LTC6994-1 [Linear]

TimerBlox: Delay Block/ Debouncer; TimerBlox系列:延迟模块/去抖
LTC6994-1
型号: LTC6994-1
厂家: Linear    Linear
描述:

TimerBlox: Delay Block/ Debouncer
TimerBlox系列:延迟模块/去抖

文件: 总24页 (文件大小:391K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6994-1/LTC6994-2  
TimerBlox: Delay Block/  
Debouncer  
FEATURES  
DESCRIPTION  
The LTC®6994 is a programmable delay block with a  
range of 1µs to 33.6 seconds. The LTC6994 is part of the  
TimerBlox™ family of versatile silicon timing devices.  
n
Delay Range: 1µs to 33.6 Seconds  
n
Configured with 1 to 3 Resistors  
n
Delay Max Error:  
– <2.3% for Delay > 512µs  
A single resistor, R , programs an internal master os-  
SET  
– <3.4% for Delay of 8µs to 512µs  
– <5.1% for Delay of 1µs to 8µs  
cillator frequency, setting the LTC6994’s time base. The  
input-to-output delay is determined by this master oscil-  
n
Delay One or Both Rising/Falling Edges  
lator and an internal clock divider, N , programmable to  
DIV  
n
2.25V to 5.5V Single Supply Operation  
21  
eight settings from 1 to 2 :  
n
70µA Supply Current at 10µs Delay  
n
NDIV RSET  
500µs Start-Up Time  
tDELAY  
=
1µs, NDIV = 1, 8, 64,...,221  
n
CMOS Output Driver Sources/Sinks 20mA  
50kΩ  
n
–40°C to 125°C Operating Temperature Range  
The output (OUT) follows the input (IN) after delaying the  
rising and/or falling transitions. The LTC6994-1 will delay  
the rising or falling edge. The LTC6994-2 will delay both  
transitions, and adds the option to invert the output.  
n
Available in Low Profile (1mm) SOT-23 (ThinSOT™)  
and 2mm × 3mm DFN  
APPLICATIONS  
DEVICE  
DELAY FUNCTION  
n
Noise Discriminators/Pulse Qualifiers  
LTC6994-1  
or  
n
Delay Matching  
n
Switch Debouncing  
n
High Vibration, High Acceleration Environments  
LTC6994-2  
or  
n
Portable and Battery-Powered Equipment  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
TimerBlox and ThinSOT are trademarks of Linear Technology Corporation. All other trademarks  
are the property of their respective owners.  
The LTC6994 also offers the ability to dynamically adjust  
the delay time via a separate control voltage.  
The LTC6994 is available in the 6-lead SOT-23 (ThinSOT)  
and 6-lead 2mm × 3mm DFN packages.  
TYPICAL APPLICATION  
Noise Discriminator  
NOISY  
INPUT  
QUALIFIED  
OUTPUT  
IN  
2V/DIV  
IN  
OUT  
LTC6994-2  
3.3V  
+
1.5µs  
1.5µs  
GND  
SET  
V
0.1µF  
OUT  
2V/DIV  
DIV  
R
SET  
699412 TA01b  
699412 TA01a  
20µs/DIV  
75k  
699412f  
1
LTC6994-1/LTC6994-2  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
+
Supply Voltage (V ) to GND ........................................6V  
Specified Temperature Range (Note 3)  
Maximum Voltage on Any Pin  
LTC6994C ................................................ 0°C to 70°C  
LTC6994I .............................................–40°C to 85°C  
LTC6994H.......................................... –40°C to 125°C  
Junction Temperature ........................................... 150°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
+
..................................(GND – 0.3V) ≤ V ≤ (V + 0.3V)  
PIN  
Operating Temperature Range (Note 2)  
LTC6994C ............................................–40°C to 85°C  
LTC6994I .............................................–40°C to 85°C  
LTC6994H.......................................... –40°C to 125°C  
S6 Package.......................................................300°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
+
6
5
4
OUT  
GND  
IN  
V
1
2
3
IN 1  
GND 2  
SET 3  
6 OUT  
7
DIV  
SET  
+
5 V  
4 DIV  
DCB PACKAGE  
S6 PACKAGE  
6-LEAD (2mm × 3mm) PLASTIC DFN  
= 150°C, θ = 64°C/W, θ = 10.6°C/W  
6-LEAD PLASTIC TSOT-23  
T
T
JMAX  
= 150°C, θ = 192°C/W, θ = 51°C/W  
JMAX  
JA  
JC  
JA  
JC  
EXPOSED PAD (PIN 7) CONNECTED TO GND,  
PCB CONNECTION OPTIONAL  
ORDER INFORMATION  
Lead Free Finish  
TAPE AND REEL (MINI)  
LTC6994CDCB-1#TRMPBF LTC6994CDCB-1#TRPBF LFCT  
LTC6994IDCB-1#TRMPBF LTC6994IDCB-1#TRPBF LFCT  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
0°C to 70°C  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead Plastic TSOT-23  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTC6994HDCB-1#TRMPBF LTC6994HDCB-1#TRPBF LFCT  
LTC6994CDCB-2#TRMPBF LTC6994CDCB-2#TRPBF LFCW  
LTC6994IDCB-2#TRMPBF LTC6994IDCB-2#TRPBF  
LFCW  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTC6994HDCB-2#TRMPBF LTC6994HDCB-2#TRPBF LFCW  
LTC6994CS6-1#TRMPBF  
LTC6994IS6-1#TRMPBF  
LTC6994HS6-1#TRMPBF  
LTC6994CS6-2#TRMPBF  
LTC6994IS6-2#TRMPBF  
LTC6994HS6-2#TRMPBF  
LTC6994CS6-1#TRPBF  
LTC6994IS6-1#TRPBF  
LTC6994HS6-1#TRPBF  
LTC6994CS6-2#TRPBF  
LTC6994IS6-2#TRPBF  
LTC6994HS6-2#TRPBF  
LTFCV  
LTFCV  
LTFCV  
LTFCX  
LTFCX  
LTFCX  
6-Lead Plastic TSOT-23  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
–40°C to 85°C  
–40°C to 125°C  
6-Lead Plastic TSOT-23  
TRM = 500 pieces. *Temperature grades are identified by a label on the shipping container.  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
699412f  
2
LTC6994-1/LTC6994-2  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. Test conditions are V+ = 2.25V to 5.5V, IN = 0V, DIVCODE = 0 to 15  
(NDIV = 1 to 221), RSET = 50k to 800k, RLOAD = 5k, CLOAD = 5pF unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
t
Delay Time  
1µ  
33.55  
sec  
DELAY  
Delay Accuracy (Note 4)  
N
≥ 512  
1.7  
2.4  
3.8  
2.3  
3.0  
%
%
t  
DELAY  
DIV  
l
l
l
8 ≤ N ≤ 64  
3.4  
4.4  
%
%
DIV  
N
DIV  
= 1  
5.1  
6.2  
%
%
l
l
Delay Drift Over Temperature  
Delay Change With Supply  
N
N
≥ 512  
≤ 64  
0.006  
0.008  
%/°C  
%/°C  
t /T  
DELAY  
DIV  
DIV  
+
+
l
l
N
≥ 512  
V = 4.5V to 5.5V  
–0.6  
–0.4  
–0.2  
–0.1  
%
%
DIV  
V = 2.25V to 4.5V  
+
+
l
l
l
8 ≤ N ≤ 64  
V = 4.5V to 5.5V  
–0.9  
–0.7  
–1.1  
–0.2  
–0.2  
–0.1  
%
%
%
DIV  
V = 2.7V to 4.5V  
0.4  
0.9  
+
V = 2.25V to 2.7V  
+
+
Delay Jitter (Note 10)  
N
DIV  
= 1  
V = 5.5V  
1.0  
0.5  
%
P-P  
%
P-P  
V = 2.25V  
N
N
N
N
= 8  
0.20  
0.05  
0.20  
0.03  
%
%
%
%
DIV  
P-P  
P-P  
P-P  
= 64  
DIV  
= 512  
= 4096  
DIV  
DIV  
P-P  
t
Delay Change Settling Time (Note 9)  
t
= t  
/N  
6 • t  
µs  
S
MASTER  
DELAY DIV  
MASTER  
Power Supply  
+
l
l
V
Operating Supply Voltage Range  
Power-On Reset Voltage  
Supply Current (Idle)  
2.25  
5.5  
V
V
1.95  
+
+
l
l
I
R = ∞, R = 50k, N ≤ 64  
V = 5.5V  
165  
125  
200  
160  
µA  
µA  
S(IDLE)  
L
SET  
DIV  
V = 2.25V  
+
+
l
l
R = ∞, R = 50k, N ≥ 512 V = 5.5V  
135  
105  
175  
140  
µA  
µA  
L
SET  
DIV  
V = 2.25V  
+
+
l
l
R = ∞, R = 800k, N ≤ 64 V = 5.5V  
70  
60  
110  
95  
µA  
µA  
L
SET  
DIV  
V = 2.25V  
+
+
l
l
R = ∞, R = 800k, N ≥ 512 V = 5.5V  
65  
55  
100  
90  
µA  
µA  
L
SET  
DIV  
V = 2.25V  
Analog Inputs  
l
l
l
l
l
V
Voltage at SET Pin  
0.97  
1.00  
75  
1.03  
V
SET  
V
Drift Over Temperature  
µV/°C  
kΩ  
V
V /T  
SET  
SET  
R
Frequency-Setting Resistor  
DIV Pin Voltage  
50  
0
800  
SET  
DIV  
+
V
V
+
DIV Pin Valid Code Range (Note 5)  
Deviation from Ideal  
DIV  
1.5  
%
V /V  
DIV  
+
V
/V = (DIVCODE + 0.5)/16  
l
DIV Pin Input Current  
10  
nA  
699412f  
3
LTC6994-1/LTC6994-2  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. Test conditions are V+ = 2.25V to 5.5V, IN = 0V, DIVCODE = 0 to 15  
(NDIV = 1 to 221), RSET = 50k to 800k, RLOAD = , CLOAD = 5pF unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Digital I/O  
IN Pin Input Capacitance  
IN Pin Input Current  
2.5  
pF  
nA  
V
+
IN = 0V to V  
10  
+
l
l
V
V
High Level IN Pin Input Voltage  
Low Level IN Pin Input Voltage  
Output Current  
(Note 6)  
(Note 6)  
0.7 • V  
IH  
+
0.3 • V  
V
IL  
+
I
V = 2.7V to 5.5V  
20  
mA  
OUT(MAX)  
+
l
l
V
High Level Output Voltage (Note 7)  
V = 5.5V  
I
I
= –1mA  
= –16mA  
5.45  
4.84  
5.48  
5.15  
V
V
OH  
OUT  
OUT  
+
l
l
V = 3.3V  
I
I
= –1mA  
= –10mA  
3.24  
2.75  
3.27  
2.99  
V
V
OUT  
OUT  
+
l
l
V = 2.25V  
I
I
= –1mA  
= –8mA  
2.17  
1.58  
2.21  
1.88  
V
V
OUT  
OUT  
+
l
l
V
Low Level Output Voltage (Note 7)  
V = 5.5V  
I
I
= 1mA  
= 16mA  
0.02  
0.26  
0.04  
0.54  
V
V
OL  
OUT  
OUT  
+
l
l
V = 3.3V  
I
I
= 1mA  
= 10mA  
0.03  
0.22  
0.05  
0.46  
V
V
OUT  
OUT  
+
l
l
V = 2.25V  
I
I
= 1mA  
= 8mA  
0.03  
0.26  
0.07  
0.54  
V
V
OUT  
OUT  
+
t
PD  
Propagation Delay  
V = 5.5V  
10  
14  
24  
ns  
ns  
ns  
+
V = 3.3V  
+
V = 2.25V  
+
t
t
Minimum Recognized Input Pulse Width  
Output Rise Time (Note 8)  
V = 3.3V  
5
ns  
WIDTH  
r
+
V = 5.5V  
1.1  
1.7  
2.7  
ns  
ns  
ns  
+
V = 3.3V  
+
V = 2.25V  
+
t
Output Fall Time (Note 8)  
V = 5.5V  
1.0  
1.6  
2.4  
ns  
ns  
ns  
f
+
V = 3.3V  
+
V = 2.25V  
Note 6: The IN pin has hysteresis to accommodate slow rising or falling  
signals. The threshold voltages are proportional to V . Typical values can  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
+
be estimated at any supply voltage using:  
+
+
V
≈ 0.55 • V + 185mV and V  
≈ 0.48 • V – 155mV  
IN(RISING)  
IN(FALLING)  
Note 2: The LTC6994C is guaranteed functional over the operating  
temperature range of –40°C to 85°C.  
Note 7: To conform to the Logic IC Standard, current out of a pin is  
arbitrarily given a negative value.  
Note 3: The LTC6994C is guaranteed to meet specified performance from  
0°C to 70°C. The LTC6994C is designed, characterized and expected to  
meet specified performance from –40°C to 85°C but it is not tested or  
QA sampled at these temperatures. The LTC6994I is guaranteed to meet  
specified performance from –40°C to 85°C. The LTC6994H is guaranteed  
to meet specified performance from –40°C to 125°C.  
Note 8: Output rise and fall times are measured between the 10% and the  
90% power supply levels with 5pF output load. These specifications are  
based on characterization.  
Note 9: Settling time is the amount of time required for the output to settle  
within 1% of the final delay after a 0.5× or 2× change in I  
.
SET  
Note 10: Jitter is the ratio of the deviation of the programmed delay to the  
mean of the delay. This specification is based on characterization and is  
not 100% tested.  
Note 4: Delay accuracy is defined as the deviation from the t  
DELAY  
equation, assuming R is used to program the delay.  
SET  
Note 5: See Operation section, Table 1 and Figure 2 for a full explanation  
of how the DIV pin voltage selects the value of DIVCODE.  
699412f  
4
LTC6994-1/LTC6994-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
V+ = 3.3V, RSET = 200k and TA = 25°C unless otherwise noted.  
Delay Drift vs Temperature  
(NDIV ≤ 64)  
Delay Drift vs Temperature  
(NDIV ≤ 64)  
Delay Drift vs Temperature  
(NDIV ≤ 64)  
1.5  
1.0  
0.5  
0
1.5  
1.5  
1.0  
0.5  
0
R
SET  
= 50k  
R
SET  
= 800k  
R
SET  
= 200k  
3 PARTS  
3 PARTS  
3 PARTS  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
50  
TEMPERATURE (°C)  
100 125  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
–50 –25  
0
25  
75  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
699412 G01  
699412 G03  
699412 G02  
Delay Drift vs Temperature  
(NDIV ≥ 512)  
Delay Drift vs Temperature  
(NDIV ≥ 512)  
Delay Drift vs Temperature  
(NDIV ≥ 512)  
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
R
SET  
= 200k  
R
SET  
= 800k  
R
SET  
= 50k  
3 PARTS  
3 PARTS  
3 PARTS  
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
50  
TEMPERATURE (°C)  
100 125  
50  
TEMPERATURE (°C)  
100 125  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
–50 –25  
0
25  
75  
–50 –25  
0
25  
75  
699412 G05  
699412 G06  
699412 G04  
Delay Drift vs Supply Voltage  
(NDIV = 1)  
Delay Drift vs Supply Voltage  
(NDIV = 1)  
Delay Drift vs Supply Voltage  
(NDIV > 1)  
1.0  
0.8  
1.0  
0.8  
1.0  
0.8  
+
RISING EDGE DELAY  
FALLING EDGE DELAY  
REFERENCED TO V = 4V  
+
+
REFERENCED TO V = 4V  
REFERENCED TO V = 4V  
0.6  
0.6  
0.6  
0.4  
0.4  
0.4  
0.2  
0.2  
0.2  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
R
R
R
= 50k  
= 200k  
= 800k  
R
R
R
= 50k  
= 200k  
= 800k  
R
R
R
= 50k, N = 8  
DIV  
SET  
SET  
SET  
SET  
SET  
SET  
SET  
SET  
SET  
= 50k TO 800k, N ≥ 512  
DIV  
= 800k, N = 8  
DIV  
2
3
4
5
6
2
3
4
5
6
2
3
4
6
5
SUPPLY (V)  
SUPPLY (V)  
SUPPLY (V)  
699412 G07  
699412 G08  
699412 G09  
699412f  
5
LTC6994-1/LTC6994-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
V+ = 3.3V, RSET = 200k and TA = 25°C unless otherwise noted.  
Delay Error vs RSET  
(8 ≤ NDIV ≤ 64)  
Delay Error vs RSET (NDIV = 1)  
Delay Error vs RSET (NDIV ≥ 512)  
5
4
5
4
5
4
3 PARTS  
RISING EDGE DELAY  
3 PARTS  
3 PARTS  
3
3
3
2
2
2
1
1
1
0
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
50  
100  
200  
(kΩ)  
400  
800  
50  
100  
200  
(kΩ)  
400  
800  
50  
100  
200  
(kΩ)  
400  
800  
R
R
R
SET  
SET  
SET  
699412 G12  
699412 G10  
699412 G11  
Delay Error vs RSET (NDIV =1)  
Delay Error vs DIVCODE  
Delay Error vs DIVCODE  
5
4
5
4
5
4
FALLING EDGE DELAY  
3 PARTS  
LTC6994-1  
LTC6994-1  
R
= 50k  
R
= 800k  
SET  
SET  
3 PARTS  
3 PARTS  
3
3
3
2
2
2
1
1
1
0
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
RISING EDGE  
FALLING EDGE  
DELAY  
RISING EDGE  
FALLING EDGE  
DELAY  
DELAY  
DELAY  
50  
100  
200  
(kΩ)  
400  
800  
0
2
4
6
8
10  
12  
14  
0
2
4
6
8
10  
12  
14  
R
DIVCODE  
DIVCODE  
SET  
699412 G13  
699412 G14  
699412 G15  
VSET Drift vs ISET  
VSET Drift vs Supply Voltage  
VSET vs Temperature  
1.0  
0.8  
1.0  
0.8  
1.020  
1.015  
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
0.980  
3 PARTS  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
+
REFERENCED TO I  
= 10µA  
REFERENCED TO V = 4V  
SET  
20  
2
4
5
6
0
10  
(µA)  
15  
3
5
–50  
0
25  
50  
75 100 125  
–25  
I
SUPPLY (V)  
TEMPERATURE (°C)  
SET  
699412 G16  
699412 G17  
699412 G18  
699412f  
6
LTC6994-1/LTC6994-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
V+ = 3.3V, RSET = 200k and TA = 25°C unless otherwise noted.  
Typical VSET Distribution  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
300  
250  
2 LOTS  
DFN AND SOT-23  
1274 UNITS  
LTC6994-1  
LTC6994-1  
R
= 50k,  
SET  
I
MEASURED  
I
MEASURED  
S(ACTIVE)  
÷1, ACTIVE  
S(ACTIVE)  
WITH f = 1/(2 • t  
)
WITH f = 1/(2 • t  
)
IN  
DELAY  
IN  
DELAY  
R
SET  
= 50k, ÷1, ACTIVE  
200  
150  
R
SET  
= 50k,  
÷1, IDLE  
R
= 50k, ÷1, IDLE  
SET  
R
= 100k, ÷8, ACTIVE  
= 100k, ÷8, IDLE  
SET  
R
SET  
= 100k, ÷8, ACTIVE  
R
100  
50  
0
SET  
R
= 100k, ÷8, IDLE  
SET  
R
SET  
= 800k, ÷512  
R
SET  
= 800k, ÷512  
C
R
= 5pF  
= ∞  
C
R
= 5pF  
= ∞  
LOAD  
LOAD  
LOAD  
LOAD  
0
0
–50 –25  
0
25  
50  
75 100 125  
0.98  
0.996  
V
1.004  
(V)  
1.012  
1.02  
0.988  
2
3
4
5
6
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
SET  
699412 G19  
699412 G21  
699412 G20  
Supply Current vs IN Pin Voltage  
Supply Current vs tDELAY (5V)  
Supply Current vs tDELAY (2.5V)  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
ACTIVE CURRENT MEASURED  
USING LTC6994-1 WITH  
ACTIVE CURRENT MEASURED  
USING LTC6994-1 WITH  
f
IN  
= 1/(2 • t  
)
f
= 1/(2 • t  
)
DELAY  
5V  
5V  
IN RISING  
IN  
DELAY  
IN FALLING  
÷1  
÷8  
÷1  
+
3.3V  
IN RISING  
3.3V  
IN FALLING  
÷8  
+
V
= 5V  
V
= 2.5V  
C
R
= 5pF  
= ∞  
C
= 5pF  
= ∞  
C
= 5pF  
= ∞  
ACTIVE  
IDLE  
ACTIVE  
IDLE  
LOAD  
LOAD  
LOAD  
LOAD  
R
R
LOAD  
LOAD  
0
0
0
0
0.2  
0.4  
0.6  
/V (V/V)  
0.8  
1.0  
0.001  
0.01  
0.1  
1
(ms)  
10  
100  
0.001  
0.01  
0.1  
t
DELAY  
1
(ms)  
10  
100  
+
t
V
DELAY  
IN  
699412 G23  
699412 G24  
699412 G22  
IN Threshold Voltage  
vs Supply Voltage  
Typical ISET Current Limit vs V+  
Peak-to-Peak Jitter vs tDELAY  
1.2  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1000  
800  
600  
400  
200  
0
SET PIN SHORTED TO GND  
PEAK-TO-PEAK  
DELAY  
MEASURED OVER  
30s INTERVALS  
÷1, 5.5V  
t
VARIATION  
1.0  
0.8  
POSITIVE GOING  
NEGATIVE GOING  
0.6  
0.4  
÷1, 2.25V  
÷8, 5.5V  
÷512  
0.2  
0
÷64  
÷4096  
÷8, 2.25V  
0.01  
2
3
4
5
6
0.001  
0.1  
t
1
10  
100  
2
3
4
5
6
SUPPLY VOLTAGE (V)  
(ms)  
SUPPLY VOLTAGE (V)  
DELAY  
699412 G25  
699412 G27  
699412 G26  
699412f  
7
LTC6994-1/LTC6994-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
V+ = 3.3V, RSET = 200k and TA = 25°C unless otherwise noted.  
Input Propagation Delay (tPD  
)
Rise and Fall Time  
vs Supply Voltage  
Output Resistance  
vs Supply Voltage  
vs Supply Voltage  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
C
= 5pF  
C
= 5pF  
LOAD  
LOAD  
OUTPUT SOURCING CURRENT  
t
RISE  
t
FALL  
OUTPUT SINKING CURRENT  
0
0
2
3
4
5
6
2
3
4
5
6
2
3
4
5
6
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
699412 G29  
699412 G30  
699412 G28  
Start-Up, RSET = 800k  
(LTC6994-1)  
Start-Up, RSET = 50k  
(LTC6994-2, POL = 1)  
+
+
V
V
7.2ms  
500µs  
2V/DIV  
2V/DIV  
IN  
2V/DIV  
IN  
2V/DIV  
OUT  
2V/DIV  
OUT  
2V/DIV  
+
+
699412 G31  
699412 G32  
V
= 2.5V  
1ms/DIV  
V
= 2.5V  
100µs/DIV  
PIN FUNCTIONS  
V (Pin1/Pin5):SupplyVoltage(2.25Vto5.5V).Thissup-  
ply should be kept free from noise and ripple. It should be  
bypassed directly to the GND pin with a 0.1µF capacitor.  
(DCB/S6)  
+
SET (Pin 3/Pin 3): Delay Setting Input. The voltage on the  
SET pin (V ) is regulated to 1V above GND. The amount  
SET  
of current sourced from the SET pin (I ) programs the  
SET  
master oscillator frequency. The I  
current range is  
SET  
DIV (Pin 2/Pin 4): Programmable Divider and Polarity  
1.25µA to 20µA. The delayed output transition will be not  
occur if I drops below approximately 500nA. Once I  
Input. The DIV pin voltage (V ) is internally converted  
DIV  
SET  
SET  
into a 4-bit result (DIVCODE). V may be generated by  
DIV  
increases above 500nA the delayed edge will transition.  
A resistor connected between SET and GND is the most  
accurate way to set the delay. For best performance, use  
a precision metal or thin film resistor of 0.5% or better  
toleranceand50ppm/°Corbettertemperaturecoefficient.  
For lower accuracy applications an inexpensive 1% thick  
film resistor may be used.  
+
a resistor divider between V and GND. Use 1% resistors  
to ensure an accurate result. The DIV pin and resistors  
should be shielded from the OUT pin or any other traces  
that have fast edges. Limit the capacitance on the DIV pin  
to less than 100pF so that V settles quickly. The MSB  
DIV  
of DIVCODE (POL) selects the delay functionality. For the  
LTC6994-1, POL = 0 will delay the rising transition and  
POL = 1 will delay the falling transition. For the LTC6994-  
2, both transitions are delayed so POL = 1 can be used  
to invert the output.  
Limit the capacitance on the SET pin to less than 10pF  
to minimize jitter and ensure stability. Capacitance less  
699412f  
8
LTC6994-1/LTC6994-2  
PIN FUNCTIONS (DCB/S6)  
than 100pF maintains the stability of the feedback circuit  
IN(Pin4/Pin1):LogicInput.Dependingontheversionand  
POL bit setting, rising or falling edges on IN will propagate  
to OUT after a programmable delay. The LTC6994-1 will  
delay only the rising or falling edge. The LTC6994-2 will  
delay both edges.  
regulating the V voltage.  
SET  
+
V
IN  
OUT  
LTC6994  
+
V
GND(Pin5/Pin2):Ground.Tietoalowinductanceground  
plane for best performance.  
+
GND  
SET  
V
C1  
0.1µF  
R1  
R2  
OUT (Pin 6/Pin 6): Output. The OUT pin swings from  
DIV  
+
GND to V with an output resistance of approximately  
699412 PF  
R
SET  
30Ω. When driving an LED or other low impedance load a  
series output resistor should be used to limit source/sink  
current to 20mA.  
BLOCK DIAGRAM (S6 package pin numbers shown)  
5
+
V
R1  
POL  
DIV  
IN  
4-BIT A/D  
CONVERTER  
DIGITAL  
FILTER  
4
1
R2  
INPUT  
BUFFER  
EDGE-  
OUTPUT  
OUT  
CONTROLLED  
DELAY  
6
POLARITY  
MASTER OSCILLATOR  
(LTC6994-2)  
LOGIC  
1µs  
50kΩ  
V
I
SET  
SET  
PROGRAMMABLE DIVIDER  
t
=
MASTER  
MCLK  
÷1, 8, 64, 512, 4096,  
15 18 21  
2
, 2 , 2  
POR  
HALT OSCILLATOR  
IF I < 500nA  
SET  
I
SET  
+
+
1V  
V
SET  
= 1V  
SET  
3
GND  
2
699412 BD  
I
SET  
R
SET  
699412f  
9
LTC6994-1/LTC6994-2  
OPERATION  
The LTC6994 is built around a master oscillator with a 1µs  
DIVCODE  
minimum period. The oscillator is controlled by the SET  
+
TheDIVpinconnectstoaninternal,V referenced4-bitA/D  
converter that determines the DIVCODE value. DIVCODE  
programs two settings on the LTC6994:  
pin current (I ) and voltage (V ), with a 1µs/50kΩ  
SET  
SET  
conversion factor that is accurate to 1.7% under typical  
conditions.  
1. DIVCODE determines the frequency divider setting,  
VSET  
1µs  
50kISET  
N .  
DIV  
tMASTER  
=
2. The DIVCODE MSB is the POL bit, and configures a  
different polarity setting on the two versions.  
A feedback loop maintains V at 1V 30mV, leaving I  
SET  
SET  
as the primary means of controlling the input-to-output  
a. LTC6994-1:POLselectsrisingorfalling-edgedelays.  
POL = 0 will delay rising-edge transitions. POL = 1  
will delay falling-edge transitions.  
delay. The simplest way to generate I is to connect a  
SET  
resistor (R ) between SET and GND, such that I  
=
SET  
SET  
V
/R . The master oscillator equation reduces to:  
SET SET  
b. LTC6994-2: POL selects the output inversion.  
POL = 1 inverts the output signal.  
RSET  
50kΩ  
tMASTER = 1µs•  
V
may be generated by a resistor divider between V+  
DIV  
and GND as shown in Figure 1.  
From this equation, it is clear that V drift will not affect  
SET  
the input-to-output delay when using a single program  
2.25V TO 5.5V  
resistor (R ). Error sources are limited to R  
toler-  
of the LTC6994.  
SET  
SET  
+
V
ance and the inherent accuracy t  
DELAY  
R1  
R2  
LTC6994  
R
may range from 50k to 800k (equivalent to I  
SET  
SET  
DIV  
between 1.25µA and 20µA).  
GND  
When the input makes a transition that will be delayed  
(as determined by the part version and POL bit setting),  
the master oscillator is enabled to time the delay. When  
the desired duration is reached, the output is allowed to  
transition.  
699412 F01  
Figure 1. Simple Technique for Setting DIVCODE  
Table 1 offers recommended 1% resistor values that ac-  
curatelyproducethecorrectvoltagedivisionaswellasthe  
correspondingN andPOLvaluesfortherecommended  
resistor pairs. Other values may be used as long as:  
The LTC6994 also includes a programmable frequency  
divider which can further divide the frequency by 1, 8, 64,  
DIV  
15 18  
21  
512, 4096, 2 , 2 or 2 . This extends the delay duration  
by those same factors. The divider ratio N is set by a  
resistor divider attached to the DIV pin.  
DIV  
+
1. The V /V ratio is accurate to 1.5% (including resis-  
DIV  
tor tolerances and temperature effects)  
VSET  
50kISET  
NDIV  
2. The driving impedance (R1||R2) does not exceed  
500kΩ.  
tDELAY  
=
1µs  
With R in place of V /I the equation reduces to:  
SET  
SET SET  
NDIV RSET  
tDELAY  
=
1µs  
50kΩ  
699412f  
10  
LTC6994-1/LTC6994-2  
OPERATION  
If the voltage is generated by other means (i.e., the output  
Forexample,ifthesupplyis3.3VandthedesiredDIVCODE  
+
of a DAC) it must track the V supply voltage. The last  
is 4, V = 0.281 • 3.3V = 928mV ± 50mV.  
DIV  
column in Table 1 shows the ideal ratio of V  
to the  
DIV  
Figure2illustratestheinformationinTable1,showingthat  
supply voltage, which can also be calculated as:  
N
is symmetric around the DIVCODE midpoint.  
DIV  
VDIV  
V+  
DIVCODE+ 0.5  
=
± 1.5%  
16  
Table 1. DIVCODE Programming  
+
DIVCODE  
POL  
0
N
Recommended t  
R1 (k)  
Open  
976  
R2 (k)  
Short  
102  
V
DIV  
/V  
DIV  
DELAY  
0
1
1
1µs to 16µs  
≤ 0.03125 0.015  
0.09375 0.015  
0.15625 0.015  
0.21875 0.015  
0.28125 0.015  
0.34375 0.015  
0.40625 0.015  
0.46875 0.015  
0.53125 0.015  
0.59375 0.015  
0.65625 0.015  
0.71875 0.015  
0.78125 0.015  
0.84375 0.015  
0.90625 0.015  
≥ 0.96875 0.015  
0
8
8µs to 128µs  
64µs to 1.024ms  
2
0
64  
512  
976  
182  
3
0
512µs to 8.192ms  
4.096ms to 65.54ms  
32.77ms to 524.3ms  
262.1ms to 4.194sec  
2.097sec to 33.55sec  
2.097sec to 33.55sec  
262.1ms to 4.194sec  
32.77ms to 524.3ms  
4.096ms to 65.54ms  
512µs to 8.192ms  
64µs to 1.024ms  
1000  
1000  
1000  
1000  
1000  
887  
280  
4
0
4,096  
32,768  
262,144  
2,097,152  
2,097,152  
262,144  
32,768  
4,096  
512  
392  
5
0
523  
6
0
681  
7
0
887  
8
1
1000  
1000  
1000  
1000  
1000  
976  
9
1
681  
10  
11  
12  
13  
14  
15  
1
523  
1
392  
1
280  
1
64  
182  
1
8
8µs to 128µs  
102  
976  
1
1
1µs to 16µs  
Short  
Open  
POL BIT = 0  
POL BIT = 1  
10000  
7
8
6
9
1000  
100  
10  
5
10  
11  
4
12  
3
1
2
13  
0.1  
1
14  
0.01  
0.001  
0
15  
+
+
0V  
0.5V  
V
INCREASING V  
DIV  
699412 F02  
Figure 2. Delay Range and POL Bit vs DIVCODE  
699412f  
11  
LTC6994-1/LTC6994-2  
OPERATION  
Edge-Controlled Delay  
low for the duration of t  
. If IN stays high then OUT  
DELAY  
will transition high after this time. If the input doesn’t  
remain high long enough for OUT to transition high then  
the timing will restart on each successive rising edge. In  
this way, the LTC6994-1 can serve as a pulse qualifier,  
filtering out noisy or short signals.  
The LTC6994 is a programmable delay or pulse qualifier. It  
can perform noise filtering, which distinguishes it from a  
delay line (which simply delays all input transitions).  
WhenthevoltageontheLTC6994inputpin(IN)transitions  
low or high, the LTC6994 can delay the corresponding  
output transition by any time from 1µs to 33.6 seconds.  
On a falling edge at the input, the output will follow im-  
mediately (after a short propagation delay t ).Note that  
PD  
the output pulse width may be extremely short if IN falls  
LTC6994-1 Functionality  
immediately after OUT rises.  
Figures3detailsthebasicoperationoftheLTC6994-1when  
configured to delay rising edge transitions (POL = 0). A  
rising edge on the IN pin initiates the timing. OUT remains  
Figure 4 details the operation of the LTC6994-1 when  
configured to delay falling edges (POL = 1).  
t
WIDTH  
IN  
t
PD  
t
PD  
t
PD  
t
PD  
t
PD  
t
PD  
OUT  
699412 F03  
t
t
t
DELAY  
DELAY  
DELAY  
Figure 3. Rising-Edge Delayed Timing Diagram (LTC6994-1, POL = 0)  
t
WIDTH  
IN  
t
PD  
t
PD  
t
PD  
t
PD  
t
PD  
t
PD  
OUT  
699412 F04  
t
t
DELAY  
t
DELAY  
DELAY  
Figure 4. Falling-Edge Delayed Timing Diagram (LTC6994-1, POL = 1)  
699412f  
12  
LTC6994-1/LTC6994-2  
OPERATION  
LTC6994-2 Functionality  
Iftheinputdoesn’tremainhighorlowlongenoughforOUT  
to follow, the timing will restart on the next transition.  
Figures 5 details the basic operation of the LTC6994-2  
when configured for noninverting operation (POL = 0). As  
before, a rising edge on the IN pin initiates the timing and,  
Also unlike the LTC6994-1, the output pulse width can  
never be less than t  
. Therefore, the LTC6994-2 can  
DELAY  
if IN remains high, OUT will transition high after t  
.
generate pulses with a defined minimum width.  
DELAY  
Unlike the LTC6994-1, falling edges are delayed in the  
same way. When IN transitions low, OUT will follow after  
DELAY  
Figure 6 details the operation of the LTC6994-2 when the  
output is inverted (POL = 1).  
t
.
t
WIDTH  
IN  
t
PD  
t
PD  
t
PD  
t
PD  
t
PD  
OUT  
699412 F05  
t
t
t
DELAY  
t
DELAY  
DELAY  
DELAY  
Figure 5. Both Edges Delayed Timing Diagram (LTC6994-2, POL = 0)  
t
WIDTH  
IN  
t
PD  
t
PD  
t
PD  
t
PD  
t
PD  
699412 F06  
OUT  
t
t
t
t
DELAY  
DELAY  
DELAY  
DELAY  
Figure 6. Both Edges Delayed (Inverting) Timing Diagram (LTC6994-2, POL = 1)  
699412f  
13  
LTC6994-1/LTC6994-2  
OPERATION  
Changing DIVCODE After Start-Up  
Start-Up Time  
Following start-up, the A/D converter will continue  
When power is first applied, the power-on reset (POR)  
monitoring V for changes. Changes to DIVCODE will  
circuit will initiate the start-up time, t  
. The OUT pin  
DIV  
START  
be recognized slowly, as the LTC6994 places a priority on  
eliminating any “wandering” in the DIVCODE. The typical  
delay depends on the difference between the old and  
new DIVCODE settings and is proportional to the master  
oscillator period.  
is held low during this time and the IN pin has no control  
over the output. The typical value for t ranges from  
START  
0.5msto8msdependingonthemasteroscillatorfrequency  
(independent of N ):  
DIV  
t
= 500 • t  
MASTER  
START(TYP)  
t
= 16 • (DIVCODE + 6) • t  
MASTER  
DIVCODE  
Duringstart-up,theDIVpinA/Dconvertermustdetermine  
the correct DIVCODE before the LTC6994 can respond  
to an input. The start-up time may increase if the supply  
or DIV pin voltages are not stable. For this reason, it is  
recommended to minimize the capacitance on the DIV  
AchangeinDIVCODEwillnotberecognizeduntilitisstable,  
andwillnotpassthroughintermediatecodes.Adigitalfilter  
is used to guarantee the DIVCODE has settled to a new  
value before making changes to the output. However, if  
the delay timing is active during the transition, the actual  
delay can take on a value between the two settings.  
+
pin so it will properly track V . Less than 100pF will not  
extend the start-up time.  
At the end of t  
the DIVCODE and IN pin settings are  
START  
DIV  
500mV/DIV  
recognized, and the state of the IN pin is transferred to the  
512µs  
output (without additional delay). If IN is high at the end of  
IN  
2V/DIV  
t
, OUT will go high. Otherwise OUT will remain low.  
START  
4µs  
256µs  
The LTC6994-2 with POL = 1 is the exception because it  
inverts the signal. At this point, the LTC6994 is ready to  
respond to rising/falling edges on the input.  
OUT  
2V/DIV  
699412 F07a  
LTC6994-1  
500µs/DIV  
+
V
= 3.3V  
= 200k  
R
SET  
+
V
Figure 7a. DIVCODE Change from 0 to 2  
IN  
DIV  
500mV/DIV  
512µs  
t
PD  
t
START  
IF IN = 1 AT END OF t  
*
*
IN  
2V/DIV  
START  
(IN IGNORED)  
OUT  
IF IN = 0 AT END OF t  
START  
256µs  
4µs  
699412 F08  
OUT  
2V/DIV  
*LTC6994-2 WITH POL = 1 INVERTS THE OUTPUT  
Figure 8. Start-Up Timing Diagram  
699412 F07b  
LTC6994-1  
+
500µs/DIV  
V
R
= 3.3V  
= 200k  
SET  
Figure 7b. DIVCODE Change from 2 to 0  
699412f  
14  
LTC6994-1/LTC6994-2  
APPLICATIONS INFORMATION  
Basic Operation  
Example: Design a circuit to delay falling edges by  
DELAY  
t
= 100µs with minimum power consumption.  
The simplest and most accurate method to program the  
LTC6994 is to use a single resistor, R , between the  
SET  
Step 1: Select the LTC6994 Version and POL Bit Setting.  
SET and GND pins. The design procedure is a 3-step  
To delay negative transitions, choose the LTC6994-1 with  
POL = 1.  
process.  
Step 1: Select the LTC6994 Version and POL Bit Setting.  
Step 2: Select the N Frequency Divider Value.  
DIV  
Choose LTC6994-1 to delay one (rising or falling) input  
transition. The POL bit then defines which edge is to be  
delayed. POL = 0 delays rising edges. POL = 1 delays  
falling edges.  
Choose an N  
value that meets the requirements of  
DIV  
Equation (1), using t  
= 100µs:  
DELAY  
6.25 ≤ N ≤ 100  
DIV  
Choose LTC6994-2 to delay rising and falling edges. Set  
POL = 0 for normal operation, or POL = 1 to invert the  
output.  
Potential settings for N include 8 and 64. N = 8 is  
DIV  
DIV  
the best choice, as it minimizes supply current by us-  
ing a large R resistor. POL = 1 and N = 8 requires  
SET  
DIV  
DIVCODE = 14. Using Table 1, choose R1 = 102k and R2  
= 976k values to program DIVCODE = 14.  
Step 2: Select the N Frequency Divider Value.  
DIV  
As explained earlier, the voltage on the DIV pin sets the  
DIVCODE which determines both the POL bit and the  
Step 3: Select R  
.
SET  
N
value. For a given delay time (t  
), N should  
DIV  
DELAY DIV  
Calculate the correct value for R using Equation (2).  
SET  
be selected to be within the following range:  
50k 100µs  
1µs  
RSET  
=
= 625k  
tDELAY  
16µs  
tDELAY  
1µs  
8
NDIV  
(1)  
Since 625k is not available as a standard 1% resistor,  
To minimize supply current, choose the lowest N value.  
DIV  
substitute 619k if a –0.97% shift in t is acceptable.  
DELAY  
However,insomecasesahighervalueforN willprovide  
DIV  
Otherwise, select a parallel or series pair of resistors such  
as 309k and 316k to attain a more precise resistance.  
better accuracy (see Electrical Characteristics).  
Table 1 can also be used to select the appropriate N  
DIV  
The completed design is shown in Figure 9.  
values for the desired t  
.
DELAY  
With POL already chosen, this completes the selection of  
IN  
OUT  
LTC6994-1  
DIVCODE. Use Table 1 to select the proper resistor divider  
2.25V TO 5.5V  
+
or V /V ratio to apply to the DIV pin.  
+
DIV  
GND  
SET  
V
R1  
102k  
0.1µF  
Step 3: Calculate and Select R  
.
SET  
DIVCODE = 14  
DIV  
R
SET  
R2  
The final step is to calculate the correct value for R  
using the following equation:  
SET  
625k  
976k  
699412 F09  
tDELAY  
1µs NDIV  
50k  
Figure 9. 100µs Negative-Edge Delay  
RSET  
=
(2)  
Select the standard resistor value closest to the calculated  
value.  
699412f  
15  
LTC6994-1/LTC6994-2  
APPLICATIONS INFORMATION  
Voltage-Controlled Delay  
Digital Delay Control  
With one additional resistor, the LTC6994 output delay  
can be manipulated by an external voltage. As shown in  
The control voltage can be generated by a DAC (digital-to-  
analog converter), resulting in a digitally-controlled delay.  
Many DACs allow for the use of an external reference. If  
Figure 10, voltage V  
sources/sinks a current through  
CTRL  
R
MOD  
to vary the I  
current, which in turn modulates  
such a DAC is used to provide the V  
voltage, the V  
SET  
CTRL SET  
the delay as described in Equation (3):  
dependencycanbeeliminatedbybufferingV andusing  
SET  
it as the DAC’s reference voltage, as shown in Figure 11.  
NDIV RMOD  
50kΩ  
1µs  
TheDAC’soutputvoltagenowtracksanyV variationand  
tDELAY  
=
(3)  
SET  
RMOD VCTRL  
eliminates it as an error source. The SET pin cannot be tied  
directlytothereferenceinputoftheDACbecausethecurrent  
drawn by the DAC’s REF input would affect the delay.  
1+  
RSET VSET  
IN  
OUT  
LTC6994  
I
Extremes (Master Oscillator Frequency Extremes)  
SET  
+
V
When operating with I  
outside of the recommended  
+
SET  
GND  
V
C1  
0.1µF  
1.25µA to 20µA range, the master oscillator operates  
outside of the 62.5kHz to 1MHz range in which it is most  
accurate.  
R1  
R
MOD  
V
SET  
DIV  
CTRL  
R
R2  
SET  
The oscillator will still function with reduced accuracy for  
SET  
stop. Under this condition, the delay timing can still be  
699412 F10  
I
< 1.25µA. At approximately 500nA, the oscillator will  
Figure 10. Voltage-Controlled Delay  
initiated, but will not terminate until I  
the master oscillator starts again.  
increases and  
SET  
At the other extreme, it is not recommended to operate  
the master oscillator beyond 2MHz because the accuracy  
of the DIV pin ADC will suffer.  
IN  
OUT  
LTC6994  
+
V
+
+
V
GND  
SET  
V
0.1µF  
C1  
0.1µF  
R1  
DIV  
+
1/2  
LTC6078  
R2  
+
699412 F11  
V
0.1µF  
N
• R  
50kΩ  
1µs  
DIV  
MOD  
t
=
DELAY  
R
R
D
IN  
4096  
MOD  
1+  
V
CC  
REF  
SET  
D
IN  
D
IN  
= 0 TO 4095  
R
MOD  
V
OUT  
CLK  
µP  
LTC1659  
CS/LD  
R
SET  
GND  
Figure 11. Digitally Controlled Delay  
699412f  
16  
LTC6994-1/LTC6994-2  
APPLICATIONS INFORMATION  
Settling Time  
Even an excellent layout will allow some coupling between  
IN and SET. Additional error is included in the specified  
Following a 2× or 0.5× step change in ISET, the out-  
put delay takes approximately six master clock cycles  
(6 • tMASTER) to settle to within 1% of the final value.  
An example is shown in Figure 12, using the circuit in  
Figure 10.  
accuracy for N = 1 to account for this. Figure 13 shows  
DIV  
that ÷1 supply variation is dependent on coupling from  
rising or falling inputs.  
A very poor layout can actually degrade performance  
further. The PCB layout should avoid routing SET next to  
IN (or any other fast-edge, wide-swing signal).  
V
CTRL  
2V/DIV  
IN  
5V/DIV  
OUT  
1.0  
0.8  
5V/DIV  
DELAY  
2µs/DIV  
0.6  
FALLING EDGE DELAY  
0.4  
699412 F12  
LTC6994-1  
20µs/DIV  
+
V
= 3.3V  
0.2  
0
DIVCODE = 0  
R
R
OUT  
= 200k  
= 464k  
SET  
MOD  
RISING EDGE DELAY  
–0.2  
t
= 3µs AND 6µs  
–0.4  
–0.6  
Figure 12. Typical Settling Time  
R
N
= 50k  
= 1  
SET  
DIV  
–0.8  
–1.0  
Coupling Error  
2
4
5
6
3
The current sourced by the SET pin is used to bias the in-  
ternalmasteroscillator.TheLTC6994respondstochanges  
SUPPLY (V)  
699412 F13  
in I  
almost immediately, which provides excellent  
Figure 13. Delay Drift vs Supply Voltage  
SET  
settling time. However, this fast response also makes the  
SET pin sensitive to coupling from digital signals, such  
as the IN input.  
699412f  
17  
LTC6994-1/LTC6994-2  
APPLICATIONS INFORMATION  
Power Supply Current  
I  
canbeestimatedusingtheequationsinTable 3,  
S(ACTIVE)  
assuming a periodic input with frequency f . The equa-  
IN  
The Electrical Characteristics table specifies the supply  
current while the part is idle (waiting for an input transi-  
tions assume the input pulse width is greater than t  
otherwise, the output will not transition (and the increase  
in supply current will be less).  
;
DELAY  
tion). I  
varies with the programmed t  
and the  
S(IDLE)  
DELAY  
supply voltage, as described by the equations in Table 2,  
valid for both the LTC6994-1 and LTC6994-2.  
Table 3. Active Increase in Supply Current  
CONDITION  
DEVICE  
TYPICAL ∆I  
*
S(ACTIVE)  
Table 2. Approximate Idle Supply Current Equations  
+
LTC6994-1  
LTC6994-2  
f
• V • (N • 5pF + 18pF + C  
)
IN  
DIV  
LOAD  
CONDITION  
TYPICAL I  
S(IDLE)  
N
DIV  
≤ 64  
+
f
IN  
• V • (N • 10pF + 22pF + C  
)
DIV  
LOAD  
V+ N 7pF + 4pF  
V+  
500kΩ  
(
)
+
+
DIV  
N
DIV  
≥ 512 Either Version  
f
• V • C  
N
DIV  
≤ 64  
+ 2.2ISET + 50µA  
IN  
LOAD  
tDELAY  
*Ignoring resistive loads (assumes R  
= ∞)  
LOAD  
V+ NDIV 7pF  
V+  
500kΩ  
+
+ 1.8ISET + 50µA  
N
DIV  
≥ 512  
Figures 14 and 15 show how the supply current increases  
tDELAY  
from I  
) as the input frequency increases. At higher  
S(IDLE  
N
settings, the increase in active current is smaller.  
DIV  
When an input transition starts the delay timing circuity,  
the instantaneous supply current increases to I  
.
S(ACTIVE)  
I
= I  
+ I  
S(IDLE) S(ACTIVE)  
S(ACTIVE)  
250  
+
250  
+
V
= 3.3V  
V
= 3.3V  
f
< 1/(2 • t  
) TO ALLOW RISING AND  
IN  
DELAY  
INPUT PULSE WIDTH = 1.1 • t  
DELAY  
FALLING DELAYS TO REACH THE OUTPUT  
200  
150  
100  
50  
200  
÷1, R  
= 50k  
÷1, R  
= 50k  
SET  
SET  
÷8, R  
= 50k  
SET  
÷8, R  
= 50k  
SET  
150  
100  
50  
÷1, R  
÷1, R  
= 100k  
= 800k  
SET  
÷1, R  
÷1, R  
= 100k  
= 800k  
SET  
SET  
SET  
C
= 5pF  
C
= 5pF  
LOAD  
LOAD  
LOAD  
LOAD  
R
= ∞  
R
= ∞  
0
0
“IDLE”  
0.1  
0.2  
f
0.3  
0.4  
0.5  
“IDLE”  
0.2  
0.4  
f
0.6  
0.8  
1.0  
• t  
• t  
IN DELAY  
IN DELAY  
699412 F15  
699412 F14  
Figure 14. IS(ACTIVE) vs Input Frequency, LTC6994-1  
Figure 15. IS(ACTIVE) vs Input Frequency, LTC6994-2  
699412f  
18  
LTC6994-1/LTC6994-2  
APPLICATIONS INFORMATION  
Supply Bypassing and PCB Layout Guidelines  
2. Place all passive components on the top side of the  
board. This minimizes trace inductance.  
TheLTC6994isanaccuratemonostablemultivibratorwhen  
used in the appropriate manner. The part is simple to use  
and by following a few rules, the expected performance  
is easily achieved. Adequate supply bypassing and proper  
PCB layout are important to ensure this.  
3. Place R as close as possible tothe SETpinand make  
SET  
adirect,shortconnection.TheSETpinisacurrentsum-  
ming node and currents injected into this pin directly  
modulate the output delay. Having a short connection  
minimizes the exposure to signal pickup.  
Figure16showsexamplePCBlayoutsforboththeSOT-23  
andDCBpackagesusing0603sizedpassivecomponents.  
The layouts assume a two layer board with a ground plane  
layer beneath and around the LTC6994. These layouts are  
a guide and need not be followed exactly.  
4. Connect R directly to the GND pin. Using a long path  
SET  
or vias to the ground plane will not have a significant  
affect on accuracy, but a direct, short connection is  
recommended and easy to apply.  
+
1. Connect the bypass capacitor, C1, directly to the V and  
5. Use a ground trace to shield the SET pin. This provides  
another layer of protection from radiated signals.  
GND pins using a low inductance path. The connection  
from C1 to the V pin is easily done directly on the top  
+
6. Place R1 and R2 close to the DIV pin. A direct, short  
connection to the DIV pin minimizes the external signal  
coupling.  
layer. For the DCB package, C1’s connection to GND is  
also simply done on the top layer. For the SOT-23, OUT  
can be routed through the C1 pads to allow a good C1  
GND connection. If the PCB design rules do not allow  
that,C1’sGNDconnectioncanbeaccomplishedthrough  
multiple vias to the ground plane. Multiple vias for both  
the GND pin connection to the ground plane and the  
C1 connection to the ground plane are recommended  
to minimize the inductance. Capacitor C1 should be a  
0.1µF ceramic capacitor.  
IN  
OUT  
LTC6994  
+
+
GND  
V
V
C1  
0.1µF  
R1  
R2  
SET  
DIV  
R
SET  
+
+
V
+
C1  
V
R1  
C1  
V
OUT  
GND  
IN  
IN  
OUT  
+
DIV  
SET  
GND  
V
R2  
SET  
DIV  
R1  
R
SET  
R
SET  
R2  
699412 F16  
DCB PACKAGE  
TSOT-23 PACKAGE  
Figure 16. Supply Bypassing and PCB Layout  
699412f  
19  
LTC6994-1/LTC6994-2  
TYPICAL APPLICATIONS  
Delayed One-Shot  
IN  
DELAYED PULSE OUT  
5V  
IN  
OUT  
LTC6994-1  
TRIG  
OUT  
LTC6993-1  
5V  
+
+
GND  
SET  
V
GND  
SET  
V
0.1µF  
0.1µF  
1M  
DIV  
DIV  
604k  
121k  
392k  
t
_
= 50ms  
t
= 10ms  
RISE DELAY  
ONESHOT  
IN  
DELAY  
50ms  
SHOT  
10ms  
OUT  
DELAY  
SHOT  
699412 TA02  
Pulse Stretcher  
IN  
OUT  
IN  
OUT  
LTC6994-1  
+
+
GND  
SET  
V
V
0.1µF  
182k  
976k  
DIV  
= 1ms  
787k  
t
MIN  
OUTPUT PULSE DURATION = t  
_
+ 1ms  
PULSE IN  
IN  
OUT  
t
t
MIN  
MIN  
699412 TA03  
Switch/Relay Debouncer  
+
V
OUT  
IN  
OUT  
LTC6994-2  
OR  
+
V
CHATTER STABLE  
OR  
+
+
GND  
SET  
V
V
0.1µF  
1M  
CHATTER STABLE  
DIV  
154k  
523k  
t = 100ms  
699412 TA04  
OUTPUT GOES TO SAME FINAL LEVEL OF INPUT  
AFTER STABLE FOR 100ms  
699412f  
20  
LTC6994-1/LTC6994-2  
TYPICAL APPLICATIONS  
Edge Chatter Filter  
IN  
OUT  
IN  
OUT  
LTC6994-2  
+
+
V
GND  
V
0.1µF  
SET  
DIV  
499k  
10µs  
INPUT MUST BE STABLE FOR AT LEAST 10µs  
IN  
OUT  
10µs  
10µs  
10µs  
NOISY EDGES  
10µs  
699412 TA05  
NORMAL  
Crossover Gate—Break-Before-Make Interval Timer  
+
V
LOAD  
LOW  
100k  
FALLING  
DELAYED  
P
IN  
IN  
OUT  
LTC6994-1  
TP0610  
LOAD  
LOAD  
HIGH  
+
+
V
GND  
SET  
V
+
+
IN  
V
V
0.1µF  
100k  
DIV  
= 1ms  
+
V
LOAD  
OFF OFF  
OFF  
V /2  
V
LOAD  
787k  
442k  
t
DELAY  
GND  
1ms OFF INTERVAL  
AT EACH TRANSITION  
100k  
RISING  
DELAYED  
N
IN  
OUT  
LTC6994-1  
2N7000  
100k  
+
+
V
GND  
SET  
V
699412 TA06  
0.1µF  
DIV  
= 1ms  
787k  
t
DELAY  
699412f  
21  
LTC6994-1/LTC6994-2  
PACKAGE DESCRIPTION  
DCB Package  
6-Lead Plastic DFN (2mm × 3mm)  
(Reference LTC DWG # 05-08-1715 Rev A)  
0.70 ±0.05  
1.65 ±0.05  
(2 SIDES)  
3.55 ±0.05  
2.15 ±0.05  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50 BSC  
1.35 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
TYP  
2.00 ±0.10  
(2 SIDES)  
0.40 ± 0.10  
R = 0.05  
TYP  
4
6
3.00 ±0.10 1.65 ± 0.10  
(2 SIDES)  
(2 SIDES)  
PIN 1 BAR  
TOP MARK  
(SEE NOTE 6)  
PIN 1 NOTCH  
R0.20 OR 0.25  
× 45° CHAMFER  
(DCB6) DFN 0405  
3
1
0.25 ± 0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
1.35 ±0.10  
(2 SIDES)  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (TBD)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
699412f  
22  
LTC6994-1/LTC6994-2  
PACKAGE DESCRIPTION  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
2.80 BSC  
3.85 MAX 2.62 REF  
(NOTE 4)  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302 REV B  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
699412f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTC6994-1/LTC6994-2  
TYPICAL APPLICATION  
Press-and-Hold (0.3s to 4s) Delay Timer  
+
V
+
V
ACTIVE HIGH  
ACTIVE LOW  
100k  
OUT  
OUT  
IN  
OUT  
LTC6994-1  
IN  
OUT  
LTC6994-1  
100k  
+
+
V
V
+
+
GND  
SET  
V
GND  
SET  
V
0.1µF  
0.1µF  
681k  
1M  
DIV  
DIV  
R
R
SET  
576k  
SET  
681k  
1M  
576k  
t
3s  
t
3s  
DELAY  
DELAY  
BOUNCE  
BOUNCE  
IN  
IN  
HOLD  
HOLD  
OUT  
OUT  
DELAY  
DELAY  
699412 TA07  
R
SET  
(kΩ) = 190 • t  
(SECONDS)  
DELAY  
RELATED PARTS  
PART NUMBER  
LTC1799  
DESCRIPTION  
COMMENTS  
Wide Frequency Range  
Low Power, Wide Frequency Range  
Micropower, I = 35µA at 400kHz  
1MHz to 33MHz ThinSOT Silicon Oscillator  
1MHz to 20MHz ThinSOT Silicon Oscillator  
LTC6900  
LTC6906/LTC6907  
LTC6930  
10kHz to 1MHz or 40kHz ThinSOT Silicon Oscillator  
Fixed Frequency Oscillator, 32.768kHz to 8.192MHz  
TimerBlox: Voltage-Controlled Silicon Oscillator  
TimerBlox: Resettable Low Frequency Oscillator  
SUPPLY  
0.09% Accuracy, 110µs Start-Up Time, 105µA at 32kHz  
Fixed-Frequency or Voltage-Controlled Operation  
Clock Periods up to 9.5 hours  
LTC6990  
LTC6991  
LTC6992  
TimerBlox: Voltage-Controlled Pulse Width Modulator (PWM)  
TimerBlox: Monostable Pulse Generator (One-Shot)  
Simple PWM with Wide Frequency Range  
Resistor-Programmable Pulse Width of 1µs to 34s  
LTC6993  
699412f  
LT 1010 • PRINTED IN USA  
24 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 2010  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC6994-1_15

Delay Block/ Debouncer
Linear

LTC6994-2

TimerBlox: Delay Block/ Debouncer
Linear

LTC6994-2_15

Delay Block/ Debouncer
Linear

LTC6994CDCB-1#TRMPBF

LTC6994 - TimerBlox: Delay Block/ Debouncer; Package: DFN; Pins: 6; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6994CDCB-1TRMPBF

TimerBlox: Delay Block/ Debouncer
Linear

LTC6994CDCB-2#PBF

LTC6994 - TimerBlox: Delay Block/ Debouncer; Package: DFN; Pins: 6; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6994CDCB-2#TRMPBF

LTC6994 - TimerBlox: Delay Block/ Debouncer; Package: DFN; Pins: 6; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6994CDCB-2#TRPBF

LTC6994 - TimerBlox: Delay Block/ Debouncer; Package: DFN; Pins: 6; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6994CDCB-2TRMPBF

TimerBlox: Delay Block/ Debouncer
Linear

LTC6994CS6-1TRMPBF

TimerBlox: Delay Block/ Debouncer
Linear

LTC6994CS6-2TRMPBF

TimerBlox: Delay Block/ Debouncer
Linear

LTC6994HDCB-1#PBF

LTC6994 - TimerBlox: Delay Block/ Debouncer; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 125&deg;C
Linear