.71875 0.015  
0.78125 0.015  
0.84375 0.015  
0.90625 0.015  
≥0.96875 0.015  
0
8
2
0
64  
512  
976  
182  
3
0
1000  
1000  
1000  
1000  
1000  
887  
280  
4
0
4,096  
32,768  
262,144  
2,097,152  
2,097,152  
262,144  
32,768  
4,096  
512  
392  
5
0
523  
6
0
681  
7
0
887  
8
1
1000  
1000  
1000  
1000  
1000  
976  
9
1
681  
10  
11  
12  
13  
14  
15  
1
523  
1
392  
1
280  
1
64  
182  
1
8
102  
976  
1
1
Short  
Open  
POL BIT = 0  
POL BIT = 1  
10000  
1000  
100  
10  
7
8
6
9
5
10  
11  
4
12  
3
1
2
13  
0.1  
1
14  
0.01  
0.001  
0
15  
+
+
0V  
0.5V  
V
INCREASING V  
DIV  
699512 F02  
Figure 2. Frequency Range and POL Bit vs DIVCODE  
699512f  
10  
For more information www.linear.com/6995  
LTC6995-1/LTC6995-2  
operaTion  
Reset and Polarity Bit Functions  
With the POL bit programmed to be 0, the output will be  
forced low when reset. When reset is released by chang-  
ing state, the oscillator starts. The next rising edge at the  
output follows a precise half cycle delay.  
The Reset input, RST for the LTC6995-1 and RST for the  
LTC6995-2, forces the output to a fixed state and resets  
the internal clock dividers. The output state when reset is  
determined by the polarity bit as selected by through the  
DIVCODE setting.  
With the POL bit programmed to be 1, the output will be  
forced high when reset. When reset is released by chang-  
ing state, the oscillator starts. The next falling edge at the  
output follows a precise half cycle delay.  
OUTPUT (OSCILLATOR START STATE)  
RST/RST POLARITY  
LTC6995-1  
Oscillating (Low)  
0 (Reset)  
LTC6995-2  
0 (Reset)  
0
1
0
1
0
0
1
1
Oscillating (Low)  
1 (Reset)  
Oscillating (High)  
1 (Reset)  
Oscillating (High)  
t
t
WIDTH  
WIDTH  
RST  
RST  
t
t
RST  
RST  
OUT REMAINS LOW  
WHILE RST IS HIGH  
OUT REMAINS LOW  
WHILE RST IS LOW  
OUT  
OUT  
699512 F03  
t
t
OUT  
OUT  
1/2 t  
1/2 t  
OUT  
OUT  
LTC6995-1  
LTC6995-2  
Figure 3. Reset Timing Diagram (POL Bit = 0)  
t
t
WIDTH  
WIDTH  
RST  
RST  
OUT  
t
t
RST  
RST  
OUT REMAINS HIGH  
WHILE RST IS LOW  
OUT REMAINS HIGH  
WHILE RST IS HIGH  
OUT  
699512 F04  
t
t
OUT  
OUT  
1/2 t  
1/2 t  
OUT  
OUT  
LTC6995-1  
LTC6995-2  
Figure 4. Reset Timing Diagram (POL Bit = 1)  
699512f  
11  
For more information www.linear.com/6995  
LTC6995-1/LTC6995-2  
operaTion  
Changing DIVCODE After Start-Up  
voltagesarenotstable. Forthisreason, itisrecommended  
to minimize the capacitance on the DIV pin so it will prop-  
Following start-up, the A/D converter will continue moni-  
+
erly track V . Less than 100pF will not affect performance.  
toring V  
for changes. The LTC6995 will respond to  
DIV  
DIVCODE changes in less than one cycle.  
Start-Up Behavior  
t
< 500 • t < t  
DIVCODE  
MASTER  
OUT  
Whenfirstpoweredup,theoutputisheldlow.Ifthepolarity  
issetfornon-inversion(POL=0)andtheoutputisenabled  
at the end of the start-up time, OUT will begin oscillating.  
If the output is being reset (RST = 1 for LTC6995-1 and  
RST = 0 for LTC6995-2) at the end of the start-up time,  
it will remain low due to the POL bit = 0. When reset is  
released the oscillator starts and the output remains low  
for precisely one half cycle of the programmed period.  
The output may have an inaccurate pulse width during the  
frequency transition. But the transition will be glitch-free  
and no high or low pulse can be shorter than the mas-  
ter clock period. A digital filter is used to guarantee the  
DIVCODEhassettledtoanewvaluebeforemakingchanges  
to the output.  
Start-Up Time  
In inverted operation (POL = 1), the start-up sequence is  
similar. However, the LTC6995 does not know the correct  
DIVCODE setting when first powered up, so the output  
When power is first applied, the power-on reset (POR)  
circuit will initiate the start-up time, t  
. A supply  
START  
voltage of typically 1.4V (1.2V to 1.5V over temperature)  
initiates the start-up sequence. The OUT pin is held low  
defaults low. At the end of t  
, the value of DIVCODE is  
START  
recognizedandOUTgoeshigh(inactive)becausePOL = 1.  
If the output is being reset (RST = 1 for LTC6995-1 and  
RST = 0 for LTC6995-2) at the end of the start-up time,  
it will remain high due to the POL bit = 1. When reset is  
released the oscillator starts and the output remains high  
for precisely one half cycle of the programmed period.  
during this time. The typical value for t  
ranges from  
START  
0.5msto8msdependingonthemasteroscillatorfrequency  
(independent of N ):  
DIV  
t
= 500 • t  
MASTER  
START(TYP)  
During start-up, the DIV pin A/D converter must deter-  
mine the correct DIVCODE before the output is enabled.  
The start-up time may increase if the supply or DIV pin  
Figures7to10detailthepossiblestart-upsequences.  
DIV  
200mV/DIV  
+
V
1V/DIV  
500µs  
OUT  
1V/DIV  
OUT  
1V/DIV  
+
+
699512  
699512 F06  
V
R
= 3.3V  
= 200k  
10ms/DIV  
V
= 2.5V  
250µs/DIV  
F05  
DIVCODE = 15  
= 50k  
SET  
R
SET  
Figure 5. DIVCODE Change from 1 to 0  
Figure 6. Typical Start-Up LTC6995-1 with RST = 0V  
699512f  
12  
For more information www.linear.com/6995  
LTC6995-1/LTC6995-2  
operaTion  
RST  
RST  
OUT  
OUT  
t
t
t
t
START  
OUT  
START  
OUT  
1/2 t  
1/2 t  
OUT  
OUT  
LTC6995-1  
LTC6995-2  
699512 F07  
699512 F08  
699512 F09  
699512 F10  
Figure 7. Start-Up Timing Diagram (Reset = 0, POL Bit = 0)  
RST  
OUT  
RST  
OUT  
t
t
t
t
OUT  
START  
OUT  
START  
1/2 t  
1/2 t  
OUT  
OUT  
LTC6995-1  
LTC6995-2  
Figure 8. Start-Up Timing Diagram (Reset = 1, POL Bit = 0)  
RST  
OUT  
RST  
OUT  
t
t
t
t
START  
OUT  
START  
OUT  
1/2 t  
1/2 t  
OUT  
OUT  
LTC6995-1  
LTC6995-2  
Figure 9. Start-Up Timing Diagram (Reset = 0, POL Bit = 1)  
RST  
OUT  
RST  
OUT  
t
t
t
t
OUT  
START  
OUT  
START  
1/2 t  
1/2 t  
OUT  
OUT  
LTC6995-1  
LTC6995-2  
Figure 10. Start-Up Timing Diagram (Reset = 1, POL Bit = 1)  
699512f  
13  
For more information www.linear.com/6995  
LTC6995-1/LTC6995-2  
applicaTions inForMaTion  
Basic Operation  
Example: Design a 1Hz oscillator with minimum power  
consumption, an active-high reset input, and the OUT pin  
low during reset.  
The simplest and most accurate method to program the  
LTC6995 is to use a single resistor, R , between the  
SET  
SET and GND pins. The design procedure is a 3-step  
Step 1: Select the LTC6995 Version and POL Bit Setting  
process. First select the POL bit setting and N value,  
DIV  
For active-high reset select the LTC6995-1. For OUT low  
during reset choose POL bit = 0.  
then calculate the value for the R resistor.  
SET  
Step 1: Select the LTC6995 Version and POL Bit Setting  
Step 2: Select the N Frequency Divider Value  
DIV  
Determine if the application requires an active-high,  
LTC6995-1 or active-low, LTC6995-2 reset function.  
Otherwise the two versions share identical functionality.  
Choose an N  
value that meets the requirements of  
DIV  
Equation (1), using t  
= 1000ms:  
OUT  
61.04 ≤ N ≤ 976.6  
The OUT pin polarity depends on the setting of the POL  
bit. To force OUT = 0 during reset, choose POL bit = 0. To  
force OUT = 1 during reset, choose POL bit = 1.  
DIV  
Potential settings for N include 64 and 512. N = 64  
DIV  
DIV  
is the best choice, as it minimizes supply current by us-  
ing a large R resistor. POL = 0 and N = 64 requires  
SET  
DIV  
Step 2: Select the N Frequency Divider Value  
DIV  
DIVCODE = 2. Using Table 1, choose R1 = 976k and  
R2 = 182k values to program DIVCODE = 2.  
As explained earlier, the voltage on the DIV pin sets the  
DIVCODE which determines both the POL bit and the N  
DIV  
should be  
Step 3: Select R  
value. For a given output clock period, N  
selected to be within the following range.  
SET  
DIV  
Calculate the correct value for R using Equation (2).  
SET  
tOUT  
16.384ms  
tOUT  
1.024ms  
50k  
1.024ms  
1000ms  
64  
NDIV  
(1)  
RSET  
=
= 763k  
To minimizesupplycurrent,choosethelowestN value  
DIV  
Since 763k is not available as a standard 1% resistor,  
substitute 768k if a –0.7% frequency shift is acceptable.  
Otherwise, select a parallel or series pair of resistors such  
as 576k + 187k to attain a more precise resistance.  
(generally recommended). Alternatively, use Table 1  
as a guide to select the best N  
application.  
value for the given  
DIV  
With POL already chosen, this completes the selection of  
The completed design is shown in Figure 11.  
DIVCODE. Use Table 1 to select the proper resistor divider  
+
or V /V ratio to apply to the DIV pin.  
DIV  
RST  
RST  
GND  
SET  
OUT  
Step 3: Calculate and Select R  
SET  
LTC6995-1  
2.25V TO 5.5V  
The final step is to calculate the correct value for R  
using the following equation.  
+
SET  
V
R1  
976k  
DIVCODE = 2  
R2  
182k  
DIV  
50k  
tOUT  
RSET  
=
R
763k  
SET  
(2)  
1.024ms NDIV  
699512 F11  
Select the standard resistor value closest to the calculated  
value.  
Figure 11. 1Hz Oscillator  
699512f  
14  
For more information www.linear.com/6995  
LTC6995-1/LTC6995-2  
applicaTions inForMaTion  
Power-On Reset (POR) Function  
RST  
GND  
SET  
OUT  
POR  
When power is applied to the LTC6995 the output is held  
LTC6995-1  
low for t  
, then takes on the value of the POL bit as the  
START  
+
V
2.25V TO 5.5V  
0.1µF  
clock cycle begins. If POL = 0 (DIVCODE < 8) the output  
R1  
R
SET  
1M  
will remain low for a programmable interval of t  
+
191k  
START  
DIV  
1/2 t , assuming the RST pin is inactive. This makes the  
OUT  
R2  
+
280k  
LTC6995 useful as a programmable long-time power-on  
reset (POR), with the low output used to hold a system  
in reset for a fixed period after power is applied. Timing  
RST = V FOR LTC6995-2  
t
= 1 SECOND FOR VALUES SHOWN  
POR  
POL = 0  
DIVCODE = 3  
NDIV = 512  
+
begins when the V supply exceeds approximately 1.4V.  
To preventadditionaloutputtransitionsaftertheinitialPOR  
time, the oscillator can be disabled by removing the SET  
pin current. This prevents the internal master oscillator  
output from clocking the frequency dividers or output,  
while keeping it biased so it can resume operation quickly.  
The easiest way to implement this feature is to connect  
+
V
t
START  
~1.4V STARTS TIMER  
t
DELAY  
OUT  
OUT  
POL = 0  
(1/2 t  
)
TIMER STOPPED  
POWER-ON RESET  
699512 F12  
R
between the SET and OUT pins.  
SET  
Figure 12. Active Low Power-On Reset  
(1 Second Interval Example)  
Figure 12 shows the basic power-on reset function. When  
the half cycle times out, the output goes high, eliminates  
the SET pin current, and stops additional OUT pin transi-  
tions. The output remains high until the device is reset by  
driving the RST input or power is cycled off then back on.  
The POR interval is only one half of an oscillator period so  
component selection is slightly different. Table 2 provides  
the component values required for one half cycle time  
intervals. Timing starts after a short startup delay time  
+
following the application of the V supply.  
Table 2. Power-On Reset (POR). One Shot, One Half Cycle Delay Programming  
Output Low During Time Interval, POL = 0  
DIVCODE  
t
TIME INTERVAL (1/2 t  
512µs to 8.2ms  
)
R1 (kΩ)  
Open  
976  
R2 (kΩ)  
Short  
102  
~R (kΩ)  
SET  
DELAY  
OUT  
0
1
2
3
4
5
6
7
t
t
• 97.6  
DELAY(MS)  
DELAY(MS)  
4.1ms to 65.5ms  
32.8ms to 524.3ms  
262.1ms to 4.2sec  
2.1sec to 33.6sec  
16.8sec to 4.5min  
2.2min to 35.8min  
17.9min to 4.8hrs  
• 12.2  
• 1.5  
976  
182  
t
DELAY(MS)  
1000  
1000  
1000  
1000  
1000  
280  
t
• 190.7  
• 23.8  
DELAY(SEC)  
392  
t
DELAY(SEC)  
523  
t
• 178.6  
• 22.7  
DELAY(MIN)  
681  
t
DELAY(MIN)  
887  
t
• 167.6  
DELAY(HR)  
Note: Power-On Reset Time = t  
+ t  
START  
DELAY  
699512f  
15  
For more information www.linear.com/6995  
LTC6995-1/LTC6995-2  
applicaTions inForMaTion  
For shorter power on reset times (1ms to 73ms) the timer  
Long Timer One Shots and Delay Generators  
startup delay becomes a significant part of the total POR  
The POR circuit of Figure 12 is also useful when the reset  
inputsaredriven.Thiscreatesedgetriggeredtimingevents  
that are active low and can either be re-triggered or can  
stop after one programmed interval. The programmed  
time interval can range from only 500µs to over 4 hours  
with just resistor value changes.  
time. To take this delay into account the value for R can  
SET  
be modified from the values shown in Table 2. For a POR  
time in the range from 1ms to 16ms (DIVCODE = 0), R  
SET  
should be t (ms) • 49.5. For a POR time in the range  
POR  
from 4.5ms to 73ms (DIVCODE = 1), R  
is t (ms) •  
SET  
POR  
10.9. For longer POR times (DIVCODE 2 through 7) the  
startup time is insignificant. After power on, the delay fol-  
lowingaresetconditionwillbeinthesamerangeasshown  
The circuits in Figure 13 show how a POR or active low  
intervalcanbere-startedtoprovideafullsystemresettime.  
for t  
in Table 2 for these two DIVCODE selections.  
DELAY  
The Figure 14 circuit requires an indication from the  
system being reset that it is ready before timing out. The  
LTC6995-2 can accommodate an active high OK signal.  
For short POR times, a more precise estimation of the  
startup time can be found from the following:  
By forcing a reset condition at power on the LTC6995 can  
be used to create a long time delayed rising edge triggered  
byeitherafallingedgesignal(LTC6995-1)orarisingedge  
signal (LTC6995-2) as show in Figure 15.  
RSET(k)  
tSTART(µs) = 256 +16 (12 DIVCODE)  
(
)
50  
+80  
Supply bounce resets the internal timer so the POR circuit  
automatically debounces supply noise. POR timing starts  
fromthetimethattheV supplyhasreachedapproximately  
+
1.4 volts.  
+
+
V
V
100k  
RST  
GND  
SET  
OUT  
POR  
RST  
GND  
SET  
OUT  
POR  
LTC6995-1  
LTC6995-2  
100k  
+
+
+
+
V
V
0.1µF  
V
V
0.1µF  
R1  
R2  
R1  
R2  
R
R
SET  
SET  
DIV  
DIV  
ACTIVE HIGH RESET  
ACTIVE LOW RESET  
+
V
+
V
RESET  
RESET  
RST  
RST  
OUT  
POL = 0  
OUT  
POL = 0  
TIMER  
STOPPED  
TIMER  
STOPPED  
t
+
OUT  
t
+
OUT  
START  
START  
1/2 t  
1/2 t  
1/2 t  
1/2 t  
OUT  
OUT  
POR  
POR  
POR  
POR  
TIMER  
STOPPED  
TIMER  
STOPPED  
699512 F13  
Figure 13. System Resets On Command with Full POR Time Interval. Reset Pulse Is Debounced Automatically  
699512f  
16  
For more information www.linear.com/6995  
LTC6995-1/LTC6995-2  
applicaTions inForMaTion  
SYSTEM OK  
+
V
POR  
RST  
GND  
SET  
OUT  
SYSTEM  
LTC6995-1  
RST  
SYSTEM OK  
+
+
V
V
0.1µF  
R1  
R2  
R
SET  
t
+
OUT  
TIMER  
STOPPED  
OUT  
POL = 0  
START  
DIV  
1/2 t  
1/2 t  
OUT  
POR  
POR EXTENDED  
POR  
699512 F14  
Figure 14. Extended POR. Timer Reset During Initial POR Interval. Full POR Interval Provided Once System Signals the OK  
TRIGGER  
RST  
GND  
SET  
OUT  
OUTPUT  
TRIGGER  
RST  
GND  
SET  
OUT  
OUTPUT  
LTC6995-1  
LTC6995-2  
+
+
+
+
V
V
0.1µF  
V
V
0.1µF  
R1  
R2  
R1  
R2  
R
R
SET  
SET  
DIV  
DIV  
FALLING EDGE TRIGGERED  
POL = 0  
RISING EDGE TRIGGERED  
POL = 0  
+
+
V
V
TRIGGER  
OUTPUT  
TRIGGER  
OUTPUT  
1/2 t  
1/2 t  
1/2 t  
1/2 t  
OUT  
OUT  
OUT  
OUT  
699512 F15  
Figure 15. Long Time Delayed Rising Edge. Delay Time Can Range from 500µs to 4.8 Hours  
699512f  
17  
For more information www.linear.com/6995  
LTC6995-1/LTC6995-2  
applicaTions inForMaTion  
Watchdog Timers  
returns to issuing watchdog pulses. Figure 16 shows the  
timing for this application.  
Using the same circuits as shown in Figure 15 with pe-  
riodic pulsing of the reset input can create an effective  
watchdog timer. A watchdog pulse is required from a  
system within each timing interval. The watchdog timeout  
interval can be programmed from 500µs to 4.8 hours. If a  
pulse is missed the output goes high to indicate that the  
system software may be caught in an infinite loop. This  
high level can be used to initiate software diagnostic or  
restart procedures. The LTC6995 internal clock stops and  
the output remains high until the software recovers and  
Watchdog timers are used to detect if a system operating  
software is diverted from the designed program sequence  
for any reason. It is always a possibility that the software  
could get stuck in a way that keeps the watchdog pulse in  
the state that holds the timer in the reset so it can never  
timeout.Inthisconditionthewatchdogtimerisineffective  
and will never force corrective action. To help to prevent  
this a second one shot can be used to reset the watchdog  
timer as shown in Figure 17.  
+
V
MISSED PULSE  
RST (LTC6995-1)  
WATCHDOG PULSES  
RST (LTC6995-2)  
OUTPUT  
SERVICE WATCHDOG  
TIMER RESTARTS  
TIMEOUT  
RESUME  
699512 F16  
Figure 16. Watchdog Timer. Same Circuits as Shown in Figure 15  
100µs ONE SHOT  
50ms WATCHDOG TIMER  
SYSTEM POSITIVE  
WATCHDOG PULSE  
TRG  
GND  
SET  
OUT  
RST  
GND  
SET  
OUT  
OUTPUT  
LTC6993-1  
LTC6995-1  
+
+
+
+
V
V
V
V
R1  
0.1µF  
R
SET  
976k  
604k  
DIV  
DIV  
R
SET  
R2  
619k  
102k  
RISING EDGE TRIGGERED  
POSITIVE OUTPUT PULSE  
DIVCODE = 1  
FALLING EDGE TRIGGERED  
POL = 0  
DIVCODE = 1  
699512 F17  
Figure 17. Extra-Reliable Watchdog Timer. Allows Timeout if System Watchdog Pulse Gets Stuck in the Timer Reset State.  
Both Timer Devices Can Share the Same DIVCODE Setting  
699512f  
18  
For more information www.linear.com/6995  
LTC6995-1/LTC6995-2  
applicaTions inForMaTion  
Gated Oscillators  
A simple application of this technique allows the LTC6995  
output to reset itself, producing a well-controlled pulse  
once each cycle. Figures 19a and 19b show circuits that  
produceapproximately1µspulsesonceaminute.Theonly  
difference is the version of LTC6995 used and the POL  
bit setting, which controls whether the pulse is positive  
or negative.  
The reset input (RST) clears all internal dividers so that,  
when released, the output will start clocking with a full  
programmed period. This edge can be used to gate the  
output ON and OFF at a known starting point for the clock.  
Circuits which count clock cycles for further timing pur-  
poses will always have an accurate count of full cycles  
until reset. The output clock is always at 50% duty cycle  
and the period of each cycle can range from 1ms to 9.5  
hours. Depending on the polarity bit selection the output  
clock can start high or low as shown in Figure 18.  
Voltage Controlled Frequency  
Withoneadditionalresistor,theLTC6995outputfrequency  
can be manipulated by an external voltage. As shown in  
Figure 20, voltage V  
sources/sinks a current through  
CTRL  
R
to vary the I current, which in turn modulates the  
Self-Resetting Circuits  
VCO  
SET  
output frequency as described in Equation (3).  
TheRSTpinhashysteresistoaccommodateslow-changing  
inputvoltages.Furthermore,thetrippointsareproportional  
to the supply voltage (see Note 6 and the RST Threshold  
Voltage vs Supply Voltage curve in Typical Performance  
Characteristics). This allows an RC time constant at the  
RST input to generate a delay that is nearly independent  
of the supply voltage.  
RVCO VCTRL  
1MHz 50kΩ  
1024NDIV RVCO  
(3)  
fOUT  
=
1+  
RSET VSET  
LTC6995-1  
LTC6995-2  
ACTIVE HIGH RESET  
ACTIVE LOW RESET  
RST FALLING EDGE STARTS THE CLOCK  
RST RISING EDGE STARTS THE CLOCK  
RST  
OUT  
RST  
OUT  
POL = 0  
POL = 0  
1/2 t  
1/2 t  
1/2 t  
OUT  
OUT  
OUT  
1/2 t  
OUT  
OUT  
POL = 1  
OUT  
POL = 1  
699512 F18  
Figure 18. Gated Oscillators. First One-Half Cycle Time Always Accurate  
699512f  
19  
For more information www.linear.com/6995  
LTC6995-1/LTC6995-2  
applicaTions inForMaTion  
OUT  
R
PW  
RST  
GND  
SET  
OUT  
2.26k  
+
LTC6995-1  
V
RST  
GND  
SET  
OUT  
+
C
PW  
V
LTC6995-1  
2.25V TO 5.5V  
470pF  
C1  
0.1µF  
R1  
R2  
+
V
R
VCO  
0.1µF  
R1  
1M  
V
DIV  
R
178k  
CTRL  
SET  
R
SET  
DIV  
R2  
523k  
699512 F20  
Figure 20. Voltage-Controlled Oscillator  
V
RST(RISING)  
t
= –R • C • In 1–  
PULSE  
PW  
PW  
+
(
)
V
Digital Frequency Control  
t
t
≈ –2.26kΩ • 470pF • In(1 – 0.61)  
PULSE  
PULSE  
≈ 1µs  
The control voltage can be generated by a DAC (digital-  
to-analog converter), resulting in a digitally-controlled  
frequency. Many DACs allow for the use of an external  
1µs PULSE WIDTH  
60 SECONDS  
reference. If such a DAC is used to provide the V  
CTRL  
699512 F19a  
voltage, the V dependency can be eliminated by buffer-  
SET  
ing V  
and using it as the DAC’s reference voltage, as  
Figure 19a. Self-Resetting Circuit (DIVCODE = 4)  
SET  
shown in Figure 21. The DAC’s output voltage now tracks  
any V variation and eliminates it as an error source.  
The SET pin cannot be tied directly to the reference input  
of the DAC because the current drawn by the DAC’s REF  
input would affect the frequency.  
SET  
OUT  
R
PW  
2.26k  
RST  
GND  
SET  
OUT  
C
PW  
LTC6995-2  
2.25V TO 5.5V  
470pF  
+
V
I
Extremes (Master Oscillator Frequency Extremes)  
SET  
0.1µF  
R1  
R
SET  
523k  
178k  
When operating with I  
outside of the recommended  
SET  
DIV  
1.25µA to 20µA range, the master oscillator operates  
outside of the 62.5kHz to 1MHz range in which it is most  
accurate.  
R2  
1M  
V
RST(FALLING)  
t
= –R • C • In  
PW PW  
PULSE  
+
(
)
V
The oscillator can still function with reduced accuracy for  
t
t
≈ –2.26kΩ • 470pF • In(0.43)  
≈ 0.9µs  
PULSE  
PULSE  
I
<1.25µA.Atapproximately500nA,theoscillatoroutput  
SET  
will be frozen in its current state. The output could halt in  
a high or low state. This avoids introducing short pulses  
when frequency modulating a very low frequency output.  
0.9µs PULSE WIDTH  
60 SECONDS  
699512 F19b  
At the other extreme, it is not recommended to operate  
the master oscillator beyond 2MHz because the accuracy  
of the DIV pin ADC will suffer.  
Figure 19b. Self-Resetting Circuit (DIVCODE = 11)  
699512f  
20  
For more information www.linear.com/6995  
LTC6995-1/LTC6995-2  
applicaTions inForMaTion  
RST  
GND  
SET  
OUT  
+
LTC6995  
V
+
+
V
V
C1  
0.1µF  
0.1µF  
R1  
R2  
DIV  
+
1/2  
LTC6078  
+
V
0.1µF  
1MHz • 50kΩ  
R
D
IN  
4096  
VCO  
SET  
f
=
1 +  
OUT  
(
)
1024 • N • R  
R
DIV  
VCO  
V
REF  
CC  
D
= 0 TO 4095  
IN  
D
IN  
R
VCO  
V
OUT  
µP  
LTC1659  
CLK  
CS/LD  
R
SET  
GND  
699512 F21  
Figure 21. Digitally-Controlled Oscillator  
and by following a few rules, the expected performance is  
easily achieved. Adequate supply bypassing and proper  
PCB layout are important to ensure this.  
Frequency Modulation and Settling Time  
The LTC6995 will respond to changes in I up to a –3dB  
SET  
bandwidth of 0.4 • f  
.
OUT  
Figure22showsexamplePCBlayoutsforboththeTSOT-23  
and DFN packages using 0603 sized passive components.  
The layouts assume a two layer board with a ground plane  
layer beneath and around the LTC6995. These layouts are  
a guide and need not be followed exactly.  
Following a 2× or 0.5× step change in I , the output  
SET  
frequency takes less than one cycle to settle to within 1%  
of the final value.  
Power Supply Current  
+
1. Connect the bypass capacitor, C1, directly to the V and  
The power supply current varies with frequency, supply  
voltage and output loading. It can be estimated under  
any condition using the following equation. This equation  
GND pins using a low inductance path. The connection  
+
from C1 to the V pin is easily done directly on the top  
layer. For the DFN package, C1’s connection to GND is  
alsosimplydoneonthetoplayer.FortheTSOT-23,OUT  
can be routed through the C1 pads to allow a good C1  
GND connection. If the PCB design rules do not allow  
that,C1’sGNDconnectioncanbeaccomplishedthrough  
multiple vias to the ground plane. Multiple vias for both  
the GND pin connection to the ground plane and the  
C1 connection to the ground plane are recommended  
to minimize the inductance. Capacitor C1 should be a  
0.1µF ceramic capacitor.  
ignores C  
(valid for C  
< 1nF) and assumes the  
LOAD  
LOAD  
output has 50% duty cycle.  
V+  
V+  
IS(TYP) V+ fMASTER 7.8pF+  
+ 1.8 ISET +50µA  
+
420k2 RLOAD  
Supply Bypassing and PCB Layout Guidelines  
The LTC6995 is a 2.2% accurate silicon oscillator when  
used in the appropriate manner. The part is simple to use  
699512f  
21  
For more information www.linear.com/6995  
LTC6995-1/LTC6995-2  
applicaTions inForMaTion  
RST  
GND  
SET  
OUT  
LTC6995  
+
+
V
V
C1  
0.1µF  
R1  
R2  
DIV  
R
SET  
+
+
V
+
C1  
V
R1  
C1  
V
OUT  
GND  
RST  
RST  
OUT  
+
DIV  
SET  
GND  
SET  
V
R2  
DIV  
R1  
R
SET  
R
R2  
SET  
699512 F22  
DFN PACKAGE  
TSOT-23 PACKAGE  
Figure 22. Supply Bypassing and PCB Layout  
2. Place all passive components on the top side of the  
board. This minimizes trace inductance.  
4. Connect R directly to the GND pin. Using a long path  
SET  
or vias to the ground plane will not have a significant  
affect on accuracy, but a direct, short connection is  
recommended and easy to apply.  
3. Place R  
as close as possible to the SET pin and  
SET  
make a direct, short connection. The SET pin is a  
current summing node and currents injected into this  
pin directly modulate the operating frequency. Having  
a short connection minimizes the exposure to signal  
pickup.  
5. Use a ground trace to shield the SET pin. This provides  
another layer of protection from radiated signals.  
6. Place R1 and R2 close to the DIV pin. A direct, short  
connection to the DIV pin minimizes the external signal  
coupling.  
699512f  
22  
For more information www.linear.com/6995  
LTC6995-1/LTC6995-2  
Typical applicaTions  
Timed Power Switches, Auto Shutoff After One Hour  
P-CHANNEL  
MOSFET  
*
TO LOAD  
CURRENT DEPENDS  
ON PMOS SELECTION  
3V TO 36V  
0.1µF  
5V  
C
OUT  
LTC4412HV  
SENSE  
V
IN  
PUSH TO ACTIVATE  
GND GATE  
CTL STAT  
*DRAIN-SOURCE DIODE OF MOSFET  
LOW = ON  
HIGH = OFF  
RST  
GND  
SET  
OUT  
LTC6995-1  
100k  
+
V
5V  
0.1µF  
R1  
R
SET  
TO LOAD  
1M  
169k  
2.6V TO 5.5V  
1µF  
IN  
OUT  
LTC4411  
UP TO 2.6A  
DIV  
C
OUT  
R2  
887k  
4.7µF  
GND  
CTL  
ACTIVE HIGH RESET  
1/2 t = 1 HOUR  
OUT  
STAT  
699512 TA08  
5 Second On/Off Timed Relay Driver  
12V  
0.1µF  
L
C
D1  
NO  
1N4148  
RESET  
RST  
1
R4  
15k  
RUN  
RELAY ENABLE  
COTO 1022 RELAY  
9001-12-01  
Q1  
OUT  
2N2219A  
LTC6995-1  
5V  
+
GND  
V
C2  
0.1µF  
R1  
1M  
SET  
DIV  
R2  
392k  
R3  
118k  
699512 TA02  
699512f  
23  
For more information www.linear.com/6995  
LTC6995-1/LTC6995-2  
Typical applicaTions  
1.5ms Radio Control Servo Reference Pulse Generator  
5V  
20ms  
FRAME RATE  
GENERATOR  
1.5ms  
REFERENCE  
PULSE  
R7  
10k  
20ms PERIOD  
RESET = OPEN  
RUN = GND  
RST  
OUT  
TRIG  
OUT  
1.5ms PULSE  
LTC6995-1  
LTC6993-1  
5V  
5V  
+
+
GND  
SET  
V
GND  
SET  
V
C1  
0.01µF  
C2  
0.1µF  
R4  
976k  
R1  
1M  
DIV  
DIV  
R6  
121k  
R3  
146k  
R5  
102k  
R2  
280k  
699512 TA03  
Cycling (10 Seconds On/Off) Symmetrical Power Supplies  
M2  
Si4435DY  
15V  
15V  
IN  
OUT  
R6  
20k  
R2  
1k  
M3  
R11  
5k  
RST  
GND  
SET  
OUT  
Si9410  
LTC6995-1  
+
5V  
V
C1  
R8  
0.1µF  
1M  
M4  
DIV  
Si4435DY  
R10  
237k  
R9  
392k  
R1  
100k  
R3  
50k  
–15V  
IN  
–15V  
OUT  
M1  
Si9410  
699512 TA04  
Isolated AC Load Flasher  
5V  
0.1µF  
R3  
5
+
R4  
R5  
5.94k  
U2  
40W LAMP  
10k  
215Ω  
MOC3041M  
V
1
2
1
6
4
6
4
OPEN = OFF  
GND = ON  
HOT  
117V AC  
RST  
OUT  
R1  
LTC6995-1  
R7  
100Ω  
1M  
3
U3  
NTE5642  
SET  
DIV  
5V  
ZERO  
CROSSING  
GND  
2
R
SET  
R2  
392k  
C2  
0.022µF  
237k  
R6  
10k  
NEUTRAL  
AC  
10 SECONDS ON/OFF  
699512 TA05  
ISOLATION BARRIER = 7500V  
699512f  
24  
For more information www.linear.com/6995  
LTC6995-1/LTC6995-2  
Typical applicaTions  
Interval (Wiper) Timer  
2s  
5s  
15s  
30s  
5V  
+
V
1m  
2m  
4m  
OFF  
OUTPUT  
0.1µF  
RST  
GND  
SET  
OUT  
TRIG  
OUT  
24.9k  
178k  
59k  
2s  
LTC6995-1  
LTC6993-1  
+
+
+
+
2s  
V
V
V
GND  
SET  
V
5s  
15s  
t
0.1µF  
INTERVAL  
1M  
1M  
2 SECONDS TO  
4 MINUTES  
30s  
DIV  
DIV  
1m  
2m  
4m  
383k  
681k  
2s  
29.4k  
90.9k  
OFF  
699512 TA06  
2s  
280k  
113k  
133k  
154k  
5s  
15s  
30s  
1m  
2m  
4m  
OFF  
Adjustable Time Lapse Photography Intervalometer  
SHUTTER  
OPEN  
TIME LAPSE  
TIME LAPSE  
RST  
GND  
SET  
OUT  
TRG  
OUT  
OUTPUT  
LTC6995-1  
LTC6993-3  
+
+
+
+
V
V
GND  
SET  
V
V
0.1µF  
3s TO  
1M  
66.5k  
56.2k  
30m TO  
3Hrs  
DIV  
DIV  
30s  
SHORT  
SHORT  
LONG  
LONG TIMER  
3s TO 3Hrs  
NON-RETRIGGERABLE  
ONE SHOT TIMER  
0.3s TO 30s  
1M  
2M  
30s TO  
3m  
3m TO  
30m  
1M  
2M  
392k  
967k  
LONG  
523k  
681k  
0.3s TO  
3s  
3s TO  
30s  
681k  
887k  
1M  
TIME LAPSE  
EXPOSURE TIME  
699512 TA09  
699512f  
25  
For more information www.linear.com/6995  
LTC6995-1/LTC6995-2  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DCB Package  
6-Lead Plastic DFN (2mm × 3mm)  
(Reference LTC DWG # 05-08-ꢀ7ꢀ5 Rev A)  
0.70 0.05  
ꢀ.65 0.05  
3.55 0.05  
(2 SIDES)  
2.ꢀ5 0.05  
PACKAGE  
OUTLINE  
0.25 0.05  
0.50 BSC  
ꢀ.35 0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.ꢀꢀ5  
2.00 0.ꢀ0  
(2 SIDES)  
0.40 0.ꢀ0  
TYP  
R = 0.05  
TYP  
4
6
3.00 0.ꢀ0 ꢀ.65 0.ꢀ0  
(2 SIDES)  
(2 SIDES)  
PIN ꢀ BAR  
TOP MARK  
(SEE NOTE 6)  
PIN ꢀ NOTCH  
R0.20 OR 0.25  
× 45° CHAMFER  
(DCB6) DFN 0405  
3
0.25 0.05  
0.50 BSC  
0.75 0.05  
0.200 REF  
ꢀ.35 0.ꢀ0  
(2 SIDES)  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
ꢀ. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (TBD)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.ꢀ5mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN ꢀ LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
699512f  
26  
For more information www.linear.com/6995  
LTC6995-1/LTC6995-2  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
699512f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
27  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LTC6995-1/LTC6995-2  
Typical applicaTion  
Sentry Timer  
+
V
Q
CLK  
D
+
V
FF  
+
Q
V
100k  
CLR  
PUSH BUTTON  
EVERY 4 HOURS OR  
ALARM SOUNDS  
RST  
GND  
SET  
OUT  
LTC6995-2  
15Ω  
32Ω  
+
+
800Hz  
ALARM TONE  
DIVCODE = 0  
V
V
4 HOUR TIMER  
DIVCODE = 7  
R1  
887k  
DIV  
R2  
49.9k  
60.4k  
332k  
75k  
699512 TA07  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
Wide Frequency Range  
Low Power, Wide Frequency Range  
Micropower, I = 35µA at 400kHz  
LTC1799  
1MHz to 33MHz ThinSOT Silicon Oscillator  
1MHz to 20MHz ThinSOT Silicon Oscillator  
LTC6900  
LTC6906/LTC6907 10kHz to 1MHz or 40kHz ThinSOT Silicon Oscillators  
SUPPLY  
LTC6930  
LTC6990  
LTC6991  
LTC6992  
LTC6993  
LTC6994  
Fixed Frequency Oscillator, 32.768kHz to 8.192MHz  
TimerBlox: Voltage-Controlled Silicon Oscillator  
TimerBlox: Very Low Frequency Oscillator with Reset  
0.09% Accuracy, 110µs Start-Up Time, 105µA at 32kHz  
Fixed-Frequency or Voltage-Controlled Operation  
Cycle Time from 1ms to 9.5 Hours, No Capacitors, 2.2% Accurate  
Simple PWM with Wide Frequency Range  
TimerBlox: Voltage-Controlled Pulse Width Modulator (PWM)  
TimerBlox: Monostable Pulse Generator (One Shot)  
TimerBlox: Delay Block/Debouncer  
Resistor Programmable Pulse Width of 1µs to 34sec  
Delays Rising, Falling or Both Edges 1µs to 34sec  
699512f  
LT 0213 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
28  
LINEAR TECHNOLOGY CORPORATION 2013  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/6995  

相关型号:

LTC6993-1

TimerBlox: Monostable
Linear

LTC6993-1_15

Monostable Pulse Generator
Linear

LTC6993-2

TimerBlox: Monostable
Linear

LTC6993-2_15

Monostable Pulse Generator
Linear

LTC6993-3

TimerBlox: Monostable
Linear

LTC6993-3_15

Monostable Pulse Generator
Linear

LTC6993-4

TimerBlox: Monostable
Linear

LTC6993-4_15

Monostable Pulse Generator
Linear

LTC6993CDCB-3#TRMPBF

LTC6993 - TimerBlox: Monostable Pulse Generator (One Shot); Package: DFN; Pins: 6; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6993CDCB-3#TRPBF

LTC6993 - TimerBlox: Monostable Pulse Generator (One Shot); Package: DFN; Pins: 6; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6993CS6-1#TRMPBF

LTC6993 - TimerBlox: Monostable Pulse Generator (One Shot); Package: SOT; Pins: 6; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6993CS6-2#PBF

LTC6993 - TimerBlox: Monostable Pulse Generator (One Shot); Package: SOT; Pins: 6; Temperature Range: 0&deg;C to 70&deg;C
Linear