LTM8033MPY [Linear]

LTM8033 - Ultralow Noise EMC 36VIN, 3A DC/DC µModule (Power Module) Regulator; Package: BGA; Pins: 76; Temperature Range: -55°C to 125°C;
LTM8033MPY
型号: LTM8033MPY
厂家: Linear    Linear
描述:

LTM8033 - Ultralow Noise EMC 36VIN, 3A DC/DC µModule (Power Module) Regulator; Package: BGA; Pins: 76; Temperature Range: -55°C to 125°C

开关 输出元件
文件: 总26页 (文件大小:414K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM8033  
Ultralow Noise EMC 36V ,  
IN  
3A DC/DC µModule  
Regulator  
DESCRIPTION  
FEATURES  
n
Complete Step-Down Switch Mode Power Supply  
The LTM®8033 is an electromagnetic compatible (EMC)  
36V, 3A DC/DC μModule® buck converter designed to  
meet the radiated emissions requirements of EN55022.  
Conducted emission requirements can be met by adding  
standardfiltercomponents.Includedinthepackagearethe  
switching controller, power switches, inductor, filters and  
all support components. Operating over an input voltage  
range of 3.6V to 36V, the LTM8033 supports an output  
voltage range of 0.8V to 24V, and a switching frequency  
range of 200kHz to 2.4MHz, each set by a single resistor.  
Only the bulk input and output filter capacitors are needed  
to finish the design.  
n
Wide Input Voltage Range: 3.6V to 36V  
n
3A Output Current  
n
0.8V to 24V Output Voltage  
EN55022 Class B Compliant  
n
n
Current Share Multiple LTM8033 Regulators for  
More Than 3A Output  
n
Selectable Switching Frequency: 200kHz to 2.4MHz  
n
Current Mode Control  
n
SnPb or RoHS Compliant Finish  
n
Programmable Soft-Start  
n
Compact Package (11.25mm× 15mm× 4.32mm)  
Surface MountLGA and (11.25mm× 15mm×  
TheLTM8033ispackagedinacompact(11.25mm×15mm  
× 4.32mm)overmoldedlandgridarray(LGA)andballgrid  
array (BGA) package suitable for automated assembly by  
standardsurfacemountequipment.TheLTM8033isavail-  
able with SnPb (BGA) or RoHS compliant terminal finish.  
4.92mm) BGA Packages  
APPLICATIONS  
n
Automotive Battery Regulation  
L, LT, LTC, LTM, Linear Technology, the Linear logo, µModule and Burst Mode are registered  
trademarks of Linear Technology Corporation. All other trademarks are the property of their  
respective owners.  
n
Power for Portable Products  
n
Distributed Supply Regulation  
n
Industrial Supplies  
n
Wall Transformer Regulation  
TYPICAL APPLICATION  
Ultralow Noise 12V/3A DC/DC µModule Regulator  
LTM8033  
EMI Performance  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
*
V
12V  
3A  
IN  
OUT  
V
V
OUT  
IN  
20V TO 36V  
2.2µF  
RUN/SS  
FIN  
AUX  
BIAS  
1µF  
SHARE  
PGOOD  
47µF  
RT SYNC GND ADJ  
34.8k  
30  
226.2  
422.4  
618.6  
814.8  
912.9  
1010  
41.2k  
128.1 324.3  
520.5  
716.7  
8033 TA01b  
FREQUENCY (MHz)  
f = 850kHz  
8033 TA01a  
* RUNNING VOLTAGE RANGE. PLEASE REFER TO THE  
APPLICATIONS INFORMATION SECTION FOR START-UP DETAILS.  
8033fb  
1
For more information www.linear.com/LTM8033  
LTM8033  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
V , FIN, RUN/SS Voltage ........................................36V  
BIAS .........................................................................25V  
Maximum Junction Temperature (Note 2) .......... 125°C  
Solder Temperature ............................................. 245°C  
IN  
ADJ, RT, SHARE Voltage ............................................6V  
OUT  
PGOOD, SYNC ..........................................................30V  
V
, AUX ................................................................25V  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
SYNC  
GND  
ADJ  
SYNC  
GND  
ADJ  
8
7
6
5
4
3
2
1
RUN/SS  
8
7
6
5
4
3
2
1
RUN/SS  
PGOOD  
PGOOD  
BANK 3  
FIN  
BANK 3  
FIN  
SHARE  
RT  
SHARE  
RT  
BANK 2  
GND  
BANK 2  
GND  
BIAS  
AUX  
BIAS  
AUX  
BANK 1  
BANK 4  
BANK 1  
BANK 4  
V
V
IN  
V
V
IN  
OUT  
OUT  
A
B
C
D
E
F
G
H
J
K
L
A
B
C
D
E
F
G
H
J
K
L
BGA PACKAGE  
76-LEAD (15mm × 11.25mm × 4.92mm)  
LGA PACKAGE  
76-LEAD (15mm × 11.25mm × 4.32mm)  
T
JMAX  
= 125°C, θ = 15.4°C/W, θ  
= 5.2°C/W, θ = 9.8°C/W, θ  
= 16.7°C/W  
T
JMAX  
= 125°C, θ = 15.4°C/W, θ  
= 5.2°C/W, θ = 9.8°C/W, θ  
= 16.7°C/W  
JA  
JCbottom  
JB  
JCtop  
JA  
JCbottom  
JB  
JCtop  
θ VALUES DERIVED FROM A 4 LAYER 6.35cm × 6.35cm PCB  
θ VALUES DERIVED FROM A 4 LAYER 6.35cm × 6.35cm PCB  
WEIGHT = 2.2g  
WEIGHT = 2.2g  
ORDER INFORMATION  
PART MARKING*  
PACKAGE  
TYPE  
MSL  
RATING  
TEMPERATURE RANGE  
(Note 2)  
PART NUMBER  
LTM8033EV#PBF  
LTM8033IV#PBF  
LTM8033MPV#PBF  
LTM8033EY#PBF  
LTM8033IY#PBF  
LTM8033IY  
PAD OR BALL FINISH  
Au (RoHS)  
DEVICE  
FINISH CODE  
LTM8033V  
LTM8033V  
LTM8033V  
LTM8033Y  
LTM8033Y  
LTM8033Y  
LTM8033Y  
LTM8033Y  
e4  
e4  
e4  
e1  
e1  
e0  
e1  
e0  
LGA  
LGA  
LGA  
BGA  
BGA  
BGA  
BGA  
BGA  
3
3
3
3
3
3
3
3
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
Au (RoHS)  
Au (RoHS)  
SAC305 (RoHS)  
SAC305 (RoHS)  
SnPb (63/67)  
SAC305 (RoHS)  
SnPb (63/67)  
LTM8033MPY#PBF  
LTM8033MPY  
Consult Marketing for parts specified with wider operating temperature  
ranges. *Device temperature grade is indicated by a label on the shipping  
container. Pad or ball finish code is per IPC/JEDEC J-STD-609.  
• Recommended LGA and BGA PCB Assembly and Manufacturing  
Procedures:  
www.linear.com/umodule/pcbassembly  
• LGA and BGA Package and Tray Drawings:  
www.linear.com/packaging  
• Terminal Finish Part Marking:  
www.linear.com/leadfree  
8033fb  
2
For more information www.linear.com/LTM8033  
LTM8033  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, RUN/SS = 12V unless otherwise noted (Note 2).  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
Minimum Input Voltage  
Output DC Voltage  
3.6  
V
0A < I  
0A < I  
< 3A, R  
< 3A, R  
Open, V = 24V  
0.8  
24  
V
V
OUT  
OUT  
ADJ  
ADJ  
IN  
= 16.5k, V = 32V  
IN  
Output DC Current  
V
= 24V  
0
3
A
IN  
Quiescent Current into V  
RUN/SS = 0.2V  
Not Switching  
BIAS = 0V, Not Switching  
0.01  
30  
100  
1
µA  
µA  
µA  
IN  
60  
150  
Quiescent Current into BIAS  
RUN/SS = 0.2V  
0.01  
75  
0
0.5  
120  
5
µA  
µA  
µA  
Not Switching  
BIAS = 0V, Not Switching  
Line Regulation  
5.5V < V < 36V  
0.3  
0.4  
5
%
%
IN  
Load Regulation  
0A < I  
< 3A, V = 24V  
OUT IN  
Output RMS Voltage Ripple  
Switching Frequency  
V
= 24V, 0A < I  
< 3A  
mV  
kHz  
mV  
µA  
IN  
OUT  
R = 45.3k  
T
780  
790  
2
l
Voltage at ADJ Pin  
775  
2.5  
805  
Current Out of ADJ Pin  
ADJ = 1V, V  
= 0V  
OUT  
Minimum BIAS Voltage for Proper Operation  
RUN/SS Pin Current  
2
2.8  
10  
V
RUN/SS = 2.5V  
5
µA  
RUN/SS Input High Voltage  
RUN/SS Input Low Voltage  
PGOOD Threshold (at ADJ)  
PGOOD Leakage Current  
PGOOD Sink Current  
V
0.2  
1
V
V
Rising  
730  
0.1  
mV  
µA  
OUT  
PGOOD = 30V, RUN/SS = 0V  
PGOOD = 0.4V  
200  
0.5  
735  
µA  
SYNC Input Low Threshold  
SYNC Input High Threshold  
SYNC Bias Current  
f
f
= 550kHz  
= 550kHz  
V
SYNC  
SYNC  
0.7  
V
SYNC = 0V  
24V , 3.3V , I  
0.1  
89  
69  
51  
µA  
500kHz Narrowband Conducted Emissions  
1MHz Narrowband Conducted Emissions  
3MHz Narrowband Conducted Emissions  
= 3A, 5µH LISN  
OUT OUT  
dBµV  
dBµV  
dBµV  
IN  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTM8033E is guaranteed to meet performance specifications  
from 0°C to 125°C internal. Specifications over the full –40°C to  
125°C internal operating temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LTM8033I is guaranteed to meet specifications over the full –40°C  
to 125°C internal operating temperature range. The LTM8033MP is  
guaranteed to meet specifications over the full –55°C to 125°C internal  
operating temperature range. Note that the maximum internal temperature  
is determined by specific operating conditions in conjunction with board  
layout, the rated package thermal resistance and other environmental  
factors.  
8033fb  
3
For more information www.linear.com/LTM8033  
LTM8033  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
2.5VOUT Efficiency  
3.3VOUT Efficiency  
5VOUT Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
5.5V  
IN  
12V  
IN  
12V  
IN  
5V  
IN  
12V  
IN  
24V  
36V  
36V  
24V  
IN  
IN  
IN  
IN  
36V  
24V  
IN  
IN  
0
500 1000 1500 2000 2500 3000  
OUTPUT CURRENT (mA)  
8033 G01  
0
500 1000 1500 2000 2500 3000  
OUTPUT CURRENT (mA)  
8033 G02  
0
500 1000 1500 2000 2500 3000  
OUTPUT CURRENT (mA)  
8033 G03  
8VOUT Efficiency  
12VOUT Efficiency  
18VOUT Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
24V  
12V  
IN  
IN  
36V  
IN  
36V  
IN  
36V  
24V  
IN  
IN  
0
500 1000 1500 2000 2500 3000  
OUTPUT CURRENT (mA)  
8033 G05  
0
500 1000 1500 2000 2500 3000  
OUTPUT CURRENT (mA)  
8033 G04  
0
500 1000 1500 2000 2500 3000  
OUTPUT CURRENT (mA)  
8033 G06  
Bias Current vs Load Current,  
2.5VOUT  
Bias Current vs Load Current,  
3.3VOUT  
Bias Current vs Load Current,  
5VOUT  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
80  
70  
60  
50  
40  
30  
20  
10  
0
40  
35  
30  
25  
20  
15  
10  
5
12V  
IN  
5V  
IN  
5V  
IN  
24V  
36V  
IN  
12V  
IN  
12V  
IN  
24V  
IN  
IN  
24V  
IN  
36V  
IN  
36V  
IN  
0
0
0
500 1000 1500 2000 2500 3000  
0
500 1000 1500 2000 2500 3000  
0
500 1000 1500 2000 2500 3000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
8033 G07  
8033 G08  
8033 G09  
8033fb  
4
For more information www.linear.com/LTM8033  
LTM8033  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Bias Current vs Load Current,  
8VOUT  
Bias Current vs Load Current,  
12VOUT  
Bias Current vs Load Current,  
18VOUT  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
36V  
12V  
IN  
IN  
24V  
IN  
24V  
IN  
36V  
IN  
36V  
IN  
0
500 1000 1500 2000 2500 3000  
0
500 1000 1500 2000 2500 3000  
0
500 1000 1500 2000 2500 3000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
8033 G12  
8033 G10  
8033 G11  
Input Current vs Input Voltage  
Output Shorted  
Input Current vs Output Current  
2.5VOUT  
Input Current vs Output Current  
3.3VOUT  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
2500  
2000  
1500  
1000  
500  
2500  
2000  
1500  
1000  
500  
5.5V  
IN  
5V  
IN  
12V  
IN  
12V  
IN  
24V  
IN  
24V  
IN  
36V  
IN  
36V  
IN  
0
0
0
10  
20  
30  
40  
0
500 1000 1500 2000 2500 3000  
OUTPUT CURRENT (mA)  
8033 G15  
0
500 1000 1500 2000 2500 3000  
OUTPUT CURRENT (mA)  
8033 G14  
INPUT VOLTAGE (V)  
8033 G13  
Input Current vs Output Current  
5VOUT  
Input Current vs Output Current  
8VOUT  
Input Current vs Output Current  
12VOUT  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
2500  
2000  
1500  
1000  
500  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
24V  
IN  
12V  
IN  
12V  
IN  
36V  
IN  
24V  
IN  
24V  
IN  
36V  
IN  
36V  
IN  
0
0
500 1000 1500 2000 2500 3000  
OUTPUT CURRENT (mA)  
8033 G16  
0
500 1000 1500 2000 2500 3000  
OUTPUT CURRENT (mA)  
8033 G17  
0
500 1000 1500 2000 2500 3000  
OUTPUT CURRENT (mA)  
8033 G18  
8033fb  
5
For more information www.linear.com/LTM8033  
LTM8033  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input Current vs Output Current  
18VOUT  
Minimum Required Input Voltage  
vs Output Voltage, IOUT = 3A  
Minimum Required Input Voltage  
vs Load Current, 2.5VOUT  
40  
35  
30  
25  
20  
15  
10  
5
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
TO START, WITH RUN = V  
IN  
36V  
IN  
TO RUN OR SS  
CONTROLLED START  
0
0
5
10  
15  
0
500 1000 1500 2000 2500 3000  
OUTPUT CURRENT (mA)  
8033 G19  
0
500 1000 1500 2000 2500 3000  
OUTPUT VOLTAGE (V)  
LOAD CURRENT (mA)  
8033 G20  
8033 G21  
Minimum Required Input Voltage  
vs Load Current, 3.3VOUT  
Minimum Required Input Voltage  
vs Load Current, 5VOUT  
Minimum Required Input Voltage  
vs Load Current, 8VOUT  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
10.5  
10.0  
9.5  
TO START, WITH RUN = V  
IN  
TO START, WITH RUN = V  
IN  
TO START, WITH RUN = V  
IN  
RUN/SS CONTROLLED START  
TO RUN  
TO RUN OR RUN/SS  
CONTROLLED START  
9.0  
TO RUN OR RUN/SS  
CONTROLLED START  
8.5  
8.0  
0
500 1000 1500 2000 2500 3000  
0
500 1000 1500 2000 2500 3000  
0
500 1000 1500 2000 2500 3000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
8033 G22  
8033 G23  
8033 G24  
Minimum Required Input Voltage  
vs Load Current, 12VOUT  
Minimum Required Input Voltage  
vs Load Current, 18VOUT  
Radiated Emissions, 36VIN,  
24VOUT at 1.5A Load  
80  
70  
60  
50  
40  
30  
20  
10  
0
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
20  
19  
18  
17  
16  
15  
14  
13  
12  
TO START,  
WITH RUN = V  
IN  
TO RUN OR START  
TO RUN  
RUN/SS CONTROLLED START  
0
500 1000 1500 2000 2500 3000  
0
500 1000 1500 2000 2500 3000  
30  
226.2  
422.4  
618.6  
814.8  
1010  
912.9  
128.1 324.3  
520.5  
716.7  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
8033 G26  
8033 G25  
8033 G27  
FREQUENCY (MHz)  
8033fb  
6
For more information www.linear.com/LTM8033  
LTM8033  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Radiated Emissions, 36VIN,  
1.2VOUT at 3A Load  
Temperature Rise vs Load  
Current, 2.5VOUT  
Temperature Rise vs Load  
Current, 3.3VOUT  
80  
70  
60  
50  
40  
30  
20  
10  
0
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
36V  
IN  
36V  
IN  
12V  
IN  
5V  
IN  
24V  
24V  
IN  
IN  
12V  
IN  
0
0
0
500 1000 1500 2000 2500 3000 3500  
30  
226.2  
422.4  
618.6  
814.8  
1010  
912.9  
0
500 1000 1500 2000 2500 3000  
128.1 324.3  
520.5  
716.7  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
8033 G29  
8033 G28  
8033 G30  
FREQUENCY (MHz)  
Temperature Rise vs Load  
Current, 5VOUT  
Temperature Rise vs Load  
Current, 8VOUT  
60  
50  
40  
30  
20  
10  
0
45  
40  
35  
30  
25  
20  
15  
10  
5
36V  
IN  
36V  
IN  
12V  
IN  
12V  
IN  
24V  
IN  
24V  
IN  
0
0
500 1000 1500 2000 2500 3000  
0
500 1000 1500 2000 2500 3000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
8033 G32  
8033 G31  
Temperature Rise vs Load  
Current, 18VOUT  
Temperature Rise vs Load  
Current, 12VOUT  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
36V  
IN  
36V  
IN  
24V  
IN  
0
500  
1000  
1500  
2000  
0
500 1000 1500 2000 2500 3000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
8033 G34  
8033 G33  
8033fb  
7
For more information www.linear.com/LTM8033  
LTM8033  
PIN FUNCTIONS  
V
(Bank 1): Power Output Pins. Apply the output filter  
SYNC (Pin B8): This is the external clock synchronization  
input.GroundthispinforlowrippleBurstMode® operation  
at low output loads. Tie to a stable voltage source greater  
than 0.7V to disable Burst Mode operation. Do not leave  
this pin floating. Tie to a clock source for synchronization.  
Clock edges should have rise and fall times faster than  
1μs. See the Synchronization section in the Applications  
Information section.  
OUT  
capacitor and the output load between these pins and  
GND pins.  
GND (A8, Bank 2): Tie these GND pins to a local ground  
plane below the LTM8033 and the circuit components.  
Return the feedback divider (R ) to this net.  
ADJ  
FIN(Bank3):FilteredInput. Thisisthenodeaftertheinput  
EMI filter. Apply the capacitor recommended by Table 1.  
Additional capacitance may be applied if there is a need  
to modify the behavior of the integrated EMI filter; other-  
wise, leave these pins unconnected. See the Applications  
Information section for more details.  
PGOOD (Pin B7): The PGOOD pin is the open-collector  
output of an internal comparator. PGOOD remains low  
until the ADJ pin is greater than 90% of the final regulation  
voltage. PGOOD output is valid when V is above 3.6V  
IN  
and RUN/SS is high. If this function is not used, leave  
V (Bank4):TheV pinsuppliescurrenttotheLTM8033’s  
this pin floating.  
IN  
IN  
internal regulator and to the internal power switch. This  
pin must be locally bypassed with an external, low ESR  
capacitor; see Table 1 for recommended values. Ensure  
AUX (Pin G3): Low Current Voltage Source for BIAS.  
In many designs, the BIAS pin is simply connected to  
V
. The AUX pin is internally connected to V  
and  
OUT  
OUT  
that V + BIAS is less than 56V.  
IN  
is placed adjacent to the BIAS pin to ease printed circuit  
SHARE (Pin A6): Tie this to the SHARE pin of another  
LTM8033 when paralleling the outputs. Otherwise, do  
not connect.  
board routing. Although this pin is internally connected  
to V , it is not intended to deliver a high current, so do  
OUT  
not connect this pin to the load. If this pin is not tied to  
BIAS, leave it floating.  
ADJ (Pin A7): The LTM8033 regulates its ADJ pin to 0.79V.  
Connect the adjust resistor from this pin to ground. The  
valueofR isgivenbytheequationR =394.21/(V  
OUT  
BIAS(PinG4):TheBIASpinconnectstotheinternalpower  
bus. Connect to a power source greater than 2.8V and less  
than 25V. If the output is greater than 2.8V, connect this  
pin there. If the output voltage is less, connect this to a  
ADJ  
ADJ  
– 0.79), where R  
is in kΩ.  
ADJ  
RT (Pin B6): The RT pin is used to program the switching  
frequency of the LTM8033 by connecting a resistor from  
thispintoground.TheApplicationsInformationsectionof  
the data sheet includes a table to determine the resistance  
value based on the desired switching frequency. Minimize  
capacitance at this pin.  
voltage source between 2.8V and 25V but ensure that V  
+ BIAS is less than 56V.  
IN  
RUN/SS (Pin G8): Pull the RUN/SS pin below 0.2V to  
shut down the LTM8033. Tie to 2.5V or more for normal  
operation. If the shutdown feature is not used, tie this pin  
to the V pin. RUN/SS also provides a soft-start function;  
IN  
see the Applications Information section.  
8033fb  
8
For more information www.linear.com/LTM8033  
LTM8033  
BLOCK DIAGRAM  
V
OUT  
V
8.2µH  
IN  
EMI  
FILTER  
15pF  
1µF  
499k  
FIN  
AUX  
BIAS  
RUN/SS  
SHARE  
CURRENT  
MODE  
CONTROLLER  
SYNC  
GND  
RT  
PGOOD  
ADJ  
8033 BD  
8033fb  
9
For more information www.linear.com/LTM8033  
LTM8033  
OPERATION  
The LTM8033 is a standalone nonisolated step-down  
switching DC/DC power supply that can deliver up to 3A of  
outputcurrent.ItisanEMCproduct;itsradiatedemissions  
are so quiet that it can pass the stringent requirements of  
EN55022 class B as a stand alone product. This µModule  
provides a precisely regulated output voltage program-  
mable via one external resistor from 0.8V to 24V. The input  
voltage range is 3.6V to 36V. Given that the LTM8033 is  
a step-down converter, make sure that the input voltage  
is high enough to support the desired output voltage and  
load current.  
To further optimize efficiency, the LTM8033 automatically  
switches to Burst Mode operation in light load situations.  
Between bursts, all circuitry associated with controlling  
the output switch is shut down reducing the input supply  
current to 50μA in a typical application.  
TheoscillatorreducestheLTM8033’soperatingfrequency  
when the voltage at the ADJ pin is low. This frequency  
foldback helps to control the output current during start-  
up and overload.  
The LTM8033 contains a power good comparator which  
trips when the ADJ pin is at roughly 90% of its regulated  
value. The PGOOD output is an open-collector transistor  
that is off when the output is in regulation, allowing an  
external resistor to pull the PGOOD pin high. Power good  
As shown in the Block Diagram, the LTM8033 contains an  
EMI filter, current mode controller, power switching ele-  
ment, powerinductor, powerSchottkydiodeandamodest  
amount of input and output capacitance. The LTM8033 is  
afixedfrequencyPWMregulator. Theswitchingfrequency  
is set by simply connecting the appropriate resistor value  
from the RT pin to GND.  
is valid when the LTM8033 is enabled and V is above  
IN  
3.6V.  
The LTM8033 is equipped with a thermal shutdown that  
willinhibitpowerswitchingathighjunctiontemperatures.  
Theactivationthresholdofthisfunction,however,isabove  
125°C to avoid interfering with normal operation. Thus,  
prolonged or repetitive operation under a condition in  
which the thermal shutdown activates may damage or  
impair the reliability of the device.  
Aninternalregulatorprovidespowertothecontrolcircuitry.  
The bias regulator normally draws power from the V  
IN  
pin, but if the BIAS pin is connected to an external volt-  
age higher than 2.8V, bias power will be drawn from the  
external source (typically the regulated output voltage).  
This improves efficiency. The RUN/SS pin is used to place  
the LTM8033 in shutdown, disconnecting the output and  
reducing the input current to less than 1μA.  
8033fb  
10  
For more information www.linear.com/LTM8033  
LTM8033  
APPLICATIONS INFORMATION  
For most applications, the design process is straight for-  
ward, summarized as follows:  
Capacitor Selection Considerations  
The C , C and C capacitor values in Table 1 are the  
IN FIN  
OUT  
• Look at Table 1 and find the row that has the desired  
input range and output voltage.  
minimum recommended values for the associated oper-  
ating conditions. Applying capacitor values below those  
indicated in Table 1 is not recommended, and may result  
in undesirable operation. Using larger values is generally  
acceptable, and can yield improved dynamic response, if  
it is necessary. Again, it is incumbent upon the user to  
verify proper operation over the intended system’s line,  
load and environmental conditions.  
• Apply the recommended C , C , C , R  
and R  
T
IN FIN OUT ADJ  
values.  
• Connect BIAS as indicated.  
As the integrated input EMI filter may ring in response to  
an application of a step input voltage, a bulk capacitance  
may be applied between FIN and GND. See the Hot-Plug-  
ging Safely section for details.  
Ceramic capacitors are small, robust and have very low  
ESR. However, not all ceramic capacitors are suitable.  
X5R and X7R types are stable over temperature and ap-  
plied voltage and give dependable service. Other types,  
including Y5V and Z5U have very large temperature and  
voltage coefficients of capacitance. In an application cir-  
cuit they may have only a small fraction of their nominal  
capacitanceresultinginmuchhigheroutputvoltageripple  
than expected.  
While these component combinations have been tested  
for proper operation, it is incumbent upon the user to  
verify proper operation over the intended system’s line,  
load and environmental conditions. Bear in mind that the  
maximum output current is limited by junction tempera-  
ture, therelationshipbetweentheinputandoutputvoltage  
magnitude and polarity and other factors. Please refer to  
the graphs in the Typical Performance Characteristics  
section for guidance.  
Ceramic capacitors are also piezoelectric. In Burst Mode  
operation, the LTM8033’s switching frequency depends  
on the load current, and can excite a ceramic capacitor  
at audio frequencies, generating audible noise. Since the  
LTM8033 operates at a lower current limit during Burst  
Mode operation, the noise is typically very quiet to a  
casual ear.  
The maximum frequency (and attendant R value) at  
T
which the LTM8033 should be allowed to switch is given  
in Table 1 in the f  
column, while the recommended  
MAX  
frequency (and R value) for optimal efficiency over the  
T
given input condition is given in the f  
column.  
OPTIMAL  
There are additional conditions that must be satisfied if  
the synchronization function is used. Please refer to the  
Synchronization section for details.  
If this audible noise is unacceptable, use a high perfor-  
mance electrolytic capacitor at the output. It may also be  
a parallel combination of a ceramic capacitor and a low  
cost electrolytic capacitor.  
Note: An input bulk capacitance is required at either V  
IN  
or FIN. Refer to the Typical Performance Characteristics  
A final precaution regarding ceramic capacitors concerns  
the maximum input voltage rating of the LTM8033. A  
ceramic input capacitor combined with trace or cable  
inductance forms a high Q (under damped) tank circuit.  
If the LTM8033 circuit is plugged into a live supply, the  
input voltage can ring to twice its nominal value, possibly  
exceeding the device’s rating. This situation can be easily  
avoided; see the Hot-Plugging Safely section.  
section for load conditions.  
8033fb  
11  
For more information www.linear.com/LTM8033  
LTM8033  
APPLICATIONS INFORMATION  
Table 1. Recommended Component Values and Configuration (TA = 25°C)  
V
V
OUT  
C
C
C
OUT  
BIAS  
R
f
R
f
R
T(MIN)  
IN  
IN  
FIN  
ADJ  
OPTIMAL  
T(OPTIMAL)  
MAX  
3.6V to 36V  
3.6V to 36V  
3.6V to 36V  
3.6V to 36V  
3.6V to 36V  
4.1V to 36V  
5.3V to 36V  
7.5V to 36V  
10.5V to 36V  
20V to 36V  
25.5V to 36V  
32.5V to 36V  
3.6V to 15V  
3.6V to 15V  
3.6V to 15V  
3.6V to 15V  
3.6V to 15V  
4.1V to 15V  
5.3V to 15V  
7.5V to 15V  
10.5V to 15V  
9V to 24V  
0.8V  
1V  
4.7µF, 50V, 1206 10µF, 50V, 1210 4 × 100µF, 6.3V, 1210 2.8V to 25V 30M 230kHz  
4.7µF, 50V, 1206 10µF, 50V, 1210 4 × 100µF, 6.3V, 1210 2.8V to 25V 1.87M 240kHz  
4.7µF, 50V, 1206 10µF, 50V, 1210 4 × 100µF, 6.3V, 1210 2.8V to 25V 953k 255kHz  
4.7µF, 50V, 1206 10µF, 50V, 1210 4 × 100µF, 6.3V, 1210 2.8V to 25V 549k 270kHz  
4.7µF, 50V, 1206 10µF, 50V, 1210 4 × 100µF, 6.3V, 1210 2.8V to 25V 383k 285kHz  
4.7µF, 50V, 1206 10µF, 50V, 1210 3 × 100µF, 6.3V, 1210 2.8V to 25V 226k 345kHz  
182k  
250kHz 169k  
285kHz 147k  
315kHz 130k  
360kHz 113k  
420kHz 95.3k  
540kHz 71.5k  
675kHz 54.9k  
950kHz 36.5k  
1.45MHz 20.5k  
2.3MHz 9.09k  
2.4MHz 8.25k  
2.4MHz 8.25k  
575kHz 66.5k  
660kHz 56.2k  
760kHz 47.5k  
840kHz 42.2k  
1.0MHz 34.0k  
1.3MHz 23.7k  
1.6MHz 17.8k  
2.4MHz 8.25k  
2.4MHz 8.25k  
360kHz 113k  
410kHz 97.6k  
475kHz 82.5k  
550kHz 69.8k  
620kHz 60.4k  
800kHz 44.2k  
1.0MHz 34.0k  
1.4MHz 21.5k  
2.2MHz 9.76k  
2.3MHz 9.09k  
250kHz 169k  
285kHz 147k  
315kHz 130k  
360kHz 113k  
420kHz 95.3k  
540kHz 71.5k  
675kHz 54.9k  
950kHz 36.5k  
1.45MHz 20.5k  
174k  
162k  
154k  
147k  
118k  
93.1k  
76.8k  
52.3k  
41.2k  
29.4k  
25.5k  
182k  
174k  
162k  
154k  
147k  
118k  
93.1k  
76.8k  
52.3k  
154k  
147k  
140k  
133k  
124k  
118k  
93.1k  
76.8k  
52.3k  
41.2k  
182k  
174k  
162k  
154k  
147k  
118k  
93.1k  
76.8k  
52.3k  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
5V  
4.7µF, 50V, 1206 10µF, 50V, 1210  
4.7µF, 50V, 1206 4.7µF, 50V, 1206  
4.7µF, 50V, 1206 F, 50V, 1206  
2.2µF, 50V, 1206 F, 50V, 1206  
100µF, 6.3V, 1210  
100µF, 6.3V, 1210  
47µF, 16V, 1210  
47µF, 16V, 1210  
22μF, 25V, 1812  
22μF, 25V, 1812  
AUX  
AUX  
AUX  
AUX  
AUX  
154k 425kHz  
93.1k 500kHz  
54.9k 700kHz  
34.8k 850kHz  
22.6k 1.1MHz  
8V  
12V  
18V  
24V  
0.8V  
1V  
2.2µF, 50V, 1206  
F, 50V, 1206  
Open  
Open  
2.8V to 20V 16.5k 1.2MHz  
4.7µF, 25V, 1206 10µF, 16V, 1210 4 × 100µF, 6.3V, 1210  
4.7µF, 25V, 1206 10µF, 16V, 1210 4 × 100µF, 6.3V, 1210  
4.7µF, 25V, 1206 10µF, 16V, 1210 4 × 100µF, 6.3V, 1210  
4.7µF, 25V, 1206 10µF, 16V, 1210 4 × 100µF, 6.3V, 1210  
4.7µF, 25V, 1206 10µF, 16V, 1210 4 × 100µF, 6.3V, 1210  
4.7µF, 16V, 1206 10µF, 16V, 1210 3 x 100µF, 6.3V, 1210  
V
V
V
V
V
V
30M 230kHz  
1.87M 240kHz  
953k 255kHz  
549k 270kHz  
383k 285kHz  
226k 345kHz  
154k 425kHz  
93.1k 500kHz  
54.9k 700kHz  
30M 270kHz  
1.87M 285kHz  
953k 295kHz  
549k 310kHz  
383k 330kHz  
226k 345kHz  
154k 425kHz  
93.1k 500kHz  
54.9k 700kHz  
34.8k 850kHz  
IN  
IN  
IN  
IN  
IN  
IN  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
5V  
4.7µF, 16V, 1206 10µF, 16V, 1210  
4.7µF, 16V, 1206 4.7µF, 50V, 1206  
100µF, 6.3V, 1210  
100µF, 6.3V, 1210  
47µF, 16V, 1210  
AUX  
AUX  
AUX  
8V  
2.2µF, 25V, 1206  
Open  
0.8V  
1V  
4.7µF, 25V, 1206 4.7µF, 25V, 1206 4 × 100µF, 6.3V, 1210  
4.7µF, 25V, 1206 4.7µF, 25V, 1206 4 × 100µF, 6.3V, 1210  
4.7µF, 25V, 1206 4.7µF, 25V, 1206 4 × 100µF, 6.3V, 1210  
4.7µF, 25V, 1206 4.7µF, 25V, 1206 4 × 100µF, 6.3V, 1210  
4.7µF, 25V, 1206 4.7µF, 25V, 1206 3 × 100µF, 6.3V, 1210  
4.7µF, 25V, 1206 4.7µF, 25V, 1206 2 × 100µF, 6.3V, 1210  
V
IN  
9V to 24V  
V
IN  
9V to 24V  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
5V  
V
IN  
9V to 24V  
V
IN  
9V to 24V  
V
IN  
9V to 24V  
V
IN  
9V to 24V  
4.7µF, 25V, 1206 4.7µF, 25V, 1206  
4.7µF, 25V, 1206 4.7µF, 25V, 1206  
2.2µF, 25V, 1206 F, 25V, 1206  
2.2µF, 25V, 1206 F, 25V, 1206  
100µF, 6.3V, 1210  
100µF, 6.3V, 1210  
47µF, 16V, 1210  
47µF, 16V, 1210  
AUX  
AUX  
AUX  
AUX  
9V to 24V  
10.5V to 24V  
20V to 24V  
18V to 36V  
18V to 36V  
18V to 36V  
18V to 36V  
18V to 36V  
18V to 36V  
18V to 36V  
18V to 36V  
18V to 36V  
8V  
12V  
0.8V  
1V  
F, 50V, 1206 2.2µF, 50V, 1206 4 × 100µF, 6.3V, 1210 2.8V to 25V 30M 230kHz  
F, 50V, 1206 2.2µF, 50V, 1206 4 × 100µF, 6.3V, 1210 2.8V to 25V 1.87M 240kHz  
F, 50V, 1206 2.2µF, 50V, 1206 4 × 100µF, 6.3V, 1210 2.8V to 25V 953k 255kHz  
F, 50V, 1206 2.2µF, 50V, 1206 4 × 100µF, 6.3V, 1210 2.8V to 25V 549k 270kHz  
F, 50V, 1206 2.2µF, 50V, 1206 3 × 100µF, 6.3V, 1210 2.8V to 25V 383k 285kHz  
F, 50V, 1206 2.2µF, 50V, 1206 2 × 100µF, 6.3V, 1210 2.8V to 25V 226k 345kHz  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
5V  
F, 50V, 1206 2.2µF, 50V, 1206  
F, 50V, 1206 F, 50V, 1206  
2.2µF, 50V, 1206 F, 50V, 1206  
100µF, 6.3V, 1210  
47µF, 10V, 1210  
47µF, 16V, 1210  
AUX  
AUX  
AUX  
154k 425kHz  
93.1k 500kHz  
54.9k 700kHz  
8V  
Note: A bulk capacitor is required. Do not allow V + BIAS above 56V.  
IN  
8033fb  
12  
For more information www.linear.com/LTM8033  
LTM8033  
APPLICATIONS INFORMATION  
Frequency Selection  
BIAS Pin Considerations  
TheLTM8033usesaconstantfrequencyPWMarchitecture  
thatcanbeprogrammedtoswitchfrom200kHzto2.4MHz  
by using a resistor tied from the RT pin to ground. Table 2  
The BIAS pinis used to provide drive powerforthe internal  
power switching stage and operate other internal circuitry.  
Forproperoperation, itmustbepoweredbyatleast2.8V. If  
the output voltage is programmed to 2.8V or higher, BIAS  
provides a list of R resistor values and their resulting  
T
frequencies.  
may be simply tied to V . If V  
is less than 2.8V, BIAS  
OUT  
OUT  
can be tied to V or some other voltage source. If the BIAS  
IN  
Table 2. Switching Frequency vs RT Value  
pin voltage is too high, the efficiency of the LTM8033 may  
suffer.TheoptimumBIASvoltageisdependentuponmany  
factors, such as load current, input voltage, output voltage  
and switching frequency, but 4V to 5V works well in many  
applications. Inallcases,ensurethatthemaximumvoltage  
SWITCHING FREQUENCY (MHz)  
R VALUE (kΩ)  
T
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
215  
137  
100  
76.8  
63.4  
52.3  
44.2  
38.3  
34  
at the BIAS pin is less than 25V and that the sum of V  
IN  
and BIAS is less than 56V. If BIAS power is applied from  
a remote or noisy voltage source, it may be necessary to  
apply a decoupling capacitor locally to the pin.  
Load Sharing  
1.2  
1.4  
1.6  
1.8  
2
25.5  
21.5  
17.8  
14.7  
12.1  
9.76  
8.25  
TwoormoreLTM8033maybeparalleledtoproducehigher  
currents. To do this, tie the V , ADJ, V  
and SHARE  
IN  
OUT  
pins of all the paralleled LTM8033 together. To ensure that  
paralleled modules start up together, the RUN/SS pins  
may be tied together as well. If the RUN/SS pins are not  
tied together, make sure that the same valued soft-start  
capacitors are used for each module. Current sharing can  
be improved by synchronizing the LTM8033s. An example  
of two LTM8033 configured for load sharing is given in  
the Typical Applications section.  
2.2  
2.4  
Operating Frequency Trade-Offs  
It is recommended that the user apply the optimal R  
T
value given in Table 1 for the input and output operating  
condition. System level or other considerations, however,  
may necessitate another operating frequency. While the  
LTM8033 is flexible enough to accommodate a wide range  
of operating frequencies, a haphazardly chosen one may  
result in undesirable operation under certain operating or  
fault conditions. A frequency that is too high can reduce  
efficiency, generate excessive heat or even damage the  
LTM8033 if the output is overloaded or short-circuited.  
A frequency that is too low can result in a final design  
that has too much output ripple or too large of an output  
capacitor.  
Burst Mode Operation  
To enhance efficiency at light loads, the LTM8033 auto-  
matically switches to Burst Mode operation which keeps  
the output capacitor charged to the proper voltage while  
minimizingtheinputquiescentcurrent.DuringBurstMode  
operation, the LTM8033 delivers single cycle bursts of  
current to the output capacitor followed by sleep periods  
wheretheoutputpowerisdeliveredtotheloadbytheoutput  
capacitor. In addition, V and BIAS quiescent currents are  
IN  
reduced to typically 30μA and 75μA respectively during  
the sleep time. As the load current decreases towards a  
8033fb  
13  
For more information www.linear.com/LTM8033  
LTM8033  
APPLICATIONS INFORMATION  
no-loadcondition,thepercentageoftimethattheLTM8033  
operates in sleep mode increases and the average input  
current is greatly reduced, resulting in higher efficiency.  
Soft-Start  
The RUN/SS pin can be used to soft-start the LTM8033,  
reducing the maximum input current during start-up. The  
RUN/SS pin is driven through an external RC filter to cre-  
ate a voltage ramp at this pin. Figure 2 shows the start-up  
and shutdown waveforms with the soft-start circuit. By  
choosing an appropriate RC time constant, the peak start-  
up current can be reduced to the current that is required to  
regulate the output, with no overshoot. Choose the value  
of the resistor so that it can supply at least 20μA when  
the RUN/SS pin reaches 2.5V.  
BurstModeoperationisenabledbytyingSYNCtoGND. To  
disable Burst Mode operation, tie SYNC to a stable voltage  
above 0.7V. Do not leave the SYNC pin floating.  
Minimum Input Voltage  
The LTM8033 is a step-down converter, so a minimum  
amount of headroom is required to keep the output in  
regulation. In addition, the input voltage required to turn  
on is higher than that required to run, and depends upon  
BIAS power whether RUN/SS is used. If BIAS is available  
Frequency Foldback  
The LTM8033 is equipped with frequency foldback which  
actstoreducethethermalandenergystressontheinternal  
power elements during a short-circuit or output overload  
condition.IftheLTM8033detectsthattheoutputhasfallen  
out of regulation, the switching frequency is reduced as a  
function of how far the output is below the target voltage.  
Thisinturnlimitstheamountofenergythatcanbedelivered  
totheloadunderfault. Duringthestart-uptime, frequency  
foldback is also active to limit the energy delivered to the  
potentially large output capacitance of the load.  
before V  
ramps up, the minimum V voltage to start  
OUT  
IN  
may be reduced. As shown in the Typical Performance  
Characteristics section, the minimum input voltage to  
run a 3.3V output at light load is only about 3.6V, but, if  
RUN/SS is pulled up to V , it takes 5.6V to start. If the  
IN  
IN  
LTM8033 is enabled with the RUN/SS pin, the minimum  
voltage to start at light loads is lower, about 4.2V. Similar  
curves detailing this behavior of the LTM8033 for other  
outputs are also included in the Typical Performance  
Characteristics section.  
RUN  
INTERNAL  
INDUCTOR  
CURRENT  
1A/DIV  
15k  
RUN/SS  
GND  
0.22µF  
V
RUN/SS  
2V/DIV  
V
OUT  
2V/DIV  
8033 F02  
2ms/DIV  
Figure 2. To Soft-Start the LTM8033, Add a Resistor and Capacitor to the RUN/SS Pin  
8033fb  
14  
For more information www.linear.com/LTM8033  
LTM8033  
APPLICATIONS INFORMATION  
Synchronization  
Shorted Input Protection  
The internal oscillator of the LTM8033 can be synchro-  
nized by applying an external 250kHz to 2MHz clock to  
the SYNC pin. Do not leave this pin floating. Ground the  
SYNC pin if the synchronization function is not used.  
Care needs to be taken in systems where the output will be  
held high when the input to the LTM8033 is absent. This  
may occur in battery charging applications or in battery  
backup systems where a battery or some other supply is  
When synchronizing the LTM8033, select an R resistor  
diode OR-ed with the LTM8033’s output. If the V pin is  
T
IN  
value that corresponds to an operating frequency 20%  
lower than the intended synchronization frequency (see  
the Frequency Selection section).  
allowed to float and the RUN/SS pin is held high (either  
by a logic signal or because it is tied to V ), then the  
IN  
LTM8033’s internal circuitry will pull its quiescent current  
throughitsinternalpowerswitch.Thisisfineifyoursystem  
can tolerate a few milliamps in this state. If you ground the  
RUN/SS pin, the SW pin current will drop to essentially  
Inadditiontosynchronization,theSYNCpincontrolsBurst  
Mode behavior. If the SYNC pin is driven by an external  
clock, or pulled up above 0.7V, the LTM8033 will not en-  
ter Burst Mode operation, but will instead skip pulses to  
maintain regulation instead.  
zero. However, if the V pin is grounded while the output  
IN  
is held high, then parasitic diodes inside the LTM8033 can  
pull large currents from the output through the V pin.  
IN  
Figure 3 shows a circuit that will run only when the input  
voltage is present and that protects against a shorted or  
reversed input.  
LTM8033  
V
IN  
V
OUT  
V
V
OUT  
IN  
RUN/SS  
AUX  
BIAS  
SHARE  
ADJ  
RT SYNC GND  
8033 F03  
Figure 3. The Input Diode Prevents a Shorted Input from Discharging  
a Backup Battery Tied to the Output. It Also Protects the Circuit from a  
Reversed Input. The LTM8033 Runs Only When the Input is Present  
8033fb  
15  
For more information www.linear.com/LTM8033  
LTM8033  
APPLICATIONS INFORMATION  
PCB Layout  
4. Place the C , C and C  
capacitors such that their  
OUT  
IN FIN  
ground currents flow directly adjacent or underneath  
Most of the headaches associated with PCB layout have  
been alleviated or even eliminated by the high level of  
integration of the LTM8033. The LTM8033 is neverthe-  
less a switching power supply, and care must be taken to  
minimize EMI and ensure proper operation. Even with the  
high level of integration, you may fail to achieve specified  
operation with a haphazard or poor layout. See Figure 4  
for a suggested layout. Ensure that the grounding and  
heat sinking are acceptable.  
the LTM8033.  
5. Connect all of the GND connections to as large a copper  
pour or plane area as possible on the top layer. Avoid  
breaking the ground connection between the external  
components and the LTM8033.  
6. Use vias to connect the GND copper area to the board’s  
internal ground planes. Liberally distribute these GND  
vias to provide both a good ground connection and  
thermal path to the internal planes of the printed circuit  
board. Pay attention to the location and density of the  
thermal vias in Figure 4. The LTM8033 can benefit from  
theheatsinkingaffordedbyviasthatconnecttointernal  
GND planes at these locations, due to their proximity  
to internal power handling components. The optimum  
number of thermal vias depends upon the printed  
circuit board design. For example, a board might use  
very small via holes. It should employ more thermal  
vias than a board that uses larger holes.  
A few rules to keep in mind are:  
1. Place the R  
and R resistors as close as possible to  
T
ADJ  
their respective pins.  
2. Place the C and C capacitors as close as possible  
IN  
FIN  
to the V , FIN and GND connections of the LTM8033.  
IN  
A haphazardly placed C capacitor may impair EMI  
FIN  
performance.  
3. Place the C  
capacitors as close as possible to the  
OUT  
V
OUT  
and GND connection of the LTM8033.  
PG SYNC  
FIN  
GND  
RUN/SS  
R
ADJ  
C
FIN  
R
T
SHARE  
GND  
LTM8033  
BIAS  
AUX  
C
C
IN  
OUT  
V
GND  
V
IN  
OUT  
THERMAL VIAS TO GND  
Figure 4. Layout Showing Suggested External  
Components, GND Plane and Thermal Vias  
8033fb  
16  
For more information www.linear.com/LTM8033  
LTM8033  
APPLICATIONS INFORMATION  
Hot-Plugging Safely  
conditions as a whole, of which the LTM8033 is typically  
only a component, so conducted emissions are not ad-  
dressed at this level.  
The small size, robustness and low impedance of ceramic  
capacitors make them an attractive option for the input  
bypass capacitor of LTM8033. However, these capacitors  
can cause problems if the LTM8033 is plugged into a live  
supply (see Application Note 88 for a complete discus-  
sion). The low loss ceramic capacitor combined with  
stray inductance in series with the power source forms an  
Thermal Considerations  
The LTM8033 output current may need to be derated if it  
is required to operate in a high ambient temperature or  
deliver a large amount of continuous power. The amount  
of current derating is dependent upon the input voltage,  
output power and ambient temperature. The temperature  
rise curves given in the Typical Performance Charac-  
teristics section can be used as a guide. These curves  
underdamped tank circuit, and the voltage at the V pin  
IN  
of the LTM8033 can ring to more than twice the nominal  
inputvoltage,possiblyexceedingtheLTM8033’sratingand  
damagingthepart.Asimilarphenomenoncanoccurinside  
the LTM8033 module, at the output of the integrated EMI  
filter (FIN), with the same potential of damaging the part.  
If the input supply is poorly controlled or the user will be  
plugging the LTM8033 into an energized supply, the input  
network should be designed to prevent this overshoot.  
This can be accomplished by installing a small resistor  
2
were generated by an LTM8033 mounted to a 40cm  
4-layer FR4 printed circuit board. Boards of other sizes  
and layer count can exhibit different thermal behavior, so  
it is incumbent upon the user to verify proper operation  
over the intended system’s line, load and environmental  
operating conditions.  
in series to V , but the most popular method of control-  
IN  
The thermal resistance numbers listed in the Pin Con-  
figuration are based on modeling the µModule package  
mounted on a test board specified per JESD51-9 “Test  
Boards for Area Array Surface Mount Package Thermal  
Measurements.” The thermal coefficients provided in this  
page are based on JESD 51-12 “Guidelines for Reporting  
and Using Electronic Package Thermal Information.”  
ling input voltage overshoot is adding an electrolytic bulk  
capacitor to the V or FIN net. This capacitor’s relatively  
IN  
high equivalent series resistance damps the circuit and  
eliminates the voltage overshoot. The extra capacitor  
improves low frequency ripple filtering and can slightly  
improve the efficiency of the circuit, though it can be a  
large component in the circuit.  
Forincreasedaccuracyandfidelitytotheactualapplication,  
many designers use FEA to predict thermal performance.  
To that end, the Pin Configuration typically gives four  
thermal coefficients:  
Electromagnetic Compliance  
The LTM8033 was evaluated by an independent nation-  
ally recognized test lab and found to be compliant with  
EN 55022 class B: 2006 by a wide margin. Sample graphs  
oftheLTM8033’sradiatedEMCperformancearegiveninthe  
TypicalPerformanceCharacteristicssection,whilefurther  
data, operating conditions and test set-up are detailed in  
the electromagnetic compatibility test report, available  
on the Linear Technology website. Conducted emissions  
requirements may be met by adding an appropriate input  
power line filter. The proper implementation of this filter  
depends upon the system operating and performance  
θ – Thermal resistance from junction to ambient.  
JA  
θ  
– Thermal resistance from junction to the  
JCBOTTOM  
bottom of the product case.  
θ  
– Thermal resistance from junction to top of  
JCTOP  
the product case.  
θ – Thermal resistance from junction to the printed  
JB  
circuit board.  
8033fb  
17  
For more information www.linear.com/LTM8033  
LTM8033  
APPLICATIONS INFORMATION  
While the meaning of each of these coefficients may seem  
to be intuitive, JEDEC has defined each to avoid confu-  
sion and inconsistency. These definitions are given in  
JESD 51-12, and are quoted or paraphrased in the fol-  
lowing:  
θ is the junction-to-board thermal resistance where  
JB  
almost all of the heat flows through the bottom of the  
µModule and into the board, and is really the sum of  
the θ  
and the thermal resistance of the bottom  
JCBOTTOM  
of the part through the solder joints and through a por-  
tion of the board. The board temperature is measured a  
specified distance from the package, using a two sided,  
two layer board. This board is described in JESD 51-9.  
θ is the natural convection junction-to-ambient air  
JA  
thermal resistance measured in a one cubic foot sealed  
enclosure.Thisenvironmentissometimesreferredtoas  
“still air” although natural convection causes the air to  
move. Thisvalueisdeterminedwiththepartmountedto  
a JESD 51-9 defined test board, which does not reflect  
an actual application or viable operating condition.  
The most appropriate way to use the coefficients is when  
running a detailed thermal analysis, such as FEA, which  
considers all of the thermal resistances simultaneously.  
None of them can be individually used to accurately pre-  
dict the thermal performance of the product, so it would  
be inappropriate to attempt to use any one coefficient to  
correlate to the junction temperature versus load graphs  
given in the LTM8033 data sheet.  
θ  
is the junction-to-board thermal resistance  
JCBOTTOM  
with all of the component power dissipation flowing  
through the bottom of the package. In the typical  
µModule, the bulk of the heat flows out the bottom of  
the package, but there is always heat flow out into the  
ambientenvironment.Asaresult,thisthermalresistance  
valuemaybeusefulforcomparingpackagesbutthetest  
conditions don’t generally match the user’s application.  
A graphical representation of these thermal resistances  
is given in Figure 5.  
The blue resistances are contained within the µModule,  
and the green are outside.  
θ  
is determined with nearly all of the component  
JCTOP  
The die temperature of the LTM8033 must be lower than  
the maximum rating of 125°C, so care should be taken  
in the layout of the circuit to ensure good heat sinking  
of the LTM8033. The bulk of the heat flow out of the  
LTM8033isthroughthebottomofthemoduleandtheLGA  
pads into the printed circuit board. Consequently a poor  
printed circuit board design can cause excessive heating,  
resulting in impaired performance or reliability. Please  
power dissipation flowing through the top of the pack-  
age.AstheelectricalconnectionsofthetypicalµModule  
are on the bottom of the package, it is rare for an ap-  
plication to operate such that most of the heat flows  
from the junction to the top of the part. As in the case  
of θ  
, this value may be useful for comparing  
JCBOTTOM  
packages but the test conditions don’t generally match  
the user’s application.  
JUNCTION-TO-AMBIENT RESISTANCE (JESD 51-9 DEFINED BOARD)  
JUNCTION-TO-CASE (TOP)  
RESISTANCE  
CASE (TOP)-TO-AMBIENT  
RESISTANCE  
JUNCTION-TO-BOARD RESISTANCE  
JUNCTION  
A
t
JUNCTION-TO-CASE  
(BOTTOM) RESISTANCE  
CASE (BOTTOM)-TO-BOARD  
BOARD-TO-AMBIENT  
RESISTANCE  
RESISTANCE  
8033 F05  
µMODULE REGULATOR  
Figure 5  
8033fb  
18  
For more information www.linear.com/LTM8033  
LTM8033  
APPLICATIONS INFORMATION  
refer to the PCB Layout section for printed circuit board  
design suggestions.  
to temperatures above the 125°C rating for prolonged  
or repetitive intervals, which may damage or impair the  
reliability of the device.  
The LTM8033 is equipped with a thermal shutdown that  
willinhibitpowerswitchingathighjunctiontemperatures.  
Theactivationthresholdofthisfunction,however,isabove  
125°C to avoid interfering with normal operation. Thus,  
it follows that prolonged or repetitive operation under a  
condition in which the thermal shutdown activates neces-  
sarily means that the internal components are subjected  
Finally, be aware that at high ambient temperatures the  
internal Schottky diode will have significant leakage cur-  
rent(seetheTypicalPerformanceCharacteristicssection)  
increasing the quiescent current of the LTM8033.  
TYPICAL APPLICATIONS  
0.8V Step-Down Converter  
LTM8033  
V
V
0.8V  
3A  
IN  
OUT  
V
V
OUT  
IN  
3.6V TO 15V  
4.7µF  
400µF  
BIAS  
AUX  
RUN/SS  
FIN  
PGOOD  
10µF  
SHARE  
RT SYNC GND ADJ  
8033 TA02  
182k  
30M  
f = 230kHz  
1.8V Step-Down Converter  
LTM8033  
V
V
1.8V  
3A  
IN  
OUT  
V
V
OUT  
IN  
3.6V TO 36V  
4.7µF  
400µF  
2.8V TO 25V  
10µF  
BIAS  
AUX  
RUN/SS  
FIN  
PGOOD  
SHARE  
RT SYNC GND ADJ  
8033 TA03  
147k  
383k  
f = 285kHz  
NOTE: DO NOT ALLOW V + BIAS TO BE GREATER THAN 56V.  
IN  
8033fb  
19  
For more information www.linear.com/LTM8033  
LTM8033  
TYPICAL APPLICATIONS  
2.5V Step-Down Converter  
LTM8033  
V
*
V
2.5V  
3A  
IN  
OUT  
V
V
OUT  
IN  
4.1V TO 36V  
4.7µF  
300µF  
SHARE  
BIAS  
AUX  
2.8V to 25V  
10µF  
RUN/SS  
FIN  
PGOOD  
RT SYNC GND ADJ  
8033 TA04  
118k  
226k  
f = 345kHz  
NOTE: DO NOT ALLOW V + BIAS TO BE GREATER THAN 56V.  
IN  
* RUNNING VOLTAGE RANGE. PLEASE REFER TO THE  
APPLICATIONS INFORMATION SECTION FOR START-UP DETAILS.  
5V Step-Down Converter  
LTM8033  
V
V
5V  
3A  
IN  
OUT  
V
V
OUT  
IN  
7.5V TO 36VDC  
100µF  
SHARE  
RUN/SS  
FIN  
AUX  
BIAS  
PGOOD  
4.7µF  
RT SYNC GND ADJ  
93.1k  
4.7µF  
76.8k  
8033 TA05  
f = 500kHz  
8V Step-Down Converter  
LTM8033  
V
*
V
8V  
3A  
IN  
OUT  
V
V
OUT  
IN  
11V TO 36V  
4.7µF  
SHARE  
RUN/SS  
FIN  
AUX  
BIAS  
PGOOD  
47µF  
1µF  
RT SYNC GND ADJ  
54.9k  
52.3k  
f = 700kHz  
8033 TA06  
* RUNNING VOLTAGE RANGE. PLEASE REFER TO THE  
APPLICATIONS INFORMATION SECTION FOR START-UP DETAILS.  
8033fb  
20  
For more information www.linear.com/LTM8033  
LTM8033  
TYPICAL APPLICATIONS  
Current Sharing Two LTM8033 Parts  
LTM8033  
V
*
V
2.5V  
5.8A  
IN  
OUT  
V
V
OUT  
IN  
4.8V TO 36V  
FIN  
AUX  
BIAS  
10µF  
RUN/SS  
SHARE  
PGOOD  
4.7µF  
RT SYNC GND ADJ  
137k  
113k  
2.8V to 25V  
OPTIONAL  
SYNCHRONIZATION  
CLOCK  
LTM8033  
V
V
OUT  
IN  
FIN  
AUX  
BIAS  
RUN/SS  
SHARE  
PGOOD  
300µF  
10µF  
4.7µF  
RT SYNC GND ADJ  
137k  
8033 TA07  
* RUNNING VOLTAGE RANGE. PLEASE REFER TO THE APPLICATIONS  
INFORMATION SECTION FOR START-UP DETAILS.  
NOTE: SYNCHRONIZE THE TWO MODULES TO AVOID BEAT  
FREQUENCIES, IF NECESSARY. OTHERWISE, TIE EACH SYNC TO GND.  
8033fb  
21  
For more information www.linear.com/LTM8033  
LTM8033  
PACKAGE DESCRIPTION  
Pin Assignment Table  
(Arranged by Pin Number)  
PIN  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
NAME  
PIN  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
NAME  
PIN  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
NAME  
PIN  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
NAME  
PIN  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
NAME  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
PIN  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
NAME  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
V
V
V
OUT  
V
OUT  
V
OUT  
OUT  
OUT  
OUT  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
SHARE  
ADJ  
RT  
PGOOD  
SYNC  
GND  
PIN  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
NAME  
GND  
GND  
AUX  
PIN  
NAME  
PIN  
J1  
NAME  
PIN  
K1  
K2  
K3  
NAME  
PIN  
L1  
NAME  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
V
V
IN  
IN  
IN  
J2  
L2  
J3  
L3  
BIAS  
GND  
GND  
GND  
RUN  
H5  
H6  
GND  
GND  
J5  
J6  
GND  
GND  
K5  
K6  
GND  
GND  
L5  
L6  
GND  
GND  
J8  
FIN  
K8  
FIN  
L8  
FIN  
PACKAGE PHOTOGRAPHS  
8033fb  
22  
For more information www.linear.com/LTM8033  
LTM8033  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
Z
b b b  
Z
4 . 4 4 5  
3 . 1 7 5  
1 . 9 0 5  
0 . 6 3 5  
0 . 6 3 5  
1 . 9 0 5  
3 . 1 7 5  
4 . 4 4 5  
a a a  
Z
8033fb  
23  
For more information www.linear.com/LTM8033  
LTM8033  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
Z
/ / b b b  
Z
4 . 4 4 5  
3 . 1 7 5  
1 . 9 0 5  
0 . 6 3 5  
0 . 6 3 5  
0 . 0 0 0  
1 . 9 0 5  
3 . 1 7 5  
4 . 4 4 5  
a a a  
Z
8033fb  
24  
For more information www.linear.com/LTM8033  
LTM8033  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
04/14 Add BGA package option  
1, 2, 22, 24  
B
09/14 BGA ball A1 was missing, corrected  
2
Changed quiescent current V and BIAS from 20µA and 50µA to 30µA and 75µA, respectively  
13  
IN  
8033fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
25  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LTM8033  
TYPICAL APPLICATION  
3.3V Step-Down Converter  
LTM8033  
V
V
3.3V  
3A  
IN  
OUT  
V
V
OUT  
IN  
5.5V TO 36VDC  
100µF  
SHARE  
RUN/SS  
FIN  
AUX  
BIAS  
PGOOD  
4.7µF  
RT SYNC GND ADJ  
10µF  
93.1k  
8033 TA08  
154k  
f = 425kHz  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTM8031  
Ultralow Noise EMC 1A µModule Regulator  
EN55022 Class B Compliant, 3.6V ≤ V ≤ 36V; 0.8V ≤ V  
≤ 10V,  
≤ 10V  
IN  
OUT  
OUT  
9mm × 15mm × 2.82mm LGA  
LTM8032  
LTM4613  
LTM4612  
LTM4624  
Ultralow Noise EMC 2A µModule Regulator  
EN55022 Class B Compliant, 3.6V ≤ V ≤ 36V; 0.8V ≤ V  
IN  
9mm × 15mm × 2.82mm LGA and 9mm × 15mm × 3.42mm BGA  
36V , 8A EN55022 Class B Certified DC/DC  
5V ≤ V ≤ 36V, 3.3V ≤ V  
≤ 15V, PLL Input, V  
Tracking and Margining,  
Tracking and Margining,  
IN  
IN  
OUT  
OUT  
Step-Down μModule Regulator  
15mm × 15mm × 4.32mm LGA  
36V , 5A EN55022 Class B Certified DC/DC  
5V ≤ V ≤ 36V, 3.3V ≤ V ≤ 15V, PLL Input, V  
IN  
IN  
OUT  
OUT  
Step-Down μModule Regulator  
15mm × 15mm × 2.82mm LGA  
14V , 4A Step-Down μModule Regulator in  
4V ≤ V ≤ 14V, 0.6V ≤ V  
≤ 5.5V, V  
Tracking, PGOOD, Light Load Mode,  
OUT  
IN  
IN  
OUT  
2
tiny 6.25mm × 6.25mm × 5.01mm BGA  
Complete Solution in 1cm (Single-Sided PCB)  
8033fb  
LT 0914 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
26  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTM8033  
© LINEAR TECHNOLOGY CORPORATION 2010  

相关型号:

LTM8040

36V, 1A μModule LED Driver
Linear

LTM8040EV#PBF

LTM8040 - 36V, 1A &#181;Module (Power Module) LED Driver and Current Source; Package: LGA; Pins: 66; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8040EV-PBF

36V, 1A μModule LED Driver
Linear

LTM8040IV#PBF

LTM8040 - 36V, 1A &#181;Module (Power Module) LED Driver and Current Source; Package: LGA; Pins: 66; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8040IV-PBF

36V, 1A μModule LED Driver
Linear

LTM8040V

36V, 1A μModule LED Driver
Linear

LTM8042

μModule Boost LED Driver and Current Source
Linear

LTM8042-1

38VIN Boost μModule Regulator for LED Drive with 10A Switch
Linear

LTM8042-1_15

Module Boost LED Driver and Current Source
Linear

LTM8042EV#PBF

LTM8042/LTM8042-1 - &#181;Module (Power Module) Boost LED Driver and Current Source; Package: LGA; Pins: 77; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8042EV-1PBF

μModule Boost LED Driver and Current Source
Linear

LTM8042EVPBF

μModule Boost LED Driver and Current Source
Linear