LTM4602HVV [Linear]

6A, 28VIN High Effi ciency DC/DC μModule; 6A , 28VIN高艾菲效率DC / DC微型模块
LTM4602HVV
型号: LTM4602HVV
厂家: Linear    Linear
描述:

6A, 28VIN High Effi ciency DC/DC μModule
6A , 28VIN高艾菲效率DC / DC微型模块

文件: 总24页 (文件大小:325K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4602HV  
6A, 28V High Efficiency  
IN  
DC/DC µModule  
U
DESCRIPTIO  
FEATURES  
The LTM®4602HV is a complete 6A, DC/DC step down  
power supply with up to 28V input operation. Included  
in the package are the switching controller, power FETs,  
inductor, and all support components. Operating over  
an input voltage range of 4.5V to 28V, the LTM4602HV  
supports an output voltage range of 0.6V to 5V, set by  
a single resistor. This high efficiency design delivers 6A  
continuous current (8A peak), needing no heat sinks or  
airflow to meet power specifications. Only bulk input and  
output capacitors are needed to finish the design.  
Complete Switch Mode Power Supply  
Wide Input Voltage Range: 4.5V to 28V  
6A DC, Typical 8A Peak Output Current  
0.6V to 5V Output Voltage  
1.5% Output Voltage Regulation  
Ultrafast Transient Response  
Parallel µModule™ DC/DC Converters  
Current Mode Control  
Pin Compatible with the LTM4600 and LTM4602  
Up to 92% Efficiency  
Programmable Soft-Start  
Output Overvoltage Protection  
Optional Short-Circuit Shutdown Timer  
The low profile package (2.8mm) enables utilization of  
unused space on the bottom of PC boards for high density  
point of load regulation. High switching frequency and an  
adaptiveon-timecurrentmodearchitectureenablesavery  
fast transient response to line and load changes without  
sacrificing stability. Fault protection features include  
integrated overvoltage and short circuit protection with  
a defeatable shutdown timer. A built-in soft-start timer is  
adjustable with a small capacitor.  
Pb-Free (e4) RoHS Compliant Package with Gold-Pad  
Finish  
Small Footprint, Low Profile (15mm × 15mm ×  
2.8mm) LGA Package  
U
APPLICATIO S  
Telecom and Networking Equipment  
TheLTM4602HVispackagedinathermallyenhanced,com-  
pact(15mm×15mm)andlowprofile(2.8mm)over-molded  
Land Grid Array (LGA) package suitable for automated  
assembly by standard surface mount equipment. For the  
4.5V to 20V input range version, refer to the LTM4602.  
Servers  
Industrial Equipment  
Point of Load Regulation  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
µModule is a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners. Protected by U.S. Patents including 5481178,  
6100678, 6580258, 5847554, 6304066.  
U
TYPICAL APPLICATIO  
Efficiency vs Load Current with 24VIN (FCB = 0)  
90  
80  
70  
60  
50  
40  
6A µModule Power Supply with 4.5V to 28V Input  
V
V
2.5V  
6A  
IN  
OUT  
4.5V TO 28V  
ABS MAX  
V
V
OUT  
IN  
C
C
OUT  
IN  
LTM4602HV  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
3.3V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
30  
20  
10  
V
OSET  
PGND SGND  
31.6k  
(1MHz)  
5
4602HV TA01a  
0
0
1
2
3
6
4
LOAD CURRENT (A)  
4602HV G03  
4602hvf  
1
LTM4602HV  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
FCB, EXTV , PGOOD, RUN/SS, V .......... –0.3V to 6V  
CC  
OUT  
V , SV , f ............................................ –0.3V to 28V  
IN  
OSET  
IN ADJ  
COMP  
V
, COMP............................................. –0.3V to 2.7V  
V
IN  
SGND  
RUN/SS  
FCB  
Operating Temperature Range (Note 2) ... –40°C to 85°C  
Junction Temperature ........................................... 125°C  
Storage Temperature Range................... –55°C to 125°C  
PGOOD  
PGND  
V
OUT  
LGA PACKAGE  
104-LEAD (15mm × 15mm × 2.8mm)  
T
= 125°C, θ = 15°C/W, θ = 6°C/W,  
JMAX  
JA JC  
θ
JA  
DERIVED FROM 95mm × 76mm PCB WITH 4 LAYERS  
WEIGHT = 1.7g  
ORDER PART NUMBER  
LGA PART MARKING*  
LTM4602HVEV#PBF  
LTM4602HVIV#PBF  
LTM4602HVV  
LTM4602HVV  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
*The temperature grade is identified by a label on the shipping container.  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the –40°C to 85°C  
temperature range, otherwise specifications are at TA = 25°C, VIN = 12V. External CIN = 120µF, COUT = 200µF/Ceramic per typical  
application (front page) configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input DC Voltage  
AbsMax 28V for Tolerance on 24V Inputs  
4.5  
28  
V
IN(DC)  
V
Output Voltage  
FCB = 0V  
OUT(DC)  
V
= 5V or 12V, V  
= 1.5V, I = 0A  
OUT  
1.478  
1.470  
1.50  
1.50  
1.522  
1.530  
V
V
IN  
OUT  
Input Specifications  
V
Under Voltage Lockout Threshold  
Input Inrush Current at Startup  
I
I
= 0A  
3.4  
4
V
IN(UVLO)  
OUT  
I
= 0A, V  
= 1.5V, FCB = 0  
OUT  
INRUSH(VIN)  
OUT  
V
= 5V  
= 12V  
= 24V  
0.6  
0.7  
0.8  
A
A
A
IN  
IN  
IN  
V
V
I
Input Supply Bias Current  
I
= 0A, EXTV Open  
OUT CC  
Q(VIN)  
V
= 12V, V  
= 12V, V  
= 24V, V  
= 24V, V  
= 1.5V, FCB = 5V  
1.2  
42  
1.8  
36  
50  
mA  
mA  
mA  
mA  
µA  
IN  
IN  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
V
V
V
= 1.5V, FCB = 0V  
= 2.5V, FCB = 5V  
= 2.5V, FCB = 0V  
Shutdown, RUN = 0.8V, V = 12V  
100  
IN  
Min On Time  
Min Off Time  
100  
ns  
400  
ns  
I
Input Supply Current  
V
V
V
V
= 12V, V  
= 12V, V  
= 1.5V, I  
= 3.3V, I  
= 6A  
= 6A  
0.88  
1.50  
2.08  
0.98  
A
S(VIN)  
IN  
IN  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
A
A
= 5V, V  
= 1.5V, I  
= 6A  
OUT  
OUT  
= 24V to 3.3V at 6A, EXTV = 5V  
A
CC  
4602hvf  
2
LTM4602HV  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the –40°C to 85°C  
temperature range, otherwise specifications are at TA = 25°C, VIN = 12V. Per typical application (front page) configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Specifications  
I
Output Continuous Current Range  
V
IN  
V
IN  
= 12V, V  
= 24V, V  
= 1.5V  
= 2.5V (Note 3)  
0
0
6
6
A
A
OUTDC  
OUT  
OUT  
(See Output Current Derating Curves for  
Different V , V  
and T )  
A
IN OUT  
ΔV  
ΔV  
Line Regulation Accuracy  
V
V
= 1.5V. FCB = 0V, I  
= 0A,  
0.15  
%
OUT(LINE)  
OUT  
IN  
OUT  
= 4.5V to 28V  
V
OUT  
Load Regulation Accuracy  
V
V
= 1.5V. FCB = 0V, I  
= 0A to 6A,  
OUT(0A-6A)  
OUT  
IN  
OUT  
= 5V, V = 12V (Note 4)  
0.25  
0.5  
0.5  
1
%
%
IN  
V
OUT  
V
Output Ripple Voltage  
V
IN  
= 12V, V  
= 1.5V, FCB = 0V, I  
= 0A  
10  
15  
mV  
P-P  
OUT(AC)  
OUT  
OUT  
fs  
Output Ripple Voltage Frequency  
FCB = 0V, I  
= 6A, V = 12V,  
800  
kHz  
OUT  
IN  
V
V
= 1.5V  
OUT  
t
Turn-On Time  
= 1.5V, I  
= 12V  
= 5V  
= 1A  
START  
OUT  
V
OUT  
0.5  
0.7  
ms  
ms  
IN  
IN  
V
ΔV  
OUTLS  
Voltage Drop for Dynamic Load Step  
V
C
= 1.5V, Load Step: 0A/µs to 3A/µs  
= 22µF 6.3V, 330µF 4V Pos Cap,  
30  
mV  
OUT  
OUT  
See Table 2  
t
I
Settling Time for Dynamic Load Step  
IN  
Output Current Limit  
Load: 10% to 90% to 10% of Full Load  
25  
µs  
SETTLE  
OUTPK  
V
= 12V  
Output Voltage in Foldback  
V
V
V
= 24V, V  
= 12V, V  
= 2.5V  
= 1.5V  
9
9
9
A
A
A
IN  
IN  
IN  
OUT  
OUT  
= 5V, V  
= 1.5V  
OUT  
Control Stage  
V
OSET  
Voltage at V  
Pin  
I
= 0A, V = 1.5V  
OUT  
0.591  
0.594  
0.6  
0.6  
0.609  
0.606  
V
V
OSET  
OUT  
V
RUN ON/OFF Threshold  
0.8  
–0.5  
0.8  
1.5  
–1.2  
1.8  
2
–3  
3
V
RUN/SS  
I
I
Soft-Start Charging Current  
Soft-Start Discharging Current  
V
V
= 0V  
= 4V  
µA  
RUN(C)/SS  
RUN(D)/SS  
RUN/SS  
RUN/SS  
µA  
V
– SV  
EXTV = 0V, FCB = 0V  
100  
16  
mV  
mA  
IN  
IN  
CC  
I
Current into EXTV Pin  
EXTV = 5V, FCB = 0V, V  
= 1.5V,  
EXTVCC  
CC  
CC  
= 0A  
OUT  
I
OUT  
R
Resistor Between V  
and FB Pins  
OUT  
100  
0.6  
–1  
kΩ  
V
FBHI  
V
Forced Continuous Threshold  
Forced Continuous Pin Current  
0.57  
0.63  
–2  
FCB  
I
V
= 0.6V  
µA  
FCB  
FCB  
PGOOD Output  
ΔV  
ΔV  
ΔV  
PGOOD Upper Threshold  
PGOOD Lower Threshold  
PGOOD Hysteresis  
V
V
V
Rising  
7.5  
10  
–10  
2
12.5  
%
%
%
V
OSETH  
OSET  
OSET  
Falling  
–7.5  
–12.5  
OSETL  
Returning  
OSET(HYS)  
OSET  
V
PGOOD Low Voltage  
I
= 5mA  
0.15  
0.4  
PGL  
PGOOD  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTM4602HVE is guaranteed to meet performance  
specifications from 0°C to 85°C. Specifications over the –40°C to 85°C  
operating temperature range are assured by design, characterization  
and correlation with statistical process controls. The LTM4602HVI is  
guaranteed and tested over the –40°C to 85°C temperature range.  
Note 3: Refer to current de-rating curves and thermal application note.  
Note 4: Test assumes current derating verses temperature.  
4602hvf  
3
LTM4602HV  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (See Figure 22 for all curves)  
Efficiency vs Load Current  
with 24VIN (FCB = 0)  
Efficiency vs Load Current  
with 5VIN (FCB = 0)  
Efficiency vs Load Current  
with 12V
IN
(FCB = 0)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0.8V  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
0.8V  
OUT  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
3.3V  
1.2V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
1.5V  
1.8V  
2.5V  
3.3V  
3.3V  
OUT  
OUT  
OUT  
OUT  
OUT  
*
*FOR 5V TO 3.3V CONVERSION,  
SEE FREQUENCY ADJUSTMENT  
IN APPLICATIONS INFORMATION  
(950kHz)  
(1MHz)  
5
0
0
2
4
6
8
0
2
4
6
8
0
1
2
3
6
4
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4602HV G01  
4602HV G02  
4602HV G03  
Light Load Efficiency vs  
Load Current with 12VIN  
(FCB > 0.7V, <5V)  
Efficiency vs Load Current  
with Different FCB Settings  
1.2V Transient Response  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 12V  
IN  
OUT  
= 1.5V  
V
OUT  
FCB > 0.7V  
50mV/DIV  
I
OUT  
2A/DIV  
FCB = GND  
4602HV G05  
20µs/DIV  
1.2V AT 3A/µs LOAD STEP  
C
= 22µF, 6.3V CERAMIC  
1.2V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
330µF, 4V SANYO POS CAP  
1.5V  
1.8V  
2.5V  
3.3V  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
LOAD CURRENT (A)  
1
0.1  
5
1
LOAD CURRENT (A)  
4602HV G15  
4602HV G04  
1.8V Transient Response  
2.5V Transient Response  
1.5V Transient Response  
V
V
OUT  
OUT  
50mV/DIV  
V
50mV/DIV  
OUT  
50mV/DIV  
I
I
OUT  
I
OUT  
OUT  
2A/DIV  
2A/DIV  
2A/DIV  
4602HV G07  
4602HV G08  
20µs/DIV  
20µs/DIV  
4602HV G06  
20µs/DIV  
1.8V AT 3A/µs LOAD STEP  
2.5V AT 3A/µs LOAD STEP  
1.5V AT 3A/µs LOAD STEP  
C
OUT  
= 22µF, 6.3V CERAMIC  
C
= 22µF, 6.3V CERAMIC  
OUT  
C
= 22µF, 6.3V CERAMIC  
OUT  
330µF, 4V SANYO POS CAP  
330µF, 4V SANYO POS CAP  
330µF, 4V SANYO POS CAP  
4602hvf  
4
LTM4602HV  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (See Figure 22 for all curves)  
Start-Up, IOUT = 6A  
(Resistive Load)  
Start-Up, IOUT = 0A  
3.3V Transient Response  
V
OUT  
V
V
OUT  
0.5V/DIV  
50mV/DIV  
OUT  
0.5V/DIV  
I
OUT  
I
2A/DIV  
IN  
I
IN  
0.5A/DIV  
4602HV G09  
0.5A/DIV  
20µs/DIV  
3.3V AT 3A/µs LOAD STEP  
4602HV G10  
4602HV G11  
200µs/DIV  
= 1 × 22µF, 6.3V X5R  
500µs/DIV  
= 1 × 22µF, 6.3V X5R  
V
V
C
= 12V  
OUT  
OUT  
V
V
C
= 12V  
OUT  
OUT  
C
= 22µF, 6.3V CERAMIC  
IN  
IN  
OUT  
= 1.5V  
= 1.5V  
330µF, 4V SANYO POS CAP  
330µF, 4V SANYO POS CAP  
330µF, 4V SANYO POS CAP  
NO EXTERNAL SOFT-START CAPACITOR  
NO EXTERNAL SOFT-START CAPACITOR  
Short-Circuit Protection,  
IOUT = 0A  
Short-Circuit Protection,  
IOUT = 6A  
VIN to VOUT Stepdown Ratio  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
f
= OPEN  
ADJ  
5V  
V
V
OUT  
OUT  
0.5V/DIV  
0.5V/DIV  
3.3V  
I
IN  
I
IN  
2.5V  
1.8V  
0.5A/DIV  
0.5A/DIV  
4602HV G12  
4602HV G13  
20µs/DIV  
= 1 × 22µF, 6.3V X5R  
20µs/DIV  
V
V
C
= 12V  
OUT  
OUT  
V
V
C
= 12V  
OUT  
OUT  
IN  
IN  
1.5V  
= 1.5V  
= 1.5V  
= 1 × 22µF, 6.3V X5R  
330µF, 4V SANYO POS CAP  
1.2V  
330µF, 4V SANYO POS CAP  
NO EXTERNAL SOFT-START CAPACITOR  
NO EXTERNAL SOFT-START CAPACITOR  
0.6V  
10  
20  
25 28  
0
5
15  
(V)  
V
IN  
SEE FREQUENCY ADJUSTMENT DISCUSSION  
FOR 12V TO 5V  
AND 5V TO 3.3V  
IN  
OUT  
IN OUT  
CONVERSION  
4602HV G14  
4602hvf  
5
LTM4602HV  
U
U
U
PI FU CTIO S  
(See Package Description for Pin Assignment)  
V (Bank 1): Power Input Pins. Apply input voltage be-  
SGND (Pin D23): Signal Ground Pin. All small-signal  
components should connect to this ground, which in turn  
connects to PGND at one point.  
IN  
tween these pins and PGND pins. Recommend placing  
input decoupling capacitance directly between V pins  
IN  
and PGND pins.  
RUN/SS (Pin F23): Run and Soft-Start Control. Forcing  
this pin below 0.8V will shut down the power supply.  
Inside the power module, there is a 1000pF capacitor  
which provides approximately 0.7ms soft-start time with  
200µF output capacitance. Additional soft-start time can  
be achieved by adding additional capacitance between  
the RUN/SS and SGND pins. The internal short-circuit  
latchoff can be disabled by adding a resistor between this  
f
(Pin A15): A 110k resistor from V to this pin sets  
IN  
ADJ  
the one-shot timer current, thereby setting the switching  
frequency.TheLTM4602HVswitchingfrequencyistypically  
850kHz. An external resistor to ground can be selected to  
reducetheone-shottimercurrent,thuslowertheswitching  
frequency to accommodate a higher duty cycle step down  
requirement. See the applications section.  
pin and the V pin. This resistor must supply a minimum  
IN  
SV (PinA17):SupplyPinforInternalPWMController.Leave  
IN  
5µA pull up current.  
this pin open or add additional decoupling capacitance.  
FCB (Pin G23): Forced Continuous Input. Grounding this  
pin enables forced continuous mode operation regardless  
of load conditions. Tying this pin above 0.63V enables  
discontinuousconductionmodetoachievehighefficiency  
operation at light loads. There is an internal 10k resistor  
between the FCB and SGND pins.  
EXTV (Pin A19): External 5V supply pin for controller. If  
CC  
left open or grounded, the internal 5V linear regulator will  
power the controller and MOSFET drivers. For high input  
voltage applications, connecting this pin to an external  
5V will reduce the power loss in the power module. The  
EXTV voltage should never be higher than V .  
CC  
IN  
PGOOD (Pin J23): Output Voltage Power Good Indicator.  
When the output voltage is within 10% of the nominal  
voltage, the PGOOD is open drain output. Otherwise, this  
pin is pulled to ground.  
V
(Pin A21): The Negative Input of The Error Amplifier.  
OSET  
Internally,thispinisconnectedtoV witha100kprecision  
OUT  
resistor.Differentoutputvoltagescanbeprogrammedwith  
additional resistors between the V  
and SGND pins.  
OSET  
PGND (Bank 2): Power ground pins for both input and  
output returns.  
COMP (Pin B23): Current Control Threshold and Error  
Amplifier Compensation Point. The current comparator  
threshold increases with this control voltage. The voltage  
ranges from 0V to 2.4V with 0.8V corresponding to zero  
sense voltage (zero current).  
V
OUT  
(Bank 3): Power Output Pins. Apply output load  
between these pins and PGND pins. Recommend placing  
High Frequency output decoupling capacitance directly  
between these pins and PGND pins.  
TOP VIEW  
2
3
4
5
6
7
16  
17  
18  
19  
A
C
E
1
20  
21  
22  
23  
24  
B
D
F
COMP  
SGND  
RUN/SS  
FCB  
9
10  
14  
11  
15  
V
IN  
8
BANK 1  
13  
12  
25  
32  
G
J
26  
33  
27  
34  
28  
35  
29  
36  
30  
37  
31  
38  
H
K
PGOOD  
48  
59  
39  
50  
61  
40  
51  
62  
41  
52  
63  
42  
53  
64  
43  
54  
65  
44  
55  
66  
45  
56  
67  
46  
57  
68  
47  
58  
69  
49  
60  
71  
PGND  
BANK 2  
L
M
N
70  
73  
84  
95  
74  
85  
96  
75  
86  
97  
76  
87  
98  
77  
88  
99  
78  
89  
79  
90  
80  
91  
81  
92  
72  
83  
94  
82  
93  
P
R
T
V
OUT  
BANK 3  
100  
101  
102  
103  
104  
1
3
5
7
9
11  
13  
15  
17  
19  
21  
23  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
4600hv PN01  
4602hvf  
6
LTM4602HV  
W
W
SI PLIFIED BLOCK DIAGRA  
SV  
IN  
RUN/SS  
V
IN  
1000pF  
4.5V TO 28V  
ABS MAX  
C
C
1.5µF  
IN  
PGOOD  
Q1  
COMP  
FCB  
INT  
COMP  
V
2.5V  
6A MAX  
OUT  
V
OUT  
IN  
4.75k  
15µF  
6.3V  
CONTROLLER  
110k  
f
ADJ  
PGND  
Q2  
10Ω  
SGND  
EXTV  
CC  
100k  
0.5%  
V
OSET  
R
SET  
31.6k  
4602HV F01  
Figure 1. Simplified LTM4602HV Block Diagram  
U
W U  
DECOUPLI G REQUIRE E TS  
TA = 25°C, VIN = 12V. Use Figure 1 configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
External Input Capacitor Requirement  
I
= 6A, 2x 10µF 35V Ceramic  
20  
µF  
IN  
OUT  
(V = 4.5V to 28V, V  
= 2.5V)  
Taiyo Yuden GDK316BJ106ML  
IN  
OUT  
C
External Output Capacitor Requirement  
(V = 4.5V to 28V, V = 2.5V)  
I
= 6A, Refer to Table 2 in the  
100  
200  
µF  
OUT  
OUT  
Applications Information Section  
IN  
OUT  
4602hvf  
7
LTM4602HV  
U
OPERATIO  
µModule Description  
in an overvoltage condition, internal top FET Q1 is turned  
off and bottom FET Q2 is turned on and held on until the  
overvoltage condition clears.  
TheLTM4602HVisastandalonenon-isolatedsynchronous  
switching DC/DC power supply. It can deliver up to 6A of  
DC output current with only bulk external input and output  
capacitors. This module provides a precisely regulated  
outputvoltageprogrammableviaoneexternalresistorfrom  
Pulling the RUN/SS pin low forces the controller into its  
shutdown state, turning off both Q1 and Q2. Releasing the  
pin allows an internal 1.2µA current source to charge up  
the softstart capacitor. When this voltage reaches 1.5V,  
the controller turns on and begins switching.  
0.6V to 5.0V . The input voltage range is 4.5V to 28V.  
DC  
DC  
A simplified block diagram is shown in Figure 1 and the  
typical application schematic is shown in Figure 21.  
At low load current the module works in continuous cur-  
rent mode by default to achieve minimum output voltage  
ripple. It can be programmed to operate in discontinuous  
current mode for improved light load efficiency when the  
FCB pin is pulled up above 0.8V and no higher than 6V.  
The FCB pin has a 10k resistor to ground, so a resistor to  
The LTM4602HV contains an integrated LTC constant  
on-time current-mode regulator, ultra-low R  
FETs  
DS(ON)  
with fast switching speed and integrated Schottky diode.  
The typical switching frequency is 800kHz at full load.  
With current mode control and internal feedback loop  
compensation, the LTM4602HV module has sufficient  
stability margins and good transient performance under a  
wide range of operating conditions and with a wide range  
of output capacitors, even all ceramic output capacitors  
(X5R or X7R).  
V can set the voltage on the FCB pin.  
IN  
When EXTV pin is grounded or open, an integrated 5V  
CC  
linear regulator powers the controller and MOSFET gate  
drivers. If a minimum 4.7V external bias supply is ap-  
plied on the EXTV pin, the internal regulator is turned  
CC  
Current mode control provides cycle-by-cycle fast current  
limit. In addition, foldback current limiting is provided  
in an over-current condition while V drops. Also, the  
LTM4602HV has defeatable short circuit latch off. Internal  
overvoltage and undervoltage comparators pull the open-  
drainPGOODoutputlowiftheoutputfeedbackvoltageexits  
a 10%windowaroundtheregulationpoint. Furthermore,  
off, and an internal switch connects EXTV to the gate  
CC  
driver voltage. This eliminates the linear regulator power  
loss with high input voltage, reducing the thermal stress  
FB  
on the controller. The maximum voltage on EXTV pin is  
CC  
6V. The EXTV voltage should never be higher than the  
CC  
V
IN  
voltage. Also EXTV must be sequenced after V .  
CC IN  
Recommended for 24V operation to lower temperature  
in the µModule.  
4602hvf  
8
LTM4602HV  
U
W U U  
APPLICATIO S I FOR ATIO  
The typical LTM4602HV application circuit is shown in  
Figure 20. External component selection is primarily  
determined by the maximum load current and output  
voltage.  
voltage is margined up. The output voltage is margined  
down when Q  
is on and Q is off. If the output  
DOWN  
UP  
voltage V needs to be margined up/down by M%, the  
O
resistor values of R and R  
the following equations:  
can be calculated from  
UP  
DOWN  
Output Voltage Programming and Margining  
(RSET RUP)•VO (1+ M%)  
(RSET RUP)+100kΩ  
The PWM controller of the LTM4602HV has an internal  
0.6V 1%referencevoltage.Asshownintheblockdiagram,  
= 0.6V  
a100k/0.5%internalfeedbackresistorconnectsV  
and  
OUT  
pin to SGND  
RSET VO (1M%)  
RSET + (100kRDOWN  
FB pins. Adding a resistor R from V  
SET  
OSET  
= 0.6V  
)
pin programs the output voltage:  
100k +RSET  
VO = 0.6V •  
Input Capacitors  
RSET  
The LTM4602HV µModule should be connected to a low  
ac-impedance DC source. High frequency, low ESR input  
capacitors are required to be placed adjacent to the mod-  
Table 1 shows the standard values of 1% R  
for typical output voltages:  
Table 1  
resistor  
SET  
ule. In Figure 20, the bulk input capacitor C is selected  
IN  
for its ability to handle the large RMS current into the  
converter. For a buck converter, the switching duty-cycle  
can be estimated as:  
R
SET  
Open 100  
0.6 1.2  
66.5  
1.5  
49.9  
1.8  
43.2  
2
31.6  
2.5  
22.1  
3.3  
13.7  
5
(kΩ)  
V
(V)  
O
VO  
V
IN  
Voltagemarginingisthedynamicadjustmentoftheoutput  
voltage to its worst case operating range in production  
testing to stress the load circuitry, verify control/protec-  
tion functionality of the board and improve the system  
reliability. Figure 2 shows how to implement margining  
function with the LTM4602HV. In addition to the feedback  
D =  
Without considering the inductor current ripple, the RMS  
current of the input capacitor can be estimated as:  
IO(MAX)  
η%  
ICIN(RMS)  
=
D(1D)  
resistor R , several external components are added.  
SET  
Turn off both transistor Q and Q  
margining. When Q is on and Q  
to disable the  
UP  
DOWN  
In the above equation, η% is the estimated efficiency of  
the power module. C1 can be a switcher-rated electrolytic  
aluminum capacitor, OS-CON capacitor or high volume  
ceramic capacitors. Note the capacitor ripple current  
ratings are often based on only 2000 hours of life. This  
makes it advisable to properly derate the input capacitor,  
or choose a capacitor rated at a higher temperature than  
required. Always contact the capacitor manufacturer for  
derating requirements.  
is off, the output  
UP  
DOWN  
V
OUT  
LTM4602HV  
R
R
DOWN  
Q
100k  
DOWN  
2N7002  
V
OSET  
PGND  
SGND  
R
SET  
UP  
InFigure16,theinputcapacitorsareusedashighfrequency  
inputdecouplingcapacitors.Inatypical6Aoutputapplica-  
tion, 1-2piecesofverylowESRX5RorX7R, 10µFceramic  
capacitors are recommended. This decoupling capacitor  
should be placed directly adjacent the module input pins  
Q
UP  
2N7002  
4602HV F02  
Figure 2  
4602hvf  
9
LTM4602HV  
U
W U U  
APPLICATIO S I FOR ATIO  
in the PCB layout to minimize the trace inductance and  
high frequency AC noise.  
Soft-Start and Latchoff with the RUN/SS pin  
The RUN/SS pin provides a means to shut down the  
LTM4602HV as well as a timer for soft-start and over-  
current latchoff. Pulling the RUN/SS pin below 0.8V puts  
the LTM4602HV into a low quiescent current shutdown  
Output Capacitors  
The LTM4602HV is designed for low output voltage ripple.  
The bulk output capacitor C  
effectiveseriesresistance(ESR)tomeettheoutputvoltage  
ripple and transient requirements. C can be low ESR  
is chosen with low enough  
(I ≤ 75µA). Releasing the pin allows an internal 1.2µA  
OUT  
Q
current source to charge up the timing capacitor C .  
SS  
Inside LTM4602HV, there is an internal 1000pF capaci-  
OUT  
tantalumcapacitor, lowESRpolymercapacitororceramic  
capacitor (X5R or X7R). The typical capacitance is 200µF  
if all ceramic output capacitors are used. The internally  
optimized loop compensation provides sufficient stability  
margin for all ceramic capacitors applications. Additional  
output filtering may be required by the system designer,  
if further reduction of output ripple or dynamic transient  
spike is required. Refer to Table 2 for an output capaci-  
tance matrix for each output voltage Droop, peak to peak  
deviation and recovery time during a 3A/µs transient with  
a specific output capacitance.  
tor from RUN/SS pin to ground. If RUN/SS pin has an  
external capacitor C  
starting is about:  
to ground, the delay before  
SS_EXT  
1.5V  
1.2µA  
tDELAY  
=
(CSS_EXT +1000pF)  
When the voltage on RUN/SS pin reaches 1.5V, the  
LTM4602HV internal switches are operating with a clamp-  
ing of the maximum output inductor current limited by the  
RUN/SSpintotalsoft-startcapacitance.AstheRUN/SSpin  
voltage rises to 3V, the soft-start clamping of the inductor  
current is released.  
Fault Conditions: Current Limit and Over current  
Foldback  
V to V  
Stepdown Ratios  
IN  
OUT  
The LTM4602HV has a current mode controller, which  
inherently limits the cycle-by-cycle inductor current not  
only in steady state operation, but also in transient.  
There are restrictions in the maximum V to V  
step  
IN  
OUT  
down ratio that can be achieved for a given input voltage.  
These constraints are shown in the Typical Performance  
To further limit current in the event of an over load condi-  
tion, the LTM4602HV provides foldback current limiting.  
If the output voltage falls by more than 50%, then the  
maximumoutputcurrentisprogressivelyloweredtoabout  
one sixth of its full current limit value.  
Characteristics curves labeled “V to V  
Stepdown  
IN  
OUT  
Ratio”. Note that additional thermal de-rating may apply.  
See the Thermal Considerations and Output Current De-  
Rating sections of this data sheet.  
4602hvf  
10  
LTM4602HV  
U
W U U  
APPLICATIO S I FOR ATIO  
Table 2. Output Voltage Response Versus Component Matrix (Refer to Figure 17), 0A to 3A Step (Typical Values)  
TYPICAL MEASURED VALUES  
C
OUT1  
VENDORS  
PART NUMBER  
C
OUT2  
VENDORS  
PART NUMBER  
TDK  
C4532X5R0J107MZ (100UF,6.3V)  
JMK432BJ107MU-T ( 100µF, 6.3V)  
JMK316BJ226ML-T501 ( 22µF, 6.3V)  
SANYO POS CAP  
SANYO POS CAP  
SANYO POS CAP  
6TPE330MIL (330µF, 6.3V)  
2R5TPE470M9 (470µF, 2.5V)  
4TPE470MCL (470µF, 4V)  
TAIYO YUDEN  
TAIYO YUDEN  
V
C
C
C
C
C
C3  
V
IN  
(V)  
DROOP  
(mV)  
PEAK TO PEAK  
RECOVERY TIME  
(µs)  
LOAD STEP  
(A/µs)  
OUT  
IN  
IN  
OUT1  
OUT2  
COMP  
(V)  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
5
(CERAMIC)  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
1 × 10µF 25V  
1 × 10µF 25V  
(BULK)  
(CERAMIC)  
(BULK)  
470µF 4V  
470µF 2.5V  
330µF 6.3V  
NONE  
(mV)  
60  
60  
54  
55  
60  
54  
56  
55  
50  
54  
59  
59  
55  
54  
59  
59  
54  
50  
50  
60  
50  
50  
50  
60  
50  
50  
50  
50  
50  
50  
50  
54  
64  
60  
60  
64  
58  
60  
60  
64  
160  
160  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
3 × 22µF 6.3V  
1 × 100µF 6.3V  
2 × 100µF 6.3V  
4 × 100µF 6.3V  
3 × 22µF 6.3V  
1 × 100µF 6.3V  
2 × 100µF 6.3V  
4 × 100µF 6.3V  
3 × 22µF 6.3V  
1 × 100µF 6.3V  
2 × 100µF 6.3V  
4 × 100µF 6.3V  
3 × 22µF 6.3V  
1 × 100µF 6.3V  
2 × 100µF 6.3V  
4 × 100µF 6.3V  
3 × 22µF 6.3V  
1 × 100µF 6.3V  
2 × 100µF 6.3V  
4 × 100µF 6.3V  
3 × 22µF 6.3V  
1 × 100µF 6.3V  
2 × 100µF 6.3V  
4 × 100µF 6.3V  
1 × 100µF 6.3V  
2 × 100µF 6.3V  
3 × 22µF 6.3V  
4 × 100µF 6.3V  
1 × 100µF 6.3V  
3 × 22µF 6.3V  
2 × 100µF 6.3V  
4 × 100µF 6.3V  
2 × 100µF 6.3V  
1 × 100µF 6.3V  
3 × 22µF 6.3V  
4 × 100µF 6.3V  
1 × 100µF 6.3V  
3 × 22µF 6.3V  
2 × 100µF 6.3V  
4 × 100µF 6.3V  
4 × 100µF 6.3V  
4 × 100µF 6.3V  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 100pF  
NONE 220pF  
NONE 220pF  
NONE 220pF  
NONE 220pF  
NONE 220pF  
NONE 220pF  
NONE 220pF  
NONE 220pF  
NONE 220pF  
NONE 220pF  
NONE 220pF  
NONE 220pF  
NONE 220pF  
NONE 220pF  
NONE 220pF  
NONE 220pF  
NONE 100pF  
NONE 100pF  
5
30  
30  
25  
25  
30  
25  
25  
25  
25  
25  
25  
26  
25  
25  
28  
26  
25  
25  
25  
29  
25  
25  
25  
29  
25  
25  
25  
25  
25  
25  
25  
27  
32  
30  
30  
32  
38  
30  
30  
32  
80  
80  
25  
20  
20  
20  
25  
20  
20  
20  
25  
20  
20  
20  
25  
20  
20  
20  
30  
20  
20  
20  
30  
20  
20  
20  
30  
30  
30  
25  
30  
30  
30  
25  
30  
30  
35  
25  
30  
35  
30  
25  
25  
25  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
5
5
5
470µF 4V  
470µF 2.5V  
330µF 6.3V  
NONE  
12  
12  
12  
12  
5
470µF 4V  
470µF 2.5V  
330µF 6.3V  
NONE  
5
5
5
470µF 4V  
470µF 2.5V  
330µF 6.3V  
NONE  
12  
12  
12  
12  
5
470µF 4V  
470µF 2.5V  
330µF 6.3V  
NONE  
5
5
5
470µF 4V  
470µF 2.5V  
330µF 6.3V  
NONE  
12  
12  
12  
12  
5
470µF 4V  
330µF 6.3V  
470µF 4V  
NONE  
5
5
5
470µF 4V  
470µF 4V  
330µF 6.3V  
NONE  
12  
12  
12  
12  
7
330µF 6.3V  
470µF 4V  
470µF 4V  
NONE  
7
7
7
470µF 4V  
470µF 4V  
330µF 6.3V  
NONE  
12  
12  
12  
12  
15  
20  
NONE  
5
NONE  
4602hvf  
11  
LTM4602HV  
U
W U U  
APPLICATIO S I FOR ATIO  
After the controller has been started and given adequate  
4V maximum latchoff threshold and overcome the 4µA  
maximumdischargecurrent.Figure 3showsaconceptual  
time to charge up the output capacitor, C is used as a  
SS  
short-circuittimer.AftertheRUN/SSpinchargesabove4V,  
if the output voltage falls below 75% of its regulated value,  
then a short-circuit fault is assumed. A 1.8µA current then  
drawing of V  
during startup and short circuit.  
RUN  
V
RUN/SS  
beginsdischargingC . Ifthefaultconditionpersistsuntil  
4V  
SS  
3.5V  
the RUN/SS pin drops to 3.5V, then the controller turns  
off both power MOSFETs, shutting down the converter  
permanently. The RUN/SS pin must be actively pulled  
down to ground in order to restart operation.  
3V  
1.5V  
SHORT-CIRCUIT  
LATCH ARMED  
t
The over-current protection timer requires the soft-start  
SOFT-START  
CLAMPING  
L
SHORT-CIRCUIT  
LATCHOFF  
OUTPUT  
OVERLOAD  
HAPPENS  
timing capacitor C be made large enough to guarantee  
SS  
OF I RELEASED  
that the output is in regulation by the time C has reached  
SS  
V
O
the 4V threshold. In general, this will depend upon the size  
of the output capacitance, output voltage and load current  
characteristic. A minimum external soft-start capacitor  
can be estimated from:  
75%V  
O
t
SWITCHING  
STARTS  
4602HV F03  
CSS_EXT +1000pF > COUT VOUT (103[F /VS])  
Figure 3. RUN/SS Pin Voltage During Startup and  
Short-Circuit Protection  
Generally 0.1µF is more than sufficient.  
V
V
IN  
Sincetheloadcurrentisalreadylimitedbythecurrentmode  
controlandcurrentfoldbackcircuitryduringashortcircuit,  
overcurrent latchoff operation is NOT always needed or  
desired, especially if the output has large capacitance or  
the load draws high current during start-up. The latchoff  
featurecanbeoverriddenbyapull-upcurrentgreaterthan  
5µA but less than 80µA to the RUN/SS pin. The additional  
IN  
500k  
LTM4602HV  
RUN/SS  
PGND SGND  
RECOMMENDED VALUES FOR R  
RUN/SS  
V
R
RUN/SS  
IN  
current prevents the discharge of C during a fault and  
4.5V TO 5.5V  
10.8V TO 13.8V  
24V TO 28V  
50k  
150k  
500k  
SS  
also shortens the soft-start period. Using a resistor from  
4602HV F04  
RUN/SSpintoV isasimplesolutiontodefeatlatchoff.Any  
IN  
Figure 4. Defeat Short-Circuit Latchoff with a Pull-Up  
Resistor to VIN  
pull-up network must be able to maintain RUN/SS above  
4602hvf  
12  
LTM4602HV  
U
W U U  
APPLICATIO S I FOR ATIO  
Enable  
EXTV Connection  
CC  
The RUN/SS pin can be driven from logic as shown in  
Figure 5. This function allows the LTM4602HV to be  
turned on or off remotely. The ON signal can also control  
the sequence of the output voltage.  
An internal low dropout regulator produces an internal 5V  
supply that powers the control circuitry and FET drivers.  
Therefore, if the system does not have a 5V power rail,  
the LTM4602HV can be directly powered by V . The gate  
IN  
driver current through LDO is about 16mA. The internal  
LDO power dissipation can be calculated as:  
RUN/SS  
P
= 16mA • (V – 5V)  
IN  
LTM4602HV  
ON  
LDO_LOSS  
The LTM4602HV also provides an external gate driver  
voltage pin EXTV . If there is a 5V rail in the system, it  
PGND SGND  
CC  
2N7002  
4602HV F05  
is recommended to connect EXTV pin to the external  
CC  
5V rail. Whenever the EXTV pin is above 4.7V, the in-  
CC  
Figure 5. Enable Circuit with External Logic  
ternal 5V LDO is shut off and an internal 50mA P-channel  
Output Voltage Tracking  
switch connects the EXTV to internal 5V. Internal 5V is  
CC  
supplied from EXTV until this pin drops below 4.5V. Do  
CC  
For the applications that require output voltage tracking,  
several LTM4602HV modules can be programmed by the  
power supply tracking controller such as the LTC2923.  
Figure 6 shows a typical schematic with LTC2923. Coin-  
not apply more than 6V to the EXTV pin and ensure that  
CC  
EXTV < V . The following list summaries the possible  
CC  
IN  
connections for EXTV :  
CC  
cident, ratiometric and offset tracking for V rising and  
1. EXTV grounded. Internal 5V LDO is always powered  
O
CC  
falling can be implemented with different sets of resistor  
from the internal 5V regulator.  
values. See the LTC2923 data sheet for more details.  
2. EXTV connected to an external supply. Internal LDO  
CC  
Q1  
is shut off. A high efficiency supply compatible with the  
MOSFET gate drive requirements (typically 5V) can im-  
prove overall efficiency. With this connection, it is always  
V
IN  
DC/DC  
3.3V  
5V  
V
V
IN  
required that the EXTV voltage can not be higher than  
CC  
IN  
V pin voltage.  
IN  
R
V
GATE  
RAMP  
FB1  
ONB  
CC  
LTM4602HV  
V
V
1.8V  
ON  
OSET  
OUT  
R
R
Discontinuous Operation and FCB Pin  
SET  
ONA  
LTC2923  
49.9k  
The FCB pin determines whether the internal bottom  
MOSFET remains on when the inductor current reverses.  
There is an internal 10k pulling down resistor connecting  
this pin to ground. The default light load operation mode  
is forced continuous (PWM) current mode. This mode  
provides minimum output voltage ripple.  
STATUS  
SDO  
RAMPBUF  
TRACK1  
TRACK2  
V
IN  
R
R
TB1  
TA1  
V
IN  
R
TB2  
LTM4602HV  
V
V
FB2  
1.5V  
OSET  
OUT  
R
GND  
SET  
R
TA2  
66.5k  
4602HV F06  
Figure 6. Output Voltage Tracking with the LTC2923 Controller  
4602hvf  
13  
LTM4602HV  
U
W U U  
APPLICATIO S I FOR ATIO  
approximate θ for the module with various heatsink-  
In the application where the light load efficiency is im-  
portant, tying the FCB pin above 0.6V threshold enables  
discontinuous operation where the bottom MOSFET turns  
offwheninductorcurrentreverses.Therefore,theconduc-  
tion loss is minimized and light load efficient is improved.  
The penalty is that the controller may skip cycle and the  
output voltage ripple increases at light load.  
JA  
ing methods. Thermal models are derived from several  
temperature measurements at the bench, and thermal  
modelinganalysis.ApplicationNote103providesadetailed  
explanationoftheanalysisforthethermalmodels, andthe  
derating curves. Tables 3 and 4 provide a summary of the  
equivalent θ for the noted conditions. These equivalent  
JA  
θ
parameters are correlated to the measure values, and  
JA  
Paralleling Operation with Load Sharing  
improvedwithair-flow.Thecasetemperatureismaintained  
at 100°C or below for the derating curves. This allows for  
4W maximum power dissipation in the total module with  
top and bottom heatsinking, and 2W power dissipation  
Two or more LTM4602HV modules can be paralleled to  
provide higher than 6A output current. Figure 7 shows  
the necessary interconnection between two paralleled  
modules. The OPTI-LOOP™ current mode control en-  
sures good current sharing among modules to balance  
the thermal stress. The new feedback equation for two or  
more LTM4602HVs in parallel is:  
through the top of the module with an approximate θ  
JC  
between 6°C/W to 9°C/W. This equates to a total of 124°C  
at the junction of the device. The θ values in Tables 3  
JA  
and 4 can be used to derive the derating curves for other  
output voltages.  
100k  
+RSET  
Safety Considerations  
N
VOUT = 0.6V •  
RSET  
The LTM4602HV modules do not provide isolation from  
V to V . There is no internal fuse. If required, a slow  
IN  
OUT  
where N is the number of LTM4602HVs in parallel.  
blow fuse with a rating twice the maximum input current  
should be provided to protect each unit from catastrophic  
failure.  
Thermal Considerations and Output Current Derating  
The power loss curves in Figures 8 and 15 can be used  
in coordination with the load current derating curves in  
Figures 9 to 14, and Figures 16 to 19 for calculating an  
OPTI-LOOP is a trademark of Linear Technology Corporation.  
V
PULLUP  
100k  
PGOOD  
V
OUT  
V
V
LTM4602HV  
V
OUT  
IN  
IN  
12A MAX  
PGND COMP V  
SGND  
OSET  
R
SET  
PGOOD COMP V  
SGND  
OSET  
V
LTM4602HV  
V
OUT  
IN  
PGND  
4602HV F07  
Figure 7. Parallel Two µModules with Load Sharing  
4602hvf  
14  
LTM4602HV  
U
W U U  
APPLICATIO S I FOR ATIO  
2.0  
1.8  
7
6
7
6
1.6  
5
4
3
2
1
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
5
4
3
2
1
0
12V TO 1.5V  
LOSS  
5V TO 1.5V  
LOSS  
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
0.6  
1.0  
3.1  
4.1  
5.1  
6.1  
2.1  
60  
70  
80  
100  
50  
90  
60  
70  
80  
100  
50  
90  
CURRENT (A)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4602HV F08  
4602HV F10  
4602HV F09  
Figure 9. 5V to 1.5V, No Heatsink  
Figure 8. 1.5V Power Loss Curves  
vs Load Current  
Figure 10. 5V to 1.5V, BGA Heatsink  
7
6
4.0  
3.5  
3.0  
2.5  
7
6
5V TO 3.3V LOSS  
12V TO 3.3V LOSS  
12V TO 3.3V (950kHz) LOSS  
5
4
3
2
1
0
5
4
3
2
1
0
2.0  
1.5  
1.0  
0.5  
0
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
60  
70  
80  
100  
1.0  
2.1  
4.1  
50  
90  
0.5  
5.1  
6.1  
3.1  
60  
70  
80  
100  
50  
90  
TEMPERATURE (°C)  
CURRENT (A)  
TEMPERATURE (°C)  
4602HV F09  
4602HV F13  
4602HV F11  
Figure 13. 3.3V Power Loss  
Figure 11. 12V to 1.5V, No Heatsink  
Figure 12. 12V to 1.5V, BGA Heatsink  
7
6
7
7
6
6
5
4
3
2
1
0
5
4
3
2
1
0
5
4
3
2
1
0
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
60  
70  
80  
100  
60  
70  
80  
100  
50  
90  
50  
90  
60  
70  
80  
100  
50  
90  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4602HV F14  
4602HV F15  
4602HV F16  
Figure 14. 5V to 3.3V, No Heatsink  
Figure 16. 12V to 3.3V (950kHz),  
No Heatsink  
Figure 15. 5V to 3.3V, BGA Heatsink  
4602hvf  
15  
LTM4602HV  
U
W U U  
APPLICATIO S I FOR ATIO  
7
6
7
6
7
6
5
4
3
2
1
0
5
4
3
2
1
0
5
4
3
2
1
0
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
60  
70  
80  
100  
50  
90  
60  
70  
80  
100  
50  
90  
60  
70  
80  
100  
50  
90  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4602HV F16  
4602HV F18  
4602HV F19  
Figure 17. 12V to 3.3V (950kHz),  
BGA Heatsink  
Figure 19. 24V to 3.3V, BGA Heatsink  
Figure 18. 24V to 3.3V, No Heatsink  
Table 3. 1.5V Output  
Table 4. 3.3V Output  
AIR FLOW (LFM)  
HEATSINK  
None  
θ
(°C/W)  
AIR FLOW (LFM)  
HEATSINK  
None  
θ
JA  
(°C/W)  
JA  
0
15.2  
14  
0
15.2  
14.6  
13.4  
13.9  
11.1  
10.5  
200  
400  
0
None  
200  
400  
0
None  
None  
12  
None  
BGA Heatsink  
BGA Heatsink  
BGA Heatsink  
13.9  
11.3  
10.25  
BGA Heatsink  
BGA Heatsink  
BGA Heatsink  
200  
400  
200  
400  
Layout Checklist/Example  
• Do not put via directly on pad  
The high integration of the LTM4602HV makes the PCB  
board layout very simple and easy. However, to optimize  
its electrical and thermal performance, some layout con-  
siderations are still necessary.  
• Use a separated SGND ground copper area for com-  
ponents connected to signal pins. Connect the SGND  
to PGND underneath the unit  
Figure 20 gives a good example of the recommended  
layout.  
• Use large PCB copper areas for high current path, in-  
cluding V , PGND and V . It helps to minimize the  
IN  
OUT  
LTM4602 Frequency Adjustment  
PCB conduction loss and thermal stress  
TheLTM4602HVisdesignedtotypicallyoperateat850kHz  
across most input and output conditions. The control ar-  
chitectureisconstantontimevalleymodecurrentcontrol.  
• Place high frequency ceramic input and output capaci-  
tors next to the V , PGND and V  
pins to minimize  
IN  
OUT  
high frequency noise  
The f  
pin is typically left open or decoupled with an  
ADJ  
• Place a dedicated power ground layer underneath  
the unit  
optional 1000pF capacitor. The switching frequency has  
beenoptimizedtomaintainconstantoutputrippleoverthe  
operatingconditions.Theequationsforsettingtheoperat-  
ing frequency are set around a programmable constant  
• To minimize the via conduction loss and reduce module  
thermal stress, use multiple vias for interconnection  
between top layer and other power layers  
on time. This on time is developed by a programmable  
4602hvf  
16  
LTM4602HV  
U
W U U  
APPLICATIO S I FOR ATIO  
V
TheLTM4602hasaminimum(t )ontimeof100nanosec-  
IN  
ON  
onds and a minimum (t ) off time of 400 nanoseconds.  
OFF  
The 2.4V clamp on the ramp threshold as a function of  
V
will cause the switching frequency to increase by the  
OUT  
C
IN  
ratio of V /2.4V for 3.3V and 5V outputs. This is due to  
OUT  
the fact the on time will not increase as V  
increases  
OUT  
past 2.4V. Therefore, if the nominal switching frequency  
is 850kHz, then the switching frequency will increase  
to ~1.2MHz for 3.3V, and ~1.7MHz for 5V outputs due  
PGND  
to Frequency = (DC/t ) When the switching frequency  
ON  
increases to 1.2MHz, then the time period ts is reduced  
to ~833 nanoseconds and at 1.7MHz the switching period  
reduces to ~588 nanoseconds. When higher duty cycle  
conversions like 5V to 3.3V and 12V to 5V need to be  
accommodated, then the switching frequency can be  
lowered to alleviate the violation of the 400ns minimum  
V
OUT  
4602HV F20  
LOAD  
TOP LAYER  
Figure 20. Recommended PCB Layout  
off time. Since the total switching period is t = t + t  
,
ON  
OFF  
t
will be below the 400ns minimum off time. A resistor  
OFF  
from the f  
current into an on board 10pF capacitor that establishes  
a ramp that is compared to a voltage threshold that is  
pin to ground can shunt current away from  
ADJ  
the on time generator, thus allowing for a longer on time  
and a lower switching frequency. 12V to 5V and 5V to  
3.3V derivations are explained in the data sheet to lower  
switching frequency and accommodate these step-down  
conversions.  
equal to the output voltage up to a 2.4V clamp. This I  
ON  
current is equal to: I = (V – 0.7V)/110k, with the 110k  
ON  
IN  
onboard resistor from V to f . The on time is equal to  
IN  
ADJ  
t
= (V /I ) • 10pF and t = t – t . The frequency  
ON  
OUT ON OFF s ON  
is equal to: Freq. = DC/t . The I current is proportional  
ON  
ON  
to V , and the regulator duty cycle is inversely propor-  
IN  
Equations for setting frequency: V  
= 5V  
OUT  
tionaltoV , thereforethestep-downregulatorwillremain  
IN  
I
ON  
= (V – 0.7V)/110k; for 12V input, I = 103µA  
IN ON  
relatively constant frequency as the duty cycle adjustment  
takes place with lowering V . The on time is proportional  
frequency = (I /[2.4V • 10pF]) • (DC) = 1.79MHz;  
IN  
ON  
to V  
up to a 2.4V clamp. This will hold frequency rela-  
DC = duty cycle, duty cycle is (V /V )  
OUT  
OUT IN  
tively constant with different output voltages up to 2.4V.  
The regulator switching period is comprised of the on  
time and off time as depicted in Figure 21. The on time is  
equal to t = (V /I ) • 10pF and t = t – t . The  
t = t + t , t = on-time, t = off-time of the  
OFF  
ON  
OFF ON  
switching period; t = 1/frequency  
t
must be greater than 400ns, or t – t > 400ns.  
OFF  
ON  
ON  
OUT ON  
OFF  
s
ON  
frequency is equal to: Frequency = DC/t ).  
ON  
t
= DC • t  
ON  
1MHz frequency or 1µs period is chosen.  
t
ON  
(DC) DUTY CYCLE =  
t
s
t
V
OUT  
ON  
t
t
= 0.41 • 1µs 410ns  
DC =  
=
ON  
t
V
s
IN  
DC  
t
= 1µs – 410ns 590ns  
FREQ =  
OFF  
ON  
t
t
ON  
OFF  
t
and t are above the minimums with adequate guard  
OFF  
ON  
band.  
4602HV F21  
PERIOD t  
s
Figure 21  
4602hvf  
17  
LTM4602HV  
U
W U U  
APPLICATIO S I FOR ATIO  
Usingthefrequency=(I /[2.4V10pF])(DC),solvefor  
Using the frequency = (I /[2.4V • 10pF]) • (DC), solve  
ON  
ON  
I
= (1MHz • 2.4V • 10pF) • (1/0.41) 58µA. I current  
for I = (450kHz • 2.4V • 10pF) • (1/0.66) 16µA. I  
ON  
ON  
ON ON  
calculated from 12V input was 103µA, so a resistor from  
current calculated from 5V input was 39µA, so a resistor  
f
to ground = (0.7V/15k) = 46µA. 103µA – 46µA =  
from f  
to ground = (0.7V/30.1k) = 23µA. 39µA – 23µA  
ADJ  
ADJ  
57µA, sets the adequate I current for proper frequency  
=16µA,setstheadequateI currentforproperfrequency  
ON  
ON  
range for the higher duty cycle conversion of 12V to  
range for the higher duty cycle conversion of 5V to 3.3V.  
5V. Input voltage range is limited to 8V to 16V. Higher  
Input voltage range is limited to 4.5V to 7V. Higher input  
input voltages can be used without the 15k on f  
.
voltagescanbeusedwithoutthe30.1konf . Theinduc-  
ADJ  
ADJ  
The inductor ripple current gets too high above 16V or  
below 8V.  
tor ripple current gets too high above 7V, and the 400ns  
minimum off-time is limited below 4.5V.  
Equations for setting frequency: V  
= 3.3V  
Therefore,at3.3Voutput,a30.1kresistorisrecommended  
OUT  
to add from pin f  
to ground when the input voltage is  
ADJ  
I
= (V – 0.7V)/110k; for 5V input, I = 39µA  
IN ON  
ON  
between 4.5V to 7V. However, this resistor needs to be  
removed to avoid high inductor ripple current when the  
input voltage is more than 7V. Similarly, for 5V output, a  
15kresistorisrecommendedtoadjustthefrequencywhen  
the input voltage is between 8V to 16V. This 15k resistor  
is removed when the input voltage becomes higher than  
frequency = (I /[2.4V • 10pF]) • (DC) = 1.07MHz;  
ON  
DC = duty cycle, duty cycle is (V /V )  
OUT IN  
t = t + t , t = on-time, t = off-time of the  
OFF  
ON  
OFF ON  
switching period; t = 1/frequency  
t
must be greater than 400ns, or t – t > 400ns.  
OFF  
ON  
16V. Please refer to the Typical Performance curve V to  
IN  
V
OUT  
Step-Down Ratio.  
t
= DC • t  
ON  
In 12V to 3.3V and 24V to 3.3V applications, if a 35k  
resistor is added from the f pin to ground, then a 2%  
~450kHzfrequencyor2.22µsperiodischosen.Frequency  
range is about 450kHz to 650kHz from 4.5V to 7V input.  
ADJ  
efficiency gain will be achieved as shown in the 12V and  
24V efficiency graphs shown in the Typical Characteris-  
tics. This is due to lowering the transition losses in the  
power MOSFETs by reducing the switching frequency  
from 1.3mHz to 1mHz.  
t
t
= 0.66 • 2.22µs 1.46µs  
= 2.22µs – 1.46µs 760ns  
ON  
OFF  
t
and t are above the minimums with adequate guard  
OFF  
ON  
band.  
5V to 3.3V at 5A  
R1  
30.1k  
V
IN  
4.5V TO 7V  
C5  
100pF  
C3  
10µF  
25V  
C1  
10µF  
25V  
V
OUT  
V
f
ADJ  
IN  
3.3V AT 5A EFFICIENCY = 92%  
EXTV  
FCB  
V
CC  
OUT  
+
C4  
330µF  
6.3V  
C2  
22µF  
V
OSET  
R
SET  
LTM4602HV  
22.1k  
1%  
RUN/SOFT-START  
RUN/SS  
COMP  
SV  
IN  
PGOOD  
PGND  
OPEN DRAIN  
SGND  
4602HV F23  
5V TO 3.3V AT 5A WITH f  
LTM4602HV MINIMUM ON-TIME = 100ns  
LTM4602HV MINIMUM OFF-TIME = 400ns  
= 30.1k  
C1, C3: TDK C3216X5R1E106MT  
C2: TAIYO YUDEN, JMK316BJ226ML  
C4: SANYO POS CAP, 6TPE330MIL  
ADJ  
4602hvf  
18  
LTM4602HV  
U
W U U  
APPLICATIO S I FOR ATIO  
12V to 5V at 5A  
V
R1  
15k  
IN  
8V TO 16V  
C5  
100pF  
C3  
10µF  
25V  
C1  
10µF  
25V  
V
V
f
OUT  
IN  
ADJ  
5V AT 5A  
EFFICIENCY = 90%  
EXTV  
FCB  
V
CC  
OUT  
C4  
330µF  
6.3V  
+
C2  
22µF  
V
OSET  
R
13.7k  
1%  
SET  
LTM4602HV  
RUN/SOFT-START  
RUN/SS  
COMP  
SV  
IN  
PGOOD  
PGND  
OPEN DRAIN  
SGND  
4602HV F24  
12V TO 5V AT 5A WITH f  
LTM4602HV MINIMUM ON-TIME = 100ns  
LTM4602HV MINIMUM OFF-TIME = 400ns  
= 15k  
C1, C3: TDK C3216X5R1E106MT  
C2: TAIYO YUDEN, JMK316BJ226ML  
C4: SANYO POS CAP, 6TPE330MIL  
ADJ  
V
IN  
C
IN  
C
+
IN  
10µF  
×2  
150µF  
5V TO 24V  
GND  
BULK  
V
IN  
CER  
(MULTIPLE PINS)  
EXTV  
V
V
OUT  
CC  
OUT  
(MULTIPLE PINS)  
C3  
100pF  
SV  
IN  
C
OUT1  
C
OUT2  
+
22µF  
f
ADJ  
330µF  
6.3V  
REFER TO  
TABLE 2  
V
REFER TO  
TABLE 2  
V
OSET  
OUT  
LTM4602HV  
COMP  
FCB  
R
SET  
RUN/SS  
PGOOD  
0.6V TO 5V  
66.5k  
C4  
OPT  
SGND  
REFER TO  
TABLE 1  
REFER TO STEP DOWN  
RATIO GRAPH  
PGND  
(MULTIPLE PINS)  
GND  
4602HV F22  
Figure 22. Typical Application, 5V to 24V Input, 0.6V to 6V Output, 6A Max  
4602hvf  
19  
LTM4602HV  
U
TYPICAL APPLICATIO  
Parallel Operation and Load Sharing  
V
IN  
4.5V TO 24V  
V
= 0.6V • ([100k/N] + R )/R  
SET SET  
OUT  
C8  
WHERE N = 2  
10µF  
35V  
V
f
ADJ  
IN  
EXTV  
FCB  
V
CC  
OUT  
+
C10  
330µF  
4V  
C9  
22µF  
V
OSET  
R
15.8k  
1%  
SET  
LTM4602HV  
RUN  
SV  
IN  
COMP  
PGOOD  
SGND  
PGND  
V
2.5V  
12A  
OUT  
RUN/SOFT-START  
C3  
10µF  
35V  
C4  
220pF  
V
f
ADJ  
IN  
EXTV  
V
CC  
OUT  
+
C5  
330µF  
4V  
C2  
22µF  
FCB  
V
OSET  
LTM4602HV  
R1  
100k  
RUN  
SV  
IN  
COMP  
PGOOD  
PGND  
SGND  
C3, C8: TAIYO YUDEN, GDK316BJ106ML  
C2, C9: TAIYO YUDEN, JMK316BJ226ML-T501  
C5, C10: SANYO POS CAP, 4TPE330MI  
4602HV TA02  
Current Sharing Between Two  
LTM4602HV Modules  
6
4
2
0
12V  
IN  
OUT  
MAX  
2.5V  
12A  
I
OUT2  
I
OUT1  
0
12  
6
TOTAL LOAD  
4602HV TA03  
4602hvf  
20  
LTM4602HV  
U
PACKAGE DESCRIPTIO  
Z
b b b  
Z
6 . 9 8 6 5  
5 . 7 1 4 2  
6 . 3 5 0 0  
3 . 8 1 0 0  
1 . 2 7 0 0  
5 . 0 8 0 0  
4 . 4 4 4 2  
3 . 1 7 4 2  
1 . 9 0 4 2  
2 . 5 4 0 0  
0 . 0 0 0 0  
0 . 6 3 4 2  
0 . 0 0 0 0  
0 . 3 1 7 5  
0 . 3 1 7 5  
0 . 6 3 5 8  
1 . 2 7 0 0  
3 . 8 1 0 0  
6 . 3 5 0 0  
1 . 9 0 5 8  
3 . 1 7 5 8  
2 . 5 4 0 0  
5 . 0 8 0 0  
4 . 4 4 5 8  
5 . 7 1 5 8  
6 . 9 4 2 1  
4602hvf  
21  
LTM4602HV  
U
PACKAGE DESCRIPTIO  
Pin Assignment Tables  
(Arranged by Pin Number)  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
E1  
PIN NAME  
PIN NAME  
PIN NAME  
A1  
-
B1  
V
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
C1  
-
-
-
-
-
-
-
-
-
V
-
V
-
V
-
-
-
-
-
-
-
-
-
D1  
V
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
V
-
V
-
V
-
-
-
-
-
-
-
-
-
F1  
V
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
G1 PGND  
H1  
-
-
-
-
-
-
IN  
IN  
IN  
A2  
-
B2  
C2  
D2  
E2  
F2  
G2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
H2  
H3  
H4  
H5  
H6  
A3  
V
-
B3  
C3  
D3  
E3  
F3  
G3  
IN  
A4  
B4  
C4  
D4  
E4  
F4  
G4  
A5  
V
-
B5  
C5  
D5  
E5  
F5  
G5  
IN  
A6  
B6  
C6  
D6  
E6  
F6  
G6  
A7  
V
-
B7  
C7  
D7  
E7  
F7  
G7  
H7 PGND  
H8  
H9 PGND  
H10  
H11 PGND  
H12  
H13 PGND  
H14  
H15 PGND  
H16  
H17 PGND  
IN  
A8  
B8  
C8  
D8  
E8  
F8  
G8  
-
A9  
V
-
B9  
C9  
D9  
E9  
F9  
G9  
IN  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
-
IN  
IN  
IN  
IN  
IN  
IN  
V
-
IN  
-
V
-
IN  
-
f
ADJ  
-
-
A17 SV  
IN  
A18  
-
H18  
H19  
H20  
H21  
H22  
H23  
-
-
-
-
-
-
A19 EXTV  
CC  
A20  
A21  
A22  
A23  
-
V
-
OSET  
-
B23 COMP  
D23 SGND  
F23 RUN/SS G23 FCB  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME PIN NAME  
PIN NAME  
J1 PGND  
K1  
K2  
K3  
K4  
K5  
K6  
-
-
-
-
-
-
L1  
-
M1  
M2 PGND  
M3  
M4 PGND  
M5  
M6 PGND  
M7  
M8 PGND  
M9  
-
N1  
-
P1  
-
R1  
-
T1  
-
J2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
L2 PGND  
N2 PGND  
P2  
V
-
R2  
V
-
T2  
V
-
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
J3  
L3  
L4 PGND  
L5  
L6 PGND  
L7  
L8 PGND  
L9  
L10 PGND  
L11  
L12 PGND  
L13  
L14 PGND  
L15  
L16 PGND  
L17  
L18 PGND  
L19  
L20 PGND  
L21  
L22 PGND  
L23  
-
-
N3  
N4 PGND  
N5  
N6 PGND  
N7  
N8 PGND  
N9  
N10 PGND  
N11  
N12 PGND  
N13  
N14 PGND  
N15  
N16 PGND  
N17  
N18 PGND  
N19  
N20 PGND  
N21  
N22 PGND  
N23  
-
P3  
R3  
T3  
J4  
P4  
V
-
R4  
V
-
T4  
V
-
J5  
-
-
-
P5  
R5  
T5  
J6  
P6  
V
-
R6  
V
-
T6  
V
-
J7  
K7 PGND  
K8  
-
-
-
P7  
R7  
T7  
J8  
P8  
V
-
R8  
V
-
T8  
V
-
J9  
K9 PGND  
K10  
-
-
-
P9  
R9  
T9  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
M10 PGND  
M11 -  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
V
-
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
V
-
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
T23  
V
-
K11 PGND  
-
-
K12  
K13 PGND  
K14  
K15 PGND  
K16  
K17 PGND  
-
M12 PGND  
M13 -  
V
-
V
-
V
-
-
-
-
M14 PGND  
M15 -  
V
-
V
-
V
-
-
-
-
M16 PGND  
M17 -  
V
-
V
-
V
-
-
-
K18  
K19  
K20  
K21  
K22  
-
-
-
-
-
-
M18 PGND  
M19 -  
V
-
V
-
V
-
-
-
M20 PGND  
M21 -  
V
-
V
-
V
-
-
-
M22 PGND  
M23 -  
V
-
V
-
V
-
J23 PGOOD K23  
-
-
4602hvf  
22  
LTM4602HV  
U
PACKAGE DESCRIPTIO  
Pin Assignment Tables  
(Arranged by Pin Number)  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
G1  
PGND  
P2  
V
A3  
V
V
V
V
V
V
A15  
A17  
A19  
A21  
B23  
D23  
F23  
G23  
J23  
f
ADJ  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
IN  
IN  
IN  
IN  
IN  
IN  
P4  
V
V
V
V
V
V
V
V
V
V
A5  
H7  
H9  
H11  
H13  
H15  
H17  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
SV  
IN  
P6  
P8  
A7  
A9  
A11  
A13  
EXTV  
V
CC  
P10  
P12  
P14  
P16  
P18  
P20  
P22  
OSET  
COMP  
B1  
V
IN  
SGND  
RUN/SS  
FCB  
J1  
PGND  
C10  
C12  
C14  
V
IN  
V
IN  
V
IN  
K7  
K9  
K11  
K13  
K15  
K17  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
D1  
V
R2  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
IN  
PGOOD  
R4  
E10  
E12  
E14  
V
IN  
V
IN  
V
IN  
R6  
R8  
R10  
R12  
R14  
R16  
R18  
R20  
R22  
L2  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
F1  
V
IN  
L4  
L6  
L8  
L10  
L12  
L14  
L16  
L18  
L20  
L22  
T2  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
T4  
T6  
T8  
T10  
T12  
T14  
T16  
T18  
T20  
T22  
M2  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
M4  
M6  
M8  
M10  
M12  
M14  
M16  
M18  
M20  
M22  
N2  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
N4  
N6  
N8  
N10  
N12  
N14  
N16  
N18  
N20  
N22  
4602hvf  
InformationfurnishedbyLinearTechnologyCorporationisbelievedtobeaccurateandreliable.However,  
no responsibility is assumed for its use. Linear Technology Corporation makes no representation that  
the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTM4602HV  
U
TYPICAL APPLICATIO  
1.8V, 5A Regulator  
V
IN  
4.5V TO 24V  
C1  
C5  
100pF  
10µF  
V
V
f
ADJ  
OUT  
IN  
35V  
1.8V AT 6A  
EXTV  
FCB  
V
CC  
OUT  
+
C4  
330µF  
4V  
C3  
22µF  
V
OSET  
R1  
100k  
LTM4602HV  
RUN  
SV  
IN  
COMP  
PGOOD  
PGND  
PGOOD  
R
49.9k  
1%  
SET  
SGND  
C1: TAIYO YUDEN, GMK316BJ106ML  
C3: TAIYO YUDEN, JMK316BJ226ML-T501  
C4: SANYO POS CAP, 4TPE330MI  
4602HV TA04  
RELATED PARTS  
PART NUMBER  
LTC2900  
DESCRIPTION  
COMMENTS  
Quad Supply Monitor with Adjustable Reset Timer  
Power Supply Tracking Controller  
Synchronous Isolated Flyback Controllers  
10A DC/DC µModule  
Monitors Four Supplies; Adjustable Reset Timer  
Tracks Both Up and Down; Power Supply Sequencing  
No Optocoupler Required; 3.3V, 12A Output; Simple Design  
10A Basic DC/DC µModule  
LTC2923  
LT3825/LT3837  
LTM4600  
LTM4601  
12A DC/DC µModule with PLL, Output Tracking/  
Margining and Remote Sensing  
Synchronizable, PolyPhase® Operation to 48A, LTM4601-1 Version has no  
Remote Sensing, Fast Transient Response  
LTM4603  
6A DC/DC µModule with PLL and Output Tracking/  
Margining and Remote Sensing  
Synchronizable, PolyPhase Operation, LTM4603-1 Version has no Remote  
Sensing, Fast Transient Response  
Polyphase is a registered trademark of Linear Technology Corporation.  
®
This product contains technology licensed from Silicon Semiconductor Corporation.  
4602hvf  
LT 0107 • PRINTED IN USA  
24 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
© LINEAR TECHNOLOGY CORPORATION 2007  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTM4602IV-PBF

6A High Effi ciency DC/DC μModule
Linear

LTM4602V

6A High Effi ciency DC/DC μModule
Linear

LTM4603

6A DC/DC μModule with PLL, Output Tracking and Margining
Linear

LTM4603-1

6A DC/DC μModule with PLL, Output Tracking and Margining
Linear

LTM4603-1_15

20V, 6A DC/DC Module Regulator with PLL, Output Tracking and Margining
Linear

LTM4603EV-1#PBF

暂无描述
Linear

LTM4603EV-1#TRPBF

IC IC,SMPS CONTROLLER,CURRENT-MODE,LGA,118PIN,PLASTIC, Switching Regulator or Controller
Linear

LTM4603EV-1-PBF

6A DC/DC μModule with PLL, Output Tracking and Margining
Linear

LTM4603EV-PBF

6A DC/DC μModule with PLL, Output Tracking and Margining
Linear

LTM4603HV

6A, 28VIN DC/DC μModule with PLL, Output Tracking and Margining
Linear

LTM4603HV

24V, 15A Monolithic Step Down Regulator with Differential Output Sensing
Linear System

LTM4603HVEV#PBF

LTM4603HV - 6A, 28VIN DC/DC &#181;Module (Power Module) with PLL, Output Tracking and Margining; Package: LGA; Pins: 118; Temperature Range: -40&deg;C to 85&deg;C
Linear