LTM4601AHVMPV-PBF [Linear]

12A, 28VIN DC/DC μModule with PLL, Output Tracking and Margining; 12A , 28VIN DC / DC微型模块与PLL ,输出跟踪和裕
LTM4601AHVMPV-PBF
型号: LTM4601AHVMPV-PBF
厂家: Linear    Linear
描述:

12A, 28VIN DC/DC μModule with PLL, Output Tracking and Margining
12A , 28VIN DC / DC微型模块与PLL ,输出跟踪和裕

文件: 总28页 (文件大小:357K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4601AHV  
12A, 28V DC/DC µModule  
IN  
with PLL, Output Tracking  
and Margining  
DESCRIPTION  
FEATURES  
The LTM®4601AHV is a complete 12A step-down switch  
mode DC/DC power supply with onboard switching  
controller, MOSFETs, inductor and all support compo-  
nents. The μModule is housed in a small surface mount  
15mm×15mm×2.8mmLGApackage. TheLTM4601AHV  
LGA package is designed with redundant mounting pads  
to enhance solder-joint strength for extended temperature  
cycling endurance. Operating over an input voltage range  
of 4.5 to 28V, the LTM4601AHV supports an output volt-  
age range of 0.6V to 5V as well as output voltage tracking  
and margining. The high efficiency design delivers 12A  
continuouscurrent(14Apeak). Onlybulkinputandoutput  
capacitors are needed to complete the design.  
n
Complete Switch Mode Power Supply  
n
Wide Input Voltage Range: 4.5V to 28V  
n
12A DC Typical, 14A Peak Output Current  
n
0.6V to 5V Output Voltage  
n
Output Voltage Tracking and Margining  
n
Redundant Mounting Pads for Enhanced Solder-  
Joint Strength  
Parallel Multiple μModulesTM for Current Sharing  
n
n
Differential Remote Sensing for Precision Regulation  
n
PLL Frequency Synchronization  
1.5% Total DC Error  
n
n
Current Foldback Protection (Disabled at Start-Up)  
n
Pb-Free (e4) RoHS Compliant Package with Gold  
Finish Pads  
The low profile (2.8mm) and light weight (1.7g) pack-  
age easily mounts in unused space on the back side of  
PC boards for high density point of load regulation. The  
μModule can be synchronized with an external clock for  
reducing undesirable frequency harmonics and allows  
PolyPhase® operation for high load currents.  
n
–55°C to 125°C Operating Temperature Range  
(LTM4601AHVMPV)  
n
Ultrafast™ Transient Response  
n
Up to 95% Efficiency at 5V , 3.3V  
IN  
OUT  
n
n
n
Programmable Soft-Start  
Output Overvoltage Protection  
An onboard differential remote sense amplifier can be  
used to accurately regulate an output voltage independent  
of load current.  
Enhanced (15mm × 15mm × 2.8mm) Surface Mount  
LGA Package  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. PolyPhase is  
a registered trademark of Linear Technology Corporation. μModule and Ultrafast are trademarks  
of Linear Technology Corporation. All other trademarks are the property of their respective  
owners. Protected by U.S. Patents including 5481178, 5847554, 6580258, 6304066, 6476589,  
6774611, 6677210.  
APPLICATIONS  
n
Telecom, Industrial and Networking Equipment  
n
Military and Avionics Systems  
TYPICAL APPLICATION  
Efficiency and Power Loss  
vs Load Current  
2.5V/12A Power Supply with 4.5V to 28V Input  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
6
5
4
3
2
1
0
12V  
IN  
CLOCK SYNC  
TRACK/SS CONTROL  
EFFICIENCY  
V
IN  
4.5V TO 28V  
V
PLLIN TRACK/SS  
V
24V  
IN  
V
2.5V  
12A  
IN  
OUT  
PGOOD  
OUT  
100pF  
POWER LOSS  
V
FB  
ON/OFF  
RUN  
COMP  
INTV  
CC  
MARG0  
MARG1  
V
OUT_LCL  
MARGIN  
CONTROL  
24V  
IN  
C
LTM4601AHV  
OUT  
C
IN  
12V  
IN  
DRV  
CC  
DIFFV  
OUT  
+
MPGM  
SGND PGND  
V
V
OSNS  
OSNS  
R1  
392k  
f
SET  
R
SET  
19.1k  
0
4
6
8
10  
12  
14  
2
5% MARGIN  
4601AHV TA01a  
LOAD CURRENT (A)  
4601AHV TA01b  
4601ahvf  
1
LTM4601AHV  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
INTV , DRV , V  
, V  
(V  
≤ 3.3V with  
CC  
CC OUT_LCL OUT OUT  
Remote Sense Amp).................................... –0.3V to 6V  
PLLIN, TRACK/SS, MPGM, MARG0, MARG1,  
PGOOD, f .............................. –0.3V to INTV + 0.3V  
V
f
SET  
MARG0  
SET  
CC  
IN  
MTP1  
RUN ............................................................. –0.3V to 5V  
MARG1  
DRV  
INTV  
CC  
V , COMP................................................ –0.3V to 2.7V  
MTP2  
MTP3  
FB  
CC  
V ............................................................. –0.3V to 28V  
V
FB  
IN  
OSNS  
PGND  
+
PGOOD  
V
, V  
.......................... –0.3V to INTV + 0.3V  
OSNS CC  
SGND  
+
Operating Temperature Range (Note 2)  
V
OSNS  
DIFFV  
OUT  
E and I Grades ..................................... –40°C to 85°C  
MP Grade........................................... –55°C to 125°C  
Junction Temperature ........................................... 125°C  
Storage Temperature Range................... –55°C to 125°C  
V
OUT  
V
V
OUT_LCL  
OSNS  
LGA PACKAGE  
133-LEAD (15mm s 15mm s 2.8mm)  
= 125°C, θ = 15°C/W, θ = 6°C/W,  
T
JMAX  
JA  
JC  
θ
DERIVED FROM 95mm × 76mm PCB WITH 4 LAYERS  
JA  
WEIGHT = 1.7g  
ORDER INFORMATION  
LEAD FREE FINISH  
PART MARKING*  
LTM4601AHVV  
LTM4601AHVV  
LTM4601AHVMPV  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTM4601AHVEV#PBF  
LTM4601AHVIV#PBF  
LTM4601AHVMPV#PBF  
–40°C to 85°C  
–40°C to 85°C  
–55°C to 125°C  
133-Lead (15mm × 15mm × 2.8mm) LGA  
133-Lead (15mm × 15mm × 2.8mm) LGA  
133-Lead (15mm × 15mm × 2.8mm) LGA  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C, VIN = 12V. Per typical application (front page) configuration, RSET = 40.2k.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
V
Input DC Voltage  
4.5  
28  
V
IN(DC)  
Output Voltage Total Variation with  
Line and Load  
C
= 10μF ×3, C  
IN  
= 200μF, R = 40.2k  
OUT SET  
OUT(DC)  
IN  
1.478  
1.5  
3.2  
1.522  
4
V
V
V
= 5V to 28V, I  
= 0A to 12A (Note 5)  
OUT  
Input Specifications  
V
Undervoltage Lockout Threshold  
Input Inrush Current at Startup  
I
I
= 0A  
IN(UVLO)  
OUT  
I
= 0A. V  
= 1.5V  
INRUSH(VIN)  
OUT  
OUT  
V
= 5V  
0.6  
0.7  
A
A
IN  
IN  
V
= 12V  
I
Input Supply Bias Current  
V
V
V
V
= 12V, V  
= 12V, V  
= 1.5V, No Switching  
3.8  
38  
mA  
mA  
mA  
mA  
μA  
Q(VIN,NO LOAD)  
IN  
IN  
IN  
IN  
OUT  
OUT  
= 1.5V, Switching Continuous  
= 5V, V  
= 5V, V  
= 1.5V, No Switching  
= 1.5V, Switching Continuous  
2.5  
42  
OUT  
OUT  
Shutdown, RUN = 0, V = 12V  
22  
IN  
4601ahvf  
2
LTM4601AHV  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C, VIN = 12V. Per typical application (front page) configuration, RSET = 40.2k.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Input Supply Current  
V
IN  
V
IN  
V
IN  
= 12V, V  
= 12V, V  
= 1.5V, I  
= 3.3V, I  
= 12A  
= 12A  
1.81  
3.63  
4.29  
A
A
A
S(VIN)  
OUT  
OUT  
OUT  
OUT  
= 5V, V  
= 1.5V, I  
= 12A  
OUT  
OUT  
INTV  
V
= 12V, RUN > 2V  
IN  
No Load  
4.7  
0
5
5.3  
V
CC  
Output Specifications  
I
Output Continuous Current Range  
Line Regulation Accuracy  
V
V
= 12V, V = 1.5V (Note 5)  
OUT  
12  
A
OUTDC  
IN  
l
l
= 1.5V, I  
= 0A, V = 4.5V – 28V  
0.3  
%
ΔV  
ΔV  
V
OUT  
OUT  
IN  
OUT(LINE)  
OUT  
V
Load Regulation Accuracy  
Output Ripple Voltage  
V
OUT  
= 1.5V, I  
= 0A to 12A, V = 12V, with  
0.25  
%
OUT  
IN  
OUT(LOAD)  
V
Remote Sense Amplifier, (Note 5)  
OUT  
I
= 0A, C  
= 2×, 100μF/X5R/Ceramic  
OUT  
OUT(AC)  
OUT  
20  
18  
mV  
mV  
V
= 12V, V  
= 5V, V  
= 1.5V  
P-P  
P-P  
IN  
IN  
OUT  
OUT  
V
= 1.5V  
f
Output Ripple Voltage Frequency  
I
= 5A, V = 12V, V = 1.5V  
OUT  
850  
kHz  
S
OUT  
IN  
Turn-On Overshoot,  
TRACK/SS = 10nF  
C
= 200μF, V  
IN  
IN  
= 1.5V, I  
= 0A  
OUT  
ΔV  
OUT(START)  
OUT  
OUT  
V
= 12V  
= 5V  
20  
20  
mV  
mV  
V
t
Turn-On Time, TRACK/SS = Open  
C
OUT  
= 200μF, V  
OUT  
= 1.5V,  
START  
OUT  
I
= 1A Resistive Load  
V
= 12V  
= 5V  
0.5  
0.7  
ms  
ms  
IN  
IN  
V
Peak Deviation for Dynamic Load  
Load: 0% to 50% to 0% of Full Load,  
= 2 × 22μF/Ceramic, 470μF, 4V Sanyo  
ΔV  
OUTLS  
C
OUT  
POSCAP  
V
IN  
V
IN  
= 12V  
= 5V  
35  
35  
mV  
mV  
t
I
Settling Time for Dynamic Load Step Load: 0% to 50%, or 50% to 0% of Full Load  
SETTLE  
V
= 12V  
25  
μs  
IN  
Output Current Limit  
C
= 200μF, Table 2  
OUTPK  
OUT  
V
= 12V, V  
= 1.5V  
OUT  
17  
17  
A
A
IN  
IN  
V
= 5V, V  
= 1.5V  
OUT  
Remote Sense Amp (Note 3)  
+
V
, V  
Common Mode Input Voltage Range  
V
V
= 12V, RUN > 2V  
0
0
INTV – 1  
V
V
OSNS  
OSNS  
IN  
CC  
CM Range  
DIFFV Range  
Output Voltage Range  
= 12V, DIFF OUT Load = 100k  
INTV  
CC  
OUT  
IN  
V
OS  
Input Offset Voltage Magnitude  
1.25  
2
mV  
mV  
l
A
Differential Gain  
1
3
V/V  
MHz  
V/μs  
kΩ  
V
GBP  
Gain Bandwidth Product  
Slew Rate  
SR  
2
+
R
Input Resistance  
V
OSNS  
to GND  
20  
100  
IN  
CMRR  
Common Mode Rejection Mode  
dB  
4601ahvf  
3
LTM4601AHV  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C, VIN = 12V. Per typical application (front page) configuration, RSET = 40.2k.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Control Stage  
l
V
Error Amplifier Input Voltage  
Accuracy  
I
= 0A, V = 1.5V  
OUT  
0.594  
0.6  
0.606  
V
FB  
OUT  
V
RUN Pin On/Off Threshold  
Soft-Start Charging Current  
Minimum On Time  
1
1.5  
–1.5  
50  
1.9  
–2.0  
100  
400  
V
μA  
ns  
RUN  
I
t
t
V
= 0V  
–1.0  
SS/TRACK  
ON(MIN)  
OFF(MIN)  
SS/TRACK  
(Note 4)  
(Note 4)  
Minimum Off Time  
250  
50  
ns  
R
PLLIN Input Resistance  
kΩ  
mA  
PLLIN  
I
Current into DRV Pin  
V
= 1.5V, I = 1A, Frequency = 850kHz,  
OUT  
18  
25  
DRVCC  
CC  
OUT  
DRV = 5V  
CC  
R
Resistor Between V  
and V  
FB  
60.098  
60.4  
1.18  
1.4  
60.702  
kΩ  
V
FBHI  
OUT  
V
V
Margin Reference Voltage  
MPGM  
, V  
MARG0, MARG1 Voltage Thresholds  
V
MARG0 MARG1  
PGOOD Output  
PGOOD Upper Threshold  
PGOOD Lower Threshold  
PGOOD Hysteresis  
V
V
V
Rising  
Falling  
7
10  
–10  
1.5  
13  
%
%
%
V
ΔV  
FB  
FBH  
–7  
–13  
ΔV  
FBL  
FB  
Returning  
ΔV  
FB(HYS)  
FB  
V
PGL  
PGOOD Low Voltage  
I
= 5mA  
0.15  
0.4  
PGOOD  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
guaranteed and tested over the –40°C to 85°C temperature range. The  
LTM4601AHVMP is guaranteed and tested over the –55°C to 125°C  
temperature range. For output current derating at high temperature, please  
refer to Thermal Considerations and Output Current Derating discussion.  
Note 2: The LTM4601AHVE is guaranteed to meet performance  
specifications from 0°C to 85°C. Specifications over the –40°C to 85°C  
operating temperature range are assured by design, characterization  
and correlation with statistical process controls. The LTM4601AHVI is  
Note 3: Remote sense amplifier recommended for ≤3.3V output.  
Note 4: 100% tested at wafer level only.  
Note 5: See output current derating curves for different V , V  
and T .  
IN OUT  
A
4601ahvf  
4
LTM4601AHV  
TYPICAL PERFORMANCE CHARACTERISTICS  
(See Figures 19 and 20 for all curves)  
Efficiency vs Load Current  
with 24VIN  
Efficiency vs Load Current  
with 5VIN  
Efficiency vs Load Current  
with 12V
IN  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
95  
90  
85  
80  
75  
90  
85  
80  
75  
70  
65  
0.6V  
1.2V  
1.5V  
2.5V  
3.3V  
OUT  
OUT  
OUT  
OUT  
OUT  
0.6V  
OUT  
60  
55  
50  
45  
70  
65  
60  
1.2V  
1.5V  
2.5V  
3.3V  
OUT  
OUT  
OUT  
OUT  
1.5V  
2.5V  
3.3V  
5.0V  
OUT  
OUT  
OUT  
OUT  
5V  
OUT  
5
10  
15  
0
0
5
10  
LOAD CURRENT (A)  
15  
0
10  
15  
5
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4601AHV G02  
4601AHV G03  
4601AHV G01  
1.2V Transient Response  
1.5V Transient Response  
1.8V Transient Response  
V
V
V
OUT  
OUT  
OUT  
50mV/DIV  
50mV/DIV  
50mV/DIV  
I
OUT  
I
I
OUT  
OUT  
5A/DIV  
5A/DIV  
5A/DIV  
4601AHV G05  
4601AHV G04  
4601AHV G06  
20μs/DIV  
20μs/DIV  
20μs/DIV  
1.5V AT 6A/μs LOAD STEP  
1.2V AT 6A/μs LOAD STEP  
1.8V AT 6A/μs LOAD STEP  
C
OUT  
= 3x 22μF 6.3V CERAMICS  
C
OUT  
= 3x 22μF 6.3V CERAMICS  
C
OUT  
= 3x 22μF 6.3V CERAMICS  
470μF 4V SANYO POSCAP  
C3 = 100pF  
470μF 4V SANYO POSCAP  
C3 = 100pF  
470μF 4V SANYO POSCAP  
C3 = 100pF  
2.5V Transient Response  
3.3V Transient Response  
V
FB
vs Temperature  
0.606  
0.604  
0.602  
0.600  
0.598  
0.596  
0.594  
V
OUT  
V
OUT  
50mV/DIV  
50mV/DIV  
I
I
OUT  
OUT  
5A/DIV  
5A/DIV  
4601AHV G08  
4601AHV G07  
20μs/DIV  
20μs/DIV  
3.3V AT 6A/μs LOAD STEP  
2.5V AT 6A/μs LOAD STEP  
C
OUT  
= 3x 22μF 6.3V CERAMICS  
C
OUT  
= 3x 22μF 6.3V CERAMICS  
470μF 4V SANYO POSCAP  
C3 = 100pF  
470μF 4V SANYO POSCAP  
C3 = 100pF  
–55  
35  
65  
95  
125  
–25  
5
TEMPERATURE (°C)  
4601AHV G15  
4601ahvf  
5
LTM4601AHV  
TYPICAL PERFORMANCE CHARACTERISTICS (See Figures 19 and 20 for all curves)  
Start-Up, IOUT = 12A  
(Resistive Load)  
Start-Up, TA = –55°C  
Start-Up, IOUT = 0A  
V
V
OUT  
OUT  
0.5V/DIV  
0.5V/DIV  
NO LOAD  
10A LOAD  
I
IN  
I
IN  
1A/DIV  
0.5A/DIV  
4601AHV G16  
4601AHV G09  
4601AHV G10  
10ms/DIV  
5ms/DIV  
2ms/DIV  
V
V
C
= 12V  
OUT  
OUT  
V
V
C
= 12V  
OUT  
OUT  
V
V
C
= 12V  
OUT  
OUT  
IN  
IN  
IN  
= 1.5V  
= 1.5V  
= 1.5V  
= 470μF, 3x 22μF  
SOFT-START = 10nF  
= 470μF, 3x 22μF  
= 470μF, 3x 22MF  
SOFT-START = 10nF  
SOFT-START = 10nF  
VIN to VOUT Step-Down Ratio  
Track, IOUT = 12A  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.3V OUTPUT WITH  
130k FROM V  
TRACK/SS  
0.5V/DIV  
OUT  
TO f  
SET  
V
5V OUTPUT WITH  
100k RESISTOR  
FB  
0.5V/DIV  
ADDED FROM f  
TO GND  
SET  
V
OUT  
1V/DIV  
5V OUTPUT WITH  
NO RESISTOR ADDED  
FROM f  
TO GND  
4601AHV G12  
SET  
2ms/DIV  
2.5V OUTPUT  
1.8V OUTPUT  
1.5V OUTPUT  
1.2V OUTPUT  
V
V
C
= 12V  
IN  
OUT  
OUT  
= 1.5V  
= 470μF, 3x 22μF  
SOFT-START = 10nF  
0
2
4
6
8 10 12 14 16 18 20 22 24 26 28  
INPUT VOLTAGE (V)  
4601AHV G11  
Short-Circuit Protection, IOUT = 0A  
Short-Circuit Protection, IOUT = 12A  
V
V
OUT  
OUT  
0.5V/DIV  
0.5V/DIV  
I
I
IN  
IN  
1A/DIV  
1A/DIV  
4601AHV G13  
4601AHV G14  
50μs/DIV  
50μs/DIV  
V
V
C
= 12V  
OUT  
OUT  
V
V
C
= 12V  
IN  
IN  
= 1.5V  
= 1.5V  
OUT  
OUT  
= 470μF, 3x 22μF  
SOFT-START = 10nF  
= 470μF  
3x 22μF  
SOFT-START = 10nF  
4601ahvf  
6
LTM4601AHV  
PIN FUNCTIONS  
IN  
(See Package Description for Pin Assignment)  
V (Bank 1): Power Input Pins. Apply input voltage be-  
PLLIN (Pin A8): External Clock Synchronization Input to  
the Phase Detector. This pin is internally terminated to  
SGND with a 50k resistor. Apply a clock above 2V and  
tween these pins and PGND pins. Recommend placing  
input decoupling capacitance directly between V pins  
IN  
and PGND pins.  
below INTV . See Applications Information.  
CC  
V
(Bank 3): Power Output Pins. Apply output load  
TRACK/SS(PinA9):OutputVoltageTrackingandSoft-Start  
Pin.Whenthemoduleisconfiguredasamasteroutput,then  
asoft-startcapacitorisplacedonthispintogroundtocontrol  
the master ramp rate. A soft-start capacitor can be used for  
soft-start turn on as a stand alone regulator. Slave operation  
is performed by putting a resistor divider from the master  
output to the ground, and connecting the center point of the  
divider to this pin. See Applications Information.  
OUT  
between these pins and PGND pins. Recommend placing  
outputdecouplingcapacitancedirectlybetweenthesepins  
and PGND pins. Review the figure below.  
PGND (Bank 2): Power ground pins for both input and  
output returns.  
V
(PinM12):(–)InputtotheRemoteSenseAmplifier.  
OSNS  
This pin connects to the ground remote sense point. The  
MPGM (Pins A12, B11): Programmable Margining Input.  
A resistor from this pin to ground sets a current that is  
equal to 1.18V/R. This current multiplied by 10kΩ will  
equal a value in millivolts that is a percentage of the 0.6V  
referencevoltage.SeeApplicationsInformation.Toparallel  
LTM4601AHVs,eachrequiresanindividualMPGMresistor.  
Do not tie MPGM pins together. Both pins are internally  
connected. Pin A12 is a test pin.  
remote sense amplifier is used for V  
≤3.3V.  
OUT  
+
V
(PinJ12):(+)InputtotheRemoteSenseAmplifier.  
OSNS  
This pin connects to the output remote sense point. The  
remote sense amplifier is used for V ≤3.3V.  
OUT  
DIFFV  
(Pin K12): Output of the Remote Sense Ampli-  
OUT  
fier. This pin connects to the V  
pin.  
OUT_LCL  
DRV (Pin E12): This pin normally connects to INTV  
CC  
CC  
f
(Pins B12, C11): Frequency Set Internally to 850kHz.  
SET  
for powering the internal MOSFET drivers. This pin can  
be biased up to 6V from an external supply with about  
50mA capability, or an external circuit shown in Figure 18.  
This improves efficiency at the higher input voltages by  
reducing power dissipation in the module.  
An external resistor can be placed from this pin to ground  
to increase frequency. This pin can be decoupled with a  
1000pF capacitor. See Applications Information for fre-  
quency adjustment. Both pins are internally connected.  
Pin B12 is a test pin.  
INTV (Pin A7, D9): This pin is for additional decoupling  
CC  
V
(Pin F12): The Negative Input of the Error Amplifier.  
FB  
of the 5V internal regulator. These pins are internally con-  
Internally, this pin is connected to V  
pin with a  
OUT_LCL  
nected. Pin A7 is a test pin.  
60.4k precision resistor. Different output voltages can be  
programmed with an additional resistor between V and  
FB  
TOP VIEW  
SGND pins. See Applications Information.  
MARG0 (Pin C12): This pin is the LSB logic input for the  
margining function. Together with the MARG1 pin will  
determine if margin high, margin low or no margin state  
is applied. The pin has an internal pull-down resistor of  
50k. See Applications Information.  
A
V
B
C
D
E
f
SET  
MARG0  
IN  
MTP1  
BANK 1  
MARG1  
DRV  
CC  
V
FB  
PGOOD  
INTV  
CC  
MTP2  
MTP3  
F
PGND  
BANK 2  
G
H
J
K
L
MARG1 (Pin D12): This pin is the MSB logic input for the  
margining function. Together with the MARG0 pin will  
determine if margin high, margin low or no margin state  
is applied. The pin has an internal pull-down resistor of  
50k. See Applications Information.  
SGND  
+
V
OSNS  
DIFFV  
OUT  
V
OUT  
BANK 3  
V
V
OUT_LCL  
M
OSNS  
1
2 3 4 5 6 7 8 9 10 11 12  
4601ahvf  
7
LTM4601AHV  
PIN FUNCTIONS  
(See Package Description for Pin Assignment)  
SGND (Pins H12, H11, G11): Signal Ground. These pins  
RUN (Pin A10): Run Control Pin. A voltage above 1.9V  
will turn on the module, and when below 1V, will turn off  
the module. A programmable UVLO function can be ac-  
connect to PGND at output capacitor point. See Figure 17.  
COMP (Pin A11): Current Control Threshold and Error  
Amplifier Compensation Point. The current comparator  
threshold increases with this control voltage. The voltage  
ranges from 0V to 2.4V with 0.7V corresponding to zero  
sense voltage (zero current).  
complished with a resistor from V to this pin that has a  
IN  
5.1V zener to ground. Maximum pin voltage is 5V. Limit  
current into the RUN pin to less than 1mA.  
V
(Pin L12): V  
connects directly to this pin to  
OUT_LCL  
OUT  
bypass the remote sense amplifier, or DIFFV  
connects  
OUT  
PGOOD (Pins G12, F11): Output Voltage Power Good  
Indicator. Open-drain logic output that is pulled to ground  
when the output voltage is not within 10% of the regula-  
tion point, after a 25μs power bad mask timer expires.  
to this pin when remote sense amplifier is used.  
MTP1,MTP2,MPT3(PinsC10,D10,D11):ExtraMounting  
Pads with No Internal Connection. These pads are used  
for increased solder integrity strength.  
SIMPLIFIED BLOCK DIAGRAM  
V
OUT_LCL  
V
OUT  
1M  
>2V = ON  
<0.9V = OFF  
MAX = 5V  
RUN  
PGOOD  
COMP  
V
IN  
4.5V TO 28V  
+
5.1V  
ZENER  
1.5μF  
C
IN  
60.4k  
INTERNAL  
COMP  
POWER CONTROL  
Q1  
Q2  
SGND  
V
2.5V  
12A  
OUT  
MARG1  
MARG0  
22μF  
V
FB  
50k 50k  
+
f
SET  
R
SET  
C
OUT  
19.1k  
39.2k  
PGND  
INTV  
MPGM  
TRACK/SS  
PLLIN  
CC  
10k  
10k  
V
V
OSNS  
C
SS  
+
10k  
+
OSNS  
50k  
4.7μF  
10k  
INTV  
DRV  
CC  
CC  
DIFFV  
OUT  
4601AHV F01  
Figure 1. Simplified LTM4601AHV Block Diagram  
4601ahvf  
8
LTM4601AHV  
DECOUPLING REQUIREMENTS TA = 25°C, VIN = 12V. Use Figure 1 configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
External Input Capacitor Requirement  
20  
30  
μF  
I
= 12A, 3× 10μF Ceramics  
IN  
OUT  
OUT  
(V = 4.5V to 28V, V  
= 2.5V)  
IN  
OUT  
C
External Output Capacitor Requirement  
(V = 4.5V to 28V, V = 2.5V)  
I
= 12A  
100  
200  
μF  
OUT  
IN  
OUT  
OPERATION  
Power Module Description  
overvoltage condition, internal top FET Q1 is turned off  
and bottom FET Q2 is turned on and held on until the  
overvoltage condition clears.  
The LTM4601AHV is a standalone nonisolated switching  
mode DC/DC power supply. It can deliver up to 12A of  
DC output current with some external input and output  
capacitors. This module provides precisely regulated  
output voltage programmable via one external resistor  
Pulling the RUN pin below 1V forces the controller into its  
shutdown state, turning off both Q1 and Q2. At low load  
current, the module works in continuous current mode by  
default to achieve minimum output voltage ripple.  
from 0.6V to 5.0V over a 4.5V to 28V wide input  
DC  
DC  
voltage. The typical application schematics are shown in  
When DRV pin is connected to INTV an integrated  
CC  
CC  
Figures 19 and 20.  
5V linear regulator powers the internal gate drivers. If a  
The LTM4601AHV has an integrated constant on-time  
current mode regulator, ultralow R  
5V external bias supply is applied on the DRV pin, then  
CC  
FETs with fast  
an efficiency improvement will occur due to the reduced  
powerlossintheinternallinearregulator.Thisisespecially  
true at the higher input voltage range.  
DS(ON)  
switchingspeedandintegratedSchottkydiodes.Thetypical  
switching frequency is 850kHz at full load. With current  
mode control and internal feedback loop compensation,  
the LTM4601AHV module has sufficient stability margins  
and good transient performance under a wide range of  
operating conditions and with a wide range of output  
capacitors, even all ceramic output capacitors.  
The LTM4601AHV has a very accurate differential remote  
sense amplifier with very low offset. This provides for  
very accurate remote sense voltage measurement. The  
MPGM pin, MARG0 pin and MARG1 pin are used to sup-  
port voltage margining, where the percentage of margin  
is programmed by the MPGM pin, and the MARG0 and  
MARG1 select margining.  
Currentmodecontrolprovidescycle-by-cyclefastcurrent  
limit. Besides, foldback current limiting is provided in an  
overcurrentconditionwhileV drops.Internalovervoltage  
andundervoltagecomparatorspulltheopen-drainPGOOD  
output low if the output feedback voltage exits a 10%  
window around the regulation point. Furthermore, in an  
FB  
The PLLIN pin provides frequency synchronization of the  
device to an external clock. The TRACK/SS pin is used for  
power supply tracking and soft-start programming.  
4601ahvf  
9
LTM4601AHV  
APPLICATIONS INFORMATION  
ThetypicalLTM4601AHVapplicationcircuitsareshownin  
Figures 19and20.Externalcomponentselectionisprimar-  
ily determined by the maximum load current and output  
voltage. Refer to Table 2 for specific external capacitor  
requirements for a particular application.  
The MPGM pin programs a current that when multiplied  
by an internal 10k resistor sets up the 0.6V reference  
offset for margining. A 1.18V reference divided by the  
RPGM resistor on the MPGM pin programs the current.  
Calculate V  
:
OUT(MARGIN)  
V to V  
Step-Down Ratios  
%VOUT  
100  
IN  
OUT  
VOUT(MARGIN)  
=
• VOUT  
There are restrictions in the maximum V and V  
step  
IN  
OUT  
down ratio that can be achieved for a given input voltage.  
where%V isthepercentageofV youwanttomargin,  
OUT  
OUT(MARGIN)  
OUT  
These constraints are shown in the Typical Performance  
and V  
is the margin quantity in volts:  
Characteristics curves labeled “V to V  
Step-Down  
OUT  
IN  
VOUT  
1.18V  
0.6V VOUT(MARGIN)  
Ratio”.Notethatadditionalthermalderatingmayapply.See  
the Thermal Considerations and Output Current Derating  
section of this data sheet.  
RPGM  
=
10k  
where R  
is the resistor value to place on the MPGM  
PGM  
pin to ground.  
Output Voltage Programming and Margining  
ThePWMcontrollerhasaninternal0.6Vreferencevoltage.  
As shown in the Block Diagram, a 1M and a 60.4k 0.5%  
The output margining will be margining of the value.  
This is controlled by the MARG0 and MARG1 pins. See  
the truth table below:  
internal feedback resistor connects V  
and V pins  
OUT  
FB  
together. The V  
pin is connected between the 1M  
OUT_LCL  
MARG1  
LOW  
MARG0  
LOW  
MODE  
and the 60.4k resistor. The 1M resistor is used to protect  
against an output overvoltage condition if the V  
NO MARGIN  
MARGIN UP  
MARGIN DOWN  
NO MARGIN  
OUT_LCL  
LOW  
HIGH  
LOW  
pin is not connected to the output, or if the remote sense  
HIGH  
HIGH  
amplifier output is not connected to V . The output  
OUT_LCL  
HIGH  
voltagewilldefaultto0.6V. AddingaresistorR fromthe  
SET  
V
FB  
pin to SGND pin programs the output voltage:  
Input Capacitors  
60.4k +RSET  
VOUT = 0.6V  
LTM4601AHV module should be connected to a low AC  
impedance DC source. Input capacitors are required to  
be placed adjacent to the module. In Figure 18, the 10μF  
ceramic input capacitors are selected for their ability to  
handle the large RMS current into the converter. An input  
bulkcapacitorof100μFisoptional.This100μFcapacitoris  
onlyneedediftheinputsourceimpedanceiscompromised  
by long inductive leads or traces.  
RSET  
Table 1. Standard 1% Resistor Values  
R
SET  
Open 60.4  
0.6 1.2  
40.2  
1.5  
30.1  
1.8  
25.5  
2
19.1  
2.5  
13.3  
3.3  
8.25  
5
(kΩ)  
V
OUT  
(V)  
4601ahvf  
10  
LTM4601AHV  
APPLICATIONS INFORMATION  
For a buck converter, the switching duty-cycle can be  
estimated as:  
the corresponding duty cycle and the number of phases  
to arrive at the correct ripple current value. For example,  
the 2-phase parallel LTM4601AHV design provides 24A  
at 2.5V output from a 12V input. The duty cycle is DC =  
2.5V/12V = 0.21. The 2-phase curve has a ratio of ~0.25  
for a duty cycle of 0.21. This 0.25 ratio of RMS ripple cur-  
rent to a DC load current of 24A equals ~6A of input RMS  
ripple current for the external input capacitors.  
VOUT  
D=  
V
IN  
Without considering the inductor current ripple, the RMS  
current of the input capacitor can be estimated as:  
IOUT(MAX)  
ICIN(RMS)  
=
D 1D  
(
)
Output Capacitors  
η%  
TheLTM4601AHVisdesignedforlowoutputvoltageripple.  
In the above equation, η% is the estimated efficiency of  
The bulk output capacitors defined as C  
are chosen  
OUT  
the power module. C can be a switcher-rated electrolytic  
with low enough effective series resistance (ESR) to meet  
theoutputvoltagerippleandtransientrequirements. C  
IN  
aluminum capacitor, OS-CON capacitor or high volume  
ceramiccapacitor.Notethecapacitorripplecurrentratings  
are often based on temperature and hours of life. This  
makes it advisable to properly derate the input capacitor,  
or choose a capacitor rated at a higher temperature than  
required. Always contact the capacitor manufacturer for  
derating requirements.  
OUT  
can be a low ESR tantalum capacitor, a low ESR polymer  
capacitororaceramiccapacitor. Thetypicalcapacitanceis  
200μF if all ceramic output capacitors are used. Additional  
output filtering may be required by the system designer,  
if further reduction of output ripple or dynamic transient  
spikeisrequired.Table2showsamatrixofdifferentoutput  
voltages and output capacitors to minimize the voltage  
droop and overshoot during a 5A/μs transient. The table  
optimizes total equivalent ESR and total bulk capacitance  
to maximize transient performance.  
In Figures 19 and 20, the 10μF ceramic capacitors are to-  
getherusedasahighfrequencyinputdecouplingcapacitor.  
In a typical 12A output application, three very low ESR,  
X5R or X7R (extended temperature range), 10μF ceramic  
capacitorsarerecommended.Thesedecouplingcapacitors  
shouldbeplaceddirectlyadjacenttothemoduleinputpins  
inthePCBlayouttominimizethetraceinductanceandhigh  
frequency AC noise. Each 10μF ceramic is typically good  
for 2A to 3A of RMS ripple current. Refer to your ceramics  
capacitor catalog for the RMS current ratings.  
0.6  
0.5  
1-PHASE  
2-PHASE  
0.4  
3-PHASE  
4-PHASE  
6-PHASE  
0.3  
12-PHASE  
MultiphaseoperationwithmultipleLTM4601AHVdevicesin  
parallelwilllowertheeffectiveinputRMSripplecurrentdue  
to the interleaving operation of the regulators. Application  
Note 77 provides a detailed explanation. Refer to Figure 2  
for the input capacitor ripple current requirement as a  
function of the number of phases. The figure provides a  
ratio of RMS ripple current to DC load current as function  
of duty cycle and the number of paralleled phases. Pick  
0.2  
0.1  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
DUTY FACTOR (V /V  
)
OUT IN  
4601AHV F02  
Figure 2. Normalized Input RMS Ripple Current  
vs Duty Factor for One to Six Modules (Phases)  
4601ahvf  
11  
LTM4601AHV  
APPLICATIONS INFORMATION  
Multiphase operation with multiple LTM4601AHV devices  
in parallel will lower the effective output ripple current due  
totheinterleavingoperationoftheregulators.Forexample,  
each LTM4601AHV’s inductor current of a 12V to 2.5V  
multiphase design can be read from the Inductor Ripple  
Current versus Duty Cycle graph (Figure 3). The large  
ripple current at low duty cycle and high output voltage  
can be reduced by adding an external resistor from f to  
SET  
ground which increases the frequency. If the duty cycle is  
DC = 2.5V/12V = 0.21, the inductor ripple current for 2.5V  
output at 21% duty cycle is ~6A in Figure 3.  
Figure 4 provides a ratio of peak-to-peak output ripple cur-  
rent to the inductor current as a function of duty cycle and  
the number of paralleled phases. Pick the corresponding  
dutycycleandthenumberofphasestoarriveatthecorrect  
output ripple current ratio value. If a 2-phase operation is  
chosen at a duty cycle of 21%, then 0.6 is the ratio. This  
0.6 ratio of output ripple current to inductor ripple of 6A  
equals 3.6A of effective output ripple current. Refer to Ap-  
plicationNote77foradetailedexplanationofoutputripple  
current reduction as a function of paralleled phases.  
12  
2.5V OUTPUT  
10  
5V OUTPUT  
1.8V OUTPUT  
1.5V OUTPUT  
1.2V OUTPUT  
8
6
3.3V OUTPUT WITH  
130k ADDED FROM  
V
TO f  
OUT  
SET  
4
2
0
5V OUTPUT WITH  
100k ADDED FROM  
The output voltage ripple has two components that are  
related to the amount of bulk capacitance and effective  
series resistance (ESR) of the output bulk capacitance.  
Therefore, the output voltage ripple can be calculated with  
the known effective output ripple current. The equation:  
f
TO GND  
SET  
0
20  
40  
60  
80  
DUTY CYCLE (V /V  
)
OUT IN  
4601AHV F03  
ΔV  
≈ (ΔI /(8 • f • m • C ) + ESR • ΔI ), where  
Figure 3. Inductor Ripple Current vs Duty Cycle  
OUT(P-P)  
L OUT L  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
1-PHASE  
2-PHASE  
3-PHASE  
4-PHASE  
6-PHASE  
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9  
DUTY CYCLE (V /V  
)
IN  
O
4601AHV F04  
Figure 4. Normalized Output Ripple Current vs Duty Cycle, Dlr = VOT/LI, Dlr = Each Phases Inductor Current  
4601ahvf  
12  
LTM4601AHV  
APPLICATIONS INFORMATION  
f is frequency and m is the number of parallel phases.  
This calculation process can be easily fulfilled using our  
Excel tool (Refer to the Linear Technology μModule Power  
Design Tool).  
downwithanotherregulator.Themasterregulator’soutput  
is divided down with an external resistor divider that is the  
same as the slave regulator’s feedback divider. Figure 5  
shows an example of coincident tracking. Ratiometric  
modes of tracking can be achieved by selecting different  
resistor values to change the output tracking ratio. The  
master output must be greater than the slave output for  
the tracking to work. Figure 6 shows the coincident output  
tracking characteristics.  
Fault Conditions: Current Limit and Overcurrent  
Foldback  
LTM4601AHV has a current mode controller, which inher-  
ently limits the cycle-by-cycle inductor current not only in  
steady-state operation, but also in transient.  
MASTER  
OUTPUT  
Tofurtherlimitcurrentintheeventofanoverloadcondition,  
theLTM4601AHVprovidesfoldbackcurrentlimiting. Ifthe  
output voltage falls by more than 50%, then the maximum  
output current is progressively lowered to about one sixth  
of its full current limit value.  
R2  
60.4k  
TRACK CONTROL  
V
IN  
R1  
40.2k  
60.4k FROM  
TO V  
V
OUT  
FB  
100k  
V
PLLIN TRACK/SS  
INTERNAL  
IN  
SLAVE OUTPUT  
PGOOD  
V
OUT  
MPGM  
RUN  
COMP  
V
C
OUT  
FB  
Soft-Start and Tracking  
MARG0  
MARG1  
V
OUT_LCL  
LTM4601AHV  
C
IN  
The TRACK/SS pin provides a means to either soft-start  
the regulator or track it to a different power supply. A  
capacitor on this pin will program the ramp rate of the  
output voltage. A 1.5μA current source will charge up the  
external soft-start capacitor to 80% of the 0.6V internal  
voltagereferenceminusanymargindelta.Thiswillcontrol  
the ramp of the internal reference and the output voltage.  
The total soft-start time can be calculated as:  
INTV  
CC  
CC  
DRV  
DIFFV  
V
V
OUT  
+
OSNS  
OSNS  
f
SGND PGND  
SET  
R
SET  
40.2k  
4601AHV F05  
Figure 5  
CSS  
1.5µA  
tSOFTSTART = 0.8• 0.6V – V  
(
)
OUT(MARGIN)  
MASTER OUTPUT  
SLAVE OUTPUT  
When the RUN pin falls below 1.5V, then the SS pin is reset  
to allow for proper soft-start control when the regulator  
is enabled again. Current foldback and force continuous  
mode are disabled during the soft-start process. The  
soft-start function can also be used to control the output  
ramp up time, so that another regulator can be easily  
tracked to it.  
OUTPUT  
VOLTAGE  
4601AHV F06  
Output Voltage Tracking  
TIME  
Figure 6  
Output voltage tracking can be programmed externally  
usingtheTRACK/SSpin. Theoutputcanbetrackedupand  
4601ahvf  
13  
LTM4601AHV  
APPLICATIONS INFORMATION  
Run Enable  
through the LDO is about 20mA. The internal LDO power  
dissipation can be calculated as:  
The RUN pin is used to enable the power module. The  
pin has an internal 5.1V zener to ground. The pin can be  
driven with a logic input not to exceed 5V.  
P
= 20mA • (V – 5V)  
IN  
LDO_LOSS  
The LTM4601AHV also provides the external gate driver  
The RUN pin can also be used as an undervoltage lock out  
(UVLO) function by connecting a resistor divider from the  
input supply to the RUN pin:  
voltage pin DRV . If there is a 5V rail in the system, it is  
CC  
recommended to connect DRV pin to the external 5V  
CC  
rail. This is especially true for higher input voltages. Do  
not apply more than 6V to the DRV pin. A 5V output can  
CC  
R1+R2  
be used to power the DRV pin with an external circuit  
VUVLO  
=
1.5V  
CC  
R2  
as shown in Figure 18.  
Power Good  
Parallel Operation of the Module  
The PGOOD pin is an open-drain pin that can be used to  
monitor valid output voltage regulation. This pin monitors  
a 10% window around the regulation point and tracks  
with margining.  
The LTM4601AHV device is an inherently current mode  
controlled device. Parallel modules will have very good  
current sharing. This will balance the thermals on the de-  
sign. Figure 21 shows a schematic of the parallel design.  
The voltage feedback equation changes with the variable  
n as modules are paralleled:  
COMP Pin  
This pin is the external compensation pin. The module  
has already been internally compensated for most output  
voltages. Table 2 is provided for most application require-  
ments. A spice model will be provided for other control  
loop optimization.  
60.4k  
+RFB  
N
VOUT = 0.6V  
RFB  
N is the number of paralleled modules.  
Figure 21 shows two LTM4601AHV modules used in a  
parallel design. An LTM4601AHV device can be used  
without the diff amp.  
PLLIN  
The power module has a phase-locked loop comprised  
of an internal voltage controlled oscillator and a phase  
detector. This allows the internal top MOSFET turn-on  
to be locked to the rising edge of the external clock. The  
frequency range is 30% around the operating frequency  
of 850kHz. A pulse detection circuit is used to detect a  
clock on the PLLIN pin to turn on the phase lock loop.  
The pulse width of the clock has to be at least 400ns and  
2V in amplitude. During the start-up of the regulator, the  
phase-lock loop function is disabled.  
Thermal Considerations and Output Current Derating  
The power loss curves in Figures 7 and 8 can be used  
in coordination with the load current derating curves in  
Figures 9 to 16 for calculating an approximate θ for the  
JA  
modulewithvariousheatsinkingmethods.Thermalmodels  
are derived from several temperature measurements at  
the bench and thermal modeling analysis. Thermal Ap-  
plication Note 103 provides a detailed explanation of the  
analysis for the thermal models and the derating curves.  
INTV and DRV Connection  
CC  
CC  
Tables 3 and 4 provide a summary of the equivalent θ  
JA  
An internal low dropout regulator produces an internal  
5V supply that powers the control circuitry and DRV  
for the noted conditions. These equivalent θ parameters  
JA  
CC  
are correlated to the measured values, and are improved  
with air flow. The case temperature is maintained at 100°C  
or below for the derating curves. The maximum case  
temperature of 100°C is to allow for a rise of about 13°C  
4601ahvf  
for driving the internal power MOSFETs. Therefore, if the  
system does not have a 5V power rail, the LTM4601AHV  
can be directly powered by V . The gate driver current  
IN  
14  
LTM4601AHV  
APPLICATIONS INFORMATION  
6
5
4
3
2
1
0
5.0  
4.5  
4.0  
3.5  
24V LOSS  
3.0  
24V LOSS  
12V LOSS  
2.5  
2.0  
12V LOSS  
1.5  
5V LOSS  
1.0  
0.5  
0
0
4
6
8
10  
12  
2
0
2
6
8
10  
12  
4
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
4601AHV F08  
4601AHV F07  
Figure 7. 24VIN and 1.5V Power Loss  
Figure 8. 24VIN and 3.3V Power Loss  
12  
12  
10  
10  
8
6
8
6
4
2
0
4
2
0
5V , 1.5V  
0LFM  
200LFM  
400LFM  
5V , 1.5V  
0LFM  
200LFM  
400LFM  
IN  
OUT  
OUT  
OUT  
IN  
OUT  
OUT  
OUT  
5V , 1.5V  
5V , 1.5V  
IN  
IN  
5V , 1.5V  
5V , 1.5V  
IN  
IN  
50  
60  
70  
80  
90  
100  
50  
60  
70  
80  
90  
100  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4601AHV F09  
4601AHV F10  
Figure 9. No Heat Sink 5VIN  
Figure 10. BGA Heat Sink 5VIN  
12  
10  
12  
10  
8
6
8
6
4
2
0
4
2
0
12V , 1.5V  
0LFM  
200LFM  
400LFM  
12V , 1.5V  
0LFM  
200LFM  
400LFM  
IN  
OUT  
OUT  
OUT  
IN  
OUT  
OUT  
OUT  
12V , 1.5V  
12V , 1.5V  
IN  
IN  
12V , 1.5V  
12V , 1.5V  
IN  
IN  
50  
60  
70  
80  
90  
100  
50  
60  
70  
80  
90  
100  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4601AHV F12  
4601AHV F11  
Figure 11. No Heat Sink 12VIN  
Figure 12. BGA Heat Sink 12VIN  
4601ahvf  
15  
LTM4601AHV  
APPLICATIONS INFORMATION  
12  
12  
10  
10  
8
6
8
6
4
4
2
0
12V , 3.3V  
0LFM  
200LFM  
400LFM  
12V , 3.3V  
0LFM  
200LFM  
400LFM  
IN  
OUT  
OUT  
OUT  
IN  
OUT  
OUT  
OUT  
2
0
12V , 3.3V  
12V , 3.3V  
IN  
IN  
12V , 3.3V  
IN  
12V , 3.3V  
IN  
40  
60  
80  
100  
40  
60  
80  
100  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4601AHV F13  
4601AHV F14  
Figure 14. 12VIN, 3.3VOUT, BGA Heat Sink  
Figure 13. 12VIN, 3.3VOUT, No Heat Sink  
12  
10  
12  
10  
8
6
8
6
4
4
24V , 1.5V  
0LFM  
200LFM  
400LFM  
24V , 1.5V  
0LFM  
200LFM  
400LFM  
IN  
OUT  
OUT  
OUT  
IN  
OUT  
OUT  
OUT  
2
0
2
0
24V , 1.5V  
24V , 1.5V  
IN  
IN  
24V , 1.5V  
IN  
24V , 1.5V  
IN  
40  
60  
80  
100  
40  
60  
80  
100  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4601AHV F15  
4601AHV F16  
Figure 15. 24VIN, 1.5VOUT, No Heat Sink  
Figure 16. 24VIN, 1.5VOUT, BGA Heat Sink  
4601ahvf  
16  
LTM4601AHV  
APPLICATIONS INFORMATION  
Table 2. Output Voltage Response Versus Component Matrix* (Refer to Figures 19 and 20), 0A to 6A Load Step  
TYPICAL MEASURED VALUES  
C
VENDORS  
PART NUMBER  
C
OUT2  
VENDORS  
PART NUMBER  
OUT1  
TDK  
C4532X5R0J107MZ (100μF,6.3V)  
JMK432BJ107MU-T ( 100μF, 6.3V)  
JMK316BJ226ML-T501 ( 22μF, 6.3V)  
SANYO POSCAP  
SANYO POSCAP  
SANYO POSCAP  
6TPE330MIL (330μF, 6.3V)  
2R5TPE470M9 (470μF, 2.5V)  
4TPE470MCL (470μF, 4V)  
TAIYO YUDEN  
TAIYO YUDEN  
V
C
C
C
C
V
(V)  
DROOP  
(mV)  
PEAK TO  
RECOVERY  
TIME (μs)  
LOAD STEP  
R
SET  
OUT  
IN  
IN  
OUT1  
OUT2  
IN  
(V)  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
5
(CERAMIC)  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
2 × 10μF 35V  
(BULK)  
(CERAMIC)  
(BULK)  
470μF 4V  
470μF 2.5V  
330μF 6.3V  
NONE  
C
C3  
PEAK (mV)  
140  
70  
(A/μs)  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
(kΩ)  
60.4  
60.4  
60.4  
60.4  
60.4  
60.4  
60.4  
60.4  
40.2  
40.2  
40.2  
40.2  
40.2  
40.2  
40.2  
40.2  
30.1  
30.1  
30.1  
30.1  
30.1  
30.1  
30.1  
30.1  
19.1  
19.1  
19.1  
19.1  
19.1  
19.1  
19.1  
19.1  
13.3  
13.3  
13.3  
13.3  
13.3  
13.3  
13.3  
13.3  
8.25  
8.25  
COMP  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
3 × 22μF 6.3V  
1 × 100μF 6.3V  
2 × 100μF 6.3V  
4 × 100μF 6.3V  
3 × 22μF 6.3V  
1 × 100μF 6.3V  
2 × 100μF 6.3V  
4 × 100μF 6.3V  
3 × 22μF 6.3V  
1 × 100μF 6.3V  
2 × 100μF 6.3V  
4 × 100μF 6.3V  
3 × 22μF 6.3V  
1 × 100μF 6.3V  
2 × 100μF 6.3V  
4 × 100μF 6.3V  
3 × 22μF 6.3V  
1 × 100μF 6.3V  
2 × 100μF 6.3V  
4 × 100μF 6.3V  
3 × 22μF 6.3V  
1 × 100μF 6.3V  
2 × 100μF 6.3V  
4 × 100μF 6.3V  
1 × 100μF 6.3V  
2 × 100μF 6.3V  
3 × 22μF 6.3V  
4 × 100μF 6.3V  
1 × 100μF 6.3V  
3 × 22μF 6.3V  
2 × 100μF 6.3V  
4 × 100μF 6.3V  
2 × 100μF 6.3V  
1 × 100μF 6.3V  
3 × 22μF 6.3V  
4 × 100μF 6.3V  
1 × 100μF 6.3V  
3 × 22μF 6.3V  
2 × 100μF 6.3V  
4 × 100μF 6.3V  
4 × 100μF 6.3V  
4 × 100μF 6.3V  
NONE  
47pF  
5
70  
35  
30  
20  
20  
30  
30  
20  
20  
20  
35  
30  
30  
30  
35  
30  
25  
25  
30  
20  
30  
30  
30  
30  
30  
20  
30  
30  
30  
25  
30  
30  
30  
25  
30  
30  
30  
30  
30  
35  
35  
30  
25  
25  
NONE 100pF  
NONE 22pF  
5
5
70  
140  
93  
NONE 100pF  
NONE 100pF  
NONE 100pF  
5
40  
470μF 4V  
470μF 2.5V  
330μF 6.3V  
NONE  
12  
12  
12  
12  
5
70  
140  
70  
35  
NONE  
22pF  
70  
140  
98  
NONE 100pF  
NONE 100pF  
49  
470μF 4V  
470μF 2.5V  
330μF 6.3V  
NONE  
48  
100  
109  
84  
NONE  
33pF  
5
54  
NONE 100pF  
NONE 100pF  
NONE 100pF  
5
44  
5
61  
118  
100  
109  
89  
470μF 4V  
470μF 2.5V  
330μF 6.3V  
NONE  
12  
12  
12  
12  
5
48  
NONE  
33pF  
54  
NONE 100pF  
NONE 100pF  
44  
54  
108  
100  
90  
470μF 4V  
470μF 2.5V  
330μF 6.3V  
NONE  
NONE  
47pF  
48  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 220pF  
NONE NONE  
NONE 100pF  
NONE 100pF  
NONE NONE  
NONE 220pF  
NONE 220pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 150pF  
NONE 100pF  
NONE 100pF  
5
44  
5
68  
140  
130  
120  
120  
140  
130  
103  
113  
116  
115  
103  
102  
113  
140  
240  
214  
214  
230  
214  
214  
214  
230  
375  
320  
5
65  
470μF 4V  
470μF 2.5V  
330μF 6.3V  
NONE  
12  
12  
12  
12  
5
60  
60  
68  
65  
470μF 4V  
330μF 6.3V  
470μF 4V  
NONE  
48  
5
56  
5
57  
5
60  
470μF 4V  
470μF 4V  
330μF 6.3V  
NONE  
12  
12  
12  
12  
7
48  
51  
56  
70  
330μF 6.3V  
470μF 4V  
470μF 4V  
NONE  
120  
110  
110  
114  
110  
110  
110  
114  
188  
159  
7
7
7
470μF 4V  
470μF 4V  
330μF 6.3V  
NONE  
12  
12  
12  
12  
15  
20  
NONE  
NONE  
NONE  
22pF  
22pF  
5
NONE  
*X7R is recommended for extended temperature range  
4601ahvf  
17  
LTM4601AHV  
APPLICATIONS INFORMATION  
Table 3. 1.5V Output at 12A  
DERATING CURVE  
Figures 9, 11, 15  
Figures 9, 11, 15  
Figures 9, 11, 15  
Figures 10, 12, 16  
Figures 10, 12, 16  
Figures 10, 12, 16  
V
(V)  
POWER LOSS CURVE  
Figure 7  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
JA  
(°C/W)  
IN  
5, 12, 24  
5, 12, 24  
5, 12, 24  
5, 12, 24  
5, 12, 24  
5, 12, 24  
0
15.2  
14  
Figure 7  
200  
400  
0
None  
Figure 7  
None  
12  
Figure 7  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
13.9  
11.3  
10.25  
Figure 7  
200  
400  
Figure 7  
Table 4. 3.3V Output at 12A  
DERATING CURVE  
Figure 13  
V
IN  
(V)  
POWER LOSS CURVE  
Figure 8  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
JA  
(°C/W)  
12  
0
15.2  
14.6  
13.4  
13.9  
11.1  
10.5  
Figure 13  
12  
12  
12  
12  
12  
Figure 8  
200  
400  
0
None  
Figure 13  
Figure 8  
None  
Figure 14  
Figure 8  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
Figure 14  
Figure 8  
200  
400  
Figure 14  
Figure 8  
Heat Sink Manufacturer  
Wakefield Engineering  
Part No: 20069  
Phone: 603-635-2800  
4601ahvf  
18  
LTM4601AHV  
APPLICATIONS INFORMATION  
to 25°C inside the μModule with a thermal resistance θ  
from junction to case between 6°C/W to 9°C/W. This will  
maintain the maximum junction temperature inside the  
μModule below 125°C.  
• Place high frequency ceramic input and output capaci-  
JC  
tors next to the V , PGND and V  
pins to minimize  
IN  
OUT  
high frequency noise.  
• Place a dedicated power ground layer underneath the  
unit. Refer frequency synchronization source to power  
ground.  
Safety Considerations  
The LTM4601AHV modules do not provide isolation  
• Tominimizetheviaconductionlossandreducemodule  
thermal stress, use multiple vias for interconnection  
between top layer and other power layers.  
from V to V . There is no internal fuse. If required,  
IN  
OUT  
a slow blow fuse with a rating twice the maximum input  
current needs to be provided to protect each unit from  
catastrophic failure.  
• Do not put vias directly on pads unless they are  
capped.  
Layout Checklist/Example  
• Use a separated SGND ground copper area for com-  
ponents connected to signal pins. Connect the SGND  
to PGND underneath the unit.  
The high integration of LTM4601AHV makes the PCB  
board layout very simple and easy. However, to optimize  
its electrical and thermal performance, some layout con-  
siderations are still necessary.  
Figure 17 gives a good example of the recommended  
layout.  
• Use large PCB copper areas for high current path, in-  
cluding V , PGND and V . It helps to minimize the  
IN  
OUT  
PCB conduction loss and thermal stress.  
V
IN  
C
C
IN  
CONTROL  
IN  
• • • • • •  
CONTROL  
PGND  
• • • • • • • •  
SIGNAL  
GND  
CONTROL  
C• • • C• • •  
OUT  
OUT  
V
OUT  
4601AHV F17  
Figure 17. Recommended Layout  
4601ahvf  
19  
LTM4601AHV  
APPLICATIONS INFORMATION  
Frequency Adjustment  
the 14A peak specified value. A 100k resistor is placed  
from f to ground, and the parallel combination of 100k  
SET  
TheLTM4601AHVisdesignedtotypicallyoperateat850kHz  
and 39.2k equates to 28k. The I  
calculation with 28k  
fSET  
across most input conditions. The f pin is normally left  
SET  
and 28V input voltage equals 333μA. This equates to a t  
ON  
open or decoupled with an optional 1000pF capacitor. The  
switching frequency has been optimized for maintaining  
constant output ripple noise over most operating ranges.  
The 850kHz switching frequency and the 400ns minimum  
off time can limit operation at higher duty cycles like 5V to  
3.3V, and produce excessive inductor ripple currents for  
lower duty cycle applications like 28V to 5V. The 5V and  
3.3V drop out curves are modified by adding an external  
of 144ns. This will increase the switching frequency from  
~884kHz to ~1.24MHz for the 28V to 5V conversion. The  
minimum on time is above 100ns at 28V input. Since  
the switching frequency is approximately constant over  
input and output conditions, then the lower input voltage  
range is limited to 10V for the 1.24MHz operation due to  
the 400ns minimum off time. Equation: t = (V /V ) •  
ON  
OUT IN  
(1/Frequency) equates to a 400ns on time, and a 400ns off  
resistor on the f  
pin to allow for lower input voltage  
SET  
time. The “V to V Step-Down Ratio” curves reflect an  
IN  
OUT  
operation, or higher input voltage operation.  
operating range of 10V to 28V for 1.24MHz operation with  
a 100k resistor to ground as shown in Figure 18, and an  
Example for 5V Output  
8V to 16V operation for f floating. These modifications  
SET  
LTM4601AHV minimum on-time = 100ns;  
are made to provide wider input voltage ranges for the 5V  
output designs while limiting the inductor ripple current,  
and maintaining the 400ns minimum off time.  
t
= ((4.8 • 10pf)/I  
)
ON  
fSET  
LTM4601AHV minimum off-time = 400ns;  
= t – t , where t = 1/Frequency  
t
OFF  
ON  
Example for 3.3V Output  
Duty Cycle = t /t or V /V  
ON  
OUT IN  
LTM4601AHV minimum on-time = 100ns;  
t
= ((3.3 • 10pF)/I  
)
Equations for setting frequency:  
ON  
fSET  
LTM4601AHV minimum off-time = 400ns;  
= t – t , where t = 1/Frequency  
I
t
= (V /(3 • R )), for 28V operation, I  
= 238μA,  
fSET  
IN  
fSET  
fSET  
t
= ((4.8 • 10pF)/I ), t = 202ns, where the internal  
OFF  
ON  
ON  
R
fSET ON  
is 39.2k. Frequency = (V /(V • t )) = (5V/(28 •  
fSET  
OUT IN ON  
Duty Cycle (DC) = t /t or V /V  
ON  
OUT IN  
202ns)) ~ 884kHz. The inductor ripple current begins to  
get high at the higher input voltages due to a larger voltage  
across the inductor. This is noted in the Typical Inductor  
Ripple Current verses Duty Cycle graph (Figure 3) where  
Equations for setting frequency:  
I
t
R
= (V /(3 • R )), for 28V operation, I  
= 238μA,  
fSET  
IN  
fSET  
fSET  
= ((3.3 • 10pf)/I ), t = 138.7ns, where the internal  
ON  
fSET ON  
I ≈ 10A at 20% duty cycle. The inductor ripple current  
is39.2k. Frequency=(V /(V t ))=(3.3V/(28•  
L
fSET  
OUT IN ON  
can be lowered at the higher input voltages by adding an  
138.7ns))~850kHz.Theminimumon-timeandminimum-  
off time are within specification at 139ns and 1037ns. The  
4.5V minimum input for converting 3.3V output will not  
externalresistorfromf togroundtoincreasetheswitch-  
SET  
ing frequency. A 7A ripple current is chosen, and the total  
peak current is equal to 1/2 of the 7A ripple current plus  
the output current. The 5V output current is limited to 8A,  
so the total peak current is less than 11.5A. This is below  
meet the minimum off-time specification of 400ns. t  
=
ON  
868ns, Frequency = 850kHz, t = 315ns.  
OFF  
4601ahvf  
20  
LTM4601AHV  
APPLICATIONS INFORMATION  
Solution  
540kHz operation. As shown in Figure 19, a resistor can  
be placed from V  
to f  
to lower the effective I  
OUT  
SET fSET  
Lower the switching frequency at lower input voltages to  
allow for higher duty cycles, and meet the 400ns mini-  
mum off-time at 4.5V input voltage. The off-time should  
be about 500ns with 100ns guard band. The duty cycle  
current out of the f pin to 24μA. The f pin is 4.5V/3  
SET  
SET  
=1.5V and V  
= 3.3V, therefore 130k will source 14μA  
node and lower the I  
OUT  
into the f  
current to 24μA.  
SET  
fSET  
This enables the 540kHz operation and the 4.5V to 28V  
input operation for down converting to 3.3V output. The  
frequency will scale from 540kHz to 1.1 MHz over this  
input range. This provides for an effective output current  
of 8A over the input range.  
for (3.3V/4.5) = ~73%. Frequency = (1 – DC)/t  
or  
OFF  
(1 – 0.73)/500ns = 540kHz. The switching frequency  
needs to be lowered to 540kHz at 4.5V input. t = DC/  
ON  
frequency, or 1.35μs. The f  
pin voltage compliance  
SET  
is 1/3 of V , and the I  
current equates to 38μA with  
IN  
fSET  
the internal 39.2k. The I  
current needs to be 24μA for  
fSET  
V
OUT  
TRACK/SS CONTROL  
V
IN  
10V TO 28V  
REVIEW TEMPERATURE  
DERATING CURVE  
R2  
R4  
V
PLLIN TRACK/SS  
V
5V  
8A  
IN  
100k 100k  
OUT  
PGOOD  
V
OUT  
C3  
100μF  
6.3V  
SANYO  
POSCAP  
+
MPGM  
RUN  
COMP  
V
FB  
MARG0  
MARG1  
22μF  
6.3V  
REFER TO  
TABLE 2  
LTM4601AHV  
INTV  
V
OUT_LCL  
CC  
CC  
DRV  
DIFFV  
V
V
OUT  
+
5% MARGIN  
OSNS  
R1  
392k  
1%  
C2  
10μF  
35V  
OSNS  
f
SGND PGND  
SET  
C1  
R
R
10μF  
35V  
fSET  
SET  
100k  
8.25k  
MARGIN CONTROL  
IMPROVE  
EFFICIENCY  
SOT-323  
FOR ≥12V INPUT  
CMSSH-3C3  
4601AHV F18  
Figure 18. 5V at 8A Design Without Differential Amplifier  
4601ahvf  
21  
LTM4601AHV  
APPLICATIONS INFORMATION  
V
OUT  
TRACK/SS CONTROL  
V
IN  
4.5V TO 16V  
REVIEW TEMPERATURE  
DERATING CURVE  
R2  
R4  
V
PLLIN TRACK/SS  
V
3.3V  
10A  
IN  
100k 100k  
OUT  
PGOOD  
V
OUT  
PGOOD  
MPGM  
RUN  
COMP  
V
FB  
MARG0  
MARG1  
22μF  
6.3V  
C3  
100μF  
6.3V  
+
LTM4601AHV  
INTV  
V
OUT_LCL  
CC  
CC  
SANYO  
POSCAP  
DRV  
DIFFV  
V
V
OUT  
+
C2  
OSNS  
10μF  
25V  
3x  
R1  
392k  
OSNS  
R
f
fSET  
SGND PGND  
SET  
R
SET  
130k  
13.3k  
5% MARGIN  
MARGIN CONTROL  
4601AHV F19  
Figure 19. 3.3V at 10A Design  
CLOCK SYNC  
C5  
0.01μF  
V
OUT  
V
IN  
22V TO 28V  
REVIEW TEMPERATURE  
DERATING CURVE  
R2  
R4  
V
PLLIN TRACK/SS  
V
1.5V  
10A  
IN  
100k  
100k  
OUT  
PGOOD  
V
OUT  
C3 100pF  
+
C
C
PGOOD  
MPGM  
RUN  
V
OUT1  
OUT2  
FB  
100μF  
470μF  
6.3V  
MARG0  
MARG1  
V
OUT_LCL  
MARGIN  
CONTROL  
6.3V  
ON/OFF  
COMP  
INTV  
DRV  
LTM4601AHV  
CC  
CC  
DIFFV  
OUT  
+
+
C
IN  
R1  
392k  
V
V
OSNS  
BULK  
OPT  
REFER TO  
TABLE 2 FOR  
DIFFERENT  
OUTPUT  
OSNS  
C
IN  
f
R
10μF  
35V  
SGND PGND  
SET  
fSET  
R
SET  
175k  
40.2k  
V
3x CER  
IN  
VOLTAGE  
4601AHV F20  
5% MARGIN  
Figure 20. Typical 22V to 28V, 1.5V at 10A Design, 500kHz  
4601ahvf  
22  
LTM4601AHV  
APPLICATIONS INFORMATION  
60.4k  
+ R  
SET  
V
N
OUT  
V
= 0.6V  
OUT  
R
SET  
CLOCK SYNC  
0° PHASE  
N = NUMBER OF PHASES  
TRACK/SS CONTROL  
V
IN  
6V TO 28V  
R2  
100k  
R4  
100k  
V
PLLIN TRACK/SS  
IN  
V
OUT  
3.3V  
PGOOD  
V
OUT  
C6 220pF  
20A  
C3  
22μF  
6.3V  
MPGM  
RUN  
V
FB  
MARG0  
MARG1  
V
OUT_LCL  
COMP  
INTV  
DRV  
+
LTM4601AHV  
C4  
CC  
CC  
470μF  
6.3V  
+
C5*  
100μF  
35V  
DIFFV  
V
OUT  
+
C1  
0.1μF  
OSNS  
LTC6908-1  
+
REFER TO  
TABLE 2  
V
OSNS  
C2  
10μF  
35V  
2x  
1
2
3
6
5
4
118k  
1%  
V
OUT1  
R1  
392k  
f
SGND PGND  
SET  
R
SET  
6.65k  
100pF  
GND OUT2  
SET  
MOD  
5%  
MARGIN  
2-PHASE  
OSCILLATOR  
MARGIN CONTROL  
CLOCK SYNC  
180° PHASE  
TRACK/SS CONTROL  
C7  
0.033μF  
V
PLLIN TRACK/SS  
IN  
PGOOD  
PGOOD  
V
OUT  
+
C4  
470μF  
6.3V  
C3  
22μF  
6.3V  
MPGM  
RUN  
COMP  
V
FB  
MARG0  
MARG1  
C8  
10μF  
35V  
2x  
LTM4601AHV  
REFER TO  
TABLE 2  
INTV  
CC  
V
OUT_LCL  
DRV  
DIFFV  
CC  
OUT  
+
V
V
OSNS  
392k  
OSNS  
f
SGND PGND  
SET  
4601AHV F21  
*C5 OPTIONAL TO REDUCE ANY LC RINGING.  
NOT NEEDED FOR LOW INDUCTANCE PLANE CONNECTION  
Figure 21. 2-Phase Parallel, 3.3V at 20A Design  
4601ahvf  
23  
LTM4601AHV  
TYPICAL APPLICATIONS  
LTC6908-1  
2-PHASE  
OSCILLATOR  
0° PHASE  
+
V
OUT1  
C8  
0.1μF  
R1  
118k  
GND OUT2  
SET  
MOD  
180° PHASE  
3.3V  
3.3V  
V
IN  
6V TO 28V  
R3  
R4  
R7  
R8  
V
PLLIN  
V
PLLIN  
V
100k 100k  
100k 100k  
IN  
IN  
V
3.3V  
10A  
V
2.5V  
10A  
OUT1  
OUT2  
PGOOD  
V
PGOOD  
RUN  
V
OUT  
FB  
OUT  
FB  
C2  
100μF  
6.3V  
C4  
C6  
100μF  
6.3V  
C7  
RUN  
COMP  
INTV  
DRV  
150μF  
150μF  
R1  
R5  
19.1k  
V
COMP  
INTV  
DRV  
C5  
10μF  
35V  
OUT_LCL  
OUT_LCL  
6.3V  
6.3V  
13.3k  
DIFFV  
V
V
DIFFV  
CC  
OUT  
+
CC  
OUT  
+
C1  
10μF  
35V  
LTM4601AHV  
3.3V  
TRACK  
LTM4601AHV  
V
V
CC  
MPGM  
OSNS  
CC  
MPGM  
OSNS  
OSNS  
OSNS  
R16  
60.4k  
R6  
392k  
R2  
392k  
f
MARG0  
MARG1  
f
MARG0  
MARG1  
SET  
SET  
MARGIN CONTROL  
MARGIN CONTROL  
TRACK/SS  
TRACK/SS  
C3  
0.15μF  
R15  
19.1k  
SGND  
PGND  
SGND  
PGND  
4601AHV F22  
Figure 22. Dual Outputs (3.3V and 2.5V) with Tracking  
LTC6908-1  
2-PHASE  
OSCILLATOR  
0° PHASE  
+
V
OUT1  
C8  
0.1μF  
R1  
182k  
GND OUT2  
SET  
MOD  
180° PHASE  
1.8V  
1.8V  
V
IN  
6V TO 28V  
V
1.5V  
10A  
V
1.8V  
10A  
OUT2  
OUT1  
R3  
R4  
R7  
R8  
V
PLLIN  
V
V
PLLIN  
100k 100k  
100k 100k  
IN  
IN  
C9  
47pF  
C8  
C2  
100μF  
6.3V  
C4  
C6  
100μF  
6.3V  
C7  
PGOOD  
V
PGOOD  
RUN  
V
OUT  
FB  
OUT  
FB  
47pF  
220μF  
220μF  
RUN  
COMP  
INTV  
DRV  
6.3V  
6.3V  
R1  
30.1k  
R5  
40.2k  
COMP  
INTV  
DRV  
V
OUT_LCL  
C5  
10μF  
35V  
OUT_LCL  
DIFFV  
V
V
DIFFV  
V
V
CC  
OUT  
+
CC  
OUT  
+
C1  
10μF  
35V  
LTM4601AHV  
LTM4601AHV  
3.3V  
TRACK  
CC  
MPGM  
OSNS  
CC  
MPGM  
OSNS  
OSNS  
OSNS  
R16  
60.4k  
R6  
392k  
R2  
392k  
f
MARG0  
MARG1  
f
MARG0  
MARG1  
SET  
SET  
MARGIN CONTROL  
MARGIN CONTROL  
TRACK/SS  
TRACK/SS  
C3  
0.15μF  
R15  
40.2k  
SGND  
PGND  
SGND  
PGND  
4601AHV F23  
Figure 23. Dual Outputs (1.8V and 1.5V) with Tracking  
4601ahvf  
24  
LTM4601AHV  
PACKAGE DESCRIPTION  
Z
b b b  
Z
5 8 0 6 . 9  
5 . 7 1 5 0  
4 . 4 4 5 0  
3 . 1 7 5 0  
1 . 9 0 5 0  
0 . 6 3 5 0  
0 . 0 0 0 0  
0 . 6 3 5 0  
1 . 9 0 5 0  
3 . 1 7 5 0  
4 . 4 4 5 0  
5 . 7 1 5 0  
5 8 0 6 . 9  
4601ahvf  
25  
LTM4601AHV  
PACKAGE DESCRIPTION  
Pin Assignment Table 5  
(Arranged by Pin Number)  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
D1 PGND  
D2 PGND  
D3 PGND  
D4 PGND  
D5 PGND  
D6 PGND  
PIN NAME  
E1 PGND  
E2 PGND  
E3 PGND  
E4 PGND  
E5 PGND  
E6 PGND  
E7 PGND  
PIN NAME  
F1 PGND  
F2 PGND  
F3 PGND  
F4 PGND  
F5 PGND  
F6 PGND  
F7 PGND  
F8 PGND  
F9 PGND  
A1  
A2  
A3  
A4  
A5  
A6  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
B1  
B2  
B3  
B4  
B5  
B6  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
C1  
C2  
C3  
C4  
C5  
C6  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
A7 INTV  
B7 PGND  
B8  
A9 TRACK/SS B9 PGND  
C7 PGND  
C8  
D7  
D8 PGND  
D9 INTV  
-
CC  
A8 PLLIN  
-
-
E8  
-
C9 PGND  
C10 MTP1  
E9 PGND  
CC  
A10 RUN  
B10  
B11 MPGM  
B12  
-
D10 MPT2  
D11 MPT3  
D12 MARG1  
E10  
E11  
-
-
F10  
F11 PGOOD  
F12  
-
A11 COMP  
A12 MPGM  
C11 f  
SET  
f
C12 MARG0  
E12 DRV  
V
FB  
SET  
CC  
PIN NAME  
G1 PGND  
G2 PGND  
G3 PGND  
G4 PGND  
G5 PGND  
G6 PGND  
G7 PGND  
G8 PGND  
G9 PGND  
PIN NAME  
H1 PGND  
H2 PGND  
H3 PGND  
H4 PGND  
H5 PGND  
H6 PGND  
H7 PGND  
H8 PGND  
H9 PGND  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
J1  
V
V
V
V
V
V
V
V
V
V
-
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
K11  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
L1  
V
V
V
V
V
V
V
V
V
V
V
V
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
V
V
V
V
V
V
V
V
V
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT_LCL  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OSNS  
J2  
L2  
J3  
L3  
J4  
L4  
J5  
L5  
J6  
L6  
J7  
L7  
J8  
L8  
J9  
L9  
G10  
-
H10  
-
J10  
J11  
J12  
L10  
L11  
L12  
M10 V  
M11 V  
M12 V  
G11 SGND  
H11 SGND  
H12 SGND  
+
G12 PGOOD  
V
K12 DIFFV  
OUT  
OSNS  
4601ahvf  
26  
LTM4601AHV  
PACKAGE DESCRIPTION  
Pin Assignment Tables  
(Arranged by Pin Function)  
PIN NAME  
PIN NAME  
PGND  
PIN NAME  
PIN NAME  
PIN NAME  
A1  
A2  
A3  
A4  
A5  
A6  
V
V
V
V
V
V
D1  
D2  
D3  
D4  
D5  
D6  
D8  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
J10  
V
V
V
V
V
V
V
V
V
V
A7  
INTVCC  
PLLIN  
B7  
PGND  
IN  
IN  
IN  
IN  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
A8  
B8  
-
A9  
TRACK/SS  
RUN  
B9  
B10  
B11  
PGND  
-
A10  
A11  
A12  
COMP  
MPGM  
MPGM  
C7  
PGND  
-
B1  
B2  
B3  
B4  
B5  
B6  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
B12  
C12  
D12  
E12  
F12  
G12  
H12  
J12  
K12  
L12  
M12  
f
C8  
SET  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
C9  
PGND  
MTP1  
MARG0  
MARG1  
C10  
C11  
f
SET  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
K11  
V
V
V
V
V
V
V
V
V
V
V
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
DRV  
D7  
-
CC  
D8  
PGND  
INTVCC  
MTP2  
MTP3  
V
FB  
C1  
C2  
C3  
C4  
C5  
C6  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
D9  
PGOOD  
D10  
D11  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
SGND  
+
E8  
E9  
E10  
E11  
-
V
OSNS  
PGND  
DIFFV  
OUT  
-
-
V
V
OUT_LCL  
F10  
F11  
-
OSNS  
PGOOD  
L1  
L2  
L3  
L4  
L5  
L6  
L7  
L8  
L9  
L10  
L11  
V
V
V
V
V
V
V
V
V
V
V
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
G10  
G11  
-
SGND  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
H10  
H11  
-
SGND  
J11  
-
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
V
V
V
V
V
V
V
V
V
V
V
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
4601ahvf  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LTM4601AHV  
RELATED PARTS  
PART NUMBER  
LTC2900  
DESCRIPTION  
COMMENTS  
Quad Supply Monitor with Adjustable Reset Timer  
Power Supply Tracking Controller  
Synchronous Isolated Flyback Controllers  
10A DC/DC μModule  
Monitors Four Supplies, Adjustable Reset Timer  
Tracks Both Up and Down, Power Supply Sequencing  
No Optocoupler Required, 3.3V, 12A Output, Simple Design  
Fast Transient Response, LTM4600HVMPV: –55°C to 125°C Tested  
LTC2923  
LT3825/LT3837  
LTM4600  
LTM4601  
12A DC/DC μModule with PLL, Output Tracking/  
Margining and Remote Sensing  
Synchronizable, PolyPhase Operation to 48A, LTM4601-1 Version has no  
Remote Sensing  
LTM4602  
LTM4603  
6A DC/DC μModule  
Pin Compatible with the LTM4600  
6A DC/DC μModule with PLL and Outpupt Tracking/  
Margining and Remote Sensing  
Synchronizable, PolyPhase Operation, LTM4603-1 Version has no  
Remote Sensing, Pin Compatible with the LTM4601  
LTM4604  
LTM4608  
LTM8020  
LTM8021  
4A Low Voltage DC/DC μModule  
2.375V ≤ V ≤ 5.5V, 0.8V ≤ V  
≤ 5V,  
IN  
OUT  
9mm × 15mm × 2.3mm (Ultra-thin) LGA Package  
8A Low Voltage DC/DC μModule  
2.375V ≤ V ≤ 5.5V, 0.6V ≤ V ≤ 5V;  
IN  
OUT  
9mm × 15mm × 2.8mm LGA Package  
200mA, 36V DC/DC μModule  
4V ≤ V ≤ 36V, 1.25V ≤ V ≤ 5V,  
IN  
IN  
OUT  
6.25mm × 6.25mm × 2.32mm LGA Package  
500mA, 36V DC/DC μModule  
3V ≤ V ≤ 36V, 0.8V ≤ V ≤ 5V,  
IN  
IN  
OUT  
11.25mm × 6.25mm × 2.8mm LGA Package  
LTM8022/ LTM8023 1A/2A, 36V DC/DC μModule Family  
3.6V ≤ V ≤ 36V, 0.8V ≤ V ≤ 10V, Pin Compatible,  
IN  
IN  
OUT  
11.25mm × 9mm × 2.8mm LGA Package  
®
This product contains technology licensed from Silicon Semiconductor Corporation.  
4601ahvf  
LT 0208 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
28  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTM4601AHVV

12A, 28VIN DC/DC μModule with PLL, Output Tracking and Margining
Linear

LTM4601AIV-1-PBF

12A DC/DC μModules with PLL, Output Tracking and Margining
Linear

LTM4601AIV-PBF

12A DC/DC μModules with PLL, Output Tracking and Margining
Linear

LTM4601AV

12A DC/DC μModules with PLL, Output Tracking and Margining
Linear

LTM4601AV-1

12A DC/DC μModules with PLL, Output Tracking and Margining
Linear

LTM4601A_15

12A Module Regulators with PLL, Output Tracking and Margining
Linear

LTM4601EV#PBF

LTM4601/LTM4601-1 - 12A &#181;Module (Power Module) Regulator with PLL, Output Tracking and Margining; Package: LGA; Pins: 118; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4601EV-1-PBF

12A DC/DC μModules with PLL, Output Tracking and Margining
Linear

LTM4601EV-PBF

12A DC/DC μModules with PLL, Output Tracking and Margining
Linear

LTM4601HV

12A 28VIN DC/DC μModule with PLL, Output Tracking and Margining
Linear

LTM4601HV

24V, 15A Monolithic Step Down Regulator with Differential Output Sensing
Linear System

LTM4601HVEV-PBF

12A 28VIN DC/DC μModule with PLL, Output Tracking and Margining
Linear