LTM4600HVEV-TRPBF [Linear]

10A, 28VIN High Effi ciency DC/DC μModule; 10A , 28VIN高艾菲效率DC / DC微型模块
LTM4600HVEV-TRPBF
型号: LTM4600HVEV-TRPBF
厂家: Linear    Linear
描述:

10A, 28VIN High Effi ciency DC/DC μModule
10A , 28VIN高艾菲效率DC / DC微型模块

文件: 总24页 (文件大小:356K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4600HV  
10A, 28V High Efficiency  
IN  
DC/DC µModule  
U
DESCRIPTIO  
FEATURES  
The LTM®4600HV is a complete 10A, DC/DC step down  
power supply with up to 28V input operation. Included  
in the package are the switching controller, power FETs,  
inductor, and all support components. Operating over  
an input voltage range of 4.5V to 28V, the LTM4600HV  
supports an output voltage range of 0.6V to 5V, set by a  
single resistor. This high efficiency design delivers 10A  
continuous current (12A peak), needing no heat sinks or  
airflow to meet power specifications. Only bulk input and  
output capacitors are needed to finish the design.  
Complete Switch Mode Power Supply  
Wide Input Voltage Range: 4.5V to 28V  
10A DC, 12A Peak Output Current  
Parallel Two μModule™ DC/DC Converters for 20A  
Output Current  
0.6V to 5V Output Voltage  
1.5% Output Voltage Regulation  
Ultrafast Transient Response  
Current Mode Control  
–55°C to 125°C Operating Temperature Range  
(LTM4600HVMPV)  
The low profile package (2.8mm) enables utilization of  
unused space on the bottom of PC boards for high density  
point of load regulation. High switching frequency and an  
adaptiveon-timecurrentmodearchitectureenablesavery  
fast transient response to line and load changes without  
sacrificing stability. Fault protection features include  
integrated overvoltage and short circuit protection with  
a defeatable shutdown timer. A built-in soft-start timer is  
adjustable with a small capacitor.  
Pb-Free (e4) RoHS Compliant Package Gold-Pad  
Finish  
Up to 92% Efficiency  
Programmable Soft-Start  
Output Overvoltage Protection  
Optional Short-Circuit Shutdown Timer  
Small Footprint, Low Profile (15mm × 15mm ×  
2.8mm) LGA Package  
U
The LTM4600HV is packaged in a thermally enhanced,  
compact (15mm × 15mm) and low profile (2.8mm) over-  
molded Land Grid Array (LGA) package suitable for auto-  
mated assembly by standard surface mount equipment.  
The LTM4600HV is Pb-free and RoHS compliant.  
APPLICATIO S  
Telecom and Networking Equipment  
Military and Avionics Systems  
Industrial Equipment  
Point of Load Regulation  
, LTC, LT and LTM are registered trademarks of Linear Technology Corporation.  
μModule is a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners.  
Servers  
U
Efficiency vs Load Current with 24VIN (FCB = 0)  
TYPICAL APPLICATIO  
100  
10A μModule Power Supply with 4.5V to 28V Input  
90  
V
OUT  
80  
70  
60  
50  
V
IN  
2.5V*  
10A  
V
V
OUT  
IN  
4.5V TO 28V  
ABSMAX  
C
C
OUT  
IN  
LTM4600HV  
V
OSET  
PGND SGND  
31.6k  
1.8V  
2.5V  
3.3V  
OUT  
OUT  
OUT  
4600hv TA01a  
40  
30  
5V  
OUT  
*REVIEW DE-RATING CURVE AT  
THE HIGHER INPUT VOLTAGE  
2
4
8
0
10  
6
LOAD CURRENT (A)  
4600HV TA01b  
4600hvfc  
1
LTM4600HV  
W W U W  
ABSOLUTE AXI U RATI GS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
FCB, EXTV , PGOOD, RUN/SS, V .......... –0.3V to 6V  
CC  
OUT  
V , SV , f ............................................ –0.3V to 28V  
OSET  
Operating Temperature Range (Note 2)  
IN  
V
IN ADJ  
COMP  
SGND  
RUN/SS  
FCB  
V
IN  
, COMP............................................. –0.3V to 2.7V  
PGOOD  
E and I Grades ..................................... –40°C to 85°C  
MP Grade........................................... –55°C to 125°C  
Junction Temperature ........................................... 125°C  
Storage Temperature Range................... –55°C to 125°C  
PGND  
V
OUT  
LGA PACKAGE  
104-LEAD (15mm × 15mm × 2.8mm)  
T
= 125°C, θ = 15°C/W, θ = 6°C/W,  
JA JC  
JMAX  
θ
JA  
DERIVED FROM 95mm × 76mm PCB WITH 4 LAYERS, WEIGHT = 1.7g  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTM4600HVEV#PBF  
LTM4600HVIV#PBF  
LTM4600HVMPV#PBF  
LTM4600HVEV#TRPBF  
LTM4600HVIV#TRPBF  
LTM4600HVMPV#TRPBF LTM4600HVMPV  
LTM4600HVEV  
LTM4600HVIV  
104-Lead (15mm × 15mm × 2.8mm)  
104-Lead (15mm × 15mm × 2.8mm)  
104-Lead (15mm × 15mm × 2.8mm)  
–40°C to 85°C  
–40°C to 85°C  
–55°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C, VIN = 12V. External CIN = 120μF, COUT = 200μF/Ceramic per typical  
application (front page) configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input DC Voltage  
AbsMax 28V for Tolerance on 24V Inputs  
4.5  
28  
V
IN(DC)  
V
Output Voltage  
FCB = 0V  
V
OUT(DC)  
V
IN  
= 5V or 12V, V  
= 1.5V, I = 0A  
OUT  
1.478  
1.470  
1.50  
1.50  
1.522  
1.530  
OUT  
Input Specifications  
V
Under Voltage Lockout Threshold  
Input Inrush Current at Startup  
I
I
= 0A  
3.4  
4
V
IN(UVLO)  
OUT  
I
= 0A, V  
= 1.5V, FCB = 0  
INRUSH(VIN)  
OUT  
OUT  
V
= 5V  
= 12V  
= 24V  
0.6  
0.7  
0.8  
A
A
A
IN  
IN  
IN  
V
V
I
Input Supply Bias Current  
I
= 0A, EXTV Open  
Q(VIN)  
OUT CC  
V
= 12V, V  
= 12V, V  
= 24V, V  
= 24V, V  
= 1.5V, FCB = 5V  
1.2  
42  
mA  
mA  
mA  
mA  
μA  
IN  
IN  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
V
V
V
= 1.5V, FCB = 0V  
= 2.5V, FCB = 5V  
= 2.5V, FCB = 0V  
1.8  
36  
Shutdown, RUN = 0.8V, V = 12V  
35  
75  
IN  
Min On Time  
Min Off Time  
100  
400  
ns  
ns  
I
Input Supply Current  
V
IN  
V
IN  
V
IN  
V
IN  
= 12V, V  
= 12V, V  
= 1.5V, I  
= 3.3V, I  
= 10A  
= 10A  
1.52  
3.13  
3.64  
1.6  
A
A
A
S(VIN)  
OUT  
OUT  
OUT  
OUT  
= 5V, V  
= 1.5V, I  
= 10A  
OUT  
OUT  
= 24V to 3.3V at 10A, EXTV = 5V  
A
CC  
4600hvfc  
2
LTM4600HV  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C, VIN = 12V. External CIN = 120μF, COUT = 200μF/Ceramic per typical  
application (front page) configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Specifications  
I
Output Continuous Current Range  
V
V
= 12V, V  
= 24V, V  
= 1.5V  
= 2.5V (Note 3)  
0
0
10  
10  
A
A
OUTDC  
IN  
IN  
OUT  
OUT  
(See Output Current Derating Curves for  
Different V , V  
and T )  
A
IN OUT  
ΔV  
ΔV  
Line Regulation Accuracy  
V
V
= 1.5V. FCB = 0V, I  
= 0A,  
0.15  
0.3  
%
OUT(LINE)  
OUT  
IN  
OUT  
= 4.5V to 28V  
V
OUT  
Load Regulation Accuracy  
V
OUT  
= 1.5V. FCB = 0V, I  
= 0A to 10A  
OUT(LOAD)  
OUT  
V
V
= 5V  
1
1.5  
%
%
IN  
IN  
V
OUT  
= 12V (Note 4)  
V
Output Ripple Voltage  
Output Ripple Voltage Frequency  
Turn-On Time  
V
= 12V, V  
= 1.5V, FCB = 0V, I  
= 0A  
10  
15  
mV  
P-P  
OUT(AC)  
IN  
OUT  
OUT  
fs  
FCB = 0V, I  
= 5A, V = 12V, V = 1.5V  
OUT  
850  
kHz  
OUT  
IN  
t
V
= 1.5V, I  
IN  
IN  
= 1A  
START  
OUT  
OUT  
V
= 12V  
= 5V  
0.5  
0.7  
ms  
ms  
V
ΔV  
OUTLS  
Voltage Drop for Dynamic Load Step  
V
C
= 1.5V, Load Step: 0A/μs to 5A/μs  
= 3 • 22μF 6.3V, 470μF 4V POSCAP,  
36  
mV  
OUT  
OUT  
See Table 2  
t
I
Settling Time for Dynamic Load Step V = 12V Load: 10% to 90% to 10% of Full Load  
IN  
25  
μs  
SETTLE  
OUTPK  
Output Current Limit  
Output Voltage in Foldback  
V
V
V
= 24V, V  
= 12V, V  
= 2.5V  
= 1.5V  
17  
17  
17  
A
A
A
IN  
IN  
IN  
OUT  
OUT  
OUT  
= 5V, V  
= 1.5V  
Control Stage  
V
OSET  
Voltage at V  
Pin  
I
= 0A, V = 1.5V  
OUT  
0.591  
0.594  
0.6  
0.6  
0.609  
0.606  
V
V
OSET  
OUT  
V
RUN ON/OFF Threshold  
0.8  
–0.5  
0.8  
1.5  
–1.2  
1.8  
100  
16  
2
–3  
3
V
μA  
μA  
mV  
mA  
kΩ  
V
RUN/SS  
I
I
Soft-Start Charging Current  
Soft-Start Discharging Current  
V
V
= 0V  
= 4V  
RUN(C)/SS  
RUN(D)/SS  
RUN/SS  
RUN/SS  
V
– SV  
EXTV = 0V, FCB = 0V  
CC  
IN  
IN  
I
Current into EXTV Pin  
EXTV = 5V, FCB = 0V, V = 1.5V, I = 0A  
EXTVCC  
CC  
CC  
OUT  
OUT  
R
Resistor Between V  
and V Pins  
OSET  
100  
0.6  
–1  
FBHI  
OUT  
V
Forced Continuous Threshold  
0.57  
0.63  
–2  
FCB  
I
Forced Continuous Pin Current  
V
= 0.6V  
μA  
FCB  
FCB  
PGOOD Output  
ΔV  
ΔV  
ΔV  
PGOOD Upper Threshold  
PGOOD Lower Threshold  
PGOOD Hysteresis  
V
V
V
Rising  
7.5  
10  
–10  
2
12.5  
%
%
%
V
OSETH  
OSET  
OSET  
Falling  
–7.5  
–12.5  
OSETL  
Returning  
OSET(HYS)  
OSET  
V
PGL  
PGOOD Low Voltage  
I
= 5mA  
0.15  
0.4  
PGOOD  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTM4600HVE is guaranteed to meet performance  
specifications from 0°C to 85°C. Specifications over the –40°C to 85°C  
operating temperature range are assured by design, characterization  
and correlation with statistical process controls. The LTM46000HVMP  
is guaranteed and tested over the –55°C to 125°C temperature range.  
For output current derating at high temperature, please refer to Thermal  
Considerations and Output Current Derating discussion.  
Note 3: Refer to current de-rating curves and thermal application note.  
Note 4: Test assumes current derating versus temperature.  
4600hvfc  
3
LTM4600HV  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (See Figure 21 for all curves)  
Efficiency vs Load Current  
with 24VIN (FCB = 0)  
Efficiency vs Load Current  
with 5VIN (FCB = 0)  
Efficiency vs Load Current  
with 12V
IN
(FCB = 0)  
100  
90  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
80  
70  
60  
50  
40  
30  
0.6V  
1.2V  
1.5V  
2.5V  
3.3V  
OUT  
OUT  
OUT  
OUT  
OUT  
1.8V  
2.5V  
3.3V  
5V  
0.6V  
1.2V  
1.5V  
2.5V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
2
4
8
0
10  
8
10  
2
4
8
6
0
2
4
6
0
10  
6
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4600hv G03  
4600hv G01  
4600hv G02  
Efficiency vs Load Current  
with Different FCB Settings  
1.2V Transient Response  
1.5V Transient Response  
90  
80  
70  
60  
50  
40  
30  
20  
FCB > 0.7V  
V
= 50mV/DIV  
OUT  
FCB = GND  
I
= 5A/DIV  
OUT  
4600hv G05  
4600hv G06  
25μs/DIV  
1.2V AT 5A/μs LOAD STEP  
C = 3 • 22μF 6.3V CERAMICS  
OUT  
470μF 4V SANYO POSCAP  
C3 = 100pF  
25μs/DIV  
V
V
= 12V  
OUT  
IN  
1.5V AT 5A/μs LOAD STEP  
OUT  
= 1.5V  
C
= 3 • 22μF 6.3V CERAMICS  
470μF 4V SANYO POSCAP  
C3 = 100pF  
0.1  
10  
1
LOAD CURRENT (A)  
4600hv G04  
1.8V Transient Response  
2.5V Transient Response  
3.3V Transient Response  
4600hv G07  
4600hv G08  
4600hv G09  
25μs/DIV  
25μs/DIV  
25μs/DIV  
1.8V AT 5A/μs LOAD STEP  
OUT  
2.5V AT 5A/μs LOAD STEP  
OUT  
3.3V AT 5A/μs LOAD STEP  
OUT  
C
= 3 • 22μF 6.3V CERAMICS  
470μF 4V SANYO POSCAP  
C3 = 100pF  
C
= 3 • 22μF 6.3V CERAMICS  
470μF 4V SANYO POSCAP  
C3 = 100pF  
C
= 3 • 22μF 6.3V CERAMICS  
470μF 4V SANYO POSCAP  
C3 = 100pF  
4600hvfc  
4
LTM4600HV  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (See Figure 21 for all curves)  
Start-Up, IOUT = 10A  
(Resistive Load)  
Start-Up, IOUT = 0A  
V
V
OUT  
(0.5V/DIV)  
OUT  
(0.5V/DIV)  
I
I
IN  
IN  
(0.5A/DIV)  
(0.5A/DIV)  
4600hv G11  
4600hv G10  
200μs/DIV  
200μs/DIV  
V
V
C
= 12V  
V
V
C
= 12V  
IN  
IN  
= 1.5V  
= 1.5V  
OUT  
OUT  
= 200μF  
= 200μF  
OUT  
OUT  
NO EXTERNAL SOFT-START CAPACITOR  
NO EXTERNAL SOFT-START CAPACITOR  
Short-Circuit Protection,  
I
OUT
= 0A  
Short-Circuit Protection,  
I
OUT
= 10A  
VIN to VOUT Stepdown Ratio  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
f
= OPEN  
5V  
ADJ  
V
V
OUT  
(0.5V/DIV)  
OUT  
(0.5V/DIV)  
I
I
IN  
3.3V  
IN  
(0.2A/DIV)  
(0.5A/DIV)  
2.5V  
1.8V  
4600hv G12  
4600hv G13  
20μs/DIV  
20μs/DIV  
1.5V  
1.2V  
V
V
C
= 12V  
OUT  
OUT  
V
V
C
= 12V  
OUT  
OUT  
IN  
IN  
= 1.5V  
= 1.5V  
= 2× 200μF/X5R  
= 2× 200μF/X5R  
NO EXTERNAL SOFT-START CAPACITOR  
NO EXTERNAL SOFT-START CAPACITOR  
0.6V  
10  
20  
24  
0
5
15  
(V)  
V
IN  
SEE FREQUENCY ADJUSTMENT DISCUSSION  
FOR 12V TO 5V  
AND 5V TO 3.3V  
IN  
OUT  
IN OUT  
CONVERSION  
4600HV G14  
V
OSET
vs Temperature  
Start-Up Waveform, T
A
= –55°C  
0.610  
0.605  
0.600  
0.595  
4600HV G16  
V
V
= 12V  
400μs/DIV  
IN  
= 1.5V  
OUT  
= 10A  
OUT  
I
0.590  
–55 –25  
5
35  
65  
95  
125  
TEMPERATURE (°C)  
4600HV G15  
4600hvfc  
5
LTM4600HV  
U
U
U
PI FU CTIO S  
(See Package Description for Pin Assignment)  
V
(Bank 1): Power Input Pins. Apply input voltage  
SGND (Pin D23): Signal Ground Pin. All small-signal  
components should connect to this ground, which in turn  
connects to PGND at one point.  
IN  
between these pins and GND pins. Recommend placing  
input decoupling capacitance directly between V pins  
and GND pins.  
IN  
RUN/SS (Pin F23): Run and Soft-Start Control. Forcing  
this pin below 0.8V will shut down the power supply.  
Inside the power module, there is a 1000pF capacitor  
which provides approximately 0.7ms soft-start time with  
200μF output capacitance. Additional soft-start time can  
be achieved by adding additional capacitance between  
the RUN/SS and SGND pins. The internal short-circuit  
latchoff can be disabled by adding a resistor between this  
f
(Pin A15): A 110k resistor from V to this pin sets  
IN  
ADJ  
the one-shot timer current, thereby setting the switching  
frequency.TheLTM4600HVswitchingfrequencyistypically  
850kHz. An external resistor to ground can be selected to  
reducetheone-shottimercurrent,thuslowertheswitching  
frequency to accommodate a higher duty cycle step down  
requirement. See the applications section.  
pin and the V pin. This resistor must supply a minimum  
IN  
SV (PinA17):SupplyPinforInternalPWMController.Leave  
this pin open or add additional decoupling capacitance.  
IN  
5μA pull up current.  
FCB (Pin G23): Forced Continuous Input. Grounding this  
pin enables forced continuous mode operation regardless  
of load conditions. Tying this pin above 0.63V enables  
discontinuousconductionmodetoachievehighefficiency  
operation at light loads. There is an internal 4.75K resistor  
between the FCB and SGND pins.  
EXTV (Pin A19): External 5V supply pin for controller. If  
CC  
left open or grounded, the internal 5V linear regulator will  
power the controller and MOSFET drivers. For high input  
voltage applications, connecting this pin to an external  
5V will reduce the power loss in the power module. The  
EXTV voltage should never be higher than V .  
CC  
IN  
PGOOD (Pin J23): Output Voltage Power Good Indicator.  
When the output voltage is within 10% of the nominal  
voltage, the PGOOD is open drain output. Otherwise, this  
pin is pulled to ground.  
V
(Pin A21): The Negative Input of The Error Amplifier.  
OSET  
Internally,thispinisconnectedtoV witha100kprecision  
OUT  
resistor.Differentoutputvoltagescanbeprogrammedwith  
additional resistors between the V  
and SGND pins.  
OSET  
PGND (Bank 2): Power ground pins for both input and  
output returns.  
COMP (Pin B23): Current Control Threshold and Error  
Amplifier Compensation Point. The current comparator  
threshold increases with this control voltage. The voltage  
ranges from 0V to 2.4V with 0.8V corresponding to zero  
sense voltage (zero current).  
V
OUT  
(Bank 3): Power Output Pins. Apply output load  
between these pins and GND pins. Recommend placing  
High Frequency output decoupling capacitance directly  
between these pins and GND pins.  
TOP VIEW  
2
3
4
5
6
7
16  
17  
18  
19  
A
C
E
1
20  
21  
22  
23  
24  
B
D
F
COMP  
SGND  
RUN/SS  
FCB  
9
10  
14  
11  
15  
V
IN  
8
BANK 1  
13  
12  
25  
32  
G
J
26  
33  
27  
34  
28  
35  
29  
36  
30  
37  
31  
38  
H
K
PGOOD  
48  
59  
39  
50  
61  
40  
51  
62  
41  
52  
63  
42  
53  
64  
43  
54  
65  
44  
55  
66  
45  
56  
67  
46  
57  
68  
47  
58  
69  
49  
60  
71  
PGND  
BANK 2  
L
M
N
70  
73  
84  
95  
74  
85  
96  
75  
86  
97  
76  
87  
98  
77  
88  
99  
78  
89  
79  
90  
80  
91  
81  
92  
72  
83  
94  
82  
93  
P
R
T
V
OUT  
BANK 3  
100  
101  
102  
103  
104  
1
3
5
7
9
11  
13  
15  
17  
19  
21  
23  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
4600hv PN01  
4600hvfc  
6
LTM4600HV  
W
W
SI PLIFIED BLOCK DIAGRA  
SV  
IN  
RUN/SS  
LTM4600HV  
V
V
, 4.5V TO 28V ABS MAX  
IN  
1000pF  
C
1.5μF  
IN  
PGOOD  
Q1  
COMP  
FCB  
INT  
COMP  
, 2.5V/10A MAX  
OUT  
C
OUT  
4.75k  
15μF  
6.3V  
CONTROLLER  
f
ADJ  
PGND  
Q2  
10Ω  
SGND  
EXTV  
CC  
100k  
0.5%  
V
OSET  
R6  
31.6k  
4600hv F01  
Figure 1. Simplified LTM4600HV Block Diagram  
U
W U  
DECOUPLI G REQUIRE E TS  
TA = 25°C, VIN = 12V. Use Figure 1 configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
External Input Capacitor Requirement  
I
= 10A, 2x 10μF 35V Ceramic  
20  
μF  
IN  
OUT  
(V = 4.5V to 28V, V  
= 2.5V)  
Taiyo Yuden GDK316BJ106ML  
IN  
OUT  
C
External Output Capacitor Requirement  
(V = 4.5V to 28V, V = 2.5V)  
I
= 10A, Refer to Table 2 in the  
100  
200  
μF  
OUT  
OUT  
Applications Information Section  
IN  
OUT  
4600hvfc  
7
LTM4600HV  
U
OPERATIO  
μModule Description  
Q1 is turned off and bottom FET Q2 is turned on and held  
on until the overvoltage condition clears.  
TheLTM4600HVisastandalonenon-isolatedsynchronous  
switching DC/DC power supply. It can deliver up to 10A of  
DC output current with only bulk external input and output  
capacitors. This module provides a precisely regulated  
outputvoltageprogrammableviaoneexternalresistorfrom  
Pulling the RUN/SS pin low forces the controller into its  
shutdown state, turning off both Q1 and Q2. Releasing the  
pin allows an internal 1.2μA current source to charge up  
the softstart capacitor. When this voltage reaches 1.5V,  
the controller turns on and begins switching.  
0.6V to 5.0V . The input voltage range is 4.5V to 28V.  
DC  
DC  
A simplified block diagram is shown in Figure 1 and the  
At low load current the module works in continuous cur-  
rent mode by default to achieve minimum output voltage  
ripple. It can be programmed to operate in discontinuous  
current mode for improved light load efficiency when the  
FCB pin is pulled up above 0.8V and no higher than 6V.  
The FCB pin has a 4.75k resistor to ground, so a resistor  
typical application schematic is shown in Figure 21.  
The LTM4600HV contains an integrated LTC constant  
on-time current-mode regulator, ultra-low R  
FETs  
DS(ON)  
with fast switching speed and integrated Schottky diode.  
The typical switching frequency is 850kHz at full load.  
With current mode control and internal feedback loop  
compensation, the LTM4600HV module has sufficient  
stability margins and good transient performance under a  
wide range of operating conditions and with a wide range  
of output capacitors, even all ceramic output capacitors  
(X5R or X7R for extended temperature range).  
to V can set the voltage on the FCB pin.  
IN  
When EXTV pin is grounded or open, an integrated 5V  
CC  
linear regulator powers the controller and MOSFET gate  
drivers. If a minimum 4.7V external bias supply is ap-  
plied on the EXTV pin, the internal regulator is turned  
CC  
off, and an internal switch connects EXTV to the gate  
CC  
Current mode control provides cycle-by-cycle fast current  
limit. In addition, foldback current limiting is provided  
in an over-current condition while V  
the LTM4600HV has defeatable short circuit latch off.  
Internal overvoltage and undervoltage comparators pull  
the open-drain PGOOD output low if the output feedback  
voltage exits a 10% window around the regulation point.  
Furthermore, in an overvoltage condition, internal top FET  
driver voltage. This eliminates the linear regulator power  
loss with high input voltage, reducing the thermal stress  
drops. Also,  
on the controller. The maximum voltage on EXTV pin is  
CC  
OSET  
6V. The EXTV voltage should never be higher than the  
CC  
V
IN  
voltage. Also EXTV must be sequenced after V .  
CC IN  
Recommended for 24V operation to lower temperature  
in the μModule.  
4600hvfc  
8
LTM4600HV  
U
W U U  
APPLICATIO S I FOR ATIO  
The typical LTM4600HV application circuit is shown in  
Figure 21. External component selection is primarily  
determined by the maximum load current and output  
voltage.  
voltage is margined up. The output voltage is margined  
down when Q  
is on and Q is off. If the output  
DOWN  
UP  
voltage V needs to be margined up/down by M%, the  
O
resistor values of R and R  
the following equations:  
can be calculated from  
UP  
DOWN  
Output Voltage Programming and Margining  
(RSET RUP)•VO (1+ M%)  
(RSET RUP)+100kΩ  
The PWM controller of the LTM4600HV has an internal  
0.6V 1%referencevoltage.Asshownintheblockdiagram,  
= 0.6V  
a 100k/0.5% internal feedback resistor connects V  
OUT  
pin to  
RSET VO (1M%)  
RSET + (100kΩ RDOWN  
and V  
pins. Adding a resistor R from V  
OSET  
SET  
OSET  
= 0.6V  
)
SGND pin programs the output voltage:  
100k +RSET  
VO = 0.6V •  
Input Capacitors  
RSET  
The LTM4600HV μModule should be connected to a low  
ac-impedance DC source. High frequency, low ESR input  
capacitors are required to be placed adjacent to the mod-  
Table 1 shows the standard values of 1% R  
for typical output voltages:  
Table 1.  
resistor  
SET  
ule. In Figure 21, the bulk input capacitor C is selected  
IN  
for its ability to handle the large RMS current into the  
converter. For a buck converter, the switching duty-cycle  
can be estimated as:  
R
SET  
Open 100  
0.6 1.2  
66.5  
1.5  
49.9  
1.8  
43.2  
2
31.6  
2.5  
22.1  
3.3  
13.7  
5
(kΩ)  
V
(V)  
O
VO  
V
IN  
Voltagemarginingisthedynamicadjustmentoftheoutput  
voltage to its worst case operating range in production  
testing to stress the load circuitry, verify control/protec-  
tion functionality of the board and improve the system  
reliability. Figure 2 shows how to implement margining  
function with the LTM4600HV. In addition to the feedback  
D =  
Without considering the inductor current ripple, the RMS  
current of the input capacitor can be estimated as:  
IO(MAX)  
η%  
ICIN(RMS)  
=
D(1D)  
resistor R , several external components are added.  
SET  
Turn off both transistor Q and Q  
margining. When Q is on and Q  
to disable the  
UP  
DOWN  
In the above equation, η% is the estimated efficiency of  
the power module. C1 can be a switcher-rated electrolytic  
aluminum capacitor, OS-CON capacitor or high volume  
ceramic capacitors. Note the capacitor ripple current  
ratings are often based on only 2000 hours of life. This  
makes it advisable to properly derate the input capacitor,  
or choose a capacitor rated at a higher temperature than  
required. Always contact the capacitor manufacturer for  
derating requirements over temperature.  
is off, the output  
UP  
DOWN  
V
OUT  
LTM4600HV  
R
R
DOWN  
Q
100k  
DOWN  
2N7002  
V
OSET  
PGND  
SGND  
R
SET  
UP  
In Figure 21, the input capacitors are used as high fre-  
quency input decoupling capacitors. In a typical 10A  
output application, 1-2 pieces of very low ESR X5R or  
X7R (for extended temperature range), 10μF ceramic  
capacitors are recommended. This decoupling capacitor  
Q
UP  
2N7002  
4600hv F02  
Figure 2. LTM4600HV Margining Implementation  
4600hvfc  
9
LTM4600HV  
U
W U U  
APPLICATIO S I FOR ATIO  
should be placed directly adjacent the module input pins  
in the PCB layout to minimize the trace inductance and  
high frequency AC noise.  
Soft-Start and Latchoff with the RUN/SS pin  
The RUN/SS pin provides a means to shut down the  
LTM4600HV as well as a timer for soft-start and over-  
current latchoff. Pulling the RUN/SS pin below 0.8V puts  
the LTM4600HV into a low quiescent current shutdown  
Output Capacitors  
The LTM4600HV is designed for low output voltage ripple.  
(I ≤ 75μA). Releasing the pin allows an internal 1.2μA  
Q
ThebulkoutputcapacitorsC ischosenwithlowenough  
current source to charge up the timing capacitor C .  
OUT  
SS  
effectiveseriesresistance(ESR)tomeettheoutputvoltage  
Inside LTM4600HV, there is an internal 1000pF capaci-  
ripple and transient requirements. C  
can be low ESR  
tor from RUN/SS pin to ground. If RUN/SS pin has an  
OUT  
tantalumcapacitor, lowESRpolymercapacitororceramic  
capacitor (X5R or X7R). The typical capacitance is 200μF  
if all ceramic output capacitors are used. The internally  
optimized loop compensation provides sufficient stability  
margin for all ceramic capacitors applications. Additional  
output filtering may be required by the system designer,  
if further reduction of output ripple or dynamic transient  
spike is required. Refer to Table 2 for an output capaci-  
tance matrix for each output voltage Droop, peak to peak  
deviation and recovery time during a 5A/μs transient with  
a specific output capacitance.  
external capacitor C  
starting is about:  
to ground, the delay before  
SS_EXT  
1.5V  
1.2μA  
tDELAY  
=
(CSS_EXT +1000pF)  
When the voltage on RUN/SS pin reaches 1.5V, the  
LTM4600HV internal switches are operating with a clamp-  
ing of the maximum output inductor current limited by the  
RUN/SSpintotalsoft-startcapacitance.AstheRUN/SSpin  
voltage rises to 3V, the soft-start clamping of the inductor  
current is released.  
Fault Conditions: Current Limit and Over current  
Foldback  
V to V  
Stepdown Ratios  
IN  
OUT  
There are restrictions in the maximum V to V  
step  
IN  
OUT  
The LTM4600HV has a current mode controller, which  
inherently limits the cycle-by-cycle inductor current not  
only in steady state operation, but also in transient.  
down ratio that can be achieved for a given input voltage.  
These contraints are shown in the Typical Performance  
Characteristics curves labeled “V to V  
Stepdown  
IN  
OUT  
To further limit current in the event of an over load condi-  
tion, the LTM4600HV provides foldback current limiting.  
If the output voltage falls by more than 50%, then the  
maximumoutputcurrentisprogressivelyloweredtoabout  
one sixth of its full current limit value.  
Ratio”. Note that additional thermal de-rating may apply.  
See the Thermal Considerations and Output Current De-  
Rating sections of this data sheet.  
4600hvfc  
10  
LTM4600HV  
U
W U U  
APPLICATIO S I FOR ATIO  
Table 2. Output Voltage Response Versus Component Matrix *(Refer to Figure 21)  
TYPICAL MEASURED VALUES  
C
OUT1  
VENDORS  
PART NUMBER  
C
OUT2  
VENDORS  
PART NUMBER  
TDK  
C4532X5R0J107MZ (100μF,6.3V)  
JMK432BJ107MU-T ( 100μF, 6.3V)  
JMK316BJ226ML-T501 ( 22μF, 6.3V)  
JMK316BJ226ML-T501 ( 22μF, 6.3V)  
SANYO POSCAP  
SANYO POSCAP  
SANYO POSCAP  
SANYO POSCAP  
6TPE330MIL (330μF, 6.3V)  
2R5TPE470M9 (470μF, 2.5V)  
4TPE470MCL (470μF, 4V)  
6TPD470M (470μF, 6.3V)  
TAIYO YUDEN  
TAIYO YUDEN  
TAIYO YUDEN  
V
C
C
C
C
C
C3  
V
IN  
(V)  
5
5
5
5
12  
12  
12  
12  
5
5
5
5
12  
12  
12  
12  
5
5
5
5
12  
12  
12  
12  
5
5
5
5
12  
12  
12  
12  
24  
24  
7
7
7
7
12  
12  
12  
12  
24  
15  
20  
DROOP  
(mV)  
PEAK TO PEAK  
RECOVERY TIME  
(μs)  
LOAD STEP  
(A/μs)  
OUT  
IN  
IN  
OUT1  
OUT2  
COMP  
(V)  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.8  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
5
(CERAMIC)  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
(BULK)  
(CERAMIC)  
(BULK)  
470μF 4V  
470μF 2.5V  
330μF 6.3V  
NONE  
470μF 4V  
470μF 2.5V  
330μF 6.3V  
NONE  
470μF 4V  
470μF 2.5V  
330μF 6.3V  
NONE  
470μF 4V  
470μF 2.5V  
330μF 6.3V  
NONE  
470μF 4V  
470μF 2.5V  
330μF 6.3V  
NONE  
470μF 4V  
470μF 2.5V  
330μF 6.3V  
NONE  
470μF 4V  
330μF 6.3V  
470μF 4V  
NONE  
470μF 4V  
470μF 4V  
330μF 6.3V  
NONE  
(mV)  
68  
70  
80  
98  
68  
70  
80  
98  
75  
79  
84  
118  
75  
79  
89  
108  
81  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
3 × 22μF 6.3V  
1 × 100μF 6.3V  
2 × 100μF 6.3V  
4 × 100μF 6.3V  
3 × 22μF 6.3V  
1 × 100μF 6.3V  
2 × 100μF 6.3V  
4 × 100μF 6.3V  
3 × 22μF 6.3V  
1 × 100μF 6.3V  
2 × 100μF 6.3V  
4 × 100μF 6.3V  
3 × 22μF 6.3V  
1 × 100μF 6.3V  
2 × 100μF 6.3V  
4 × 100μF 6.3V  
3 × 22μF 6.3V  
1 × 100μF 6.3V  
2 × 100μF 6.3V  
4 × 100μF 6.3V  
3 × 22μF 6.3V  
1 × 100μF 6.3V  
2 × 100μF 6.3V  
4 × 100μF 6.3V  
1 × 100μF 6.3V  
2 × 100μF 6.3V  
3 × 22μF 6.3V  
4 × 100μF 6.3V  
1 × 100μF 6.3V  
3 × 22μF 6.3V  
2 × 100μF 6.3V  
4 × 100μF 6.3V  
3 × 22μF 6.3V  
3 × 22μF 6.3V  
2 × 100μF 6.3V  
1 × 100μF 6.3V  
3 × 22μF 6.3V  
4 × 100μF 6.3V  
1 × 100μF 6.3V  
3 × 22μF 6.3V  
2 × 100μF 6.3V  
4 × 100μF 6.3V  
3 × 22μF 6.3V  
4 × 100μF 6.3V  
4 × 100μF 6.3V  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
35  
35  
40  
49  
35  
35  
40  
49  
36  
37  
44  
61  
36  
37  
44  
54  
40  
44  
46  
62  
40  
44  
44  
62  
48  
56  
57  
60  
48  
51  
56  
70  
56  
50  
64  
66  
82  
100  
52  
64  
64  
76  
74  
188  
159  
25  
20  
20  
20  
25  
20  
20  
20  
25  
20  
20  
20  
25  
20  
20  
20  
30  
20  
20  
20  
30  
20  
20  
20  
30  
30  
30  
25  
30  
30  
30  
25  
30  
30  
30  
30  
35  
25  
30  
35  
30  
25  
30  
25  
25  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
88  
91  
128  
81  
85  
91  
125  
103  
113  
116  
115  
103  
102  
113  
159  
112  
100  
126  
132  
166  
200  
106  
129  
126  
144  
149  
375  
320  
470μF 6.3V  
470μF 6.3V  
330μF 6.3V  
470μF 4V  
470μF 4V  
NONE  
470μF 4V  
470μF 4V  
330μF 6.3V  
NONE  
470μF 6.3V  
NONE  
NONE  
5
*X7R is recommended for extended temperature range.  
4600hvfc  
11  
LTM4600HV  
U
W U U  
APPLICATIO S I FOR ATIO  
After the controller has been started and given adequate  
to defeat latchoff. Any pull-up network must be able to  
maintain RUN/SS above 4V maximum latchoff threshold  
andovercomethe4μAmaximumdischargecurrent.Figure  
time to charge up the output capacitor, C is used as a  
SS  
short-circuittimer.AftertheRUN/SSpinchargesabove4V,  
if the output voltage falls below 75% of its regulated value,  
then a short-circuit fault is assumed. A 1.8μA current then  
3 shows a conceptual drawing of V  
short circuit.  
during startup and  
RUN  
beginsdischargingC . Ifthefaultconditionpersistsuntil  
SS  
V
the RUN/SS pin drops to 3.5V, then the controller turns  
off both power MOSFETs, shuting down the converter  
permanently. The RUN/SS pin must be actively pulled  
down to ground in order to restart operation.  
RUN/SS  
4V  
3.5V  
3V  
1.5V  
The over-current protection timer requires the soft-start  
SHORT-CIRCUIT  
LATCH ARMED  
timing capacitor C be made large enough to guarantee  
SS  
t
SHORT-CIRCUIT  
LATCHOFF  
that the output is in regulation by the time C has reached  
SS  
SOFT-START  
OUTPUT  
OVERLOAD  
HAPPENS  
CLAMPING  
OF I RELEASED  
the 4V threshold. In general, this will depend upon the size  
of the output capacitance, output voltage and load current  
characteristic. A minimum external soft-start capacitor  
can be estimated from:  
L
V
O
75%V  
O
CSS_EXT +1000pF > COUT VOUT (103[F /VS])  
t
SWITCHING  
STARTS  
4600hv F03  
Generally 0.1μF is more than sufficient.  
Figure 3. RUN/SS Pin Voltage During Startup and  
Short-Circuit Protection  
Since the load current is already limited by the current  
mode control and current foldback circuitry during a  
shortcircuit,over-currentlatchoffoperationisNOTalways  
needed or desired, especially the output has large amount  
of capacitance or the load draw huge current during start  
up. The latchoff feature can be overridden by a pull-up  
currentgreaterthan5μAbutlessthan8AtotheRUN/SS  
V
V
RECOMMENDED VALUES FOR RUN/SS  
IN  
IN  
V
R
RUN/SS  
R
LTM4600HV  
IN  
RUN/SS  
4.5V TO 5.5V  
10.8V TO 13.8V  
24V TO 28V  
50k  
150k  
500k  
RUN/SS  
PGND SGND  
4600hv F04  
pin. The additional current prevents the discharge of C  
SS  
during a fault and also shortens the soft-start period. Us-  
Figure 4. Defeat Short-Circuit Latchoff with a Pull-Up  
Resistor to VIN  
ing a resistor from RUN/SS pin to V is a simple solution  
IN  
4600hvfc  
12  
LTM4600HV  
U
W U U  
APPLICATIO S I FOR ATIO  
Enable  
EXTV Connection  
CC  
TheRUN/SSpincanbedrivenfromlogicasshowninFigure  
5. This function allows the LTM4600HV to be turned on or  
off remotely. The ON signal can also control the sequence  
of the output voltage.  
An internal low dropout regulator produces an internal 5V  
supply that powers the control circuitry and FET drivers.  
Therefore, if the system does not have a 5V power rail,  
the LTM4600HV can be directly powered by V . The gate  
IN  
driver current through LDO is about 18mA. The internal  
LDO power dissipation can be calculated as:  
RUN/SS  
P
= 18mA • (V – 5V)  
IN  
LDO_LOSS  
LTM4600HV  
ON  
The LTM4600HV also provides an external gate driver  
voltage pin EXTV . If there is a 5V rail in the system, it  
PGND SGND  
CC  
2N7002  
is recommended to connect EXTV pin to the external  
4600hv F05  
CC  
5V rail. Whenever the EXTV pin is above 4.7V, the in-  
CC  
Figure 5. Enable Circuit with External Logic  
ternal 5V LDO is shut off and an internal 50mA P-channel  
switch connects the EXTV to internal 5V. Internal 5V is  
CC  
Output Voltage Tracking  
supplied from EXTV until this pin drops below 4.5V. Do  
CC  
For the applications that require output voltage tracking,  
several LTM4600HV modules can be programmed by the  
power supply tracking controller such as the LTC2923.  
Figure 6 shows a typical schematic with LTC2923. Coin-  
not apply more than 6V to the EXTV pin and ensure that  
CC  
EXTV < V . The following list summaries the possible  
CC  
IN  
connections for EXTV :  
CC  
1. EXTV grounded. Internal 5V LDO is always powered  
CC  
cident, ratiometric and offset tracking for V rising and  
O
from the internal 5V regulator.  
falling can be implemented with different sets of resistor  
values. See the LTC2923 data sheet for more details.  
2. EXTV connected to an external supply. Internal LDO  
CC  
is shut off. A high efficiency supply compatible with the  
MOSFET gate drive requirements (typically 5V) can im-  
prove overall efficiency. With this connection, it is always  
Q1  
V
IN  
DC/DC  
3.3V  
5V  
V
V
IN  
required that the EXTV voltage can not be higher than  
CC  
V pin voltage.  
IN  
IN  
R
V
GATE  
RAMP  
FB1  
ONB  
CC  
LTM4600HV  
V
3. EXTV is recommended for V > 20V  
V
CC  
IN  
1.8V  
ON  
OSET  
OUT  
R
ONA  
49.9k  
LTC2923  
Discontinuous Operation and FCB Pin  
STATUS  
SDO  
RAMPBUF  
TRACK1  
TRACK2  
V
V
IN  
The FCB pin determines whether the internal bottom  
MOSFET remains on when the current reverses. There is  
an internal 4.75k pull-down resistor connecting this pin  
to ground. The default light load operation mode is forced  
continuous (PWM) current mode. This mode provides  
minimum output voltage ripple.  
R
R
TB1  
TA1  
IN  
R
TB2  
LTM4600HV  
V
V
FB2  
1.5V  
OSET  
OUT  
GND  
R
66.5k  
TA2  
4600hv F06  
Figure 6. Output Voltage Tracking with the LTC2923 Controller  
4600hvfc  
13  
LTM4600HV  
U
W U U  
APPLICATIO S I FOR ATIO  
In the application where the light load efficiency is im-  
portant, tying the FCB pin above 0.6V threshold enables  
discontinuous operation where the bottom MOSFET turns  
offwheninductorcurrentreverses.Therefore,theconduc-  
tionlossisminimizedandlightloadefficiencyisimproved.  
The penalty is that the controller may skip cycle and the  
output voltage ripple increases at light load.  
explanationoftheanalysisforthethermalmodels, andthe  
derating curves. Tables 3 and 4 provide a summary of the  
equivalent θ for the noted conditions. These equivalent  
JA  
θ
JA  
parameters are correlated to the measure values, and  
improvedwithair-flow.Thecasetemperatureismaintained  
at 100°C or below for the derating curves. This allows for  
4W maximum power dissipation in the total module with  
top and bottom heatsinking, and 2W power dissipation  
Paralleling Operation with Load Sharing  
through the top of the module with an approximate θ  
JC  
between 6°C/W to 9°C/W. This equates to a total of 124°C  
Two or more LTM4600HV modules can be paralleled to  
provide higher than 10A output current. Figure 7 shows  
the necessary interconnection between two paralleled  
modules. The OPTI-LOOP™ current mode control en-  
sures good current sharing among modules to balance  
the thermal stress. The new feedback equation for two or  
more LTM4600HVs in parallel is:  
at the junction of the device.  
Safety Considerations  
The LTM4600HV modules do not provide isolation from  
V to V . There is no internal fuse. If required, a slow  
IN  
OUT  
blow fuse with a rating twice the maximum input current  
should be provided to protect each unit from catastrophic  
failure.  
100k  
+RSET  
N
VOUT = 0.6V •  
RSET  
Layout Checklist/Example  
where N is the number of LTM4600HVs in parallel.  
The high integration of the LTM4600HV makes the PCB  
board layout very simple and easy. However, to optimize  
its electrical and thermal performance, some layout con-  
siderations are still necessary.  
V
V
V
V
OUT  
IN  
IN  
OUT  
(20A  
)
MAX  
LTM4600HV  
PGND COMP  
V
SGND  
OSET  
• Use large PCB copper areas for high current path, in-  
R
SET  
cluding V , PGND and V . It helps to minimize the  
IN  
OUT  
PCB conduction loss and thermal stress  
COMP  
V
SGND  
OSET  
• Place high frequency ceramic input and output capaci-  
V
LTM4600HV  
V
OUT  
IN  
tors next to the V , PGND and V  
pins to minimize  
IN  
OUT  
PGND  
high frequency noise  
4600hv F07  
• Place a dedicated power ground layer underneath  
the unit  
Figure 7. Parallel Two μModules with Load Sharing  
• Tominimizetheviaconductionlossandreducemodule  
thermal stress, use multiple vias for interconnection  
between top layer and other power layers  
Thermal Considerations and Output Current Derating  
The power loss curves in Figures 8 and 15 can be used  
in coordination with the load current derating curves in  
Figures 9 to 14, and Figures 16 to 19 for calculating an  
• Do not put vias directly on pad unless they are capped.  
• Use a separated SGND ground copper area for com-  
ponents connected to signal pins. Connect the SGND  
to PGND underneath the unit  
approximate θ for the module with various heatsink-  
JA  
ing methods. Thermal models are derived from several  
temperature measurements at the bench, and thermal  
modelinganalysis.ApplicationNote103providesadetailed  
Figure 20 gives a good example of the recommended  
OPTI-LOOP is a trademark of Linear Technology Corporation.  
layout.  
4600hvfc  
14  
LTM4600HV  
U
W U U  
APPLICATIO S I FOR ATIO  
10  
10  
9
4.5  
V
V
= 5V  
V
V
= 5V  
IN  
OUT  
V
= 1.5V  
IN  
OUT  
OUT  
= 1.5V  
= 1.5V  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
9
8
7
6
5
4
18V LOSS  
8
7
12V LOSS  
6
5V LOSS  
0 LFM  
200 LFM  
400 LFM  
5
0 LFM  
200 LFM  
400 LFM  
4
50  
60  
70  
80  
90  
50  
60  
70  
80  
90  
100  
0
2
4
6
8
10  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
OUTPUT CURRENT (A)  
4600hv F09  
4600hv F10  
4600hv F08  
Figure 8. 1.5V Power Loss Curves  
vs Load Current  
Figure 9. No Heatsink  
Figure 10. BGA Heatsink  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
10  
9
V
V
= 18V  
OUT  
V
V
= 12V  
V
= 12V  
IN  
IN  
IN  
OUT  
= 1.5V  
= 1.5V  
V
= 1.5V  
OUT  
8
8
7
7
6
6
5
0 LFM  
200 LFM  
400 LFM  
5
0 LFM  
200 LFM  
400 LFM  
0 LFM  
200 LFM  
400 LFM  
4
4
3
40  
50  
60  
70  
80  
90  
50 55 60 65 70 75 80 85 90  
AMBIENT TEMPERATURE (°C)  
4600hv F11  
50  
60  
70  
80  
90  
100  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4600hv F13  
4600hv F12  
Figure 13. No Heatsink  
Figure 11. No Heatsink  
Figure 12. BGA Heatsink  
10  
8
10  
9
8
7
6
5
4
3
2
1
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
= 18V  
V
V
= 12V  
OUT  
IN  
OUT  
IN  
= 1.5V  
= 3.3V  
6
24V LOSS  
4
12V LOSS  
2
0 LFM  
200 LFM  
400 LFM  
0 LFM  
200 LFM  
400 LFM  
0
50  
60  
70  
80  
90  
100  
40  
50  
60  
70  
80  
90  
0
2
4
6
8
10  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
OUTPUT CURRENT (A)  
4600hv F14  
4600hv F16  
4600hv F15  
Figure 14. BGA Heatsink  
Figure 16. No Heatsink  
Figure 15. 3.3V Power Loss  
Curves vs Load Current  
4600hvfc  
15  
LTM4600HV  
U
W U U  
APPLICATIO S I FOR ATIO  
10  
9
10  
8
10  
9
0 LFM  
200 LFM  
400 LFM  
V
V
= 12V  
V
V
= 24V  
IN  
OUT  
IN  
OUT  
= 3.3V  
= 3.3V TEMPERATURE  
DE-RATING  
8
8
6
7
7
4
6
6
2
5
0 LFM  
200 LFM  
400 LFM  
0 LFM  
200 LFM  
400 LFM  
5
V
V
= 24V  
OUT  
DE-RATING  
IN  
= 3.3V TEMPERATURE  
4
0
4
40  
50  
60  
70  
80  
90  
100  
50  
60  
70  
80  
90  
50  
60  
70  
80  
90  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4600hv F17  
4600hv F18.eps  
4600hv F19.eps  
Figure 17. BGA Heatsink  
Figure 18. No Heatsink  
Figure 19. BGA Heatsink  
Table 3. 1.5V Output  
DERATING CURVE  
Figures 9, 11, 13  
Figures 9, 11, 13  
Figures 9, 11, 13  
Figures 10, 12, 14  
Figures 10, 12, 14  
Figures 10, 12, 14  
V
(V)  
POWER LOSS CURVE  
Figure 8  
AIR FLOW (LFM)  
HEATSINK  
None  
θ
JA  
(°C/W)  
IN  
5, 12, 18  
5, 12, 18  
5, 12, 18  
5, 12, 18  
5, 12, 18  
5, 12, 18  
0
15.2  
14  
Figure 8  
200  
400  
0
None  
Figure 8  
None  
12  
Figure 8  
BGA Heatsink  
BGA Heatsink  
BGA Heatsink  
13.9  
11.3  
10.25  
Figure 8  
200  
400  
Figure 8  
Table 4. 3.3V Output  
DERATING CURVE  
Figures 16, 18  
V
(V)  
POWER LOSS CURVE  
Figure 15  
AIR FLOW (LFM)  
HEATSINK  
None  
θ
(°C/W)  
JA  
IN  
12, 24  
12, 24  
12, 24  
12, 24  
12, 24  
12, 24  
0
15.2  
14.6  
13.4  
13.9  
11.1  
10.5  
Figures 16, 18  
Figure 15  
200  
400  
0
None  
Figures 16, 18  
Figure 15  
None  
Figures 17, 19  
Figure 15  
BGA Heatsink  
BGA Heatsink  
BGA Heatsink  
Figures 17, 19  
Figure 15  
200  
400  
Figures 17, 19  
Figure 15  
4600hvfc  
16  
LTM4600HV  
U
W U U  
APPLICATIO S I FOR ATIO  
V
t
IN  
ON  
(DC) DUTY CYCLE =  
t
s
t
ON  
V
OUT  
DC =  
=
t
V
s
IN  
DC  
FREQ =  
t
ON  
t
t
ON  
C
OFF  
IN  
4602 F25  
PERIOD t  
s
The LTM4600HV has a minimum (t ) on time of 100  
PGND  
ON  
nanoseconds and a minimum (t ) off time of 400  
OFF  
nanoseconds. The 2.4V clamp on the ramp threshold as  
V
a function of V  
will cause the switching frequency to  
OUT  
OUT  
4600hv F20  
increasebytheratioofV /2.4Vfor3.3Vand5Voutputs.  
OUT  
LOAD  
This is due to the fact the on time will not increase as V  
OUT  
TOP LAYER  
increases past 2.4V. Therefore, if the nominal switch-  
ing frequency is 850kHz, then the switching frequency  
will increase to ~1.2MHz for 3.3V, and ~1.7MHz for 5V  
Figure 20. Recommended PCB Layout  
LTM4600HV Frequency Adjustment  
outputs due to Frequency = (DC/t ) When the switching  
ON  
frequency increases to 1.2MHz, then the time period t is  
TheLTM4600HVisdesignedtotypicallyoperateat850kHz  
across most input and output conditions. The control ar-  
chitectureisconstantontimevalleymodecurrentcontrol.  
S
reducedto~833nanosecondsandat1.7MHztheswitching  
period reduces to ~588 nanoseconds. When higher duty  
cycle conversions like 5V to 3.3V and 12V to 5V need to  
be accommodated, then the switching frequency can be  
lowered to alleviate the violation of the 400ns minimum  
The f  
pin is typically left open or decoupled with an  
ADJ  
optional 1000pF capacitor. The switching frequency has  
beenoptimizedtomaintainconstantoutputrippleoverthe  
operatingconditions.Theequationsforsettingtheoperat-  
ing frequency are set around a programmable constant on  
time.Thisontimeisdevelopedbyaprogrammablecurrent  
into an on board 10pF capacitor that establishes a ramp  
that is compared to a voltage threshold equal to the output  
off time. Since the total switching period is t = t + t  
,
S
ON OFF  
t
will be below the 400ns minimum off time. A resistor  
OFF  
from the f  
pin to ground can shunt current away from  
ADJ  
the on time generator, thus allowing for a longer on time  
and a lower switching frequency. 12V to 5V and 5V to  
3.3V derivations are explained in the data sheet to lower  
switching frequency and accommodate these step-down  
conversions.  
voltage up to a 2.4V clamp. This I current is equal to:  
ON  
I
ON  
= (V – 0.7V)/110k, with the 110k onboard resistor  
IN  
IN  
from V to f . The on time is equal to t = (V /I )  
ADJ  
ON  
OUT ON  
• 10pF and t = t – t . The frequency is equal to: Freq.  
OFF  
s
ON  
Equations for setting frequency for 12V to 5V:  
= DC/t . The I current is proportional to V , and the  
ON  
ON  
IN  
I
= (V – 0.7V)/110k; I = 103μA  
IN ON  
ON  
regulator duty cycle is inversely proportional to V , there-  
IN  
forethestep-downregulatorwillremainrelativelyconstant  
frequency = (I /[2.4V • 10pF]) • DC = 1.79MHz;  
ON  
frequency as the duty cycle adjustment takes place with  
DC = duty cycle, duty cycle is (V /V )  
OUT IN  
lowering V . The on time is proportional to V  
up to a  
IN  
OUT  
t = t + t , t = on-time, t = off-time of the  
OFF  
S
ON  
OFF ON  
2.4V clamp. This will hold frequency relatively constant  
with different output voltages up to 2.4V. The regulator  
switching period is comprised of the on time and off time  
as depicted in the following waveform. The on time is  
switching period; t = 1/frequency  
S
t
must be greater than 400ns, or t – t > 400ns.  
S ON  
OFF  
t
= DC • t  
S
ON  
equal to t = (V /I ) • 10pF and t = t – t . The  
ON  
OUT ON  
OFF  
s
ON  
1MHz frequency or 1μs period is chosen for 12V to 5V.  
frequency is equal to: Frequency = DC/t ).  
ON  
4600hvfc  
17  
LTM4600HV  
U
W U U  
APPLICATIO S I FOR ATIO  
t
must be greater than 400ns, or t – t > 400ns.  
S ON  
t
= 0.41 • 1μs 410ns  
OFF  
ON  
t
= DC • t  
S
t
= 1μs – 410ns 590ns  
ON  
OFF  
~450kHz frequency or 2.22μs period is chosen for 5V to  
3.3V. Frequency range is about 450kHz to 650kHz from  
4.5V to 7V input.  
t
and t are above the minimums with adequate guard  
OFF  
ON  
band.  
Using the frequency = (I /[2.4V • 10pF]) • DC, solve for  
ON  
t
t
= 0.66 • 2.22μs 1.46μs  
= 2.22μs – 1.46μs 760ns  
I
ON  
= (1MHz • 2.4V • 10pF) • (1/0.41) 58μA. I current  
ON  
ON  
calculated from 12V input was 103μA, so a resistor from  
OFF  
f
to ground = (0.7V/15k) = 46μA. 103μA – 46μA =  
ADJ  
t
and t are above the minimums with adequate guard  
OFF  
ON  
band.  
57μA, sets the adequate I current for proper frequency  
ON  
range for the higher duty cycle conversion of 12V to  
5V. Input voltage range is limited to 9V to 16V. Higher  
Using the frequency = (I /[2.4V • 10pF]) • DC, solve for  
ON  
input voltages can be used without the 15k on f . The  
ADJ  
I
ON  
= (450kHz • 2.4V • 10pF) • (1/0.66) 16μA. I current  
ON  
inductor ripple current gets too high above 16V, and the  
calculated from5V input was39μA, so a resistorfrom f  
ADJ  
400ns minimum off-time is limited below 9V.  
to ground = (0.7V/30.1k) = 23μA. 39μA – 23μA = 16μA,  
sets the adequate I current for proper frequency range  
ON  
Equations for setting frequency for 5V to 3.3V:  
for the higher duty cycle conversion of 5V to 3.3V. Input  
I
= (V – 0.7V)/110k; I = 39μA  
IN ON  
ON  
voltagerangeislimitedto4.5Vto7V.Higherinputvoltages  
can be used without the 30.1k on f . The inductor ripple  
frequency = (I /[2.4V • 10pF]) • DC = 1.07MHz;  
ADJ  
ON  
current gets too high above 7V, and the 400ns minimum  
DC = duty cycle, duty cycle is (V /V )  
OUT IN  
off-time is limited below 4.5V.  
t = t + t , t = on-time, t = off-time of the  
OFF  
S
ON  
OFF ON  
switching period; t = 1/frequency  
S
5V to 3.3V at 8A  
R1  
30.1k  
4.5V TO 7V  
C5  
100pF  
C3  
10μF  
25V  
C1  
10μF  
25V  
V
f
ADJ  
IN  
3.3V AT 8A EFFICIENCY = 94%  
EXTV  
FCB  
V
CC  
OUT  
+
C2  
22μF  
C4  
330μF  
6.3V  
V
OSET  
R2  
22.1k  
1%  
LTM4600HV  
RUN/SOFT-START  
RUN/SS  
COMP  
SV  
IN  
PGOOD  
PGND  
OPEN DRAIN  
SGND  
4600 F22  
5V TO 3.3V AT 8A WITH f  
LTM4600HV MINIMUM ON-TIME = 100ns  
LTM4600HV MINIMUM OFF-TIME = 400ns  
= 30.1k  
C1, C3: TDK C3216X5R1E106MT  
C2: TAIYO YUDEN, JMK316BJ226ML  
C4: SANYO POSCAP, 6TPE330MIL  
ADJ  
4600hvfc  
18  
LTM4600HV  
U
W U U  
APPLICATIO S I FOR ATIO  
12V to 5V at 8A  
VIN to VOUT Stepdown Ratio for  
12V to 5V and 5V to 3.3V  
R1  
15k  
5.0  
9V TO 16V  
3.3V: f  
= 30.1k  
ADJ  
= 15k  
4.5 5V: f  
ADJ  
C5  
100pF  
C3  
10μF  
25V  
C1  
10μF  
25V  
4.0  
V
f
ADJ  
IN  
5V AT 8A  
EFFICIENCY = 94%  
3.5  
EXTV  
FCB  
V
CC  
OUT  
+
C2  
22μF  
C4  
330μF  
6.3V  
3.0  
V
OSET  
R2  
2.5  
LTM4600HV  
13.7k  
1%  
RUN/SOFT-START  
RUN/SS  
COMP  
SV  
IN  
2.0  
PGOOD  
PGND  
OPEN DRAIN  
1.5  
SGND  
1.0  
4600 F23  
3.3V AT 8A  
5V AT 8A  
0.5  
0
12V TO 5V AT 8A WITH f  
= 15k  
C1, C3: TDK C3216X5R1E106MT  
C2: TAIYO YUDEN, JMK316BJ226ML  
C4: SANYO POSCAP, 6TPE330MIL  
ADJ  
1
3
5
7
9
11 13 15 17  
LTM4600HV MINIMUM ON-TIME = 100ns  
LTM4600HV MINIMUM OFF-TIME = 400ns  
V
(V)  
IN  
4600 F24  
U
TYPICAL APPLICATIO  
V
IN  
+
C
(BULK)  
C
(CER)  
IN  
IN  
5V TO 24V  
GND  
150μF  
10μF  
V
IN  
2x  
(MULTIPLE PINS)  
EXTV  
V
V
OUT  
CC  
OUT  
(MULTIPLE PINS)  
C3  
100pF  
SV  
IN  
C
+
OUT1  
C
OUT2  
22μF  
6.3V  
×3  
f
ADJ  
470μF  
V
REFER TO  
TABLE 2  
V
OSET  
OUT  
LTM4600HV  
COMP  
FCB  
REFER TO  
TABLE 2  
RUN/SS  
PGOOD  
0.6V TO 5V  
SGND  
REFER TO STEP DOWN  
RATIO GRAPH  
PGND  
(MULTIPLE PINS)  
C4  
OPT  
R1  
66.5k  
REFER TO  
TABLE 1  
GND  
4600HV F21  
Figure 21. Typical Application, 5V to 24V Input, 0.6V to 5V Output, 10A Max  
4600hvfc  
19  
LTM4600HV  
U
TYPICAL APPLICATIO  
Parallel Operation and Load Sharing  
4.5V TO 24V  
V
= 0.6V • ([100k/N] + R )/R  
SET SET  
OUT  
WHERE N = 2  
C8  
10μF  
35V  
C7  
10μF  
35V  
V
f
ADJ  
IN  
EXTV  
FCB  
V
CC  
OUT  
+
C9  
C10  
470μF  
4V  
V
22μF  
OSET  
x3  
LTM4600HV  
R4  
15.8k  
1%  
RUN  
SV  
IN  
COMP  
PGOOD  
SGND  
PGND  
2.5V AT 20A  
RUN/SOFT-START  
C4  
220pF  
C3  
10μF  
35V  
C1  
10μF  
V
f
ADJ  
IN  
35V  
2.5V  
EXTV  
V
CC  
OUT  
+
C2  
22μF  
x3  
C5  
470μF  
4V  
FCB  
V
OSET  
LTM4600HV  
R1  
100k  
RUN  
SV  
IN  
COMP  
PGOOD  
PGND  
SGND  
C1, C3, C7, C8: TAIYO YUDEN, GDK316BJ106ML  
C2, C9: TAIYO YUDEN, JMK316BJ226ML-T501  
C5, C10: SANYO POSCAP, 4TPE470MCL  
4600hv TA02  
Current Sharing Between Two  
LTM4600HV Modules  
12  
10  
8
12V  
IN  
OUT  
MAX  
2.5V  
20A  
I
OUT2  
I
OUT1  
6
4
2
0
0
10  
TOTAL LOAD  
15  
20  
5
4600hv TA03  
4600hvfc  
20  
LTM4600HV  
U
PACKAGE DESCRIPTIO  
Z
b b b  
Z
6 . 9 8 6 5  
5 . 7 1 4 2  
6 . 3 5 0 0  
3 . 8 1 0 0  
1 . 2 7 0 0  
5 . 0 8 0 0  
4 . 4 4 4 2  
3 . 1 7 4 2  
1 . 9 0 4 2  
2 . 5 4 0 0  
0 . 0 0 0 0  
0 . 6 3 4 2  
0 . 0 0 0 0  
0 . 3 1 7 5  
0 . 3 1 7 5  
0 . 6 3 5 8  
1 . 2 7 0 0  
3 . 8 1 0 0  
6 . 3 5 0 0  
1 . 9 0 5 8  
3 . 1 7 5 8  
2 . 5 4 0 0  
5 . 0 8 0 0  
4 . 4 4 5 8  
5 . 7 1 5 8  
6 . 9 4 2 1  
4600hvfc  
21  
LTM4600HV  
U
PACKAGE DESCRIPTIO  
Pin Assignment Tables  
(Arranged by Pin Number)  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
E1  
PIN NAME  
PIN NAME  
PIN NAME  
A1  
-
B1  
V
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
C1  
-
-
-
-
-
-
-
-
-
V
-
V
-
V
-
-
-
-
-
-
-
-
-
D1  
V
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
V
-
V
-
V
-
-
-
-
-
-
-
-
-
F1  
V
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
G1 PGND  
H1  
-
-
-
-
-
-
IN  
IN  
IN  
A2  
-
B2  
C2  
D2  
E2  
F2  
G2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
H2  
H3  
H4  
H5  
H6  
A3  
V
-
B3  
C3  
D3  
E3  
F3  
G3  
IN  
A4  
B4  
C4  
D4  
E4  
F4  
G4  
A5  
V
-
B5  
C5  
D5  
E5  
F5  
G5  
IN  
A6  
B6  
C6  
D6  
E6  
F6  
G6  
A7  
V
-
B7  
C7  
D7  
E7  
F7  
G7  
H7 PGND  
H8  
H9 PGND  
H10  
H11 PGND  
H12  
H13 PGND  
H14  
H15 PGND  
H16  
H17 PGND  
IN  
A8  
B8  
C8  
D8  
E8  
F8  
G8  
-
A9  
V
-
B9  
C9  
D9  
E9  
F9  
G9  
IN  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
-
IN  
IN  
IN  
IN  
IN  
IN  
V
-
IN  
-
V
-
IN  
-
f
ADJ  
-
-
A17 SV  
IN  
A18  
-
H18  
H19  
H20  
H21  
H22  
H23  
-
-
-
-
-
-
A19 EXTV  
CC  
A20  
A21  
A22  
A23  
-
V
-
OSET  
-
B23 COMP  
D23 SGND  
F23 RUN/SS G23 FCB  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME PIN NAME  
PIN NAME  
J1 PGND  
K1  
K2  
K3  
K4  
K5  
K6  
-
-
-
-
-
-
L1  
-
M1  
M2 PGND  
M3  
M4 PGND  
M5  
M6 PGND  
M7  
M8 PGND  
M9  
-
N1  
-
P1  
-
R1  
-
T1  
-
J2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
L2 PGND  
N2 PGND  
P2  
V
-
R2  
V
-
T2  
V
-
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
J3  
L3  
L4 PGND  
L5  
L6 PGND  
L7  
L8 PGND  
L9  
L10 PGND  
L11  
L12 PGND  
L13  
L14 PGND  
L15  
L16 PGND  
L17  
L18 PGND  
L19  
L20 PGND  
L21  
L22 PGND  
L23  
-
-
N3  
N4 PGND  
N5  
N6 PGND  
N7  
N8 PGND  
N9  
N10 PGND  
N11  
N12 PGND  
N13  
N14 PGND  
N15  
N16 PGND  
N17  
N18 PGND  
N19  
N20 PGND  
N21  
N22 PGND  
N23  
-
P3  
R3  
T3  
J4  
P4  
V
-
R4  
V
-
T4  
V
-
J5  
-
-
-
P5  
R5  
T5  
J6  
P6  
V
-
R6  
V
-
T6  
V
-
J7  
K7 PGND  
K8  
-
-
-
P7  
R7  
T7  
J8  
P8  
V
-
R8  
V
-
T8  
V
-
J9  
K9 PGND  
K10  
-
-
-
P9  
R9  
T9  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
M10 PGND  
M11 -  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
V
-
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
V
-
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
T23  
V
-
K11 PGND  
-
-
K12  
K13 PGND  
K14  
K15 PGND  
K16  
K17 PGND  
-
M12 PGND  
M13 -  
V
-
V
-
V
-
-
-
-
M14 PGND  
M15 -  
V
-
V
-
V
-
-
-
-
M16 PGND  
M17 -  
V
-
V
-
V
-
-
-
K18  
K19  
K20  
K21  
K22  
-
-
-
-
-
-
M18 PGND  
M19 -  
V
-
V
-
V
-
-
-
M20 PGND  
M21 -  
V
-
V
-
V
-
-
-
M22 PGND  
M23 -  
V
-
V
-
V
-
J23 PGOOD K23  
-
-
4600hvfc  
22  
LTM4600HV  
U
PACKAGE DESCRIPTIO  
Pin Assignment Tables  
(Arranged by Pin Number)  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
G1  
PGND  
P2  
V
A3  
V
V
V
V
V
V
A15  
A17  
A19  
A21  
B23  
D23  
F23  
G23  
J23  
f
ADJ  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
IN  
IN  
IN  
IN  
IN  
IN  
P4  
V
V
V
V
V
V
V
V
V
V
A5  
H7  
H9  
H11  
H13  
H15  
H17  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
SV  
IN  
P6  
P8  
A7  
A9  
A11  
A13  
EXTV  
V
CC  
P10  
P12  
P14  
P16  
P18  
P20  
P22  
OSET  
COMP  
B1  
V
IN  
SGND  
RUN/SS  
FCB  
J1  
PGND  
C10  
C12  
C14  
V
IN  
V
IN  
V
IN  
K7  
K9  
K11  
K13  
K15  
K17  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
D1  
V
R2  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
IN  
PGOOD  
R4  
E10  
E12  
E14  
V
IN  
V
IN  
V
IN  
R6  
R8  
R10  
R12  
R14  
R16  
R18  
R20  
R22  
L2  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
F1  
V
IN  
L4  
L6  
L8  
L10  
L12  
L14  
L16  
L18  
L20  
L22  
T2  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
T4  
T6  
T8  
T10  
T12  
T14  
T16  
T18  
T20  
T22  
M2  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
M4  
M6  
M8  
M10  
M12  
M14  
M16  
M18  
M20  
M22  
N2  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
N4  
N6  
N8  
N10  
N12  
N14  
N16  
N18  
N20  
N22  
4600hvfc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTM4600HV  
U
TYPICAL APPLICATIO  
1.8V, 10A Regulator  
4.5V TO 22V  
C5  
100pF  
C2  
10μF  
35V  
C1  
10μF  
35V  
V
f
ADJ  
IN  
1.8V AT 10A  
EXTV  
FCB  
V
CC  
OUT  
+
C3  
22μF  
x3  
C4  
470μF  
4V  
V
OSET  
R1  
100k  
LTM4600HV  
RUN  
SV  
IN  
COMP  
PGOOD  
PGND  
PGOOD  
R2  
49.9k  
1%  
SGND  
C1, C2: TAIYO YUDEN, GDK316BJ106ML  
C3: TAIYO YUDEN, JMK316BJ226ML-T501  
C4: SANYO POSCAP, 4TPE470MCL  
4600hv TA04  
RELATED PARTS  
PART NUMBER  
LTC2900  
DESCRIPTION  
COMMENTS  
Quad Supply Monitor with Adjustable Reset Timer  
Power Supply Tracking Controller  
Synchronous Isolated Flyback Controllers  
10A DC/DC μModule  
Monitors Four Supplies; Adjustable Reset Timer  
Tracks Both Up and Down; Power Supply Sequencing  
No Optocoupler Required; 3.3V, 12A Output; Simple Design  
Basic 10A DC/DC μModule  
LTC2923  
LT3825/LT3837  
LTM4600  
LTM4601  
12A DC/DC μModule with PLL, Output Tracking/  
Margining and Remote Sensing  
Synchronizable, PolyPhase Operation to 48A, LTM4601-1 Version has no  
Remote Sensing  
LTM4602  
LTM4603  
6A DC/DC μModule  
Pin Compatible with the LTM4600  
6A DC/DC μModule with PLL and Outpupt Tracking/ Synchronizable, PolyPhase Operation to 48A, LTM4601-1 Version has no  
Margining and Remote Sensing  
Remote Sensing, Pin Compatible with the LTM4601  
®
This product contains technology licensed from Silicon Semiconductor Corporation.  
4600hvfc  
LT 0707 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2005  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTM4600HVIV

10A, 28VIN High Effi ciency DC/DC μModule
Linear

LTM4600HVIV#PBF

LTM4600HV - 10A, 28VIN High Efficiency DC/DC &#181;Module (Power Module); Package: LGA; Pins: 104; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4600HVIV-PBF

10A, 28VIN High Effi ciency DC/DC μModule
Linear

LTM4600HVIV-TRPBF

10A, 28VIN High Effi ciency DC/DC μModule
Linear

LTM4600HVMP

Low VIN, 8A DC/DC Module Regulator with Tracking, Margining, and Frequency Synchronization
Linear

LTM4600HVMPV

10A, 28VIN High Effi ciency DC/DC μModule
Linear

LTM4600HVMPV#PBF

LTM4600HV - 10A, 28VIN High Efficiency DC/DC &#181;Module (Power Module); Package: LGA; Pins: 104; Temperature Range: -55&deg;C to 125&deg;C
Linear

LTM4600HVMPV-PBF

10A, 28VIN High Effi ciency DC/DC μModule
Linear

LTM4600HVMPV-TRPBF

10A, 28VIN High Effi ciency DC/DC μModule
Linear

LTM4600IV

10A High Effi ciency DC/DC レModule
Linear

LTM4600IV#PBF

LTM4600 - 10A High Efficiency DC/DC &#181;Module (Power Module); Package: LGA; Pins: 104; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4600IV#TRPBF

IC IC,SMPS CONTROLLER,CURRENT-MODE,LGA,104PIN,PLASTIC, Switching Regulator or Controller
Linear