LTM2220-AA [Linear]

12-Bit, 170Msps ADC; 12位,170Msps ADC
LTM2220-AA
型号: LTM2220-AA
厂家: Linear    Linear
描述:

12-Bit, 170Msps ADC
12位,170Msps ADC

文件: 总12页 (文件大小:194K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM2220-AA  
12-Bit, 170Msps ADC  
FEATURES  
DESCRIPTION  
The LTM®2220-AA is a 170Msps sampling 12-bit A/D  
converter designed for digitizing high frequency, wide  
dynamic range signals. The LTM2220-AA is perfect for  
demanding communications applications with AC per-  
formance that includes 66.2dB SNR and 84dB spurious  
free dynamic range.  
Pin Compatible with the AD9430  
Sample Rate: 170Msps  
66.2dB SNR, 84dB SFDR  
No Missing Codes  
Single 3.3V supply  
Power Dissipation: 1050mW  
LVDS Digital Outputs  
DC specs include 0.ꢀLSB ꢁNL ꢂtypꢃ, 0.ꢄLSB DNL ꢂtypꢃ  
and no missing codes over temperature.  
1.ꢀꢄ6V ꢁnput Range  
PP  
Clock Duty Cycle Stabilizer  
The CLK+ and CLK- inputs may be driven differentially or  
single ended with a sine wave, PECL, TTL or CMOS inputs.  
A clock duty cycle stabilizer allows high performance at  
full speed for a wide range of clock duty cycles.  
Out-of-Range ꢁndicator  
Data Ready Output Clock  
ꢁntegrated Bypass Capacitors  
100-Pin SiPLGA Package  
TheLTM2220-AAispincompatiblewiththeAD94ꢄ0when  
used with LVDS outputs, 2’s complement output format  
APPLICATIONS  
and the 1.ꢀꢄ6V input range.  
PP  
Wireless and Wired Broadband Communication  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Spectral Analysis  
TYPICAL APPLICATION  
3.3V  
AV  
DD  
3.3V  
DRVDD  
REFERENCE  
D11  
+
12-BIT  
PIPELINED  
ADC CORE  
CORRECTION  
LOGIC  
LVDS  
OUTPUTS  
ANALOG  
INPUT  
OUTPUT  
DRIVERS  
INPUT  
S/H  
D0  
DRGND  
CLOCK/DUTY  
CYCLE  
CONTROL  
2220 TA01  
AGND  
CLOCK  
INPUT  
2220aaf  
1
LTM2220-AA  
ABSOLUTE MAXIMUM RATINGS  
AVDD = DRVDD (Notes 1, 2)  
Supply Voltage ꢂAVDD, DRVDD.................................4V Power Dissipation............................................ 1ꢀ00mW  
Analog ꢁnput Voltage ꢂNote ꢄꢃ.... -0.ꢄV to ꢂAVDD + 0.ꢄVꢃ Operating Temperature Range ..................-40°C to 8ꢀ°C  
Digital ꢁnput Voltage................... -0.ꢄV to ꢂAVDD + 0.ꢄVꢃ Storage Temperature Range....................-6ꢀ°C to 12ꢀ°C  
Digital Output Voltage ............. -0.ꢄV to ꢂDRVDD + 0.ꢄVꢃ  
PACKAGE/ORDER INFORMATION  
TOP VIEW  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
75  
74  
NC  
NC  
1
2
3
4
5
6
7
8
9
DRVDD  
DRGND  
NC  
73 D8+  
72  
71  
70  
69  
AGND  
NC  
D8–  
D7+  
D7–  
D6+  
NC  
NC  
AVDD  
AGND  
68 D6–  
67 DRGND  
AGND  
AGND  
66  
NC 10  
NC 11  
D5+  
65 D5–  
64  
63  
AGND 12  
AGND 13  
DCO+  
DCO–  
AVDD  
AVDD  
62 DRVDD  
61 DRGND  
60 D4+  
14  
15  
AGND 16  
AGND 17  
AVDD 18  
AVDD 19  
AGND  
AGND  
59 D4–  
58 D3+  
57 D3–  
AGND  
+
56 D2+  
20  
21  
22  
V
D2–  
55  
IN  
V
54 DRVDD  
53 DRGND  
52 D1+  
IN  
AGND 23  
AVDD 24  
AGND 25  
51 D1–  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
SiPLGA PACKAGE  
100-LEAD (16mm × 16mm)  
T
= 12ꢀ°C, θ = 20°C/W  
JA  
JMAX  
EXPOSED PADS ARE AGND  
ORDER PART NUMBER  
LTM2220ꢁV-AA#PBF  
LGA PART MARKꢁNG  
LTM2220V-AA  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
2220aaf  
2
LTM2220-AA  
CONVERTER CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
PARAMETER  
CONDITIONS  
MIN  
12  
TYP  
MAX  
UNITS  
Bits  
Resolution ꢂNo Missing Codesꢃ  
ꢁntegral Linearity Error  
Differential Linearity Error  
Offset Error  
ꢂNote ꢀꢃ  
–1.ꢀ  
–1  
0.ꢀ  
0.ꢄ  
1.ꢀ  
1
LSB  
LSB  
mV  
ꢂNote 6ꢃ  
–ꢄꢀ  
ꢄꢀ  
Gain Error  
0.ꢀ  
%FS  
ANALOG INPUTS The denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = 25°C. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
+
V
V
Differential ꢁnput Range  
Common Mode ꢁnput Range  
Lower –ꢄdB Frequency  
Upper –ꢄdB Frequency  
Sample and Hold Jitter  
V
ꢁN  
– V  
ꢁN  
1.ꢀꢄ6  
ꢁN  
+
ꢂV + V ꢃ/2  
0
ꢄ.6  
V
ꢁN, CM  
ꢁN  
ꢁN  
f
f
t
1.6  
19ꢀ  
0.2  
kHz  
MHz  
L
R = 7ꢀΩ  
S
H
ps  
JꢁTTER  
RMS  
DYNAMIC ACCURACY The denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
10MHz ꢁnput  
70MHz ꢁnput  
10MHz ꢁnput  
70MHz ꢁnput  
10MHz ꢁnput  
70MHz ꢁnput  
10MHz ꢁnput  
70MHz ꢁnput  
MIN  
6ꢄ.ꢀ  
6ꢄ.2  
70  
TYP  
66.2  
66.1  
66.1  
6ꢀ.9  
84  
MAX  
UNITS  
dB  
SNR  
Signal-to-Noise Ratio  
dB  
SꢁNAD  
SFDR  
SFDR  
ꢁMD  
Signal to Noise Plus Distortion Ratio  
dB  
dB  
Spurious Free Dynamic Range: 2nd or  
ꢄrd Harmonic  
dB  
84  
dB  
Spurious Free Dynamic Range: 4th  
Harmonic or Higher  
90  
dB  
78  
90  
dB  
ꢁntermodulation Distortion  
f
ꢁN1  
= 1ꢄ8MHz, f = 140MHz  
81  
dB  
ꢁN2  
2220aaf  
3
LTM2220-AA  
DIGITAL INPUTS AND OUTPUTSThe denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CLOCK ꢁNPUTS ꢂCLK+, CLK–ꢃ  
V
V
Differential ꢁnput Voltage  
0.2  
1.1  
V
ꢁD  
Common Mode ꢁnput Voltage  
ꢁnternally Set  
Externally Set  
1.6  
1.6  
V
V
ꢁCM  
2.ꢀ  
R
ꢁnput Resistance  
ꢁnput Capacitance  
6
kΩ  
ꢁN  
C
ꢂNote 7ꢃ  
pF  
ꢁN  
DꢁGꢁTAL LOGꢁC OUTPUTS  
V
OD  
V
OS  
Differential Output Voltage  
100Ω Load  
247  
ꢄꢀ0  
4ꢀ4  
mV  
V
Output Common Mode Voltage  
1.12ꢀ  
1.2ꢀ0  
1.ꢄ7ꢀ  
POWER REQUIREMENTS The denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL  
AVDD  
PARAMETER  
CONDITIONS  
ꢂNote 8ꢃ  
MIN  
ꢄ.1  
TYP  
ꢄ.ꢄ  
MAX  
ꢄ.ꢀ  
UNITS  
V
Analog Supply Voltage  
Digital Supply Voltage  
Analog Supply Current  
Digital Supply Current  
Power Dissipation  
DRVDD  
ꢁAVDD  
ꢁDVDD  
PDꢁSS  
ꢂNote 8ꢃ  
ꢄ.0  
ꢄ.ꢄ  
ꢄ.6  
V
264  
ꢀꢀ  
288  
70  
mA  
mA  
mW  
10ꢀ0  
1182  
TIMING CHARACTERISTICS The denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
1
TYP  
MAX  
170  
ꢀ00  
ꢀ00  
UNITS  
MHz  
ns  
f
t
t
t
t
t
Sampling Frequency  
CLK Low Time  
S
ꢂNote 7ꢃ  
ꢂNote 7ꢃ  
2
2.94  
2.94  
0
L
CLK High Time  
2
ns  
H
AP  
D
C
Sample-and-Hold Aperture Delay  
CLK to DATA Delay  
CLK to DCO Delay  
DATA to DCO Skew  
Rise Time  
ns  
ꢂNote 7ꢃ  
ꢂNote 7ꢃ  
1.ꢀ  
1.ꢀ  
4.ꢄ  
4.ꢄ  
0.6  
ns  
ns  
ꢂt – t ꢃ, ꢂNote 7ꢃ  
–0.6  
0
ns  
C
D
0.ꢀ  
0.ꢀ  
ns  
Fall Time  
ns  
Pipeline Latency  
Cycles  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: AVDD = DRVDD = ꢄ.ꢄV, f  
= 2Vpp sine wave, differential analog inputs, unless otherwise noted.  
Note 5: ꢁntegral nonlinearity is defined as the deviation of a code from a  
“best fit straight line” fit to the transfer curve. The deviation is measured  
from the center of the quantization band.  
=170MHz, differential CLK+/CLK-  
SAMPLE  
Note 2: All voltage values are with respect to ground with AGND and  
DRGND wired together ꢂunless otherwise notedꢃ.  
Note 6: Offset error is the offset voltage measured from -0.ꢀ LSB when the  
Note 3: When these pin voltages are taken below GND or above V , they  
output code flickers between 0000 0000 0000 and 1111 1111 1111.  
DD  
will be clamped by internal diodes. This product can handle input currents  
Note 7: Guaranteed by design, not subject to test.  
Note 8: Recommended operating conditions.  
of greater than 100mA below GND or above V without latchup.  
DD  
2220aaf  
4
LTM2220-AA  
TYPICAL PERFORMANCE CHARACTERISTICS  
8192 Point FFT, fIN = 5MHz, –1dB,  
170Msps  
8192 Point FFT, fIN = 30MHz,  
–1dB, 170Msps  
8192 Point FFT, fIN = 70MHz,  
–1dB, 170Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
80  
–90  
–100  
–110  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
80  
–90  
–100  
–110  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
80  
–90  
–100  
–110  
0
20 30 40 50 60 70 80  
10  
0
20 30 40 50  
FREQUENCY (MHz)  
80  
0
20 30 40 50  
FREQUENCY (MHz)  
80  
10  
60 70  
10  
60 70  
FREQUENCY (MHz)  
2220 G01  
2220 G02  
2220 G03  
8192 Point FFT, fIN = 140MHz,  
–1dB, 170Msps  
INL Error  
DNL Error  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
80  
–90  
–100  
–110  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
– 0.2  
– 0.4  
– 0.6  
– 0.8  
– 1.0  
– 0.2  
– 0.4  
– 0.6  
– 0.8  
– 1.0  
0
20 30 40 50 60 70 80  
10  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
FREQUENCY (MHz)  
OUTPUT CODE  
OUTPUT CODE  
2220 G04  
2220 G05  
2220 G06  
2220aaf  
5
LTM2220-AA  
PIN FUNCTIONS  
NC (Pins 1, 2, 3, 5, 6, 7, 10, 11, 33, 42, 43, 44, 45, 46):  
Pin is not connected internally.  
D3+ (Pin 58): Dꢄ True Output Bit.  
D4- (Pin 59): D4 Complement Output Bit.  
D4+ (Pin 60): D4 True Output Bit.  
AGND (Pins 4, 9, 12, 13, 16, 17, 20, 23, 25, 26, 30,  
31, 32, 35, 38, 41, 86, 87, 91, 92, 93, 96, 97, 100):  
Analog Ground.  
DCO- (Pin 63): Data Clock Output Complement.  
DCO+ (Pin 64): Data Clock Output True.  
D5- (Pin 65): Dꢀ Complement Output Bit.  
D5+ (Pin 66): Dꢀ True Output Bit.  
AVDD (Pins 8, 14, 15, 18, 19, 24, 27, 28, 29, 34, 39, 40,  
88, 89, 90, 94, 95, 98, 99): ꢄ.ꢄV Analog Supply.  
+
V
V
(Pin 21): Positive Analog ꢁnput.  
(Pin 22): Negative Analog ꢁnput.  
IN  
IN  
-
D6- (Pin 68): D6 Complement Output Bit.  
D6+ (Pin 69): D6 True Output Bit.  
CLK+ (Pin 36): Clock ꢁnput. The input sample starts on  
the positive edge.  
D7- (Pin 70): D7 Complement Output Bit.  
D7+ (Pin 71): D7 True Output Bit.  
CLK-(Pin37):ClockComplementnput.Conversionstarts  
on the negative edge. Bypass to ground with a 0.1µF  
ceramic for a single-ended clock.  
D8- (Pin 72): D8 Complement Output Bit.  
D8+ (Pin 73): D8 True Output Bit.  
DRVDD (Pins 47, 54, 62, 75, 83): ꢄ.ꢄV Digital Output  
Driver Supply.  
D9- (Pin 76): D9 Complement Output Bit.  
D9+ (Pin 77): D9 True Output Bit.  
DRGND (Pins 48, 53, 61, 67, 74, 82): Digital Output  
Driver Ground.  
D10- (Pin 78): D10 Complement Output Bit.  
D10+ (Pin 79): D10 True Output Bit.  
D11- (Pin 80): D11 Complement Output Bit ꢂMSBꢃ.  
D11+ (Pin 81): D11 True Output Bit ꢂMSBꢃ.  
OR- (Pin 84): Overrange Output Complement.  
OR+ (Pin 85): Overrange Output True.  
D0- (Pin 49): D0 Complement Output Bit ꢂLSBꢃ.  
D0+ (Pin 50): D0 True Output Bit ꢂLSBꢃ.  
D1- (Pin 51): D1 Complement Output Bit.  
D1+ (Pin 52): D1 True Output Bit.  
D2- (Pin 55): D2 Complement Output Bit.  
D2+ (Pin 56): D2 True Output Bit.  
GND (Exposed Pads): The exposed pads on the bottom of  
the package need to be soldered to Analog Ground.  
D3- (Pin 57): Dꢄ Complement Output Bit.  
TIMING DIAGRAM  
t
AP  
N + 4  
N + 2  
ANALOG  
INPUT  
N
N + 3  
t
H
N + 1  
t
L
CLK–  
CLK+  
t
D
N – 5  
N – 4  
N – 3  
N – 2  
N – 1  
D0-D11, OR  
t
C
DCO  
2220 TD01  
+
DCO  
2220aaf  
6
LTM2220-AA  
APPLICATIONS INFORMATION  
DYNAMIC PERFORMANCE  
Lower and Upper –3dB Frequencies  
The input frequencies at which the amplitude of the re-  
constructed fundamental is reduced by ꢄdB for a full scale  
input signal. Note that the analog input has a bandpass  
response.  
Signal-to-Noise Plus Distortion Ratio  
The signal-to-noise plus distortion ratio [S/ꢂN + Dꢃ] is  
the ratio between the RMS amplitude of the fundamen-  
tal input frequency and the RMS amplitude of all other  
frequency components at the ADC output. The output is  
band limited to frequencies above DC to below half the  
sampling frequency.  
Aperture Delay Time  
ThetimefromwhenarisingCLK+equalstheCLKvoltage  
to the instant that the input signal is held by the sample  
and hold circuit.  
Signal-to-Noise Ratio  
The signal-to-noise ratio ꢂSNRꢃ is the ratio between the  
RMS amplitude of the fundamental input frequency and  
the RMS amplitude of all other frequency components  
except the first five harmonics and DC.  
Aperture Delay Jitter  
The variation in the aperture delay time from conversion  
to conversion. This random variation will result in noise  
when sampling an AC input. The signal to noise ratio due  
to the jitter alone will be:  
Intermodulation Distortion  
SNR  
= –20log ꢂ2π • f • t  
JꢁTTER  
ꢁN JꢁTTER  
ꢁf the ADC input signal consists of more than one spectral  
component, the ADC transfer function nonlinearity can  
produce intermodulation distortion ꢂꢁMDꢃ in addition to  
Total Harmonic Distortion ꢂTHDꢃ. ꢁMD is the change in  
one sinusoidal input caused by the presence of another  
sinusoidal input at a different frequency.  
CONVERTER OPERATION  
TheLTM2220-AAisaCMOSpipelinedmultistepconverter.  
The converter has five pipelined ADC stages; a sampled  
analog input will result in a digitized value five cycles later  
ꢂsee the Timing Diagram sectionꢃ. For optimal AC perfor-  
mance the analog inputs should be driven differentially.  
For cost sensitive applications, the analog inputs can be  
driven single-ended with slightly worse harmonic distor-  
tion. The clock input is differential for improved common  
mode noise immunity.  
ꢁf two pure sine waves of frequencies fa and fb are ap-  
plied to the ADC input, nonlinearities in the ADC transfer  
function can create distortion products at the sum and  
difference frequencies of mfa nfb, where m and n = 0,  
1, 2, ꢄ, etc. The ꢄrd order intermodulation products are  
2fa + fb, 2fb + fa, 2fa – fb and 2fb – fa. The intermodula-  
tion distortion is defined as the ratio of the RMS value of  
either input tone to the RMS value of the largest ꢄrd order  
intermodulation product.  
TheLTM2220-AAispincompatiblewiththeAD94ꢄ0when  
used with LVDS outputs, 2’s complement output format  
and the 1.ꢀꢄ6V input range.  
PP  
The LTM2220-AA package contains power supply bypass  
capacitors, which makes the part easy to use since it is  
insensitive to the PC board layout.  
Spurious Free Dynamic Range (SFDR)  
Spuriousfreedynamicrangeisthepeakharmonicorspuri-  
ousnoisethatisthelargestspectralcomponentexcluding  
theinputsignalandDC.Thisvalueisexpressedindecibels  
relative to the RMS value of a full scale input signal.  
2220aaf  
7
LTM2220-AA  
APPLICATIONS INFORMATION  
SAMPLE/HOLD OPERATION AND INPUT DRIVE  
Input Drive Impedance  
As with all high performance, high speed ADCs, the dy-  
namic performance of the LTM2220-AA can be influenced  
by the input drive circuitry, particularly the second and  
third harmonics. Source impedance and input reactance  
can influence SFDR.  
Sample/Hold Operation  
Figure 1 shows an equivalent circuit for the LTM2220-AA  
CMOSdifferentialsample-and-hold.Theanaloginputsare  
AC coupled to the sample and hold circuit through 0.1µF  
capacitors and 1k bias resistors. The 2ꢀΩ resistor and  
0.ꢀpF capacitor serve two purposes: isolating the drive  
circuitry from the sample and hold charging glitches and  
limiting the wideband noise at the converter input.  
The source impedance should be matched for the dif-  
ferential inputs. Poor matching will result in higher even  
order harmonics, especially the second.  
Input Drive Circuits  
Single-Ended Input  
Figure 2 shows the LTM2220-AA being driven by an RF  
transformerwithacentertappedsecondary.Thesecondary  
center tap is grounded as shown, but it can also be con-  
nectedtoanyDCbiasvoltagefrom0Vto.6V. Terminating  
onthetransformersecondaryisdesirable,asthisprovides  
a common mode path for charging glitches caused by the  
sample and hold.  
For cost sensitive applications, the analog inputs can be  
driven single-ended. With a single-ended input the har-  
monic distortion and ꢁNL will degrade, but the SNR and  
DNL will remain unchanged.  
Common Mode Bias  
Foroptimalperformancetheanaloginputsshouldbedriven  
differentially. Each input should swing 0.ꢄ84V around a  
common mode voltage of between 0V and ꢄ.6V.  
Driving the Clock Inputs  
ThenoiseperformanceoftheLTM2220-AAcandependon  
the encode signal quality as much as on the analog input.  
The CLK+/CLK– inputs are intended to be driven differen-  
tially, primarily for noise immunity from common mode  
noise sources. Each input is biased through a 6k resistor  
to a 1.6V bias. The bias resistors set the DC operating  
point for transformer coupled drive circuits and can set  
the logic threshold for single-ended drive circuits.  
LTM2220-AA  
V
DD  
C
SAMPLE  
1.6pF  
0.1µF  
25Ω  
15Ω  
15Ω  
+
V
V
IN  
IN  
V
DD  
0.5pF  
C
SAMPLE  
1.6pF  
0.1µF  
25Ω  
1k  
1k  
0.1µF T1  
1:1  
ANALOG  
INPUT  
+
V
DD  
V
IN  
25Ω  
25Ω  
V
REF  
LTM2220-AA  
1.6V  
V
IN  
6k  
T1 = M/A-COM ETC1-1T OR EQUIVALENT  
2220 F02  
CLK+  
CLK–  
Figure 2. Single-Ended to Differential  
Conversion Using a Transformer  
6k  
1.6V  
2220 F01  
Figure 1. Equivalent Input Circuit  
2220aaf  
8
LTM2220-AA  
APPLICATIONS INFORMATION  
Any noise present on the encode signal will result in ad-  
ditional aperture jitter that will be RMS summed with the  
inherent ADC aperture jitter.  
Maximum and Minimum Encode Rates  
ThemaximumencoderatefortheLTM2220-AAis170Msps.  
For the ADC to operate properly, the encode signal should  
have a ꢀ0% ꢂ 20%ꢃ duty cycle. Each half cycle must have  
at least 2ns for the ADC internal circuitry to have enough  
settling time for proper operation.  
ꢁn applications where jitter is critical ꢂhigh input frequen-  
ciesꢃ take the following into consideration:  
1. Differential drive should be used.  
ꢁf the clock is turned off for a long period of time, the duty  
cyclestabilizercircuitwillrequireonehundredclockcycles  
for the PLL to lock onto the input clock.  
2. Use as large an amplitude as possible; if transformer  
coupled use a higher turns ratio to increase the ampli-  
tude.  
The lower limit of the LTM2220-AA sample rate is de-  
termined by droop of the sample-and-hold circuits. The  
pipelined architecture of this ADC relies on storing analog  
signals on small valued capacitors. Junction leakage will  
dischargethecapacitors.Thespecifiedminimumoperating  
frequency for the LTM2220-AA is 1Msps.  
ꢄ. ꢁf the ADC is clocked with a sinusoidal signal, filter the  
encode signal to reduce wideband noise.  
4. Balance the capacitance and series resistance at both  
encodeinputssothatanycouplednoisewillappearatboth  
inputs as common mode noise. The clock inputs have a  
common mode range of 1.1V to 2.ꢀV. Each input may be  
driven from ground to VDD for single-ended drive.  
CLK+  
V
= 1.6V  
THRESHOLD  
LTM2220-AA  
1.6V  
CLK–  
V
LTM2220-AA  
DD  
0.1µF  
TO INTERNAL  
ADC CIRCUITS  
2220 F04  
Figure 4. Single-Ended CLK Drive,  
Not Recommended for Low Jitter  
1.6V BIAS  
V
V
DD  
DD  
6k  
3.3V  
CLK+  
CLK–  
0.1µF  
50Ω  
3.3V  
MC100LVELT22  
D0  
1:4  
CLOCK  
INPUT  
130Ω  
Q0  
130Ω  
1.6V BIAS  
6k  
CLK+  
LTM2220-AA  
CLK–  
Q0  
83Ω  
83Ω  
2220 F05  
2220 F03  
Figure 3. Transformer Driven CLK+/CLK–  
Figure 5. CLK Drive Using a CMOS to PECL Translator  
2220aaf  
9
LTM2220-AA  
APPLICATIONS INFORMATION  
DIGITAL OUTPUTS  
Output Clock  
The ADC has a delayed version of the CLK+ input avail-  
able as a digital output, DCO. The DCO pin can be used to  
synchronize the converter data to the digital system. This  
is necessary when using a sinusoidal clock. Data will be  
updated as DCO+/DCO– rises and can be latched on the  
falling edge of DCO+/DCO–.  
Table 1. Output Codes vs Input Voltage  
+
VIN – VIN  
OR  
D11 – D0  
>+0.768000V  
+0.768000V  
+0.76762ꢀV  
1
0
0
0111 1111 1111  
0111 1111 1111  
0111 1111 1110  
+0.000ꢄ7ꢀV  
0.000000V  
–0.000ꢄ7ꢀV  
–0.0007ꢀ0V  
0
0
0
0
0000 0000 0001  
0000 0000 0000  
1111 1111 1111  
1111 1111 1110  
Output Driver Power  
–0.76762ꢀV  
–0.768000V  
<–0.768000V  
0
0
1
1000 0000 0001  
1000 0000 0000  
1000 0000 0000  
Separate output power and ground pins allow the output  
drivers to be isolated from the analog circuitry. DRVDD  
should be connected to a ꢄ.ꢄV supply and DRGND should  
be connected to GND.  
Digital Output Buffers  
Figure 6 shows an equivalent circuit for a differential  
output pair in the LVDS output mode. A ꢄ.ꢀmA current is  
GROUNDING AND BYPASSING  
+
The LTM2220-AA requires a printed circuit board with a  
clean unbroken ground plane. A multilayer board with an  
internal ground plane is recommended. Layout for the  
printed circuit board should ensure that digital and analog  
signallinesareseparatedasmuchaspossible.nparticular,  
careshouldbetakennottorunanydigitalsignalalongside  
an analog signal or underneath the ADC.  
steered from OUT to OUT or vice versa which creates a  
ꢄꢀ0mV differential voltage across the 100Ω termination  
resistor at the LVDS receiver. A feedback loop regulates  
the common mode output voltage to 1.2ꢀV. For proper  
operation each LVDS output pair needs an external 100Ω  
termination resistor, even if the signal is not used ꢂsuch  
as OR+/OR– or DCO+/DCO–ꢃ. To minimize noise the PC  
board traces for each LVDS output pair should be routed  
close together. To minimize clock skew all LVDS PC board  
traces should have about the same length.  
The LTM2220-AA differential inputs should run parallel  
and close to each other. The input traces should be as  
shortaspossibletominimizecapacitanceandtominimize  
noise pickup.  
Data Format  
The LTM2220-AA package contains power supply bypass  
capacitors on AVDD and DRVDD. External bypass ca-  
pacitors can be added for additional low-frequency noise  
rejection, but they are not required if the power supplies  
come from quiet linear voltage regulators.  
TheLTM2220-AAparalleldigitaloutputhas2scomplement  
format. Table1showstherelationshipbetweentheanalog  
input voltage, the digital data bits and the overrange bit.  
LTM2220-AA  
DRVDD  
HEAT TRANSFER  
D
D
D
Most of the heat generated by the LTM2220-AA is trans-  
ferred from the die through the bottom-side exposed  
pads and package leads onto the printed circuit board.  
For good electrical and thermal performance, the exposed  
pads should be soldered to a large grounded pad on the  
PC board. ꢁt is critical that all ground pins are connected  
to a ground plane of sufficient area.  
+
OUT  
+
10k  
10k  
100  
1.25V  
LVDS  
RECEIVER  
OUT  
D
3.5mA  
DRGND  
2220 F06  
Figure 6. Digital Output  
2220aaf  
10  
LTM2220-AA  
PACKAGE DESCRIPTION  
SiPLGA Package  
100-Lead (16mm × 16mm)  
ꢂReference LTC DWG # 0ꢀ-08-1802 Rev Øꢃ  
aaa  
Z
15.90 – 16.10  
X
Y
(2X)  
26  
50  
25  
6.000  
PAD 1  
CORNER  
4
51  
5.500  
5.000  
4.500  
4.000  
3.500  
3.1245  
1.045  
3.1245  
1.045  
3.000  
2.500  
2.000  
1.500  
1.000  
0.500  
15.9 – 16.1  
0.000  
0.500  
1.000  
1.500  
2.000  
2.500  
3.000  
3.500  
4.000  
4.500  
5.000  
5.500  
6.000  
1.045  
1.045  
3.1245  
3.1245  
75  
1
aaa  
Z
(2X)  
100  
76  
DETAILED PAD LAYOUT  
TOP VIEW  
11.90 – 12.10  
1.93 – 2.13  
eee M  
X
Y
0.315 – 0.385  
0.218 – 0.278 (b)  
26  
50  
ROWS  
AF  
0.05 – 0.15  
25  
51  
AE  
AC  
AA  
W
U
1.120 – 1.180  
1.313 – 1.383  
AD  
AB  
Y
PAD  
V
0.5  
BASIC  
DETAIL B  
T
S
R
N
L
11.90 – 12.10  
P
M
K
J
MOLD  
CAP  
SUBSTRATE  
H
G
E
F
D
0.33 – 0.43  
C
1.60 – 1.70  
B
75  
DETAIL B  
1
5
A
3
100  
76  
DETAIL A  
1
3
5
7
9
11 13 15 17 19 21 23 25  
10 12 14 16 18 20 22 24 26  
DETAIL A  
COLUMNS  
2
4
6
8
BOTTOM VIEW  
NOTES:  
SYMBOL TOLERANCE  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994  
aaa  
bbb  
eee  
0.10  
0.10  
0.03  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
3
4
LAND DESIGNATION PER JESD MO-222, SPP-010  
DETAILS OF PAD #1 IDENTIFIER ARE OPTIONAL,  
BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.  
THE PAD #1 IDENTIFIER MAY BE EITHER A MOLD  
OR MARKED FEATURE  
10_10_06  
5
PRIMARY DATUM -Z- IS SEATING PLANE  
6. DIMENSION (b) IS MEASURED AT THE MAXIMUM LAND  
WIDTH, PARALLEL TO PRIMARY DATUM -Z-  
7. TOTAL NUMBER OF PADS: 104 TOTAL (100 PERIPHERAL + 4 COMMON CENTER)  
2220aaf  
ꢁnformation furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
11  
LTM2220-AA  
RELATED PARTS  
PART NUMBER  
LTC2220  
DESCRIPTION  
COMMENTS  
12-Bit, 170Msps, ꢄ.ꢄV ADC, LVDS Outputs  
12-Bit, 2ꢀ0Msps, 2.ꢀV ADC, LVDS Outputs  
High Speed Differential Op Amp  
890mW, 67.7dB SNR, 84dB SFDR, 64-Pin QFN Package  
740mW, 6ꢀ.4dB SNR, 84dB SFDR, 64-Pin QFN Package  
800MHz BW, 70dBc Distortion at 70MHz, 6dB Gain  
LTC2242-12  
LT199ꢄ-2  
2220aaf  
LT 0107 • PRINTED IN USA  
LinearTechnology Corporation  
16ꢄ0 McCarthy Blvd., Milpitas, CA 9ꢀ0ꢄꢀ-7417  
12  
© LINEAR TECHNOLOGY CORPORATION 2007  
ꢂ408ꢃ 4ꢄ2-1900 FAX: ꢂ408ꢃ 4ꢄ4-0ꢀ07 www.linear.com  

相关型号:

LTM2220IV-AA#PBF

IC 1-CH 12-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PBCC100, 16 X 16 MM, MO-222, SIPLGA-100, Analog to Digital Converter
Linear

LTM2220IV-AA-PBF

12-Bit, 170Msps ADC
Linear

LTM2220V-AA

12-Bit, 170Msps ADC
Linear

LTM240M2

color active matrix liquid crystal display
SAMSUNG

LTM240M2-L02

color active matrix liquid crystal display
SAMSUNG

LTM240W1

LTM240W1|Data Sheet
ETC

LTM2416

Optoelectronic
ETC

LTM2881

Complete Isolated RS485/RS422 μModule Transceiver + Power
Linear

LTM2881

RS232/RS485 Dual Multiprotocol Transceiver with Integrated Termination
Linear System

LTM2881CV-3

Complete Isolated RS485/RS422 μModule Transceiver + Power
Linear

LTM2881CV-3-PBF

Complete Isolated RS485/RS422 μModule Transceiver + Power
Linear

LTM2881CV-3PBF

Complete Isolated RS485/RS422 μModule Transceiver + Power
Linear