LTM4643 [Linear]

Ultrathin Quad μModule Regulator with Configurable 3A Output Array;
LTM4643
型号: LTM4643
厂家: Linear    Linear
描述:

Ultrathin Quad μModule Regulator with Configurable 3A Output Array

文件: 总32页 (文件大小:567K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4643  
Ultrathin Quad µModule  
Regulator with Configurable  
3A Output Array  
FEATURES  
DESCRIPTION  
Quad Output Step-Down µModule® Regulator with  
The LTM®4643 is a quad DC/DC step-down µModule  
(powermodule)regulatorwith3Aperoutput. Outputscan  
be paralleled in an array for up to ±2A capability. Included  
in the package are the switching controllers, power FETs,  
inductors and support components. Operating over an  
input voltage range of 4V to 20V or 2.375V to 20V with  
an external bias supply, the LTM4643 supports an output  
voltage range of 0.6V to 3.3V each set by a single external  
resistor. Its high efficiency design delivers 3A continuous  
output current per channel. Only bulk input and output  
capacitors are needed.  
n
3A per Output  
n
Wide Input Voltage Range: 4V to 20V  
n
2.375V to 20V with External Bias  
n
0.6V to 3.3V Output Voltage  
n
3A DC Output Current Each Channel  
n
±±.5ꢀ Total Output Voltage Regulation  
n
Current Mode Control, Fast Transient Response  
n
Parallelable for Higher Output Current  
n
Output Voltage Tracking  
n
Internal Temperature Sensing Diode Output  
n
External Frequency Synchronization  
Fault protection features include overvoltage, overcurrent  
and overtemperature protection. The LTM4643 is offered  
in a 9mm ×±5mm × ±.82mm LGA and 9mm × ±5mm ×  
2.42mmBGApackageswithSnPb(BGA)orRoHScompli-  
ant terminal finish.  
n
Overvoltage, Current and Temperature Protection  
n
9mm × ±5mm × ±.82mm LGA and 9mm × ±5mm ×  
2.42mm BGA Packages  
APPLICATIONS  
Configurable Output Array*  
n
FPGAs, GPUs and ASICs Applications  
PCIe and Backside PCB Mounting  
3A  
6A  
n
3A  
3A  
3A  
9A  
3A  
±2A  
3A  
3A  
L, LT, LTC, LTM, Linear Technology, the Linear logo, µModule, LTpowerCAD and PolyPhase  
are registered trademarks of Analog Devices, Inc. All other trademarks are the property of their  
respective owners.  
* Note 4  
TYPICAL APPLICATION  
4V to 20V Input, Quad 0.9V, 1V, 1.2V and  
1.5V Output DC/DC µModule Regulator  
1.5V Output Efficiency and  
Power Loss (Each Channel)  
CLKIN  
CLKOUT  
95  
90  
85  
80  
75  
70  
65  
60  
55  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
V
IN1  
V
4V to 20V  
1.5V/3A  
OUT1  
FB1  
PGOOD1  
22µF  
×2  
SVIN1  
RUN1  
47µF  
4V  
40.2k  
60.4k  
25V  
LTM4643  
V
V
1.2V/3A  
IN2  
OUT2  
FB2  
SVIN2  
RUN2  
47µF  
4V  
PGOOD2  
V
IN3  
V
1V/3A  
OUT3  
SVIN3  
RUN3  
FB3  
PGOOD3  
47µF  
4V  
90.9k  
121k  
V
V
= 5V  
= 12V  
IN  
IN  
V
IN4  
V
0.9V/3A  
OUT4  
FB4  
PGOOD4  
SVIN4  
RUN4  
47µF  
4V  
0
0.5  
1
1.5  
2
2.5  
3
LOAD CURRENT (A)  
TEMP SGND GND  
4643 TA01b  
4643 TA01a  
NOT ALL PINS  
ARE SHOWN  
4643fb  
1
For more information www.linear.com/LTM4643  
LTM4643  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
V , SV (Per Channel).............................. –0.3V to 22V  
V
TRACK/SS1  
IN  
OUT  
IN  
IN1  
1
2
3
4
5
6
7
V
(Per Channel) (Note 3) ............–0.3V to SV or 6V  
IN  
V
OUT1  
GND  
FB1  
RUN (Per Channel)..................................... –0.3V to 22V  
A
B
C
D
E
F
SV  
IN1  
GND  
MODE1  
INTV (Per Channel) ............................... –0.3V to 3.6V  
CC  
COMP1  
CLKIN  
FB2  
RUN1  
PGOOD, MODE, TRACK/SS,  
PGOOD2 PGOOD1 INTV  
CC1  
V
V
V
OUT2  
TRACK/SS2  
FB (Per Channel)...................................–0.3V to INTV  
CLKOUT (Note 3), CLKIN.......................–0.3V to INTV  
Internal Operating Temperature Range  
(Notes 2, 5)............................................ –40°C to ±25°C  
Storage Temperature Range .................. –55°C to ±25°C  
Peak Solder Reflow Body Temperature.................260°C  
CC  
CC  
SV  
IN2  
GND  
MODE2  
COMP2  
SGND  
V
RUN2  
IN2  
PGOOD3 TEMP INTV  
CC2  
OUT3  
GND  
TRACK/SS3  
G
H
J
FB3  
SV  
IN3  
MODE3  
COMP3  
FB4  
V
IN3  
INTV  
RUN3  
CC3  
PGOOD4 CLKOUT  
OUT4  
GND  
TRACK/SS4  
RUN4  
K
L
INTV  
CC4  
COMP4  
V
SV  
MODE4  
IN4  
IN4  
LGA PACKAGE (WEIGHT = 0.70g)  
77-LEAD (9mm × 15mm × 1.82mm)  
BGA PACKAGE (WEIGHT = 0.83g)  
77-LEAD (9mm × 15mm × 2.42mm)  
T
= ±25°C, θ  
= ±7°C/W, θ  
BA JA  
= 2.75°C/W,  
JMAX  
JCtop  
JCbottom  
θ
+ θ = ±±°C/W, θ = ±0°C/W  
JB  
θ VALUES PER JESD 5±-±2  
http://www.linear.com/product/LTM4643#orderinfo  
ORDER INFORMATION  
PART MARKING*  
PACKAGE  
MSL  
RATING  
TEMPERATURE RANGE  
(SEE NOTE 2)  
PART NUMBER  
LTM4643EV#PBF  
LTM4643IV#PBF  
LTM4643MPV#PBF  
LTM4643EY#PBF  
LTM4643IY#PBF  
LTM4643MPY#PBF  
LTM4643IY  
PAD OR BALL FINISH  
Au (RoHS)  
DEVICE  
FINISH CODE  
TYPE  
LGA  
LGA  
LGA  
BGA  
BGA  
BGA  
BGA  
BGA  
LTM4643V  
LTM4643V  
LTM4643V  
LTM4643Y  
LTM4643Y  
LTM4643Y  
LTM4643Y  
LTM4643Y  
e4  
e4  
e4  
e±  
e±  
e±  
e0  
e0  
3
3
3
3
3
3
3
3
–40°C to ±25°C  
–40°C to ±25°C  
–55°C to ±25°C  
–40°C to ±25°C  
–40°C to ±25°C  
–55°C to ±25°C  
–40°C to ±25°C  
–55°C to ±25°C  
Au (RoHS)  
Au (RoHS)  
SAC305 (RoHS)  
SAC305 (RoHS)  
SAC305 (RoHS)  
SnPb (63/37)  
SnPb (63/37)  
LTM4643MPY  
Consult Marketing for parts specified with wider operating temperature  
ranges. *Device temperature grade is indicated by a label on the shipping  
container. Pad or ball finish code is per IPC/JEDEC J-STD-609.  
• Recommended LGA and BGA PCB Assembly and Manufacturing  
Procedures:  
www.linear.com/umodule/pcbassembly  
• Package and Tray Drawings:  
www.linear.com/packaging  
• Terminal Finish Part Markings:  
www.linear.com/leadfree  
4643fb  
2
For more information www.linear.com/LTM4643  
LTM4643  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified internal  
operating junction temperature range, otherwise specifications are at TA = 25°C (Note 2). VIN = 12V, per the typical application.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
Switching Regulator Section: per Channel  
l
l
V , SV  
Input DC Voltage  
SV = V  
IN  
4
20  
V
V
IN  
IN  
IN  
V
V
Output Voltage Range  
0.6  
3.3  
OUT(RANGE)  
OUT(DC)  
Output Voltage, Total Variation  
with Line and Load  
C
= 22µF, C  
= ±00µF Ceramic, R = 40.2k,  
IN  
OUT FB  
l
MODE = INTV ,V = 4V to 20V, I  
= 0A to 3A (Note 4)  
±.477  
±.±  
±.50 ±.523  
V
V
CC IN  
OUT  
V
RUN  
RUN Pin On Threshold  
V
Rising  
RUN  
±.2  
±.3  
I
Input Supply Bias Current  
V
V
= ±2V, V  
= ±2V, V  
= ±.5V, MODE = INTV  
= ±.5V, MODE = GND  
6
2
±±  
mA  
mA  
µA  
Q(SVIN)  
IN  
IN  
OUT  
OUT  
CC  
Shutdown, RUN = 0, V = ±2V  
IN  
I
I
Input Supply Current  
V
V
V
V
= ±2V, V  
= ±2V, V  
= ±.5V, I = 3A  
OUT  
0.45  
A
A
S(VIN)  
IN  
OUT  
OUT  
Output Continuous Current Range  
Line Regulation Accuracy  
Load Regulation Accuracy  
Output Ripple Voltage  
= ±.5V (Note 4)  
0
3
OUT(DC)  
IN  
l
l
ΔV  
ΔV  
(Line)/V  
= ±.5V, V = 4V to 20V, I = 0A  
OUT  
0.0±  
0.5  
5
0.05  
±.0  
ꢀ/V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
IN  
(Load)/V  
= ±.5V, I  
= 0A to 3A  
OUT  
OUT  
V
I
V
= 0A, C  
= ±.5V  
= ±00µF Ceramic, V = ±2V,  
mV  
OUT(AC)  
OUT  
IN  
OUT  
ΔV  
Turn-On Overshoot  
Turn-On Time  
I
= 0A, C  
= ±.5V  
= ±00µF Ceramic, V = ±2V,  
30  
2.5  
±60  
40  
5
mV  
ms  
mV  
µs  
OUT(START)  
OUT  
OUT  
OUT  
IN  
V
t
C
V
= ±00µF Ceramic, No Load, TRACK/SS = 0.0±µF,  
= ±.5V  
START  
OUT  
= ±2V, V  
IN  
OUT  
ΔV  
OUTLS  
Peak Deviation for Dynamic Load Load: 0ꢀ to 50ꢀ to 0ꢀ of Full Load, C  
= 47µF  
OUT  
Ceramic, V = ±2V, V  
= ±.5V  
IN  
OUT  
t
Settling Time for Dynamic Load  
Step  
Load: 0ꢀ to 50ꢀ to 0ꢀ of Full Load, C  
Ceramic, V = ±2V, V = ±.5V  
= 47µF  
SETTLE  
OUT  
IN  
OUT  
I
Output Current Limit  
Voltage at FB Pin  
Current at FB Pin  
V
= ±2V, V  
= ±.5V  
3.5  
A
V
OUTPK  
IN  
OUT  
OUT  
l
V
FB  
I
= 0A, V  
= ±.5V, –40°C to ±25°C  
0.593  
0.60 0.607  
±30  
OUT  
I
FB  
(Note 3)  
nA  
kΩ  
R
FBHI  
Resistor Between V  
Pins  
and FB  
OUT  
60.05 60.40 60.75  
I
Track Pin Soft-Start Pull-Up  
Current  
TRACK/SS = 0V  
2.5  
4
µA  
TRACK/SS  
V
V
Undervoltage Lockout  
V
IN  
V
IN  
Falling  
Hysteresis  
2.4  
2.6  
350  
2.8  
V
mV  
IN(UVLO)  
IN  
t
t
Minimum On-Time  
Minimum Off-Time  
PGOOD Trip Level  
(Note 3)  
(Note 3)  
40  
70  
ns  
ns  
ON(MIN)  
OFF(MIN)  
V
V
With Respect to Set Output  
Ramping Negative  
Ramping Positive  
PGOOD  
FB  
V
V
–±3  
7
–±0  
±0  
–7  
±3  
FB  
FB  
I
PGOOD Leakage  
2
µA  
V
PGOOD  
V
V
V
PGOOD Voltage Low  
I
= ±mA  
PGOOD  
0.02  
3.3  
0.5  
±.2  
0.7  
0.±  
3.4  
PGL  
Internal V Voltage  
SV = 4V to 20V  
3.±  
V
INTVCC  
INTVCC  
OSC  
CC  
IN  
Load Reg INTV Load Regulation  
I
= 0mA to 20mA  
CC  
CC  
f
Oscillator Frequency  
CLKIN Threshold  
MHz  
V
CLKIN  
4643fb  
3
For more information www.linear.com/LTM4643  
LTM4643  
ELECTRICAL CHARACTERISTICS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
operating temperature range. Note that the maximum ambient temperature  
consistent with these specifications is determined by specific operating  
conditions in conjunction with board layout, the rated package thermal  
resistance and other environmental factors.  
Note 2: The LTM4643 is tested under pulsed load conditions such that  
Note 3: ±00ꢀ tested at wafer level.  
T ≈ T . The LTM4643E is guaranteed to meet performance specifications  
J
A
Note 4: See output current derating curves for different V , V  
and T .  
A
IN OUT  
over the 0°C to ±25°C internal operating temperature range. Specifications  
over the full –40°C to ±25°C internal operating temperature range are  
assured by design, characterization and correlation with statistical process  
controls. The LTM4643I is guaranteed to meet specifications over the full  
–40°C to ±25°C internal operating temperature range. The LTM4643MP  
is guaranteed to meet specifications over the full –55°C to ±25°C internal  
Note 5: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed ±25°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
TYPICAL PERFORMANCE CHARACTERISTICS  
(Per Channel)  
Efficiency vs Load Current from  
5VIN (One Channel Operating)  
Efficiency vs Load Current from  
12VIN (One Channel Operating)  
DCM Mode Efficiency from  
1.5VOUT  
100  
95  
90  
85  
80  
75  
70  
65  
60  
95  
90  
85  
80  
75  
70  
65  
60  
55  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.3V  
2.5V  
1.8V  
1.5V  
1.2V  
1.0V  
3.3V  
2.5V  
1.8V  
1.5V  
1.2V  
1.0V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
5V  
IN  
IN  
12V  
0.001  
0.01  
0.1  
1
10  
0
0.5  
2.5  
3
0
0.5  
2.5  
3
1
1.5  
2
1
1.5  
2
LOAD CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
4643 G03  
4643 G01  
4643 G02  
1.0V Output Transient Response  
1.2V Output Transient Response  
1.5V Output Transient Response  
V
V
V
OUT  
OUT  
OUT  
50mV/DIV  
50mV/DIV  
50mV/DIV  
AC-COUPLED  
AC-COUPLED  
AC-COUPLED  
LOAD STEP  
1A/DIV  
LOAD STEP  
1A/DIV  
LOAD STEP  
1A/DIV  
4643 G04  
4643 G05  
4643 G06  
V
V
= 12V  
20µs/DIV  
V
V
= 12V  
20µs/DIV  
V
V
= 12V  
20µs/DIV  
IN  
OUT  
IN  
OUT  
IN  
OUT  
= 1.0V  
= 1.2V  
= 1.5V  
OUTPUT CAPACITOR = 1 × 47µF CERAMIC CAP  
LOAD STEP = 2A TO 3A WITH 1A/µS SLEW RATE  
FEED FORWARD CAP = 100pF  
OUTPUT CAPACITOR = 1 × 47µF CERAMIC CAP  
LOAD STEP = 2A TO 3A WITH 1A/µS SLEW RATE  
FEED FORWARD CAP = 100pF  
OUTPUT CAPACITOR = 1 × 47µF CERAMIC CAP  
LOAD STEP = 2A TO 3A WITH 1A/µS SLEW RATE  
FEED FORWARD CAP = 100pF  
4643fb  
4
For more information www.linear.com/LTM4643  
LTM4643  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.8V Output Transient Response  
2.5V Output Transient Response  
3.3V Output Transient Response  
V
V
OUT  
V
OUT  
OUT  
50mV/DIV  
50mV/DIV  
50mV/DIV  
AC-COUPLED  
AC-COUPLED  
AC-COUPLED  
LOAD STEP  
1A/DIV  
LOAD STEP  
1A/DIV  
LOAD STEP  
1A/DIV  
4643 G07  
4643 G08  
4643 G09  
V
V
= 12V  
20µs/DIV  
V
V
= 12V  
20µs/DIV  
V
V
= 12V  
20µs/DIV  
IN  
OUT  
IN  
OUT  
IN  
OUT  
= 1.8V  
= 2.5V  
= 3.3V  
OUTPUT CAPACITOR = 1 × 47µF CERAMIC CAP  
LOAD STEP = 2A TO 3A WITH 1A/µS SLEW RATE  
FEED FORWARD CAP = 100pF  
OUTPUT CAPACITOR = 1 × 47µF CERAMIC CAP  
LOAD STEP = 2A TO 3A WITH 1A/µS SLEW RATE  
FEED FORWARD CAP = 100pF  
OUTPUT CAPACITOR = 1 × 47µF CERAMIC CAP  
LOAD STEP = 2A TO 3A WITH 1A/µS SLEW RATE  
FEED FORWARD CAP = 100pF  
Short-Circuit with No Load  
Applied  
Start-Up with No Load Applied  
Start-Up with 3A Load Applied  
I
I
I
IN  
0.5A/DIV  
IN  
IN  
0.5A/DIV  
0.5A/DIV  
V
OUT  
0.5V/DIV  
V
V
OUT  
0.5V/DIV  
OUT  
0.5V/DIV  
4643 G10  
4643 G11  
4643 G12  
V
V
= 12V  
5ms/DIV  
V
V
= 12V  
5ms/DIV  
V
V
= 12V  
5ms/DIV  
IN  
OUT  
IN  
OUT  
IN  
OUT  
= 1.5V  
= 1.5V  
= 1.5V  
INPUT CAPACITOR = 1 × 22µF CERAMIC CAP  
OUTPUT CAPACITOR = 1 × 47µF CERAMIC CAP  
SOFT START = 0.1µF  
INPUT CAPACITOR = 1 × 22µF CERAMIC CAP  
OUTPUT CAPACITOR = 1 × 47µF CERAMIC CAP  
SOFT START = 0.1µF  
INPUT CAPACITOR = 1 × 22µF CERAMIC CAP  
OUTPUT CAPACITOR = 1 × 47µF CERAMIC CAP  
Short-Circuit with 3A Load  
Applied  
Short-Circuit with 3A Load  
Applied  
Output Ripple  
I
I
IN  
IN  
0.5A/DIV  
V
0.5A/DIV  
OUT  
5mV/DIV  
AC-COUPLED  
350kHz  
V
V
OUT  
OUT  
0.5V/DIV  
0.5V/DIV  
BANDWIDTH  
4643 G13  
4643 G15  
4643 G14  
V
V
= 12V  
20µs/DIV  
V
V
= 12V  
2µs/DIV  
V
V
= 12V  
20µs/DIV  
IN  
OUT  
IN  
OUT  
IN  
OUT  
= 1.5V  
= 1.5V  
= 1.5V  
INPUT CAPACITOR = 1 × 22µF CERAMIC CAP  
OUTPUT CAPACITOR = 1 × 47µF CERAMIC CAP  
OUTPUT CAPACITOR = 2 × 47µF CERAMIC CAP  
INPUT CAPACITOR = 1 × 22µF CERAMIC CAP  
OUTPUT CAPACITOR = 1 × 47µF CERAMIC CAP  
4643fb  
5
For more information www.linear.com/LTM4643  
LTM4643  
PIN FUNCTIONS  
PACKAGE ROW AND COLUMN LABELING MAY VARY  
SV , SV , SV , SV (B5, E5, H5, L5): Signal V .  
IN1  
IN2  
IN  
IN4  
IN  
AMONG µModule PRODUCTS. REVIEW EACH PACKAGE  
LAYOUT CAREFULLY.  
Filtered input voltage to the internal 3.3V regulator for  
the control circuitry of each Switching mode Regulator  
V
(A1, A2, A3), V  
(C1, D1, D2), V  
(F1,  
Channel. Tie this pin to the V pin respectively in most  
OUT1  
OUT2  
OUT3  
IN  
G1, G2), V  
(J1, K1, K2): Power Output Pins of Each  
applications. Connect SV to an external voltage supply  
OUT4  
IN  
Switching Mode Regulator Channel. Apply output load  
between these pins and GND pins. Recommend placing  
outputdecouplingcapacitancedirectlybetweenthesepins  
and GND pins. See the Applications Information section  
for paralleling outputs.  
of at least 4V which must also be greater than V  
.
OUT  
TRACK/SS1, TRACK/SS2, TRACK/SS3, TRACK/SS4 (A6,  
D6, G6, K6): Output Tracking and Soft-Start Pin of Each  
Switching Mode Regulator Channel. Allows the user to  
control the rise time of the output voltage. Putting a volt-  
age below 0.6V on this pin bypasses the internal reference  
input to the error amplifier, instead it servos the FB pin  
to match the TRACK voltage. Above 0.6V, the tracking  
function stops and the internal reference resumes control  
of the error amplifier. There’s an internal 2.5µA pull-up  
GND (A4-A5, B1-B2, C5, D3-D5, E1-E2, F5, G3-G5,  
H1-H2, J5, K3-K4, L1-L2): Power Ground Pins for Both  
Input and Output Returns. Use large PCB copper areas to  
connect all GND together.  
V
(B3, B4), V (E3, E4), V (H3, H4), V (L3, L4):  
IN2 IN3 IN4  
IN1  
current from INTV on this pin, so putting a capacitor  
CC  
Power input pins connect to the drain of the internal top  
MOSFET for each switching mode regulator channel.  
Apply input voltages between these pins and GND pins.  
Recommendplacinginputdecouplingcapacitancedirectly  
here provides soft-start function.  
MODE1, MODE2, MODE3, MODE4 (B6, E6, H6, L6):  
Operation Mode Select for Each Switching Mode Regula-  
between each of V pins and GND pins.  
tor Channel. Tie this pin to INTV to force continuous  
IN  
CC  
synchronous operation at all output loads. Tying it to  
SGND enables discontinuous current mode operation at  
light loads. Do not leave floating.  
PGOOD1, PGOOD2, PGOOD3, PGOOD4 (C3, C2, F2,  
J2): Output Power Good with Open-Drain Logic of Each  
Switching Mode Regulator Channel. PGOOD is pulled to  
ground when the voltage on the FB pin is not within ±±0ꢀ  
of the internal 0.6V reference.  
RUN1, RUN2, RUN3, RUN4(C6, F6, J6, K7):RunControl  
Input of Each Switching Mode Regulator Channel. Enable  
regulator operation by tying the specific RUN pin above  
±.2V. Pulling it below ±.±V shuts down the respective  
regulator channel. Do not leave floating.  
CLKOUT (J3): Output Clock Signal for PolyPhase® Opera-  
tion of the Module. The phase of CLKOUT with respect to  
CLKIN is set to ±80°. CLKOUT’s peak-to-peak amplitude  
is INTV to GND. See the Application Information section  
FB1, FB2, FB3, FB4 (A7, D7, G7, J7): The Negative Input  
CC  
for details. Strictly output; do not drive this pin.  
of the Error Amplifier for Each Switching Mode Regulator  
Channel. Internally, this pin is connected to V  
of each  
OUT  
INTV , INTV , INTV , INTV (C4, F4, J4, K5):  
CC4  
CC1  
CC2  
CC3  
channel with a 60.4kΩ precision resistor. Different output  
voltages can be programmed with an additional resistor  
between the FB and GND pins. In PolyPhase operation,  
tying the FB pins together allows for parallel operation.  
See the Applications Information section for details.  
Internal 3.3V Regulator Output of Each Switching Mode  
Regulator Channel. The internal power drivers and con-  
trol circuits are powered from this voltage. Each pin is  
internally decoupled to GND with ±µF low ESR ceramic  
capacitor already.  
4643fb  
6
For more information www.linear.com/LTM4643  
LTM4643  
PIN FUNCTIONS  
COMP1, COMP2, COMP3, COMP4 (B7, E7, H7, L7): Cur-  
rent Control Threshold and Error Amplifier Compensation  
Point of Each Switching Mode Regulator Channel. The  
internal current comparator threshold is proportional to  
thisvoltage. TietheCOMPpinstogetherforparallelopera-  
tion. The device is internally compensated.  
SGND(F7):SignalGroundConnection.SGNDisconnected  
to GND internally through single point. Use a separated  
SGND ground copper area for the ground of the feedback  
resistor and other components connected to signal pins.  
A second connection between the PGND plane and SGND  
plane is recommended on the backside of the PCB under-  
neath the module.  
CLKIN (C7): External Synchronization Input to Phase  
Detector of the Module. This pin is internally terminated  
to SGND with 20kΩ. The phase-locked loop will force  
the channel ± turn-on signal to be synchronized with the  
rising edge of the CLKIN signal. Channel 2, channel 3 and  
channel 4 will also be synchronized with the rising edge of  
the CLKIN signal with a pre-determined phase shift. See  
the Applications Information section for details.  
TEMP (F3): Onboard Temperature Diode for Monitoring  
the VBE Junction Voltage Change with Temperature. See  
the Applications Information section.  
4643fb  
7
For more information www.linear.com/LTM4643  
LTM4643  
BLOCK DIAGRAM  
CLKIN  
V
OUT1  
100k  
100k  
100k  
100k  
PGOOD1  
INTV  
CC1  
60.4k  
SV  
V
IN1  
IN1  
FB1  
V
INTV  
CC1  
IN  
60.4k  
4V TO 20V  
0.22µF  
1µF  
10µF  
47µF  
1µF  
1µH  
MODE1  
V
1.2V  
3A  
OUT1  
V
OUT1  
GND  
POWER CONTROL  
CLKOUT  
TRACK/SS1  
RUN1  
0.1µF  
COMP1  
INTERNAL  
COMP  
SGND  
GND  
INTERNAL  
FILTER  
FREQ1  
V
OUT2  
133k  
PGOOD2  
INTV  
CC2  
60.4k  
SV  
V
IN2  
IN2  
FB2  
INTV  
CC2  
V
IN  
40.2k  
0.22µF  
1µF  
10µF  
47µF  
1µF  
CLKIN  
1µH  
MODE2  
V
1.5V  
3A  
OUT2  
V
OUT2  
GND  
POWER CONTROL  
TRACK/SS2  
RUN2  
0.1µF  
COMP2  
CLKOUT  
INTERNAL  
COMP  
INTERNAL  
FILTER  
FREQ2  
V
OUT3  
133k  
PGOOD3  
INTV  
CC3  
60.4k  
SV  
V
IN3  
IN3  
FB3  
INTV  
CC3  
V
IN  
30.1k  
0.22µF  
1µF  
10µF  
47µF  
1µF  
CLKIN  
1µH  
MODE3  
TRACK/SS3  
RUN3  
V
1.8V  
3A  
OUT3  
V
OUT3  
GND  
POWER CONTROL  
0.1µF  
COMP3  
CLKOUT  
INTERNAL  
COMP  
INTERNAL  
FILTER  
FREQ3  
V
OUT4  
133k  
PGOOD4  
INTV  
CC4  
60.4k  
SV  
V
IN4  
IN4  
FB4  
INTV  
CC4  
V
IN  
90.9k  
0.22µF  
1µF  
10µF  
47µF  
1µF  
CLKIN  
1µH  
MODE4  
V
1V  
3A  
OUT4  
V
OUT4  
GND  
POWER CONTROL  
TRACK/SS4  
RUN4  
0.1µF  
COMP4  
CLKOUT  
INTERNAL  
COMP  
INTERNAL  
FILTER  
TEMP  
FREQ4  
133k  
CLKOUT  
4643 BD  
4643fb  
8
For more information www.linear.com/LTM4643  
LTM4643  
DECOUPLING REQUIREMENTS (per Channel)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
External Input Capacitor Requirement  
I
= 3A  
= 3A  
4.7  
±0  
µF  
IN  
OUT  
(V = 4V to 20V, V  
= ±.5V)  
IN  
OUT  
C
External Output Capacitor Requirement  
(V = 4V to 20V, V = ±.5V)  
I
22  
47  
µF  
OUT  
OUT  
IN  
OUT  
OPERATION  
The LTM4643 is a quad output standalone non-isolated  
switch mode DC/DC power supply in 9mm × ±5mm  
× ±.82mm ultrathin package. It has four separate regula-  
tor channels with each of them capable of delivering up  
to 3A continuous output current with few external input  
and output capacitors. Each regulator provides precisely  
regulated output voltage programmable from 0.6V to  
3.3V via a single external resistor over 4V to 20V input  
voltage range. With an external bias voltage, this module  
can operate from an input voltage as low as 2.375V. The  
typical application schematic is shown in Figure 29.  
for 2+2, 3+± or 4 channels parallel operation providing  
more design flexibility for multirail POL applications. Fur-  
thermore, the LTM4643 has CLKIN and CLKOUT pins for  
frequencysynchronizationorpolyphasingmultipledevices  
whichallowupto8phasescascadedtorunsimultaneously.  
Current mode control also provides cycle-by-cycle fast  
current monitoring. Foldback current limiting is provided  
in an overcurrent condition to reduce the inductor valley  
current to approximately 40ꢀ of the original value when  
V
drops. An internal overvoltage and undervoltage  
FB  
comparators pull the open-drain PGOOD output low if  
the output feedback voltage exits a ±±0ꢀ window around  
the regulation point. Continuous conduction mode (CCM)  
operation is forced during OV and UV conditions except  
duringstart-upwhentheTRACKpinisrampingupto0.6V.  
TheLTM4643integratesfourseparateconstantfrequency  
controlled on-time valley current mode regulators, power  
MOSFETs, inductors, and other supporting discrete com-  
ponents. Thetypicalswitchingfrequencyissetto±.2MHz.  
For switching noise-sensitive applications, the µModule  
regulator can be externally synchronized to a clock from  
850kHz to ±.5MHz. See the Applications Information  
section.  
Pulling the RUN pin below ±.±V forces the controller into  
its shutdown state, turning off both power MOSFETs and  
most of the internal control circuitry. At light load cur-  
rents, discontinuous conduction mode (DCM) operation  
can be enabled to achieve higher efficiency compared to  
continuous conduction mode (CCM) by setting the MODE  
pin to SGND. The TRACK/SS pin is used for power supply  
trackingandsoft-startprogramming.SeetheApplications  
Information section.  
With current mode control and internal feedback loop  
compensation, the LTM4643 module has sufficient stabil-  
ity margins and good transient performance with a wide  
range of output capacitors, even with all ceramic output  
capacitors.  
Current mode control provides the flexibility of paralleling  
any of the separate regulator channels with accurate cur-  
rent sharing. With a built-in clock interleaving between  
regulatorchannels, theLTM4643caneasilybeconfigured  
Atemperaturediodeisincludedinsidethemoduletomoni-  
tor the temperature of the module. See the Applications  
Information section for details.  
4643fb  
9
For more information www.linear.com/LTM4643  
LTM4643  
APPLICATIONS INFORMATION  
The typical LTM4643 application circuit is shown in  
Figure 29. External component selection is primarily  
determined by the input voltage, the output voltage and  
the maximum load current. Refer to Table 6 for specific  
externalcapacitorrequirementsforaparticularapplication.  
the FB and COMP pins together for each paralleled output  
with a single resistor to GND as determined by:  
60.4k  
N
RFB  
=
VOUT  
– 1  
V to V  
Step-Down Ratios  
IN  
OUT  
0.6  
There are restrictions in the maximum V and V  
step-  
IN  
OUT  
down ratio that can be achieved for a given input voltage  
due to the minimum off-time and minimum on-time limits  
of each regulator. The minimum off-time limit imposes a  
maximum duty cycle which can be calculated as:  
Input Decoupling Capacitors  
The LTM4643 module should be connected to a low AC-  
impedance DC source. For each regulator channel, a ±0µF  
input ceramic capacitor is recommended for RMS ripple  
current decoupling. A bulk input capacitor is only needed  
whentheinputsourceimpedanceiscompromisedbylong  
inductive leads, traces or not enough source capacitance.  
Thebulkcapacitorcanbeanelectrolyticaluminumcapaci-  
tor or polymer capacitor.  
D
= ± – t  
• f  
MAX  
OFF(MIN) SW  
where t  
is the minimum off-time, 70ns typical for  
SW  
OFF(MIN)  
LTM4643, and f is the switching frequency. Conversely  
theminimumon-timelimitimposesaminimumdutycycle  
of the converter which can be calculated as:  
Without considering the inductor ripple current, the RMS  
current of the input capacitor can be estimated as:  
IOUT(MAX)  
D
= t  
• f  
ON(MIN) SW  
MIN  
where t  
is the minimum on-time, 40ns typical for  
ON(MIN)  
LTM4643. In the rare cases where the minimum duty  
cycle is surpassed, the output voltage will still remain  
in regulation, but the switching frequency will decrease  
from its programmed value. Note that additional thermal  
derating may be applied. See the Thermal Considerations  
and Output Current Derating section in this data sheet.  
ICIN(RMS)  
=
D(±D)  
ηꢀ  
whereηistheestimatedefficiencyofthepowermodule.  
Output Decoupling Capacitors  
Withanoptimizedhighfrequency, highbandwidthdesign,  
only single piece of low ESR output ceramic capacitor is  
required for each regulator channel to achieve low output  
voltagerippleandverygoodtransientresponse.Additional  
output filtering may be required by the system designer,  
if further reduction of output ripples or dynamic transient  
spikesisrequired.Table6providesareferencematrixshow-  
ingtransientperformancefordifferentoutputcapacitorcon-  
figurations.Multiphaseoperationwillreduceeffectiveout-  
putrippleasafunctionofthenumberofphases.Application  
Note77discussesthisnoisereductionversusoutputripple  
current cancellation, but the output capacitance will be  
more a function of stability and transient response. The  
LTpowerCAD® Design Tool is available to download online  
for output ripple, stability and transient response analysis  
and calculating the output ripple reduction as the number  
of phases implemented increases by N times.  
Output Voltage Programming  
ThePWMcontrollerhasaninternal0.6Vreferencevoltage.  
As shown in the Block Diagram, a 60.4k internal feedback  
resistor connects each regulator channel from V  
pin to  
OUT  
FBpin.AddingaresistorR fromFBpintoGNDprograms  
FB  
the output voltage:  
60.4k  
RFB  
=
VOUT  
0.6  
±  
Table 1. VFB Resistor Table vs Various Output Voltages  
V
(V)  
0.6  
1.0  
1.2  
1.5  
1.8  
2.5  
3.3  
OUT  
R
FB  
(k)  
Open  
90.9  
60.4  
40.2  
30.±  
±9.±  
±3.3  
For parallel operation of N channels, use the following  
equation can be used to solve for R . Tie the V  
and  
FB  
OUT  
4643fb  
10  
For more information www.linear.com/LTM4643  
LTM4643  
APPLICATIONS INFORMATION  
Discontinuous Conduction Mode (DCM)  
The maximum 2A peak-to-peak inductor ripple current  
is enforced due to the nature of the valley current mode  
control to maintain output voltage regulation at no load.  
Inapplicationswherelowoutputrippleandhighefficiency  
at intermediate current are desired, discontinuous con-  
duction mode (DCM) should be used by connecting the  
MODE pin to SGND. At light loads the internal current  
comparator may remain tripped for several cycles and  
force the top MOSFET to stay off for several cycles, thus  
skipping cycles. The inductor current does not reverse  
in this mode.  
Frequency Synchronization and Clock In  
The power module has a phase-locked loop comprised  
of an internal voltage controlled oscillator and a phase  
detector. This allows all internal top MOSFET turn-on to  
be locked to the rising edge of the same external clock.  
The external clock frequency range must be within ±30ꢀ  
aroundthe±.2MHzsetfrequency. Apulsedetectioncircuit  
is used to detect a clock on the CLKIN pin to turn on the  
phase-locked loop. The pulse width of the clock has to  
be at least ±00ns. The clock high level must be above 2V  
and clock low level below 0.3V. During the start-up of  
the regulator, the phase-locked loop function is disabled.  
Force Continuous Conduction Mode (CCM)  
In applications where fixed frequency operation is more  
critical than low current efficiency, and where the lowest  
output ripple is desired, forced continuous conduction  
modeoperationshouldbeused.Forcedcontinuousopera-  
tion can be enabled by tying the MODE pin to INTV . In  
CC  
this mode, inductor current is allowed to reverse during  
low output loads, the COMP voltage is in control of the  
current comparator threshold throughout, and the top  
MOSFETalwaysturnsonwitheachoscillatorpulse.During  
start-up, forcedcontinuousmodeisdisabledandinductor  
current is prevented from reversing until the LTM4643’s  
output voltage is in regulation.  
Multichannel Parallel Operation  
For loads that demand more than 3A of output current,  
the LTM4643 multiple regulator channels can be easily  
paralleled to provide more output current without increas-  
ing input and output voltage ripples. The LTM4643 has  
preset built-in phase shift between each two of the four  
regulator channels which is suitable to employ a 2+2, 3+±  
or 4 channels parallel operation. Table 2 gives the phase  
difference between regulator channels.  
Operating Frequency  
The operating frequency of the LTM4643 is optimized to  
achievethecompactpackagesizeandtheminimumoutput  
ripplevoltagewhilestillkeepinghighefficiency.Thedefault  
operating frequency is internally set to ±.2MHz. In most  
applications,noadditionalfrequencyadjustingisrequired.  
Table 2. Phase Difference Between Regulator Channels  
CHANNEL  
CH1  
CH2  
CH3  
CH4  
Phase Difference  
±80°  
90°  
±80°  
Figure ± shows a 2+2 and a 4-channels parallel concept  
schematic for clock phasing.  
If any operating frequency other than ±.2MHz is required  
by application, the µModule regulator can be externally  
synchronized to a clock from 850kHz to ±.5MHz.  
A multiphase power supply significantly reduces the  
amount of ripple current in both the input and output ca-  
pacitors. The RMS input ripple current is reduced by, and  
the effective ripple frequency is multiplied by, the number  
of phases used (assuming that the input voltage is greater  
thanthenumberofphasesusedtimestheoutputvoltage).  
Theoutputrippleamplitudeisalsoreducedbythenumber  
of phases used when all of the outputs are tied together  
to achieve a single high output current design.  
Please note, a minimum switching frequency is required  
for given V , V  
operating conditions to keep a maxi-  
IN OUT  
mum peak-to-peak inductor ripple current below 2A for  
the LTM4643. The peak-to-peak inductor ripple current  
can be calculated as:  
VOUT  
FS(MHz)  
V – V  
IN  
OUT  
ΔIPKPK  
=
VOUT  
4643fb  
11  
For more information www.linear.com/LTM4643  
LTM4643  
APPLICATIONS INFORMATION  
The LTM4643 device is an inherently current mode con-  
trolled device, so parallel modules will have very good  
current sharing. This will balance the thermals on the  
design. Please tie the RUN, TRACK/SS, FB and COMP  
pins of each paralleling channel together. Figure 3± and  
Figure 32 show an example of parallel operation and pin  
connection.  
180°  
180°  
CH1  
(0°)  
CH2  
(180°)  
CH3  
(0°)  
CH4  
(180°)  
V
V
V
OUT3  
V
OUT4  
OUT1  
OUT2  
Input RMS Ripple Current Cancellation  
LTM4643  
Application Note 77 provides a detailed explanation of  
multiphase operation. The input RMS ripple current can-  
cellation mathematical derivations are presented, and a  
graph is displayed representing the RMS ripple current  
reductionasafunctionofthenumberofinterleavedphases.  
Figure 2 shows this graph.  
6A  
6A  
180°  
90°  
180°  
CH1  
(0°)  
CH2  
(180°)  
CH3  
(270°)  
CH4  
(90°)  
Soft-Start and Output Voltage Tracking  
The TRACK/SS pin provides a means to either soft-start  
of each regulator channel or track it to a different power  
supply. A capacitor on the TRACK/SS pin will program the  
ramp rate of the output voltage. An internal 2.5µA current  
source will charge up the external soft-start capacitor  
V
V
V
V
OUT4  
OUT1  
OUT2  
OUT3  
LTM4643  
12A  
4643 F01  
Figure 1. 2+2 and 4 Channels Parallel Concept Schematic  
0.60  
1-PHASE  
2-PHASE  
4-PHASE  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9  
DUTY CYCLE (V /V  
)
OUT IN  
4643 F02  
Figure 2. Normalized RMS Ripple Current for Single Phase or Polyphase Applications  
4643fb  
12  
For more information www.linear.com/LTM4643  
LTM4643  
APPLICATIONS INFORMATION  
towards the INTV voltage. When the TRACK/SS voltage  
CC  
V
V
V
V
= 3.3V  
= 2.5V  
= 1.8V  
= 1.2V  
OUT1  
OUT2  
OUT3  
OUT4  
is below 0.6V, it will take over the internal 0.6V reference  
voltage to control the output voltage. The total soft-start  
time can be calculated as:  
CSS  
tSS = 0.6 •  
2.5µA  
where C is the capacitance on the TRACK/SS pin. Cur-  
SS  
rent foldback and forced continuous mode are disabled  
during the soft-start process.  
4643 F03  
TIME  
Outputvoltagetrackingcanalsobeprogrammedexternally  
using the TRACK/SS pin of each regulator channel. The  
output can be tracked up and down with another regula-  
tor. Figure 3 and Figure 4 show an example waveform  
and schematic of a ratiometric tracking where the slave  
Figure 3. Output Ratiometric Tracking Waveform  
voltage when TRACK/SS voltage is below 0.6V, the slave  
outputvoltageandthemasteroutputvoltageshouldsatisfy  
the following equation during the start-up.  
regulator’s (V  
, V  
and V  
) output slew rate is  
RFB(SL)  
OUT2 OUT3  
OUT4  
VOUT(SL)  
proportional to the master’s (V  
).  
OUT±  
R
FB(SL) + 60.4k  
Since the slave regulator’s TRACK/SS is connected to  
the master’s output through a R /R resistor  
RTR(BOT)  
= VOUT(MA)  
TR(TOP) TR(BOT)  
divider and its voltage used to regulate the slave output  
R
TR(TOP) +RTR(BOT)  
V
IN  
5V TO 20V  
CH1  
CH2  
CH3  
CH4  
4643 F04  
C
SS  
R
R
R
FB4  
60.4k  
FB2  
FB3  
0.1µF  
19.1k  
30.1k  
R
FB1  
13.3k  
R
R
TR2(TOP)  
60.4k  
TR2(BOT)  
13.3k  
R
R
R
TR3(TOP)  
60.4k  
TR3(BOT)  
13.3k  
R
TR4(TOP)  
60.4k  
TR4(BOT)  
13.3k  
Figure 4. Output Ratiometric Tracking Schematic  
4643fb  
13  
For more information www.linear.com/LTM4643  
LTM4643  
APPLICATIONS INFORMATION  
The R  
TR(BOT)  
is the feedback resistor and the R  
/
From the equation we could easily find out that, in the  
coincident tracking, the slave regulator’s TRACK/SS pin  
resistor divider is always the same as its output voltage  
divider.  
FB(SL)  
TR(TOP)  
R
is the resistor divider on the TRACK/SS pin of  
the slave regulator, as shown in Figure 4.  
Following the upper equation, the master’s output slew  
rate (MR) and the slave’s output slew rate (SR) in volts/  
time is determined by:  
RFB(SL)  
RTR(BOT)  
=
R
FB(SL) + 60.4k  
R
TR(TOP) +RTR(BOT)  
RFB(SL)  
FB(SL) + 60.4k  
RTR(BOT)  
TR(TOP) +RTR(BOT)  
For example, R  
= 60.4k and R  
= 60.4k is  
TR4(BOT)  
TR4(TOP)  
R
MR  
SR  
=
a good combination for coincident tracking for V  
OUT(MA)  
= 3.3V and V  
= ±.2V application.  
OUT(SL)  
R
Power Good  
Forexample, V =3.3V, MR=3.3V/msandV  
OUT(MA)  
= ±.2V, SR = ±.2V/ms as V  
OUT(SL)  
shown in  
The PGOOD pins are open drain pins that can be used  
to monitor each valid output voltage regulation. This pin  
monitors a ±±0ꢀ window around the regulation point. A  
resistor can be pulled up to a particular supply voltage for  
monitoring. To prevent unwanted PGOOD glitches dur-  
and V  
OUT±  
OUT4  
Figure 4. From the equation, we could solve out that  
R
= 60.4k and R  
= ±3.3k is a good com-  
TR4(TOP)  
TR4(BOT)  
bination. Follow the same equation, we can get the same  
/R resistor divider value for V and  
R
OUT3  
TR(TOP) TR(BOT)  
OUT2  
ing transients or dynamic V  
changes, the LTM4643’s  
OUT  
V
.
PGOOD falling edge includes a blanking delay of approxi-  
The TRACK pins will have the 2.5µA current source on  
when a resistive divider is used to implement tracking on  
that specific channel. This will impose an offset on the  
TRACK pin input. Smaller value resistors with the same  
ratios as the resistor values calculated from the above  
equation can be used. For example, where the 60.4k is  
used then a 6.04k can be used to reduce the TRACK pin  
offset to a negligible value.  
mately 52 switching cycles.  
Stability Compensation  
The LTM4643 module internal compensation loop of each  
regulator channel is designed and optimized for low ESR  
ceramic output capacitors only application. Table 6 is  
provided for most application requirements. An optional  
±00pF phase boost capacitor could help to boost up the  
phase margin in all ceramic output capacitors application.  
The LTpowerCAD Design Tool is available to download for  
control loop optimization.  
The coincident output tracking can be recognized as a  
special ratiometric output tracking which the master’s  
output slew rate (MR) is the same as the slave’s output  
slew rate (SR), as waveform shown in Figure 5.  
RUN Enable  
V
V
V
V
= 3.3V  
= 2.5V  
= 1.8V  
= 1.2V  
OUT1  
OUT2  
OUT3  
OUT4  
Pulling the RUN pin of each regulator channel to ground  
forcestheregulatorintoitsshutdownstate,turningoffboth  
power MOSFETs and most of its internal control circuitry.  
Bringing the RUN pin above 0.7V turns on the internal  
reference only, while still keeping the power MOSFETs  
off. Further increasing the RUN pin voltage above ±.2V  
will turn on the entire regulator channel.  
4643 F05  
TIME  
Figure 5. Output Coincident Tracking Waveform  
4643fb  
14  
For more information www.linear.com/LTM4643  
LTM4643  
APPLICATIONS INFORMATION  
Pre-Biased Output Start-Up  
Temperature Monitoring  
There may be situations that require the power supply to  
start up with some charge on the output capacitors. The  
LTM4643 can safely power up into a pre-biased output  
without discharging it.  
A diode connected PNP transistor is used for the TEMP  
monitor function by monitoring its voltage over tempera-  
ture. The temperature dependence of this diode voltage  
can be understood in the equation:  
TheLTM4643accomplishesthisbyforcingdiscontinuous  
mode (DCM) operation until the TRACK/SS pin voltage  
reaches 0.6V reference voltage. This will prevent the BG  
from turning on during the pre-biased output start-up  
which would discharge the output.  
ID  
IS  
VD = nVT ln  
where V is the thermal voltage (kT/q), and n, the ideality  
T
factor, is ± for the diode connected PNP transistor be-  
ing used in the LTM4643. I is expressed by the typical  
Do not pre-bias LTM4643 with an output voltage higher  
S
empirical equation:  
than INTV (3.3V).  
CC  
VG0  
VT  
Overtemperature Protection  
IS =I0 exp  
Theinternalovertemperatureprotectionmonitorsthejunc-  
tiontemperatureofthemodule.Ifthejunctiontemperature  
reachesapproximately±60°C,bothpowerswitcheswillbe  
turned off until the temperature drops about ±5°C cooler.  
where I is a process and geometry dependent current, (I  
0
0
S
is typically around 20k orders of magnitude larger than I  
at room temperature) and V is the band gap voltage of  
G0  
±.2V extrapolated to absolute zero or –273°C.  
Low Input Application  
If we take the I equation and substitute into the V equa-  
tion, then we get:  
S
D
The LTM4643 module has a separate SV pin for each  
IN  
regulator channel which makes it compatible with opera-  
kT  
q
I0  
ID  
kT  
q
tion from an input voltage as low as 2.375V. The SV pin  
IN  
VD = VG0  
ln  
, VT =  
is the signal input of the regulator control circuitry while  
the V pin is the power input which directly connected  
IN  
to the drain of the top MOSFET. In most application with  
The expression shows that the diode voltage decreases  
input voltage ranges from 4V to 20V, connect the SV  
(linearly if I were constant) with increasing temperature  
IN  
0
pin directly to the V pin of each regulator channel. An  
and constant diode current. Figure 6 shows a plot of V  
IN  
D
optionalfilter,consistingofaresistor(±Ωto±)between  
SV and V ground, can be placed for additional noise  
vs Temperature over the operating temperature range of  
the LTM4643.  
IN  
IN  
immunity. This filter is not necessary in most cases if  
good PCB layout practices are followed (see Figure 28).  
In a low input voltage (2.375V to 4V) application, or to  
reducepowerdissipationbytheinternalbiasLDO,connect  
If we take this equation and differentiate it with respect to  
temperature T, then:  
dVD  
dT  
VG0 – VD  
T
= –  
SV to an external voltage higher than 4V with a 0.±µF  
IN  
local bypass capacitor. Figure 30 shows an example of a  
This dV /dT term is the temperature coefficient equal to  
D
low input voltage application. Please note, SV voltage  
IN  
about –2mV/K or –2mV/°C. The equation is simplified for  
the first order derivation.  
cannot go below V  
voltage.  
OUT  
Solving for T, T = (V – V )/(dV /dT) provides the  
G0  
D
D
temperature.  
4643fb  
15  
For more information www.linear.com/LTM4643  
LTM4643  
APPLICATIONS INFORMATION  
±st Example: Figure 6 for 27°C, or 300K the diode  
voltage is 0.598V, thus, 300K = –(±200mV – 598mV)/  
–2.0 mV/K)  
The motivation for providing these thermal coefficients in  
foundinJESD5±-±2(“GuidelinesforReportingandUsing  
Electronic Package Thermal Information”).  
2nd Example: Figure 6 for 75°C, or 350K the diode  
voltage is 0.50V, thus, 350K = –(±200mV – 500mV)/  
–2.0mV/K)  
Many designers may opt to use laboratory equipment  
and a test vehicle such as the demo board to predict the  
µModule regulator’s thermal performance in their appli-  
cation at various electrical and environmental operating  
conditions to compliment any FEA activities. Without FEA  
software, the thermal resistances reported in the Pin Con-  
figuration section are in-and-of themselves not relevant to  
providing guidance of thermal performance; instead, the  
derating curves provided in this data sheet can be used  
in a manner that yields insight and guidance pertaining to  
one’s application-usage, and can be adapted to correlate  
thermal performance to one’s own application.  
Converting the Kelvin scale to Celsius is simply taking the  
Kelvin temp and subtracting 273 from it.  
A typical forward voltage is given in the electrical charac-  
teristics section of the data sheet, and Figure 6 is the plot  
of this forward voltage. Measure this forward voltage at  
27°C to establish a reference point. Then using the above  
expression while measuring the forward voltage over  
temperature will provide a general temperature monitor.  
Connect a resistor between TEMP and V to set the cur-  
IN  
The Pin Configuration section typically gives four thermal  
coefficients explicitly defined in JESD 5±-±2; these coef-  
ficients are quoted or paraphrased below:  
rent to ±00µA. See Figure 3± for an example.  
0.8  
I
= 100µA  
D
±. θ , the thermal resistance from junction to ambi-  
JA  
0.7  
0.6  
0.5  
0.4  
0.3  
ent, is the natural convection junction-to-ambient  
air thermal resistance measured in a one cubic foot  
sealed enclosure. This environment is sometimes  
referred to as “still air” although natural convection  
causes the air to move. This value is determined with  
the part mounted to a JESD 5±-9 defined test board,  
which does not reflect an actual application or viable  
operating condition.  
–50 –25  
0
25  
50  
75 100 125  
2. θ  
, the thermal resistance from junction to the  
JCbottom  
TEMPERATURE (°C)  
4643 F06  
bottom of the product case, is determined with all of  
the component power dissipation flowing through the  
bottom of the page. In the typical µModule regulator,  
the bulk of the heat flows out the bottom of the pack-  
age, but there is always heat flow out into the ambient  
environment.Asaresult,thisthermalresistancevalue  
may be useful for comparing packages but the test  
conditionsdon’tgenerallymatchtheuser’sapplication.  
Figure 6. Diode Voltage VD vs Temperature T(°C)  
Thermal Considerations and Output Current Derating  
The thermal resistances reported in the Pin Configura-  
tion section of the data sheet are consistent with those  
parameters defined by JESD 5±-±2 and are intended for  
use with finite element analysis (FEA) software modeling  
tools that leverage the outcome of thermal modeling,  
simulation, and correlation to hardware evaluation per-  
formed on a µModule package mounted to a hardware  
test board: defined by JESD 5±-9 (“Test Boards for Area  
Array Surface Mount Package Thermal Measurements”).  
3. θ  
, the thermal resistance from junction to top of  
JCtop  
the product case, is determined with nearly all of the  
componentpowerdissipationflowingthroughthetop  
of the package. As the electrical connections of the  
typical µModule regulator are on the bottom of the  
4643fb  
16  
For more information www.linear.com/LTM4643  
LTM4643  
APPLICATIONS INFORMATION  
package, it is rare for an application to operate such  
that most of the heat flows from the junction to the  
loss is thermally dissipated in both directions away from  
the package—granted, in the absence of a heat sink and  
airflow, a majority of the heat flow is into the board.  
top of the part. As in the case of θ  
, this value  
JCbottom  
may be useful for comparing packages but the test  
conditionsdon’tgenerallymatchtheuser’sapplication.  
Within the LTM4643, be aware there are multiple power  
devices and components dissipating power, with a con-  
sequence that the thermal resistances relative to different  
junctions of components or die are not exactly linear with  
respect to total package power loss. To reconcile this  
complication without sacrificing modeling simplicity—  
but also, not ignoring practical realities—an approach  
has been taken using FEA software modeling along with  
laboratory testing in a controlled-environment chamber  
to reasonably define and correlate the thermal resistance  
valuessuppliedinthisdatasheet:(±)Initially,FEAsoftware  
is used to accurately build the mechanical geometry of  
the LTM4643 and the specified PCB with all of the cor-  
rect material coefficients along with accurate power loss  
source definitions; (2) this model simulates a software-  
defined JEDEC environment consistent with JESD 5±-±2  
to predict power loss heat flow and temperature readings  
at different interfaces that enable the calculation of the  
JEDEC-defined thermal resistance values; (3) the model  
and FEA software is used to evaluate the LTM4643 with  
heat sink and airflow; (4) having solved for and analyzed  
these thermal resistance values and simulated various  
operating conditions in the software model, a thorough  
laboratory evaluation replicates the simulated conditions  
with thermocouples within a controlled-environment  
chamberwhileoperatingthedeviceatthesamepowerloss  
4. θ ,thethermalresistancefromjunctiontotheprinted  
JB  
circuit board, is the junction-to-board thermal resis-  
tance where almost all of the heat flows through the  
bottom of the µModule regulator and into the board,  
and is really the sum of the θ  
and the thermal  
JCbottom  
resistance of the bottom of the part through the solder  
joints and through a portion of the board. The board  
temperature is measured a specified distance from  
the package.  
A graphical representation of the aforementioned ther-  
mal resistances is given in Figure 7; blue resistances are  
contained within the μModule regulator, whereas green  
resistances are external to the µModule package.  
As a practical matter, it should be clear to the reader that  
no individual or sub-group of the four thermal resistance  
parameters defined by JESD 5±-±2 or provided in the  
Pin Configuration section replicates or conveys normal  
operating conditions of a μModule regulator. For example,  
in normal board-mounted applications, never does ±00ꢀ  
of the device’s total power loss (heat) thermally conduct  
exclusively through the top or exclusively through bot-  
tom of the µModule package—as the standard defines  
for θ  
and θ , respectively. In practice, power  
JCbottom  
JCtop  
JUNCTION-TO-AMBIENT THERMAL RESISTANCE COMPONENTS  
JUNCTION-TO-CASE (TOP)  
RESISTANCE  
CASE (TOP)-TO-AMBIENT  
RESISTANCE  
JUNCTION-TO-BOARD RESISTANCE  
JUNCTION  
AMBIENT  
JUNCTION-TO-CASE  
(BOTTOM) RESISTANCE  
CASE (BOTTOM)-TO-BOARD  
RESISTANCE  
BOARD-TO-AMBIENT  
RESISTANCE  
4643 F07  
µMODULE DEVICE  
Figure 7. Graphical Representation of JESD 51-12 Thermal Coefficients  
4643fb  
17  
For more information www.linear.com/LTM4643  
LTM4643  
APPLICATIONS INFORMATION  
as that which was simulated. An outcome of this process  
and due diligence yields the set of derating curves shown  
in this data sheet.  
tions can be multiplied by the calculated power loss as  
a function of ambient temperature to derive temperature  
rise above ambient, thus maximum junction temperature.  
Room temperature power loss can be derived from the  
efficiencycurvesintheTypicalPerformanceCharacteristics  
section and adjusted with the above junction temperature  
multiplicative factor. The printed circuit board is a ±.6mm  
thick four layer board with two ounce copper for the two  
outerlayersandoneouncecopperforthetwoinnerlayers.  
The PCB dimensions are 95mm × 76mm.  
The ±V to 3.3V power loss curves in Figures 8 to ±3 can  
be used in coordination with the load current derating  
curves in Figures ±4 to 25 for calculating an approximate  
θ thermal resistance for the LTM4643 with various heat  
JA  
sinking and airflow conditions. The power loss curves are  
takenatroomtemperature, andareincreasedwithamulti-  
plicativefactoraccordingtothejunctiontemperature.This  
approximate factor is ±.3 for ±20°C. The derating curves  
are plotted with the output current starting at ±2A and the  
ambient temperature starting at 30°C. These are chosen  
to include the lower and higher output voltage ranges  
for correlating the thermal resistance. Thermal models  
are derived from several temperature measurements in a  
controlled temperature chamber along with thermal mod-  
eling analysis. The junction temperatures are monitored  
while ambient temperature is increased with and without  
airflow.Thepowerlossincreasewithambienttemperature  
change is factored into the derating curves. The junctions  
are maintained at ±20°C maximum while lowering output  
currentorpowerwithincreasingambienttemperature.The  
decreasedoutputcurrentwilldecreasetheinternalmodule  
loss as ambient temperature is increased. The monitored  
junction temperature of ±20°C minus the ambient operat-  
ing temperature specifies how much module temperature  
rise can be allowed. As an example, in Figure ±9 the load  
current is derated to ±0A at ~67°C with 200LFM of airflow  
and no heat sink and the power loss for the ±2V to ±.5V  
at ±0A output is about 4.5W. The 4.5W loss is calculated  
with 4 times the 0.87W room temperature loss from the  
±2V to ±.5V power loss curve each channel at 2.5A, and  
the ±.3 multiplying factor at ±20°C junction. If the 67°C  
ambienttemperatureissubtractedfromthe±20°Cjunction  
temperature, then the difference of 53°C divided by 4.5W  
The ±2A represents all four channels in parallel at 3A each.  
The four parallel channels have their currents reduced at  
the same rate to develop an equivalent θ circuit evalu-  
JA  
ation with thermal couples or IR camera used to validate  
the thermal resistance values.  
Maximum Operating Ambient Temperature  
Figures 26 and 27 display the Maximum Power Loss  
Allowance Curves vs ambient temperature with various  
heatsinkingandairflowconditions. Thisdatawasderived  
from the thermal impedance generated by various ther-  
mal derating examinations with the junction temperature  
measured at ±20°C. This maximum power loss limitation  
serves as a guideline when designing multiple output rails  
with different voltages and currents by calculating the  
total power loss.  
For example, to determine the maximum ambient tem-  
perature when V  
OUT3  
= 2.5V at 0.6A, V  
OUT4  
= 3.3V at 3A,  
OUT±  
= ±.8V at ±A, V  
OUT2  
V
= ±.2V at 3A, without a heat  
sink and 400LFM airflow, simply add up the total power  
loss for each channel read from Figure 8 to Figure ±3  
which in this example equals 3.0W, then multiply by the  
±.3 coefficient for ±20°C junction temperature and com-  
pare the total power loss number, 3.9W, with Figure 26.  
Figure 26 indicates with a 3.9W total power loss, the  
maximum ambient temperature for this particular ap-  
plication is around 77°C. Also from Figure 26, it is easy  
to determine with a 3.4W total power loss, the maximum  
ambient temperature is around 63°C with no airflow and  
73°C with 200LFM airflow.  
equals ±±.7°C/W θ thermal resistance. Table 3 specifies  
JA  
a ±2°C/W value which is very close. Tables 3 to 5 provide  
equivalent thermal resistances for the different outputs  
with and without airflow and heat sinking. The derived  
thermal resistances in Tables 3 to 6 for the various condi-  
4643fb  
18  
For more information www.linear.com/LTM4643  
LTM4643  
APPLICATIONS INFORMATION  
1.5  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5V  
5V  
IN  
12V  
IN  
IN  
IN  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
12V  
0
2.5  
3
0
2.5  
3
0.5  
1
1.5  
2
0.5  
1
1.5  
2
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4643 F08  
4643 F09  
Figure 8. Power Loss at 1.0V  
Output, (Each Channel, 25°C)  
Figure 9. Power Loss at 1.2V  
Output, (Each Channel, 25°C)  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5V  
IN  
5V  
IN  
12V  
IN  
12V  
IN  
0
2.5  
3
0
2.5  
3
0.5  
1
1.5  
2
0.5  
1
1.5  
2
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4643 F11  
4643 F10  
Figure 11. Power Loss at 1.8V  
Output, (Each Channel, 25°C)  
Figure 10. Power Loss at 1.5V  
Output, (Each Channel, 25°C)  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5V  
5V  
IN  
IN  
IN  
12V  
12V  
IN  
0
2.5  
3
0
2.5  
3
0.5  
1
1.5  
2
0.5  
1
1.5  
2
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4643 F12  
4643 F13  
Figure 12. Power Loss at 2.5V  
Output, (Each Channel, 25°C)  
Figure 13. Power Loss at 3.3V  
Output, (Each Channel, 25°C)  
4643fb  
19  
For more information www.linear.com/LTM4643  
LTM4643  
APPLICATIONS INFORMATION  
14  
12  
10  
8
14  
12  
10  
8
14  
12  
10  
8
6
6
6
4
4
4
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
2
2
2
0
0
0
30  
60 70 80 90 100 110 120  
40 50  
AMBIENT TEMPERATURE (°C)  
100 110 120  
30  
60 70 80 90  
40 50  
30  
60 70 80 90 100 110 120  
40 50  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4643 F14  
4643 F15  
4643 F16  
Figure 14. 5VIN to 1.0VOUT Derating  
Curve, 4-Channel Paralleled,  
No Heat Sink  
Figure 15. 12VIN to 1.0VOUT Derating  
Curve, 4-Channel Paralleled,  
No Heat Sink  
Figure 16. 5VIN to 1.0VOUT Derating  
Curve, 4-Channel Paralleled,  
BGA Heat Sink  
14  
12  
10  
8
14  
12  
10  
8
6
6
4
4
0LFM  
200LFM  
0LFM  
2
2
200LFM  
400LFM  
0
400LFM  
60 70 80 90 100 110 120  
AMBIENT TEMPERATURE (°C)  
0
30  
60 70 80 90 100 110 120  
AMBIENT TEMPERATURE (°C)  
30  
40 50  
40 50  
4643 F17  
4643 F18  
Figure 17. 12VIN to 1.0VOUT Derating  
Curve, 4-Channel Paralleled,  
BGA Heat Sink  
Figure 18. 5VIN to 1.5VOUT Derating  
Curve, 4-Channel Paralleled,  
No Heat Sink  
14  
14  
12  
10  
8
12  
10  
8
6
6
4
4
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
2
2
0
0
30  
60 70 80 90 100 110 120  
40 50  
AMBIENT TEMPERATURE (°C)  
30  
60 70 80 90 100 110 120  
40 50  
AMBIENT TEMPERATURE (°C)  
4643 F19  
4643 F20  
Figure 19. 12VIN to 1.5VOUT Derating  
Curve, 4-Channel Paralleled,  
No Heat Sink  
Figure 20. 5VIN to 1.5VOUT Derating  
Curve, 4-Channel Paralleled,  
BGA Heat Sink  
4643fb  
20  
For more information www.linear.com/LTM4643  
LTM4643  
APPLICATIONS INFORMATION  
14  
12  
10  
8
14  
12  
10  
8
14  
12  
10  
8
6
6
6
4
4
4
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
2
2
2
0
0
0
30  
60 70 80 90 100 110 120  
40 50  
AMBIENT TEMPERATURE (°C)  
30  
60 70 80 90 100 110 120  
40 50  
AMBIENT TEMPERATURE (°C)  
30  
60 70 80 90 100 110 120  
40 50  
AMBIENT TEMPERATURE (°C)  
4643 F21  
4643 F22  
4643 F23  
Figure 21. 12VIN to 1.5VOUT Derating  
Curve, 4-Channel Paralleled,  
BGA Heat Sink  
Figure 22. 5VIN to 3.3VOUT Derating  
Curve, 4-Channel Paralleled,  
No Heat Sink  
Figure 23. 12VIN to 3.3VOUT Derating  
Curve, 4-Channel Paralleled,  
No Heat Sink  
14  
12  
10  
8
14  
12  
10  
8
6
6
4
4
0LFM  
200LFM  
0LFM  
2
2
200LFM  
400LFM  
0
400LFM  
60 70 80 90 100 110 120  
AMBIENT TEMPERATURE (°C)  
0
30  
60 70 80 90 100 110 120  
AMBIENT TEMPERATURE (°C)  
30  
40 50  
40 50  
4643 F24  
4643 F25  
Figure 25. 12VIN to 3.3VOUT Derating  
Curve, 4-Channel Paralleled,  
BGA Heat Sink  
Figure 24. 5VIN to 3.3VOUT Derating  
Curve, 4-Channel Paralleled,  
BGA Heat Sink  
10  
10  
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
0LFM  
200LFM  
400LFM  
0LFM  
200LFM  
400LFM  
30  
60 70 80 90 100 110 120  
40 50  
AMBIENT TEMPERATURE (°C)  
30  
60 70 80 90 100 110 120  
40 50  
AMBIENT TEMPERATURE (°C)  
4643 F27  
4643 F26  
Figure 26. Power Loss Allowance vs.  
Ambient Temperature, No Heat Sink  
Figure 27. Power Loss Allowance vs.  
Ambient Temperature, BGA Heat Sink  
4643fb  
21  
For more information www.linear.com/LTM4643  
LTM4643  
APPLICATIONS INFORMATION  
Table 3. 1.0V Output  
DERATING CURVE  
Figures ±4,±5  
Figures ±4, ±5  
Figures ±4, ±5  
Figures ±6, ±7  
Figures ±6, ±7  
Figures ±6, ±7  
V
(V)  
POWER LOSS CURVE  
Figure 8  
AIR FLOW (LFM)  
HEAT SINK  
None  
Θ
Θ
Θ
(°C/W)  
IN  
JA  
5, ±2  
5, ±2  
5, ±2  
5, ±2  
5, ±2  
5, ±2  
0
±4.5  
±2  
Figure 8  
200  
400  
0
None  
Figure 8  
None  
±±  
Figure 8  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
±3.5  
±0  
Figure 8  
200  
400  
Figure 8  
9
Table 4. 1.5V Output  
DERATING CURVE  
Figures ±8, ±9  
V
IN  
(V)  
POWER LOSS CURVE  
Figure ±0  
AIR FLOW (LFM)  
HEAT SINK  
None  
(°C/W)  
JA  
5, ±2  
0
±4.5  
±2  
Figures ±8, ±9  
5, ±2  
5, ±2  
5, ±2  
5, ±2  
5, ±2  
Figure ±0  
200  
400  
0
None  
Figures ±8, ±9  
Figure ±0  
None  
±±  
Figures 20, 2±  
Figure ±0  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
±3.5  
±0  
Figures 20, 2±  
Figure ±0  
200  
400  
Figures 20, 2±  
Figure ±0  
9
Table 5. 3.3V Output  
DERATING CURVE  
Figures 22, 23  
V
IN  
(V)  
POWER LOSS CURVE  
Figure ±3  
AIR FLOW (LFM)  
HEAT SINK  
None  
(°C/W)  
JA  
5, ±2  
0
±4.5  
±2  
Figures 22, 23  
5, ±2  
5, ±2  
5, ±2  
5, ±2  
5, ±2  
Figure ±3  
200  
400  
0
None  
Figures 22, 23  
Figure ±3  
None  
±±  
Figures 24, 25  
Figure ±3  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
±3.5  
±0  
Figures 24, 25  
Figure ±3  
200  
400  
Figures 24, 25  
Figure ±3  
9
4643fb  
22  
For more information www.linear.com/LTM4643  
LTM4643  
APPLICATIONS INFORMATION  
Table 6  
C
PART NUMBER  
VALUE  
C
PART NUMBER  
VALUE  
C
OUT1  
(POSCAP)  
PART NUMBER VALUE  
IN  
OUT1  
(CERAMIC)  
Murata  
GRM2±BR6±E±06KA73L ±0µF, 25V, Murata  
0805, X5R  
GRM2±BR60J476ME±5 47µF, 6.3V,  
0805, X5R  
Sanyo  
4TPE±00MZB  
4V ±00µF  
Taiyo Yuden TMK2±2BBJ±06KG-T  
±0µF, 25V, Taiyo Yuden JMK2±2BJ476MG-T  
0805, X5R  
47µF, 6.3V,  
0805, X5R  
Murata  
GRM3±CR6±C226ME±5L 22µF, 25V,  
±206, X5R  
Taiyo Yuden TMK3±6BBJ226ML-T  
22µF, 25V,  
±206, X5R  
C
RECOVERY  
LOAD STEP  
IN  
(CERAMIC)  
(µF)  
C
C
V
DROOP P-P DERIVATION  
TIME  
(µs)  
LOAD STEP SLEW RATE  
R
FB  
(kΩ)  
OUT1  
FF  
IN  
V
(V)  
(µF)  
(pF)  
(V)  
(mv)  
(mV)  
(A)  
(A/µs)  
OUT  
CERAMIC ONLY  
±
±.2  
±0  
±0  
±0  
±0  
±0  
±0  
47  
47  
47  
47  
47  
47  
±00  
±00  
±00  
±00  
±00  
±00  
5, ±2  
5, ±2  
5, ±2  
5, ±2  
5, ±2  
5, ±2  
±
±
±
±
2
3
59  
59  
40  
40  
40  
40  
50  
60  
2A to 3A  
2A to 3A  
2A to 3A  
2A to 3A  
2A to 3A  
2A to 3A  
0
0
0
0
0
0
90.9  
60.4  
40.2  
30.±  
±9.±  
±3.3  
±.5  
66  
±.8  
75  
2.5  
±08  
±±±  
3.3  
POSCAP  
±
±0  
±0  
±0  
±0  
±0  
±0  
±00  
±00  
±00  
±00  
±00  
±00  
5, ±2  
5, ±2  
5, ±2  
5, ±2  
5, ±2  
5, ±2  
±
±
±
±
2
3
89  
40  
40  
40  
40  
50  
60  
2A to 3A  
2A to 3A  
2A to 3A  
2A to 3A  
2A to 3A  
2A to 3A  
0
0
0
0
0
0
90.9  
60.4  
40.2  
30.±  
±9.±  
±3.3  
±.2  
94  
±.5  
±08  
±20  
±44  
±6±  
±.8  
2.5  
3.3  
4643fb  
23  
For more information www.linear.com/LTM4643  
LTM4643  
APPLICATIONS INFORMATION  
Safety Considerations  
• Place a dedicated power ground layer underneath the  
unit.  
The LTM4643 modules do not provide galvanic isolation  
from V to V . There is no internal fuse. If required,  
• Tominimizetheviaconductionlossandreducemodule  
thermal stress, use multiple vias for interconnection  
between top layer and other power layers.  
IN  
OUT  
a slow blow fuse with a rating twice the maximum input  
current needs to be provided to protect each unit from  
catastrophic failure. The device does support thermal  
shutdown and overcurrent protection.  
• Do not put via directly on the pad, unless they are  
capped or plated over.  
Layout Checklist/Example  
• Use a separated SGND ground copper area for com-  
ponents connected to signal pins. Connect the SGND  
to GND underneath the unit.  
The high integration of LTM4643 makes the PCB board  
layoutverysimpleandeasy.However,tooptimizeitselectri-  
cal and thermal performance, some layout considerations  
are still necessary.  
• For parallel modules, tie the V , V , and COMP pins  
OUT FB  
together. Use an internal layer to closely connect these  
pins together. The TRACK/SS pin can be tied a common  
capacitor for regulator soft-start.  
• Use large PCB copper areas for high current paths,  
including V to V , GND, V  
to V  
. It helps to  
IN±  
IN4  
OUT±  
OUT4  
minimize the PCB conduction loss and thermal stress.  
• Bring out test points on the signal pins for monitoring.  
Figure28givesagoodexampleoftherecommendedlayout.  
• Place high frequency ceramic input and output capaci-  
tors next to the V , GND and V  
pins to minimize  
OUT  
IN  
high frequency noise.  
Figure 28. Recommended PCB Layout  
4643fb  
24  
For more information www.linear.com/LTM4643  
LTM4643  
TYPICAL APPLICATIONS  
CLKIN  
CLKOUT  
V
V
4V to 20V  
3.3V/3A  
IN1  
OUT1  
FB1  
10µF  
×4  
25V  
1206  
47µF  
6.3V  
0805  
SVIN1  
RUN1  
INTV  
CC1  
MODE1  
LTM4643  
COMP1  
TRACK/SS1  
PGOOD1  
13.3k  
0.1µF  
2.5V/3A  
V
V
IN2  
OUT2  
FB2  
47µF  
4V  
0805  
SVIN2  
RUN2  
INTV  
COMP2  
TRACK/SS2  
PGOOD2  
19.1k  
CC2  
60.4k  
MODE2  
1.5V/3A  
V
V
13.3k  
IN3  
OUT3  
47µF  
4V  
0805  
SVIN3  
RUN3  
INTV  
FB3  
COMP3  
TRACK/SS3  
PGOOD3  
40.2k  
90.9k  
CC3  
60.4k  
MODE3  
1V/3A  
V
V
13.3k  
IN4  
OUT4  
47µF  
4V  
0805  
SVIN4  
RUN4  
INTV  
CC4  
MODE4  
FB4  
COMP4  
TRACK/SS4  
PGOOD4  
60.4k  
TEMP SGND GND  
4643 F29  
13.3k  
Figure 29. 4V to 20V Input, Quad 1.0V, 1.5V, 2.5V and 3.3V Output with Ratiometric Tracking  
CLKIN  
CLKOUT  
V
V
2.375V to 5V  
1.8V/3A  
1.5V/3A  
IN1  
OUT1  
FB1  
10µF  
×4  
6.3V  
1206  
47µF  
4V  
SVIN1  
RUN1  
INTV  
LTM4643  
COMP1  
TRACK/SS1  
PGOOD1  
30.1k  
40.2k  
60.4k  
90.9k  
0805  
CC1  
0.1µF  
0.1µF  
MODE1  
V
V
IN2  
OUT2  
FB2  
47µF  
4V  
0805  
SVIN2  
RUN2  
INTV  
CC2  
MODE2  
5V BIAS  
COMP2  
TRACK/SS2  
PGOOD2  
1µF  
6.3V  
1.2V/3A  
1V/3A  
V
V
IN3  
OUT3  
FB3  
47µF  
4V  
0805  
SVIN3  
RUN3  
INTV  
CC3  
MODE3  
COMP3  
TRACK/SS3  
PGOOD3  
0.1µF  
0.1µF  
V
V
IN4  
OUT4  
FB4  
47µF  
4V  
0805  
SVIN4  
RUN4  
INTV  
CC4  
MODE4  
COMP4  
TRACK/SS4  
PGOOD4  
TEMP SGND GND  
4643 F30  
Figure 30. 2.375V to 5V Input, Quad 1V, 1.2V, 1.5V, 1.8V Output  
4643fb  
25  
For more information www.linear.com/LTM4643  
LTM4643  
TYPICAL APPLICATIONS  
CLKIN  
CLKOUT  
V
IN  
V
V
1.2V/12A  
IN1  
OUT1  
FB1  
4V to 20V  
47µF  
×3  
22µF  
×2  
25V  
1206  
SVIN1  
RUN1  
INTV  
LTM4643  
COMP1  
4V  
15.1k  
TRACK/SS1  
PGOOD1  
0805  
CC1  
MODE1  
0.1µF  
V
V
IN2  
OUT2  
FB2  
SVIN2  
RUN2  
INTV  
COMP2  
TRACK/SS2  
PGOOD2  
CC2  
MODE2  
V
V
IN3  
OUT3  
FB3  
SVIN3  
RUN3  
INTV  
COMP3  
TRACK/SS3  
PGOOD3  
CC3  
MODE3  
V
V
IN4  
OUT4  
FB4  
SVIN4  
RUN4  
INTV  
COMP4  
TRACK/SS4  
PGOOD4  
CC4  
V
IN  
MODE4  
V
– 0.6V  
100µA  
IN  
TEMP SGND GND  
R
T
=
R
T
4643 F31  
A/D  
Figure 31. 4V to 20V Input, 4-Phase, 1.2V at 12A Design with Temperature Monitoring  
4643fb  
26  
For more information www.linear.com/LTM4643  
LTM4643  
TYPICAL APPLICATIONS  
CLKIN  
CLKOUT  
V
V
5V  
1.2V/6A  
IN1  
OUT1  
FB1  
47µF  
22µF  
×2  
16V  
1206  
SVIN1  
RUN1  
INTV  
×2  
LTM4643  
COMP1  
TRACK/SS1  
PGOOD1  
4V  
0805  
30.2k  
CC1  
MODE1  
0.1µF  
V
V
IN2  
OUT2  
FB2  
SVIN2  
RUN2  
INTV  
COMP2  
TRACK/SS2  
PGOOD2  
CC2  
MODE2  
12V  
22µF  
×2  
V
V
3.3V/6A  
IN3  
OUT3  
FB3  
47µF  
×2  
6.3V  
0805  
SVIN3  
RUN3  
INTV  
COMP3  
TRACK/SS3  
PGOOD3  
16V  
1206  
6.65k  
CC3  
MODE3  
0.1µF  
V
V
IN4  
OUT4  
FB4  
SVIN4  
RUN4  
INTV  
COMP4  
TRACK/SS4  
PGOOD4  
CC4  
MODE4  
TEMP SGND GND  
4643 F32  
Figure 32. 12V and 5V Two Separate Input Rails, 1.2V at 6A and 3.3V at 6A Output  
4643fb  
27  
For more information www.linear.com/LTM4643  
LTM4643  
PACKAGE DESCRIPTION  
PACKAGE ROW AND COLUMN LABELING MAY VARY  
AMONG µModule PRODUCTS. REVIEW EACH PACKAGE  
LAYOUT CAREFULLY.  
LTM4643 Component LGA and BGA Pinout  
PIN  
A±  
A2  
A3  
A4  
A5  
A6  
A7  
NAME  
PIN  
B±  
B2  
B3  
B4  
B5  
B6  
B7  
NAME  
GND  
PIN  
C±  
C2  
C3  
C4  
C5  
C6  
C7  
NAME  
PIN  
D±  
D2  
D3  
D4  
D5  
D6  
D7  
NAME  
PIN  
E±  
E2  
E3  
E4  
E5  
E6  
E7  
NAME  
GND  
PIN  
F±  
F2  
F3  
F4  
F5  
F6  
F7  
NAME  
V
V
V
V
OUT2  
V
OUT2  
V
OUT2  
V
OUT3  
OUT±  
OUT±  
OUT±  
GND  
PGOOD2  
PGOOD±  
GND  
PGOOD3  
TEMP  
V
V
GND  
GND  
V
V
IN±  
IN±  
IN2  
IN2  
GND  
GND  
INTV  
INTV  
CC2  
CC±  
SV  
GND  
GND  
SV  
GND  
IN±  
IN2  
TRACK/SS±  
FB±  
MODE±  
COMP±  
RUN±  
CLKIN  
TRACK/SS2  
FB2  
MODE2  
COMP2  
RUN2  
SGND  
PIN  
G±  
G2  
G3  
G4  
G5  
G6  
G7  
NAME  
PIN  
H±  
H2  
H3  
H4  
H5  
H6  
H7  
NAME  
GND  
PIN  
J±  
J2  
J3  
J4  
J5  
J6  
J7  
NAME  
PIN  
K±  
K2  
K3  
K4  
K5  
K6  
K7  
NAME  
PIN  
L±  
L2  
L3  
L4  
L5  
L6  
L7  
NAME  
GND  
V
V
V
OUT4  
V
V
OUT3  
OUT3  
OUT4  
OUT4  
GND  
PGOOD4  
CLKOUT  
GND  
GND  
GND  
V
IN3  
V
IN3  
GND  
GND  
V
IN4  
V
IN4  
INTV  
CC3  
GND  
SV  
IN3  
GND  
INTV  
SV  
IN4  
CC4  
TRACK/SS3  
FB3  
MODE3  
COMP3  
RUN3  
FB4  
TRACK/SS4  
RUN4  
MODE4  
COMP4  
4643fb  
28  
For more information www.linear.com/LTM4643  
LTM4643  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTM4643#packaging for the most recent package drawings.  
LGA Package  
77-Lead (15.00mm × 9.00mm ×1.82mm)  
(Reference LTC DWG # 05-08-±508 Rev Ø)  
Z
/ / b b b  
Z
3 . 8 1 0  
2 . 5 4 0  
1 . 2 7 0  
0 . 3 1 7 5  
0 . 3 1 7 5  
1 . 2 7 0  
0 . 0 0 0  
2 . 5 4 0  
3 . 8 1 0  
4643fb  
29  
For more information www.linear.com/LTM4643  
LTM4643  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTM4643#packaging for the most recent package drawings.  
Z
/ / b b b  
Z
3 . 8 1 0  
2 . 5 4 0  
1 . 2 7 0  
0 . 3 1 7 5  
0 . 3 1 7 5  
1 . 2 7 0  
0 . 0 0 0  
2 . 5 4 0  
3 . 8 1 0  
4643fb  
30  
For more information www.linear.com/LTM4643  
LTM4643  
REVISION HISTORY  
REV  
DATE  
03/±7 Added the BGA package  
6/±7 Corrected Output Current from 4A to 3A on Figure 4  
Corrected Output Voltage from ±.2V to ±.0V on Title of Figure 29  
DESCRIPTION  
PAGE NUMBER  
A
±, 2, 28, 30  
B
±3  
25  
4643fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
31  
LTM4643  
PACKAGE PHOTOS  
DESIGN RESOURCES  
SUBJECT  
DESCRIPTION  
µModule Design and Manufacturing Resources  
Design:  
Manufacturing:  
• Selector Guides  
• Quick Start Guide  
• Demo Boards and Gerber Files  
• Free Simulation Tools  
• PCB Design, Assembly and Manufacturing Guidelines  
• Package and Board Level Reliability  
µModule Regulator Products Search  
±. Sort table of products by parameters and download the result as a spread sheet.  
2. Search using the Quick Power Search parametric table.  
TechClip Videos  
Quick videos detailing how to bench test electrical and thermal performance of µModule products.  
Digital Power System Management  
Linear Technology’s family of digital power supply management ICs are highly integrated solutions that  
offer essential functions, including power supply monitoring, supervision, margining and sequencing,  
and feature EEPROM for storing user configurations and fault logging.  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LTM4644  
LTM4623  
LTM4622  
Higher Power, Quad  
Single, Ultrathin  
Dual, Ultrathin  
Quad 4A, Pin Compatible, 9mm × ±5mm × 5.0±mm BGA  
3A, 6.25mm × 6.25mm × ±.8mm LGA and 6.25mm × 6.25mm × 2.42mm BGA  
Dual 2.5A or Single 5A, , 6.25mm × 6.25mm × ±.8mm LGA and 6.25mm ×  
6.25mm × 2.42mm BGA  
LTM463±  
Higher Power, Dual, Ultrathin  
Dual ±0A or Single 20A, , ±6mm × ±6mm × ±.9±mm LGA  
4643fb  
LT 0617 REV B • PRINTED IN USA  
www.linear.com/LTM4643  
32  
LINEAR TECHNOLOGY CORPORATION 2016  

相关型号:

LTM4643EV#PBF

LTM4643 - Ultrathin Quad µModule Regulator with Configurable 3A Output Array; Package: LGA; Pins: 77; Temperature Range: -40°C to 85°C
Linear

LTM4643EY#PBF

LTM4643 - Ultrathin Quad µModule Regulator with Configurable 3A Output Array; Package: BGA; Pins: 77; Temperature Range: -40°C to 85°C
Linear

LTM4643IV#PBF

LTM4643 - Ultrathin Quad µModule Regulator with Configurable 3A Output Array; Package: LGA; Pins: 77; Temperature Range: -40°C to 85°C
Linear

LTM4643IY

LTM4643 - Ultrathin Quad µModule Regulator with Configurable 3A Output Array; Package: BGA; Pins: 77; Temperature Range: -40°C to 85°C
Linear

LTM4643IY#PBF

LTM4643 - Ultrathin Quad µModule Regulator with Configurable 3A Output Array; Package: BGA; Pins: 77; Temperature Range: -40°C to 85°C
Linear

LTM4643MPV#PBF

LTM4643 - Ultrathin Quad µModule Regulator with Configurable 3A Output Array; Package: LGA; Pins: 77; Temperature Range: -55°C to 125°C
Linear

LTM4643MPY#PBF

LTM4643 - Ultrathin Quad µModule Regulator with Configurable 3A Output Array; Package: BGA; Pins: 77; Temperature Range: -55°C to 125°C
Linear

LTM4644

LTM4644 - 具可配置 4A 输出阵列的四通道 DC/DC μModule 稳压器
Linear

LTM4644

Quad DC/DC μModule Regulator with Configurable Dual 12A, Dual 5A Output Array
ADI

LTM4644-1

Quad DC/DC μModule Regulator with Configurable 4A Output Array
Linear

LTM4644EY#PBF

暂无描述
Linear

LTM4644EY-1#PBF

LTM4644 - Quad DC/DC µModule (Power Module) Regulator with Configurable 4A Output Array; Package: BGA; Pins: 77; Temperature Range: -40°C to 85°C
Linear