LTM8055IY [Linear]

LTM8055 - 36VIN, 8.5A Buck-Boost µModule (Power Module) Regulator; Package: BGA; Pins: 121; Temperature Range: -40°C to 85°C;
LTM8055IY
型号: LTM8055IY
厂家: Linear    Linear
描述:

LTM8055 - 36VIN, 8.5A Buck-Boost µModule (Power Module) Regulator; Package: BGA; Pins: 121; Temperature Range: -40°C to 85°C

开关
文件: 总26页 (文件大小:1560K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM8055/LTM8055-1  
36V , 8.5A Buck-Boost  
IN  
µModule Regulator  
FEATURES  
DESCRIPTION  
The LTM®8055/LTM8055-1 is a 36V , buck-boost  
n
Complete Buck-Boost Switch Mode Power Supply  
OUT  
Wide Input Voltage Range: 5V to 36V  
12V/3A Output from 6V  
IN  
V
Equal, Greater, Less Than V  
µModule® (micromodule) regulator. Included in the pack-  
age are the switching controller, power switches, inductor  
and support components. A resistor to set the switching  
frequency, a resistor divider to set the output voltage,  
and input and output capacitors are all that are needed  
to complete the design. Other features such as input and  
output average current regulation may be implemented  
with just a few components. The LTM8055/LTM8055-1  
operates over an input voltage range of 5V to 36V, and  
can regulate output voltages between 1.2V and 36V. The  
SYNCinputandCLKOUToutputalloweasysynchronization.  
n
IN  
n
n
n
n
n
n
n
n
n
n
n
n
n
IN  
IN  
12V/6A Output from 12V  
12V/8.5A Output from 24V  
IN  
Up to 97.5% Efficient  
Adjustable Input and Output Average Current Limits  
Input and Output Current Monitors  
Parallelable for Increased Output Current  
Wide Output Voltage Range: 1.2V to 36V  
Selectable Switching Frequency: 100kHz to 800kHz  
Synchronization from 200kHz to 700kHz  
External Compensation (LTM8055-1)  
The LTM8055/LTM8055-1 is housed in a compact over-  
molded ball grid array (BGA) package suitable for auto-  
mated assembly by standard surface mount equipment.  
The LTM8055/LTM8055-1 is RoHS compliant.  
15mm × 15mm × 4.92mm BGA Package  
Buck-Boost Selection Table  
APPLICATIONS  
LTM8054  
LTM8055/LTM8055-1  
LTM8056  
n
High Power Battery-Operated Devices  
V
V
V
(Operation)  
Abs Max  
36  
40  
40  
5.4  
36  
40  
40  
8.5  
58  
60  
60  
5.5  
IN  
n
Industrial Control  
IN  
n
Solar Powered Voltage Regulator  
Abs Max  
OUT  
n
Solar Powered Battery Charging  
I
(Peak)  
OUT  
24V , 12V  
All registered trademarks and trademarks are the property of their respective owners.  
IN  
OUT  
Package  
15 × 11.25mm ×  
3.42mm BGA  
15 × 15mm × 4.92mm BGA  
Pin and Function Compatible  
TYPICAL APPLICATION  
Maximum Output Current and Efficiency vs VIN  
12VOUT from 5VIN to 36VIN Buck-Boost Regulator  
ꢏꢅ  
ꢔꢒ  
ꢔꢐ  
ꢔꢑ  
ꢔꢓ  
ꢔꢅ  
ꢒꢒ  
ꢒꢐ  
ꢊꢌꢌꢁCꢁꢊꢂCꢍ  
ꢇꢋꢌꢍꢍꢎ  
ꢇꢋꢌꢍꢍꢏꢐ  
ꢁꢂ  
ꢁꢂ  
ꢈꢑꢊ  
ꢈꢑꢊ  
ꢈꢑꢊ  
ꢍꢀ ꢊꢈ ꢡꢜꢀ  
ꢐꢚꢀ  
ꢃꢀ  
ꢁꢂ  
ꢆꢇꢈꢉꢇꢈ  
ꢁꢂ  
CꢇRRꢊꢂꢈ  
ꢜꢋꢛꢓ  
ꢐꢌꢌꢗ  
ꢐꢐꢗ  
ꢝꢞꢟꢛꢓ  
ꢍꢌꢀ  
ꢠꢚ  
Rꢑꢂ  
Cꢊꢆ  
ꢃꢃ  
ꢃꢕꢂC  
Cꢈꢇꢖ  
Rꢊ  
ꢚꢚꢛꢓ  
ꢚꢍꢀ  
Cꢆꢒꢈꢑꢊ  
ꢁꢂꢇꢈꢂ  
ꢈꢑꢊꢇꢈꢂ  
ꢓꢔ  
ꢡꢜꢞꢍꢗ  
ꢆꢆ ꢇꢈꢅꢉ  
ꢄꢂꢅ  
ꢋꢌꢍꢍ ꢊꢘꢌꢐꢙ  
ꢒꢑ  
ꢏꢅ  
ꢓꢅ  
ꢗꢅ  
ꢑꢅ  
ꢤ ꢜꢌꢌꢗꢥꢦ  
ꢃꢀꢄ  
ꢃꢣ  
ꢁꢂ  
ꢒꢅꢕꢕ ꢈꢋꢅꢏꢖ  
Rev C  
1
Document Feedback  
For more information www.analog.com  
LTM8055/LTM8055-1  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
V , SV , V , RUN, I , I Voltage.....................40V  
IN OUT  
ꢈꢆꢑ ꢅꢉꢏꢩ  
IN  
IN OUT  
ꢀꢁꢂꢃ ꢚ  
FB, SYNC, CTL, MODE Voltage ...................................6V  
ꢌꢅ  
ꢉꢂ  
ꢉꢂ  
I
, I Voltage .............................................6V  
INMON OUTMON  
ꢒꢒ  
ꢒꢓ  
LL Voltage.................................................................15V  
Maximum Junction Temperature (Notes 2, 3)....... 125°C  
Storage Temperature.............................. –55°C to 125°C  
Peak Solder Reflow Body Temperature ................. 245°C  
ꢀꢁꢂꢃ ꢒ  
ꢝꢂꢎ  
ꢉꢂ  
Rꢇꢂ  
ꢀꢁꢂꢃ ꢄ  
ꢆꢇꢈ  
ꢉꢂꢍꢆꢂ  
ꢆꢇꢈꢍꢆꢂ  
ꢝꢂꢎ  
C
ꢉꢆꢇꢈ  
ꢊꢊ  
Rꢈ ꢋꢀ ꢌꢌ  
Cꢊꢃꢆꢇꢈ  
ꢍꢆꢎꢏ ꢌꢐꢂC  
Cꢆꢍꢑ  
Cꢈꢊ  
ꢀꢝꢁ ꢑꢁCꢃꢁꢝꢏ  
ꢒꢄꢒꢞꢊꢏꢁꢎ ꢟꢒꢘꢠꢠ ꢡ ꢒꢘꢠꢠ ꢡ ꢙꢢꢔꢄꢠꢠꢣ  
ꢥ ꢒꢄꢘꢦCꢧ θ ꢥ ꢄꢓꢢꢘꢦCꢨθ ꢥ ꢒꢒꢢꢓꢦCꢨθ ꢥ ꢄꢒꢢꢄꢦCꢨθ ꢥ ꢒꢓꢢꢘꢦCꢨꢧ  
ꢛꢍꢁꢤ  
ꢛꢁ ꢛCꢪꢫꢬꢬꢫꢠ ꢛCꢬꢫꢭ ꢛꢀ  
ꢩꢏꢉꢝꢜꢈ ꢥ ꢄꢢꢕꢮꢧ θ ꢅꢁꢊꢇꢏꢌ ꢎꢏꢈꢏRꢍꢉꢂꢏꢎ ꢑꢏR ꢛꢏꢎꢏC ꢛꢏꢌꢎꢘꢒꢞꢔꢧ ꢘꢒꢞꢒꢄ  
ORDER INFORMATION  
PART NUMBER  
TERMINAL FINISH  
PART MARKING*  
PACKAGE  
TYPE  
MSL  
RATING  
TEMPERATURE RANGE  
(SEE NOTE 2)  
DEVICE  
FINISH CODE  
LTM8055EY#PBF  
LTM8055IY#PBF  
LTM8055IY  
SAC305 (RoHS)  
SAC305 (RoHS)  
SnPb(63/37)  
LTM8055Y  
LTM8055Y  
LTM8055Y  
LTM8055Y  
LTM8055Y  
LTM8055Y-1  
LTM8055Y-1  
e1  
e1  
e0  
e1  
e0  
e1  
e1  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
BGA  
3
3
3
3
3
3
3
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
LTM8055MPY#PBF  
LTM8055MPY  
SAC305 (RoHS)  
SnPb(63/37)  
LTM8055EY-1#PBF  
LTM8055IY-1#PBF  
SAC305 (RoHS)  
SAC305 (RoHS)  
• Device temperature grade is indicated by a label on the shipping  
container.  
This product is not recommended for second side reflow.  
This product is moisture sensitive. For more information, go to  
Recommended BGA PCB Assembly and Manufacturing Procedures.  
• Pad or ball finish code is per IPC/JEDEC J-STD-609.  
BGA Package and Tray Drawings  
Rev C  
2
For more information www.analog.com  
LTM8055/LTM8055-1  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. RUN = 1.5V unless otherwise noted. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
Minimum Input Voltage  
Output DC Voltage  
V
= SV  
5.0  
V
IN  
IN  
FB = V  
R
Through 100k  
1.2  
36  
V
V
OUT  
= 100k/3.40k  
FB  
Output DC Current  
V
V
= 6V, V  
= 12V  
OUT  
OUT  
3
8.5  
A
A
IN  
IN  
= 24V, V  
= 12V  
Quiescent Current Into V (Tied to SV )  
RUN = 0.3V (Disabled)  
No Load, MODE = 0.3V (DCM)  
No Load, MODE = 1.5V (FCM)  
0.1  
8
45  
1
µA  
mA  
mA  
IN  
IN  
30  
100  
Output Voltage Line Regulation  
Output Voltage Load Regulation  
Output RMS Voltage Ripple  
Switching Frequency  
5V < V < 36V, I  
= 1A  
OUT  
0.5  
0.5  
25  
%
%
IN  
V
V
= 12V, 0.1A < I  
< 6A  
IN  
IN  
OUT  
= 12V, I  
= 3A  
mV  
OUT  
R = 453k  
100  
800  
kHz  
kHz  
T
R = 24.9k  
T
Voltage at FB Pin  
1.188  
1.176  
1.2  
25  
1.212  
1.220  
V
V
l
l
RUN Falling Threshold  
RUN Hysteresis  
LTM8055/LTM8055-1 Stops Switching  
LTM8055/LTM8055-1 Starts Switching  
LTM8055/LTM8055-1 Disabled  
1.15  
1.25  
V
mV  
V
RUN Low Threshold  
RUN Pin Current  
0.3  
RUN = 1V  
RUN = 1.6V  
2
3
5
100  
µA  
nA  
I
Bias Current  
90  
µA  
mV  
µA  
IN  
l
l
Input Current Sense Threshold (I -V )  
44  
56  
IN IN  
I
Bias Current  
20  
OUT  
Output Current Sense Threshold (V -I  
)
V
= Open  
CTL  
54.5  
53  
61.5  
63  
mV  
mV  
OUT OUT  
I
I
Voltage  
LTM8055/LTM8055-1 in Input Current Limit  
LTM8055/LTM8055-1 in Output Current Limit  
0.96  
1.14  
1.04  
1.26  
V
V
INMON  
Voltage  
OUTMON  
CTL Input Bias Current  
SS Pin Current  
V
V
= 0V  
22  
35  
µA  
µA  
V
CTL  
= 0V  
SS  
CLKOUT Output High  
CLKOUT Output Low  
10k to GND  
10k to 5V  
4
0.7  
0.3  
V
SYNC Input Low Threshold  
SYNC Input High Threshold  
SYNC Bias Current  
V
1.5  
V
SYNC = 1V  
11  
µA  
V
MODE Input Low Threshold  
MODE Input High Threshold  
0.3  
1.5  
V
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
the full –55°C to 125°C internal operating temperature range. Note that  
the maximum internal temperature is determined by specific operating  
conditions in conjunction with board layout, the rated package thermal  
resistance and other environmental factors.  
Note 2: The LTM8055E/LTM8055E-1 is guaranteed to meet performance  
specifications from 0°C to 125°C internal. Specifications over the full  
–40°C to 125°C internal operating temperature range are assured by  
design, characterization and correlation with statistical process controls.  
The LTM8055I/LTM8055I-1 is guaranteed to meet specifications over  
the full –40°C to 125°C internal operating temperature range. The  
LTM8055MP/LTM8055MP-1 is guaranteed to meet specifications over  
Note 3: The LTM8055/LTM8055-1 contains overtemperature protection  
that is intended to protect the device during momentary overload  
conditions. The internal temperature exceeds the maximum operating  
junction temperature when the overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
Rev C  
3
For more information www.analog.com  
LTM8055/LTM8055-1  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency vs Output Current  
Efficiency vs Output Current  
(5VOUT  
Efficiency vs Output Current  
(8VOUT  
(3.3VOUT  
)
)
)
ꢎꢉꢉ  
ꢑꢉ  
ꢏꢉ  
ꢐꢉ  
ꢒꢉ  
ꢎꢉꢉ  
ꢑꢉ  
ꢏꢉ  
ꢐꢉ  
ꢒꢉ  
ꢎꢉꢉ  
ꢑꢉ  
ꢏꢉ  
ꢐꢉ  
ꢒꢉ  
ꢓꢕ  
ꢓꢕ  
ꢓꢖ  
ꢋꢅ  
ꢋꢅ  
ꢋꢅ  
ꢎꢒꢕ  
ꢒꢐꢕ  
ꢖꢏꢕ  
ꢎꢒꢕ  
ꢒꢐꢕ  
ꢖꢏꢕ  
ꢎꢒꢖ  
ꢒꢐꢖ  
ꢕꢏꢖ  
ꢋꢅ  
ꢋꢅ  
ꢋꢅ  
ꢋꢅ  
ꢋꢅ  
ꢋꢅ  
ꢋꢅ  
ꢋꢅ  
ꢋꢅ  
ꢎꢉ  
ꢎꢉ  
ꢎꢉ  
ꢀꢁꢂꢃꢁꢂ CꢁRRꢄꢅꢂ ꢆꢇꢈ  
ꢀꢁꢂꢃꢁꢂ CꢁRRꢄꢅꢂ ꢆꢇꢈ  
ꢀꢁꢂꢃꢁꢂ CꢁRRꢄꢅꢂ ꢆꢇꢈ  
ꢑꢉꢓꢓ ꢔꢉꢒ  
ꢑꢉꢓꢓ ꢔꢉꢎ  
ꢑꢉꢓꢓ ꢔꢉꢕ  
Efficiency vs Output Current  
(12VOUT  
Efficiency vs Output Current  
(18VOUT  
Efficiency vs Output Current  
(24VOUT  
)
)
)
ꢎꢉꢉ  
ꢑꢉ  
ꢏꢉ  
ꢐꢉ  
ꢒꢉ  
ꢎꢉꢉ  
ꢑꢉ  
ꢏꢉ  
ꢐꢉ  
ꢒꢉ  
ꢍꢎꢎ  
ꢑꢎ  
ꢏꢎ  
ꢐꢎ  
ꢒꢎ  
ꢓꢗ  
ꢓꢕ  
ꢋꢅ  
ꢓꢗ  
ꢋꢅ  
ꢊꢅ  
ꢎꢒꢗ  
ꢎꢒꢕ  
ꢍꢒꢗ  
ꢋꢅ  
ꢋꢅ  
ꢋꢅ  
ꢋꢅ  
ꢋꢅ  
ꢋꢅ  
ꢊꢅ  
ꢊꢅ  
ꢊꢅ  
ꢒꢐꢗ  
ꢕꢏꢗ  
ꢒꢐꢕ  
ꢖꢏꢕ  
ꢒꢐꢗ  
ꢕꢏꢗ  
ꢀꢁꢂꢃꢁꢂ CꢁRRꢄꢅꢂ ꢆꢇꢈ  
ꢀꢁꢂꢃꢁꢂ CꢁRRꢄꢅꢂ ꢆꢇꢈ  
ꢀꢁꢂꢃꢁꢂ CꢁRRꢄꢅꢂ ꢆꢇꢈ  
ꢑꢉꢓꢓ ꢔꢉꢐ  
ꢑꢉꢓꢓ ꢔꢉꢓ  
ꢑꢎꢓꢓ ꢔꢎꢏ  
Efficiency vs Output Current  
Input Current vs Output Current  
Input Current vs Output Current  
(5VOUT  
(36VOUT  
)
(3.3VOUT  
)
)
ꢍꢎꢎ  
ꢓꢎ  
ꢏꢎ  
ꢐꢎ  
ꢑꢎ  
ꢒꢎ  
ꢔꢎ  
ꢊꢋ  
ꢋꢔ  
ꢐꢓ  
ꢉꢅ  
ꢉꢅ  
ꢏꢎꢔ  
ꢎꢌꢔ  
ꢍꢐꢔ  
ꢊꢏꢓ  
ꢏꢎꢓ  
ꢔꢍꢓ  
ꢉꢅ  
ꢉꢅ  
ꢉꢅ  
ꢉꢅ  
ꢉꢅ  
ꢉꢅ  
ꢒꢘ  
ꢊꢅ  
ꢍꢗꢘ  
ꢊꢅ  
ꢊꢅ  
ꢊꢅ  
ꢗꢔꢘ  
ꢖꢑꢘ  
ꢏꢑ  
ꢊꢋ  
ꢀꢁꢂꢃꢁꢂ CꢁRRꢄꢅꢂ ꢆꢇꢈ  
ꢀꢁꢂꢃꢁꢂ CꢁRRꢄꢅꢂ ꢆꢇꢈ  
ꢀꢁꢂꢃꢁꢂ CꢁRRꢄꢅꢂ ꢆꢇꢈ  
ꢏꢎꢒꢒ ꢕꢎꢐ  
ꢒꢑꢋꢋ ꢓꢑꢒ  
ꢌꢋꢐꢐ ꢑꢋꢒ  
Rev C  
4
For more information www.analog.com  
LTM8055/LTM8055-1  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input Current vs Output Current  
Input Current vs Output Current  
(12VOUT  
Input Current vs Output Current  
(18VOUT  
(8VOUT  
)
)
)
ꢊꢋ  
ꢊꢋ  
ꢊꢋ  
ꢐꢔ  
ꢉꢅ  
ꢐꢒ  
ꢉꢅ  
ꢊꢏꢔ  
ꢏꢎꢔ  
ꢓꢍꢔ  
ꢊꢏꢒ  
ꢏꢎꢒ  
ꢓꢍꢒ  
ꢉꢅ  
ꢉꢅ  
ꢉꢅ  
ꢉꢅ  
ꢉꢅ  
ꢉꢅ  
ꢐꢒ  
ꢉꢅ  
ꢊꢏꢒ  
ꢏꢎꢒ  
ꢓꢍꢒ  
ꢉꢅ  
ꢉꢅ  
ꢉꢅ  
ꢊꢋ  
ꢀꢁꢂꢃꢁꢂ CꢁRRꢄꢅꢂ ꢆꢇꢈ  
ꢀꢁꢂꢃꢁꢂ CꢁRRꢄꢅꢂ ꢆꢇꢈ  
ꢀꢁꢂꢃꢁꢂ CꢁRRꢄꢅꢂ ꢆꢇꢈ  
ꢌꢋꢐꢐ ꢑꢊꢊ  
ꢌꢋꢐꢐ ꢑꢊꢏ  
ꢌꢋꢐꢐ ꢑꢊꢋ  
Input Current vs Output Current  
(24VOUT  
Input Current vs Output Current  
)
(36VOUT  
)
Maximum Output Current vs VIN  
ꢊꢋ  
ꢋꢌ  
ꢐꢓ  
ꢉꢅ  
ꢊꢏꢓ  
ꢏꢎꢓ  
ꢒꢍꢓ  
ꢉꢅ  
ꢉꢅ  
ꢉꢅ  
ꢎꢕ  
ꢉꢅ  
ꢒꢔꢒꢀ  
ꢅꢆꢇ  
ꢒꢑꢕ  
ꢑꢍꢕ  
ꢐꢏꢕ  
ꢉꢅ  
ꢉꢅ  
ꢉꢅ  
ꢐꢀ  
ꢅꢆꢇ  
ꢍꢀ  
ꢅꢆꢇ  
ꢋꢌ  
ꢓꢌ  
ꢃꢀꢄ  
ꢒꢌ  
ꢏꢌ  
ꢀꢁꢂꢃꢁꢂ CꢁRRꢄꢅꢂ ꢆꢇꢈ  
ꢀꢁꢂꢃꢁꢂ CꢁRRꢄꢅꢂ ꢆꢇꢈ  
ꢁꢂ  
ꢌꢋꢐꢐ ꢑꢊꢒ  
ꢋꢓꢎꢎ ꢔꢒꢍ  
ꢍꢌꢐꢐ ꢑꢋꢐ  
Temperature Rise vs Output  
Temperature Rise vs Output  
Current (5VOUT)  
Maximum Output Current vs VIN  
Current (3.3VOUT  
)
ꢍꢎꢎ  
ꢏꢎ  
ꢐꢎ  
ꢑꢎ  
ꢒꢎ  
ꢋꢌ  
ꢍꢎꢎ  
ꢏꢎ  
ꢐꢎ  
ꢑꢎ  
ꢒꢎ  
ꢓꢖ  
ꢊꢅ  
ꢓꢕ  
ꢊꢅ  
ꢍꢒꢖ  
ꢊꢅ  
ꢍꢒꢕ  
ꢊꢅ  
ꢒꢑꢖ  
ꢊꢅ  
ꢒꢑꢕ  
ꢊꢅ  
ꢗꢐꢖ  
ꢊꢅ  
ꢖꢐꢕ  
ꢊꢅ  
ꢋꢐꢀ  
ꢋꢍꢀ  
ꢐꢏꢀ  
ꢓꢎꢀ  
ꢅꢆꢇ  
ꢅꢆꢇ  
ꢅꢆꢇ  
ꢅꢆꢇ  
ꢍꢎ  
ꢋꢌ  
ꢐꢌ  
ꢃꢀꢄ  
ꢓꢌ  
ꢏꢌ  
ꢍꢎ  
ꢀꢁꢂꢃꢁꢂ CꢁRRꢄꢅꢂ ꢆꢇꢈ  
ꢀꢁꢂꢃꢁꢂ CꢁRRꢄꢅꢂ ꢆꢇꢈ  
ꢁꢂ  
ꢏꢎꢓꢓ ꢔꢍꢕ  
ꢍꢌꢑꢑ ꢒꢋꢎ  
ꢏꢎꢓꢓ ꢔꢍꢏ  
Rev C  
5
For more information www.analog.com  
LTM8055/LTM8055-1  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Temperature Rise vs Output  
Current (8VOUT  
Temperature Rise vs Output  
Current (12VOUT  
Temperature Rise vs Output  
Current (18VOUT  
)
)
)
ꢍꢎꢎ  
ꢏꢎ  
ꢐꢎ  
ꢑꢎ  
ꢒꢎ  
ꢍꢎꢎ  
ꢏꢎ  
ꢐꢎ  
ꢑꢎ  
ꢒꢎ  
ꢍꢎꢎ  
ꢏꢎ  
ꢐꢎ  
ꢑꢎ  
ꢒꢎ  
ꢓꢖ  
ꢓꢕ  
ꢊꢅ  
ꢓꢕ  
ꢊꢅ  
ꢊꢅ  
ꢍꢒꢖ  
ꢒꢑꢖ  
ꢗꢐꢖ  
ꢍꢒꢕ  
ꢒꢑꢕ  
ꢖꢐꢕ  
ꢍꢒꢕ  
ꢒꢑꢕ  
ꢖꢐꢕ  
ꢊꢅ  
ꢊꢅ  
ꢊꢅ  
ꢊꢅ  
ꢊꢅ  
ꢊꢅ  
ꢊꢅ  
ꢊꢅ  
ꢊꢅ  
ꢍꢎ  
ꢀꢁꢂꢃꢁꢂ CꢁRRꢄꢅꢂ ꢆꢇꢈ  
ꢀꢁꢂꢃꢁꢂ CꢁRRꢄꢅꢂ ꢆꢇꢈ  
ꢀꢁꢂꢃꢁꢂ CꢁRRꢄꢅꢂ ꢆꢇꢈ  
ꢏꢎꢓꢓ ꢔꢍꢕ  
ꢏꢎꢓꢓ ꢔꢒꢍ  
ꢏꢎꢓꢓ ꢔꢒꢎ  
Temperature Rise vs Output  
Current (24VOUT  
Temperature Rise vs Output  
Current (36VOUT  
Output Voltage Ripple, Unmodified  
DC2017A Demo Board 12VOUT  
)
)
ꢍꢎꢎ  
ꢏꢎ  
ꢐꢎ  
ꢑꢎ  
ꢒꢎ  
ꢍꢎꢎ  
ꢏꢎ  
ꢐꢎ  
ꢑꢎ  
ꢒꢎ  
ꢝꢞꢆꢔꢌRꢞꢉ ꢟꢃꢕꢠ ꢠꢡꢁꢅꢏꢄ  
ꢏꢘꢐꢝꢠꢢ ꢆꢝꢡꢇꢃꢣꢃꢞR  
ꢀꢁꢂ  
ꢃꢄ  
ꢅꢆ ꢇꢈꢆꢉ  
ꢊꢋꢌCꢍꢎ  
ꢏꢐꢐꢑꢂꢒꢉꢃꢂ  
ꢏꢀꢂ  
ꢃꢄ  
ꢅꢆ ꢇꢈꢆꢉ  
ꢊꢋꢌCꢍꢓꢋꢈꢈꢔꢕꢎ  
ꢏꢐꢐꢑꢂꢒꢉꢃꢂ  
ꢅꢂ  
ꢃꢄ  
ꢓꢕ  
ꢓꢖ  
ꢊꢅ  
ꢊꢅ  
ꢖꢆ ꢇꢈꢆꢉ  
ꢊꢋꢈꢈꢔꢕꢎ  
ꢍꢒꢕ  
ꢍꢒꢖ  
ꢊꢅ  
ꢊꢅ  
ꢊꢅ  
ꢊꢅ  
ꢊꢅ  
ꢊꢅ  
ꢒꢑꢕ  
ꢖꢐꢕ  
ꢒꢑꢖ  
ꢕꢐꢖ  
ꢏꢐꢐꢑꢂꢒꢉꢃꢂ  
ꢗꢐꢘꢘ ꢙꢀꢁ  
ꢐꢚꢘꢛꢜꢒꢉꢃꢂ  
ꢀꢁꢂꢃꢁꢂ CꢁRRꢄꢅꢂ ꢆꢇꢈ  
ꢀꢁꢂꢃꢁꢂ CꢁRRꢄꢅꢂ ꢆꢇꢈ  
ꢏꢎꢓꢓ ꢔꢒꢒ  
ꢏꢎꢓꢓ ꢔꢒꢕ  
Maximum Output Current vs  
CTL Voltage, Unmodified  
DC2017A, 12VIN  
Start-Up Behavior, DC2017A,  
24VIN, 3A Resistive Load  
ꢋꢌ C  
ꢍꢍ  
C
ꢍꢍ  
ꢎ ꢆꢏꢆꢀꢀꢉꢐ  
ꢀꢁꢂꢃꢄꢁ  
C
ꢍꢍ  
ꢎ ꢆꢏꢀꢀꢉꢐ  
ꢅꢆꢇꢇ ꢈꢀꢇ  
ꢇꢆꢆꢉꢊꢂꢃꢄꢁ  
ꢔꢕꢒ ꢔꢕꢐ ꢔꢕꢎ ꢔꢕꢌ  
Cꢀꢁ ꢂꢃꢅꢆ ꢇꢂꢈ  
ꢓꢕꢒ ꢓꢕꢐ  
ꢌꢔꢏꢏ ꢅꢒꢎ  
Rev C  
6
For more information www.analog.com  
LTM8055/LTM8055-1  
PIN FUNCTIONS  
GND (Bank 1, Pin L1): Tie these GND pins to a local  
ground plane below the LTM8055/LTM8055-1 and the  
circuit components. In most applications, the bulk of the  
heatflowoutoftheLTM8055/LTM8055-1isthroughthese  
pads, so the printed circuit design has a large impact on  
the thermal performance of the part. See the PCB Layout  
and Thermal Considerations sections for more details.  
MODE (Pin G2): Switching Mode Input. The LTM8055/  
LTM8055-1 operates in forced continuous mode when  
MODE is open, and can operate in discontinuous switch-  
ing mode when MODE is low. In discontinuous switching  
mode, the LTM8055/LTM8055-1 will block reverse induc-  
tor current. This pin is normally left open or tied to LL.  
This pin may be tied to GND for the purpose of blocking  
reverse current if no output current sense resistor is used.  
Return the R /R feedback divider to this net.  
FB1 FB2  
RT (PinH1):TimingResistor.TheRT pinisusedtoprogram  
the switching frequency of the LTM8055/LTM8055-1 by  
connecting a resistor from this pin to ground. The range  
of oscillation is 100kHz to 800kHz. The Applications  
Information section of the data sheet includes a table  
to determine the resistance value based on the desired  
switching frequency. Minimize capacitance at this pin.  
V
(Bank 2): Power Output Pins. Apply output filter  
OUT  
capacitors between these pins and GND pins.  
V (Bank 3): Input Power. The V pin supplies current to  
IN  
IN  
the LTM8055/LTM8055-1’s internal power switches and  
to one terminal of the optional input current sense resis-  
tor. This pin must be locally bypassed with an external,  
low ESR capacitor; see Table 1 for recommended values.  
SYNC(PinH2):ExternalSynchronizationInput.TheSYNC  
pin has an internal pull-down resistor. See the Synchroni-  
zation section in Applications Information for details. Tie  
this pin to GND when not used.  
I
(Pin D1): Output Current Sense. Tie this pin to the  
OUT  
output current sense resistor. The output average current  
sense threshold is 58mV, so the LTM8055/LTM8055-1  
will regulate the output current to 58mV/R  
R
, where  
SENSE  
FB (Pin J1): Output Voltage Feedback. The LTM8055/  
LTM8055-1 regulates the FB pin to 1.2V. Connect the FB  
pin to a resistive divider between the output and GND to  
set the output voltage. See Table 1 for recommended FB  
divider resistor values.  
is the value of the output current sense resistor  
SENSE  
in ohms. The load is powered through the sense resistor  
connected at this pin. Tie this pin to V if no output  
current sense resistor is used. Keep this pin within 0.5V  
of V under all conditions.  
OUT  
OUT  
COMP (Pin J2): Compensation Pin. The LTM8055 is  
equipped with internal compensation that works well with  
most applications, so this pin is usually left open. Some  
applications, however, may benefit from a compensation  
network other than the one integrated into the LTM8055.  
In such cases, use the LTM8055-1, which has no internal  
compensation network and apply an appropriate external  
compensation network for optimal and proper operation.  
LL (Pin F1): Light Load Indicator. This open drain pin  
indicates that the output current, as sensed through the  
resistorconnectedbetweenV andI ,isapproximately  
OUT  
OUT  
equivalent to 6mV or less. Its state is meaningful only if a  
current sense resistor is applied between V and I  
.
OUT  
OUT  
This is useful to change the switching behavior of the  
LTM8055/LTM8055-1 in light load conditions.  
SV (Pins F10, F11): Controller Power Input. Apply a  
IN  
SS (Pin K1): Soft-Start. Connect a capacitor from this pin  
to GND to increase the soft-start time. Soft-start reduces  
the input power source’s surge current by gradually in-  
creasing the controller’s current limit. Larger values of the  
soft-start capacitor result in longer soft-start times. If no  
soft-start is required, leave this pin open.  
separate voltage above 5V if the LTM8055/LTM8055-1  
is required to operate when the main power input (V )  
IN  
is below 5V. Bypass these pins with a high quality, low  
ESR capacitor. If a separate supply is not used, connect  
these pins to V .  
IN  
CLKOUT (Pin G1): Clock Output. Use this pin as a clock  
source when synchronizing other devices to the switching  
frequencyoftheLTM8055/LTM8055-1.Whenthisfunction  
is not used, leave this pin open.  
CTL (Pin K2): Current Sense Adjustment. Apply a voltage  
below 1.2V to reduce the current limit threshold of I  
.
OUT  
Drive CTL to less than 50mV to stop switching. The CTL  
pin has an internal pull-up resistor to 2V. If not used,  
leave open.  
Rev C  
7
For more information www.analog.com  
LTM8055/LTM8055-1  
PIN FUNCTIONS  
I
(Pin L2): Output Current Monitor. This pin pro-  
(typical), but below 6V, the RUN pin input bias current is  
less than 1μA. Below 1.2V and above 0.3V, the RUN pin  
sinks 3μA so the user can define the hysteresis with the  
externalresistorselection.Thiswillalsoresetthesoft-start  
function. If RUN is 0.3V or less, the LTM8055/LTM8055-1  
OUTMON  
duces a voltage that is proportional to the voltage between  
and I . I will equal 1.2V when V – I  
OUT  
V
OUT  
OUT OUTMON  
OUT  
= 58mV. This feature is generally useful only if a current  
sense resistor is applied between V and I . This is  
OUT  
OUT  
a high impedance output. Use a buffer to drive a load.  
is disabled and the SV quiescent current is below 1μA.  
IN  
I
(Pin L3): Input Current Monitor. This pin produces  
I (Pin L9): Input Current Sense. Tie this pin to the input  
INMON  
IN  
a voltage that is proportional to the voltage between I  
current sense resistor. The input average current sense  
IN  
and V . I  
will equal 1V when I – V = 50mV. This  
threshold is 50mV, so the LTM8055/LTM8055-1 will  
IN INMON  
IN IN  
feature is generally useful only if a current sense resistor  
is applied between V and I .  
regulate the input current to 50mV/R  
, where R  
SENSE SENSE  
is the value of the input current sense resistor in ohms.  
IN  
IN  
Tie to V when not used. Keep this pin within 0.5V of  
IN  
RUN(PinL4):LTM8055/LTM8055-1Enable.RaisetheRUN  
pin voltage above 1.2V for normal operation. Above 1.2V  
V under all conditions.  
IN  
BLOCK DIAGRAM  
ꢔꢒ  
ꢍꢕꢋ  
ꢐꢉ  
ꢔꢒ  
ꢍꢕꢋ  
ꢅꢁꢆꢃꢇ  
ꢔꢒ  
ꢀꢁꢅꢆꢃꢄ  
ꢈꢀꢉ  
ꢀꢁꢂꢃꢄ  
Rꢕꢒ  
ꢚꢒꢘ  
ꢂꢉ  
ꢊꢀꢀꢓ ꢊꢀꢀꢓ  
ꢄꢗ  
ꢐꢐ  
Cꢌꢙꢍꢕꢋ  
ꢗꢕCꢙꢛꢗꢍꢍꢐꢋ CꢍꢒꢋRꢍꢌꢌꢜR  
ꢀꢁꢊꢃꢄ  
ꢔꢒꢎꢍꢒ  
Cꢋꢌ  
ꢍꢕꢋꢎꢍꢒ  
ꢎꢍꢘꢜ  
Cꢍꢎꢏ  
ꢌꢌ  
Rꢋ  
ꢐꢑꢒC  
ꢖꢀꢈꢈ ꢗꢘ  
Rev C  
8
For more information www.analog.com  
LTM8055/LTM8055-1  
OPERATION  
The LTM8055/LTM8055-1 is a standalone nonisolated  
buck-boostswitchingDC/DCpowersupply.Thebuck-boost  
topology allows the LTM8055/LTM8055-1 to regulate its  
output voltage for input voltages both above and below  
themagnitudeoftheoutput. Themaximumoutputcurrent  
depends upon the input voltage. Higher input voltages  
yield higher maximum output current.  
Furthermore, while the LTM8055/LTM8055-1 does not  
requireanoutputsenseresistortooperate,itusesinforma-  
tion from the sense resistor to optimize its performance.  
If an out-put sense resistor is not used, the efficiency  
or output ripple may degrade, especially if the current  
through the integrated inductor is discontinuous. In some  
cases, an output sense resistor is required to adequately  
protecttheLTM8055/LTM8055-1againstoutputoverload  
or short-circuit.  
This converter provides a precisely regulated output volt-  
age programmable via an external resistor divider from  
1.2V to 36V. The input voltage range is 5V to 36V, but  
the LTM8055/LTM8055-1 may be operated at lower input  
A voltage less than 1.2V applied to the CTL pin reduces  
the maximum output current. Drive CTL to about 50mV  
to stop switching. The current flowing through the sense  
voltages if SV is powered by a voltage source above 5V.  
IN  
A simplified block diagram is given on the previous page.  
resistorisreflectedbytheoutputvoltageoftheI  
pin.  
OUTMON  
The LTM8055/LTM8055-1 contains a current mode con-  
troller, power switching elements, power inductor and  
a modest amount of input and output capacitance. The  
LTM8055/LTM8055-1isafixedfrequencyPWM regulator.  
Theswitchingfrequencyissetbyconnectingtheappropri-  
ate resistor value from the RT pin to GND.  
Driving the SYNC pin will synchronize the LTM8055/  
LTM8055-1 to an external clock source. The CLKOUT  
pin sources a signal that is the same frequency but ap-  
proximately 180° out of phase with the internal oscillator.  
If more output current is required than a single LTM8055/  
LTM8055-1 can provide, multiple devices may be oper-  
ated in parallel. Refer to the Parallel Operation section of  
Applications Information for more details.  
The output voltage of the LTM8055/LTM8055-1 is set by  
connecting the FB pin to a resistor divider between V  
and GND.  
OUT  
Aninternalregulatorprovidespowertothecontrolcircuitry  
and the gate driver to the power MOSFETs. This internal  
In addition to regulating its output voltage, the LTM8055/  
LTM8055-1isequippedwithaveragecurrentcontrolloops  
for both the input and output. Add a current sense resistor  
regulator draws power from the SV pin. The RUN pin  
IN  
is used to place the LTM8055/LTM8055-1 in shutdown,  
disconnecting the output and reducing the input current  
to less than 1μA.  
between I and V to limit the input current below some  
IN  
IN  
maximumvalue.TheI  
though the sense resistor between I and V .  
pinreflectsthecurrentflowing  
INMON  
IN  
IN  
The LTM8055/LTM8055-1 is equipped with a thermal  
shutdown that inhibits power switching at high junction  
temperatures. The activation threshold of this function is  
above 125°C to avoid interfering with normal operation,  
so prolonged or repetitive operation under a condition in  
which the thermal shutdown activates may damage or  
impair the reliability of the device.  
A current sense resistor between V  
and I  
allows  
OUT  
OUT  
theLTM8055/LTM8055-1toaccuratelyregulateitsoutput  
current to a maximum value set by the value of the sense  
resistor. When the resistor is present, the I  
reflects the output current flowing through V  
pin  
OUTMON  
.
OUT  
Ingeneral,theLTM8055/LTM8055-1shouldbeusedwithan  
outputsenseresistortolimitthemaximumoutputcurrent,  
as buck-boost regulators are capable of delivering large  
currents when the output voltage is lower than the input,  
if demanded.  
TheLTM8055featuresanintegratedcompensationnetwork  
thatworkswellundermostconditions.Someapplications,  
however, benefit from a different compensation network.  
In such cases, use the LTM8055-1, which has no internal  
compensation network. Apply an appropriate external  
compensation network for optimal and proper operation.  
Rev C  
9
For more information www.analog.com  
LTM8055/LTM8055-1  
APPLICATIONS INFORMATION  
For most applications, the design process is straight for-  
ward, summarized as follows:  
the graphs in the Typical Performance Characteristics  
section for guidance.  
Themaximumfrequency(andattendantR value)atwhich  
1. Look at Table 1 and find the row that has the desired  
input range and output voltage.  
T
the LTM8055/LTM8055-1 should be allowed to switch is  
giveninTable1inthef  
column,whiletherecommended  
MAX  
2. Apply the recommended C , C , R /R and R  
IN OUT FB1 FB2  
T
frequency (and R value) for optimal efficiency over the  
T
values.  
given input condition is given in the f  
column.  
OPTIMAL  
3. Applytheoutputsenseresistortosettheoutputcurrent  
limit. The output current is limited to 58mV/R  
There are additional conditions that must be satisfied if  
the synchronization function is used. Please refer to the  
Synchronization section for details.  
,
SENSE  
where R  
is the value of the output current sense  
SENSE  
resistor in ohms.  
Note that Table 1 calls out both ceramic and electrolytic  
output capacitors. Both of the capacitors called out in  
the table must be applied to the output. The electrolytic  
capacitors in Table 1 are described by voltage rating,  
value and ESR. The voltage rating of the capacitor may  
be increased if the application requires a higher voltage  
stress derating. The LTM8055/LTM8055-1 can tolerate  
variation in the ESR; other capacitors with different ESR  
may be used, but the user must verify proper operation  
over line, load and environmental conditions. Table 2  
4. WhenusingtheLTM8055-1,placetheexternalcompen-  
sation network as close as possible to the COMP pin.  
Whilethesecomponentcombinationshavebeentested  
for proper operation, it is incumbent upon the user to  
verify proper operation over the intended system’s line,  
load and environmental conditions. Bear in mind that  
the maximum output current is limited by junction tem-  
perature, the relationship between the input and output  
voltage magnitude and other factors. Please refer to  
Table 1. Recommended Component Values and Configuration (TA = 25°C)  
RANGE  
V
V
OUT  
C
C
OUT  
R /R  
FB1 FB2  
f
(kHz)  
R
f
(kHz)  
R
T(MAX)  
IN  
IN  
OPTIMAL  
T(OPTIMAL)  
MAX  
5V to 24V  
5V to 28V  
5V to 31V  
5V to 36V  
5V to 36V  
5V to 36V  
3.3V 2 × 4.7µF, 50V, X5R, 0805 22µF, 6.3V, X5R, 0805  
100µF, 6V, 75mΩ, Electrolytic  
5V 2 × 4.7µF, 50V, X5R, 0805 22µF, 6.3V, X5R, 0805  
100µF, 6V, 75mΩ, Electrolytic  
8V 2 × 4.7µF, 50V, X5R, 0805 47µF, 10V, X5R, 1206  
100µF, 16V, 100mΩ, Electrolytic  
12V 2 × 4.7µF, 50V, X5R, 1210 22µF, 25V, X5R, 0805  
68µF, 16V, 200mΩ, Electrolytic  
18V 2 × 4.7µF, 50V, X7R, 1210 2 x 22µF, 25V, X5R, 1210  
47µF, 25V, 900mΩ, Electrolytic  
24V 2 × 4.7µF, 50V, X7R, 1210 22µF, 25V, X5R, 1210  
33µF, 35V 300mΩ, Electrolytic  
100k/56.2k  
100k/31.6k  
100k/17.4k  
100k/11k  
600  
36.5k  
800  
24.9k  
24.9k  
24.9k  
24.9k  
24.9k  
24.9k  
24.9k  
550  
500  
600  
500  
650  
650  
39.2k  
45.3k  
36.5k  
45.3k  
31.6k  
31.6k  
800  
800  
800  
800  
800  
800  
100k/6.98k  
100k/5.23k  
100k/3.40k  
5.5V to 36V 36V 2 × 4.7µF, 50V, X7R, 1210 10µF, 50V, X5R, 1206  
10µF, 50V 120mΩ, Electrolytic  
Notes: An input bulk capacitor is required. The output capacitance uses a combination of a ceramic and electrolytic in parallel. Other combinations of  
resistor values for the RFB network are acceptable.  
Table 2. Electrolytic Caps Used in LTM8055/LTM8055-1 Testing  
DESCRIPTION  
MANUFACTURER  
PART NUMBER  
100µF, 6V, 75mΩ, Tantalum C Case  
100µF, 16V, 100mΩ, Tantalum Y Case  
68µF, 16V, 200mΩ, Tantalum C Case  
47µF, 25V, 900mΩ, Tantalum D Case  
33µF, 35V, 300mΩ, Tantalum D Case  
10µF, 50V, 120mΩ, Aluminum 6.3 × 6mm case  
AVX  
AVX  
AVX  
AVX  
AVX  
TPSC107M006R0075  
TPSY107M016R0100  
TPSC686M016R0200  
TAJD476M025R  
TPSD336M035R0300  
50HVP10M  
Suncon  
Rev C  
10  
For more information www.analog.com  
 
 
LTM8055/LTM8055-1  
APPLICATIONS INFORMATION  
gives the description and part numbers of electrolytic  
capacitorsusedintheLTM8055/LTM8055-1development  
testing and design validation.  
Table 3. Switching Frequency vs RT Value  
FREQUENCY  
100  
R VALUE (kΩ)  
T
453  
147  
84.5  
59  
200  
Capacitor Selection Considerations  
300  
The C and C  
capacitor values in Table 1 are the  
400  
IN  
OUT  
minimum recommended values for the associated oper-  
ating conditions. Applying capacitor values below those  
indicated in Table 1 is not recommended, and may result  
in undesirable operation. Using larger values is generally  
acceptable, and can yield improved dynamic response, if  
it is necessary. Again, it is incumbent upon the user to  
verify proper operation over the intended system’s line,  
load and environmental conditions.  
500  
45.3  
36.5  
29.4  
24.9  
600  
700  
800  
An external resistor from RT to GND is required. Do not  
leave this pin open, even when synchronizing to an ex-  
ternal clock. When synchronizing the switching of the  
LTM8055/LTM8055-1 to an external signal source, the  
frequency range is 200kHz to 700kHz.  
Ceramic capacitors are small, robust and have very low  
ESR. However, not all ceramic capacitors are suitable.  
X5R and X7R types are stable over temperature and ap-  
plied voltage and give dependable service. Other types,  
including Y5V and Z5U have very large temperature and  
voltage coefficients of capacitance. In an application cir-  
cuit they may have only a small fraction of their nominal  
capacitanceresultinginmuchhigheroutputvoltageripple  
than expected.  
Operating Frequency Trade-Offs  
It is recommended that the user apply the optimal R  
T
value given in Table 1 for the input and output operating  
condition. System level or other considerations, however,  
may necessitate another operating frequency. While the  
LTM8055/LTM8055-1isflexibleenoughtoaccommodate  
a wide range of operating frequencies, a haphazardly  
chosen one may result in undesirable operation under  
certain operating or fault conditions. A frequency that is  
too high can reduce efficiency, generate excessive heat  
or even damage the LTM8055/LTM8055-1 if the output  
is overloaded or short circuited. A frequency that is too  
low can result in a final design that has too much output  
ripple, too large of an output capacitor or is unstable.  
A final precaution regarding ceramic capacitors concerns  
the maximum input voltage rating of the LTM8055/  
LTM8055-1. A ceramic input capacitor combined with  
trace or cable inductance forms a high Q (underdamped)  
tank circuit. If the LTM8055/LTM8055-1 circuit is plugged  
into a live supply, the input voltage can ring to twice its  
nominal value, possibly exceeding the device’s rating.  
This situation is easily avoided; see the Hot-Plugging  
Safely section.  
Parallel Operation  
Two or more LTM8055/LTM8055-1s may be combined to  
provide increased output current by configuring them as a  
master and a slave, as shown in Figure 1. Each LTM8055/  
Frequency Selection  
The LTM8055/LTM8055-1 uses a constant frequency  
PWM architecturethatcanbeprogrammedtoswitchfrom  
100kHz to 800kHz by tying a resistor from the RT pin to  
ground. Table 3 provides a list of R resistor values and  
their re-sultant frequencies.  
LTM8055-1 is equipped with an I  
and a CTL pin.  
OUTMON  
The I  
pin’s 0 to 1.2V signal reflects the current  
OUTMON  
T
passing through the output sense resistor, while a voltage  
less than 1.2V applied to the CTL pin will limit the current  
passing through the output sense resistor. By applying  
the voltage of the master’s I  
pin to the slave’s CTL  
OUTMON  
Rev C  
11  
For more information www.analog.com  
LTM8055/LTM8055-1  
APPLICATIONS INFORMATION  
pin, the two units will source the same current to the load,  
assumingeachLTM8055/LTM8055-1outputcurrentsense  
resistor is the same value.  
Paralleled LTM8055/LTM8055-1s should normally be al-  
lowed to switch in discontinuous mode to prevent current  
from flowing from the output of one unit into another; that  
is, the MODE pin should be tied to LL. In some cases,  
operating the master in forced continuous (MODE open)  
and the slaves in discontinuous mode (MODE = LL) is  
desirable. If so, current from the output can flow into the  
master’s input. Please refer to Input Precaution in this  
section for a discussion of this behavior.  
ꢆꢇꢃꢉꢇꢃ CꢇRRꢄꢊꢃ  
ꢂꢄꢊꢂꢄ RꢄꢂꢈꢂꢃꢆR  
ꢀꢁꢂꢃꢄR  
ꢃꢆ ꢏꢆꢁꢐ  
ꢆꢇꢃ  
ꢆꢇꢃ  
ꢆꢇꢃꢀꢆꢊ  
ꢇꢊꢈꢃꢋ ꢌꢁꢈꢊ  
ꢍꢇꢎꢎꢄR  
Minimum Input Voltage and RUN  
Cꢃꢏ  
ꢆꢇꢃꢉꢇꢃ CꢇRRꢄꢊꢃ  
ꢂꢄꢊꢂꢄ RꢄꢂꢈꢂꢃꢆR  
The LTM8055/LTM8055-1 needs a minimum of 5V for  
proper operation, but system parameters may dictate that  
the device operate only above some higher input voltage.  
For ex-ample, a LTM8055/LTM8055-1 may be used to  
ꢂꢏꢁꢅꢄ  
ꢆꢇꢃ  
ꢆꢇꢃ  
ꢑꢒꢓꢓ ꢎꢒꢔ  
produce 12V , but the input power source may not be  
OUT  
Figure 1. Two or More LTM8055/LTM8055-1s May Be Connected  
in a Master/Slave Configuration for Increased Output Current  
budgeted to provide enough current if the input supply  
voltage is below 8V.  
The design of a master-slave configuration is straight  
forward:  
The RUN pin has a typical falling voltage threshold of  
1.2V and a typical hysteresis of 25mV. In addition, the  
pin sinks 3µA below the RUN threshold. Based upon the  
above information and the circuit shown in Figure 2, the  
1. Apply the FB resistor network to the master, choosing  
the proper values for the desired output voltage. Sug-  
gested values for popular output voltages are provided  
in Table 1.  
V rising (turn-on) threshold is:  
IN  
R1+R2  
V = 3µA •R1 +1.225V  
(
)
2. Apply a FB resistor network to the individual slaves  
so that the resulting output is higher than the desired  
output voltage.  
IN  
R2  
and the V falling turn-off threshold is:  
IN  
3. Apply the appropriate output current sense resistors  
R1+R2  
V = 1.2  
IN  
between V  
and I . If the same value is used for the  
OUT  
OUT  
R2  
master and slave units, they will share current equally.  
ꢄꢅꢆꢇꢇꢈ  
ꢄꢅꢆꢇꢇꢉꢊ  
4. Connect the master I to the slaves’ CTL pin  
OUTMON  
ꢌꢁ  
through a unity gain buffer. The unity gain buffer is re-  
quiredtoisolatetheoutputimpedanceoftheLTM8055/  
LTM8055-1fromtheintegratedpull-upontheCTLpins.  
Rꢊ  
Rꢍ  
Rꢀꢁ  
ꢅꢆꢇꢇ ꢎꢆꢍ  
5. Tie the outputs together.  
Figure 2. This Simple Resistor Network Sets the Minimum  
Operating Input Voltage Threshold with Hysteresis  
Note that this configuration does not require the inputs to  
be tied together, making it simple to power a single heavy  
load from multiple input sources. Ensure that each input  
power source has sufficient voltage and current sourcing  
capability to provide the necessary power. Please refer  
to the Maximum Output Current vs V and Input Current  
vs Output Current curves in the Typical Performance  
Characteristics section for guidance.  
Minimum Input Voltage and SV  
IN  
The minimum input voltage of the LTM8055/LTM8055-1  
is 5V, but this is only if V and SV are tied to the same  
IN  
IN  
IN  
voltage source. If SV is powered from a power source  
IN  
at or above 5VDC, V can be allowed to fall below 5V and  
IN  
Rev C  
12  
For more information www.analog.com  
 
 
LTM8055/LTM8055-1  
APPLICATIONS INFORMATION  
theLTM8055/LTM8055-1canstilloperateproperly.Some  
examples of this are provided in the Typical Applications  
section.  
tying the LL and MODE pins together can improve perfor-  
mance—see Switching Mode in this section.  
In high step-down voltage regulator applications, the  
internal current limit can be quite high to allow proper  
operation. This can potentially damage the LTM8055/  
LTM8055-1 in overload or short-circuit conditions. Ap-  
ply an output current sense resistor to set an appropriate  
current limit to protect the LTM8055/LTM8055-1 against  
these fault conditions.  
Soft-Start  
Soft-start reduces the input power sources’ surge cur-  
rents by gradually increasing the controller’s current. As  
indicated in the Block Diagram, the LTM8055/LTM8055-1  
hasaninternalsoft-startRCnetwork. Dependinguponthe  
load and operating conditions, the internal network may  
be sufficient for the application. To increase the soft-start  
time, simply add a capacitor from SS to GND.  
Output Current Limit Control (CTL)  
Use the CTL input to reduce the output current limit from  
thevaluesetbytheexternalsenseresistorappliedbetween  
Output Current Limit (I  
)
OUT  
V
and I . The typical control range is between 0V  
OUT  
OUT  
and 1.2V. The CTL pin does not directly affect the input  
current limit. If this function is not used, leave CTL open.  
Drive CTL to less than about 50mV to stop switching. The  
CTL pin has an internal pull-up resistor to 2V.  
The LTM8055/LTM8055-1 features an accurate average  
outputcurrentlimitsetbyanexternalsenseresistorplaced  
between V  
and I  
as shown in Figure 3. V  
and  
OUT  
OUT  
OUT  
I
internally connect to a differential amplifier that limits  
the current when the voltage V -I  
OUT  
reaches 58mV.  
OUT OUT  
Input Current Limit (I )  
IN  
The current limit is:  
SomeapplicationsrequirethatLTM8055/LTM8055-1draw  
nomorethansomepredeterminedcurrentfromthepower  
source. Current limited power sources and power sharing  
are two examples. The LTM8055/LTM8055-1 features  
an accurate input current limit set by an external sense  
58mV  
I
=
OUT(LIM)  
R
SENSE  
where R  
is the value of the sense resistor in ohms.  
SENSE  
Most applications should use an output sense resistor as  
shown in Figure 3, if practical. The internal buck-boost  
power stage is current limited, but is nonetheless capable  
of delivering large amounts of current in an overload  
condition, especially when the output voltage is much  
lower than the input and the power stage is operating as  
a buck converter.  
resistor placed between I and V as shown in Figure  
IN  
IN  
4. V and I internally connect to a differential amplifier  
IN  
IN  
that limits the current when the voltage I -V reaches  
IN IN  
50mV. The current limit is:  
50mV  
I
=
IN(LIM)  
R
SENSE  
where R  
is the value of the sense resistor in ohms.  
ꢅꢆꢇꢈꢈꢉ  
ꢅꢆꢇꢈꢈꢊꢋ  
SENSE  
R
ꢍꢎꢏꢍꢎ  
Ifinputcurrentlimitingisnotrequired,simplytieI toV .  
ꢁꢂꢃ  
IN  
IN  
ꢄꢁꢒꢓ  
ꢁꢂꢃ  
ꢄꢅꢆꢇꢇꢈ  
ꢆꢇꢈꢈ ꢐꢇꢑ  
R
ꢋꢌꢁꢋꢌ  
ꢄꢅꢆꢇꢇꢉꢊ  
ꢎꢏꢐꢌR  
ꢋꢏꢑRCꢌ  
ꢀꢁ  
Figure 3. Set The LTM8055/LTM8055-1 Output Current Limit with  
an External Sense Resistor  
ꢀꢁ  
When the voltage across the output sense resistor falls  
to about 1/10th of full scale, the LL pin pulls low. If there  
ꢅꢆꢇꢇ ꢒꢆꢓ  
Figure 4. Set the LTM8055/LTM8055-1 Input Current  
Limit with an External Sense Resistor  
is no output sense resistor, and I  
is tied to V , LL  
OUT  
OUT  
will be active low. Applying an output sense resistor and  
Rev C  
13  
For more information www.analog.com  
 
 
LTM8055/LTM8055-1  
APPLICATIONS INFORMATION  
Input Current Monitor (I  
)
chronous switching converter, it delivers this energy to  
the input. If there is nothing on the LTM8055/LTM8055-1  
input to consume this energy, the input voltage may rise.  
If the input voltage rises without intervention, it may rise  
above the absolute maximum rating, damaging the part.  
Carefully examine the input voltage behavior to see if the  
application causes it to rise.  
INMON  
The I  
pin produces a voltage equal to approximately  
INMON  
20 times the voltage of I – V . Since the LTM8055/  
IN  
IN  
LTM8055-1 input current limit engages when I – V =  
50mV, I  
IN  
IN  
will be 1V at maximum input current.  
INMON  
Output Current Monitor (I  
)
OUTMON  
Inmanycases,thesystemloadontheLTM8055/LTM8055-  
1inputbuswillbesufficienttoabsorbtheenergydelivered  
by the μModule regulator. The power required by other  
devices will consume more than enough to make up for  
what the LTM8055/LTM8055-1 delivers. In cases where  
the LTM8055/LTM8055-1 is the largest or only power  
converter, thismaynotbetrueandsomemeansmayneed  
to be devised to prevent the LTM8055/LTM8055-1’s input  
from rising too high. Figure 5a shows a passive crowbar  
circuit that will dissipate energy during momentary input  
overvoltage conditions. The break-down voltage of the  
Zener diode is chosen in conjunction with the resistor R to  
set the circuit’s trip point. The trip point is typically set well  
The I  
pin produces a voltage proportional to the  
OUTMON  
voltage of V  
– I . Since the LTM8055/LTM8055-1  
OUT  
OUT  
output current limit engages when V  
– I  
= 58mV,  
OUT  
OUT  
I
will be 1.2V at maximum output current.  
OUTMON  
Synchronization  
The LTM8055/LTM8055-1 switching frequency can be  
synchronized to an external clock using the SYNC pin.  
Driving SYNC with a 50% duty cycle waveform is a good  
choice, otherwise maintain the duty cycle between about  
10% and 90%. When synchronizing, a valid resistor value  
(that is, a value that results in a free-running frequency of  
100kHz to 800kHz) must be connected from RT to GND.  
above the maximum V voltage under normal operating  
IN  
While an RT resistor is required for proper operation, the  
value of this resistor is independent of the frequency of  
the externally applied SYNC signal. Be aware, however,  
thattheLTM8055/LTM8055-1willswitchatthefrequency  
prescribed by the RT value if the SYNC signal terminates,  
so choose an appropriate resistor value.  
conditions. This circuit does not have a precision thresh-  
old, and is subject to both part-to-part and temperature  
variations, so it is most suitable for applications where  
the maximum input voltage is much less than the 40V  
IN  
absolute maximum. As stated earlier, this type of circuit  
is best suited for momentary overvoltages.  
Figure 5a is a crowbar circuit, which attempts to prevent  
theinputvoltagefromrisingabovesomelevelbydumping  
energy to GND through a power device. In some cases,  
it is possible to simply turn off the LTM8055/LTM8055-1  
when the input voltage exceeds some threshold. An ex-  
ampleofthiscircuitisshowninFigure5b.Whenthepower  
CLKOUT  
The CLKOUT signal reflects the internal switching clock  
of the LTM8055/LTM8055-1. It is phase shifted by ap-  
proximately 180° with respect to the leading edge of the  
internal clock. If CLKOUT is connected to the SYNC input  
of another LTM8055/LTM8055-1, the two devices will  
switch about 180° out of phase.  
source on the output drives V above a predetermined  
IN  
threshold, the comparator pulls down on the RUN pin  
and stops switching in the LTM8055/LTM8055-1. When  
this happens, the input capacitance needs to absorb the  
energy stored within the LTM8055/LTM8055-1’s internal  
inductor, resulting in an additional voltage rise. This volt-  
age rise depends upon the input capacitor size and how  
much current is flowing from the LTM8055/LTM8055-1  
output to input.  
Input Precaution  
In applications where the output voltage is deliberately  
pulled up above the set regulation voltage or the FB pin is  
abruptlydriventoanewvoltage,theLTM8055/LTM8055-1  
may attempt to regulate the voltage by removing energy  
from the load for a short period of time after the output  
is pulled up. Since the LTM8055/LTM8055-1 is a syn-  
Rev C  
14  
For more information www.analog.com  
LTM8055/LTM8055-1  
APPLICATIONS INFORMATION  
from buck, buck-boost or boost operating modes, espe-  
cially at lighter loads. In such a case, it can be desirable  
to operate in forced continuous mode except when the  
internal inductor current is about to reverse. If so, apply  
ꢍꢆꢓꢅ  
CꢔRRꢄꢂꢎ  
ꢆꢔꢎ  
ꢁꢂ  
ꢏꢈꢉꢊꢊꢐ  
ꢏꢈꢉꢊꢊꢑꢒ  
ꢃꢄꢂꢄR  
ꢅꢁꢆꢅꢄ  
ꢕꢂꢅ  
ꢖꢆꢔRCꢁꢂꢕ  
ꢍꢆꢓꢅ  
a current sense resistor between V  
and I  
and tie  
OUT  
OUT  
R
the LL and MODE pins together. The LL pin is low when  
the current through the output sense resistor is about  
one-tenth the full-scale maximum. When the output cur-  
rent falls to this level, the LL pin will pull the MODE pin  
down, puttingtheLTM8055/LTM8055-1indiscontinuous  
mode, preventing reverse current from flowing from the  
output to the input. In the case where MODE and LL are  
tied together, a small capacitor (~0.1µF) from these pins  
to GND may improve the light load transient response by  
delaying the transition from the discontinuous to forced  
continuous switching modes. MODE may be tied to GND  
for the purpose of blocking reverse current if no output  
current sense resistor is used.  
ꢈꢉꢊꢊ ꢋꢉꢊꢌ  
Figure 5a. The MOSFET Q Dissipates Momentary Energy to  
GND. The Zener Diode and Resistor Are Chosen to Ensure That  
the MOSFET Turns On Above the Maximum VIN Voltage Under  
Normal Operation  
ꢋꢐꢑꢒ  
CꢃRRꢓꢂꢌ  
ꢐꢃꢌ  
ꢍꢄꢅꢆꢆꢎ  
ꢍꢄꢅꢆꢆꢏꢉ  
ꢁꢂ  
ꢔꢂꢒ  
Rꢃꢂ  
ꢕꢐꢃRCꢁꢂꢔ  
ꢋꢐꢑꢒ  
ꢉꢅꢊꢇ  
ꢓꢖꢌꢓRꢂꢑꢋ  
RꢓꢇꢓRꢓꢂCꢓ  
ꢀꢐꢔꢓ  
FB Resistor Divider and Load Regulation  
ꢄꢅꢆꢆ ꢇꢅꢆꢈ  
The LTM8055/LTM8055-1 regulates its FB pin to 1.2V,  
using a resistor divider to sense the output voltage. The  
location at which the output voltage is sensed affects  
the load regulation. If there is a current sense resistor  
Figure 5b. This Comparator Circuit Turns Off the LTM8055/  
LTM8055-1 if the Input Rises Above a Predetermined  
Threshold. When the LTM8055/LTM8055-1 Turns Off, the  
Energy Stored in the Internal Inductor Will Raise VIN a Small  
Amount Above the Threshold  
between V  
and I , and the output is sensed at V  
,
OUT  
OUT  
OUT  
the voltage at the load will drop by the value of the cur-  
rent sense resistor multiplied by the output current. If the  
Switching Mode  
output voltage can be sensed at I , the load regulation  
OUT  
TheMODEpinallowstheusertoselecteitherdiscontinuous  
mode or forced continuous mode switching operation. In  
forcedcontinuousmode,theLTM8055/LTM8055-1willnot  
skip cycles, even when the internal inductor current falls  
to zero or even reverses direction. This has the advantage  
of operating at the same fixed frequency for all load condi-  
tions,whichcanbeusefulwhendesigningtoEMIoroutput  
noise specifications. Forced continuous mode, however,  
usesmorecurrentatlightloads,andallowscurrenttoflow  
from the load back into the input if the output is raised  
above the regulation point. This reverse current can raise  
the input voltage and be hazardous if the input is allowed  
to rise uncontrollably. Please refer to Input Precautions  
in this section for a discussion of this behavior.  
may be improved.  
PCB Layout  
Most of the headaches associated with PCB layout have  
been alleviated or even eliminated by the high level of  
integration of the LTM8055/LTM8055-1. The LTM8055/  
LTM8055-1isneverthelessaswitchingpowersupply,and  
care must be taken to minimize EMI and ensure proper  
operation. Even with the high level of integration, you may  
failtoachievespecifiedoperationwithahaphazardorpoor  
layout. See Figure 6 for a suggested layout. Ensure that  
the grounding and heat sinking are acceptable.  
A few rules to keep in mind are:  
Forcedcontinuousoperationmayprovideimprovedoutput  
regulation when the LTM8055/LTM8055-1 transitions  
1. Place the R and R resistors as close as possible to  
FB  
T
their respective pins.  
Rev C  
15  
For more information www.analog.com  
 
 
LTM8055/LTM8055-1  
APPLICATIONS INFORMATION  
2. Place the C capacitor as close as possible to the V  
board. Pay attention to the location and density of the  
thermal vias in Figure 6. The LTM8055/LTM8055-1 can  
benefit from the heat sinking afforded by vias that con-  
nect to internal GND planes at these locations, due to  
theirproximitytointernalpowerhandlingcomponents.  
The optimum number of thermal vias depends upon  
the printed circuit board design. For example, a board  
might use very small via holes. It should employ more  
thermal vias than a board that uses larger holes.  
IN  
IN  
and GND connection of the LTM8055/LTM8055-1.  
3. Place the C  
capacitor as close as possible to the  
OUT  
V
andGNDconnectionoftheLTM8055/LTM8055-1.  
OUT  
4. Minimize the trace resistance between the optional  
outputcurrentsenseresistor,R ,andV .Minimize  
OUT  
OUT  
the loop area of the I  
trace and the trace from V  
OUT  
OUT  
to R  
.
OUT  
5. Minimizethetraceresistancebetweentheoptionalinput  
current sense resistor, R and V . Minimize the loop  
Hot-Plugging Safely  
IN  
IN  
area of the I trace and the trace from V to R .  
The small size, robustness and low impedance of ceramic  
capacitors make them an attractive option for the input  
bypasscapacitorofLTM8055/LTM8055-1.However,these  
capacitorscancauseproblemsiftheLTM8055/LTM8055-1  
is plugged into a live supply (see Linear Technology Ap-  
plication Note 88 for a complete discussion). The low  
loss ceramic capacitor combined with stray inductance  
in series with the power source forms an underdamped  
IN  
IN  
IN  
6. Place the C and C  
capacitors such that their  
OUT  
IN  
ground current flow directly adjacent or underneath  
the LTM8055/LTM8055-1.  
7. Connect all of the GND connections to as large a copper  
pour or plane area as possible on the top layer. Avoid  
breaking the ground connection between the external  
components and the LTM8055/LTM8055-1.  
tank circuit, and the voltage at the V pin of the LTM8055/  
IN  
LTM8055-1 can ring to more than twice the nominal input  
voltage, possibly exceeding the LTM8055/LTM8055-1’s  
rating and damaging the part. If the input supply is poorly  
controlledortheLTM8055/LTM8055-1ishot-pluggedinto  
8. Use vias to connect the GND copper area to the board’s  
internal ground planes. Liberally distribute these GND  
vias to provide both a good ground connection and  
thermal path to the internal planes of the printed circuit  
C
ꢈꢆ  
ꢉꢆꢌ  
ꢄꢇ  
ꢈꢆ  
ꢈꢆ  
R
ꢈꢆ  
ꢉꢆꢌꢍꢂꢎꢅRꢏꢊꢋ ꢇꢈꢊꢄ  
ꢈꢆꢃꢁꢂ  
ꢄꢅꢆꢄꢅ  
ꢈꢆ  
C
ꢀꢁꢂ  
ꢈꢆꢃꢁꢂ  
Rꢁꢆ  
ꢄꢈꢉꢆꢊꢋ ꢇꢈꢊ  
ꢀꢁꢂ  
ꢏꢀꢌꢅ ꢄꢕꢆC  
Rꢂ ꢓꢖ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢋꢋ  
R
ꢀꢁꢂ  
ꢀꢁꢂꢃꢁꢂ  
ꢄꢅꢆꢄꢅ  
ꢉꢆꢌ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢄꢈꢉꢆꢊꢋ ꢇꢈꢊ  
ꢐꢑꢒꢒ ꢓꢑꢔ  
Figure 6. Layout Showing Suggested External Components,  
GND Plane and Thermal Vias  
Rev C  
16  
For more information www.analog.com  
 
LTM8055/LTM8055-1  
APPLICATIONS INFORMATION  
θ
– Thermal resistance from junction to the printed  
anenergizedsupply,theinputnetworkshouldbedesigned  
JB  
to prevent this overshoot. This can be accomplished by  
circuit board.  
installing a small resistor in series with V , but the most  
IN  
While the meaning of each of these coefficients may seem  
to be intuitive, JEDEC has defined each to avoid confusion  
and inconsistency. These definitions are given in JESD  
51-12, and are quoted or paraphrased below:  
popular method of controlling input voltage overshoot is  
to add an electrolytic bulk capacitor to the V net. This  
IN  
capacitor’s relatively high equivalent series resistance  
damps the circuit and eliminates the voltage overshoot.  
The extra capacitor improves low frequency ripple filter-  
ing and can slightly improve the efficiency of the circuit,  
thoughitislikelytobethelargestcomponentinthecircuit.  
θ
is the natural convection junction-to-ambient air  
JA  
thermal resistance measured in a one cubic foot sealed  
enclosure. This environment is sometimes referred to as  
“still air” although natural convection causes the air to  
move. This value is determined with the part mounted to  
a JESD 51-9 defined test board, which does not reflect an  
actual application or viable operating condition.  
Thermal Considerations  
The LTM8055/LTM8055-1 output current may need to be  
derated if it is required to operate in a high ambient tem-  
perature or deliver a large amount of continuous power.  
The amount of current derating is dependent upon the  
inputvoltage,outputpowerandambienttemperature.The  
temperature rise curves given in the Typical Performance  
Characteristicssectioncanbeusedasaguide.Thesecurves  
were generated by a LTM8055/LTM8055-1 mounted to a  
θ
is the thermal resistance between the junction  
JCbottom  
andbottomofthepackagewithallofthecomponentpower  
dissipation flowing through the bottom of the package. In  
the typical µModule converter, the bulk of the heat flows  
out the bottom of the package, but there is always heat  
flow out into the ambient environment. As a result, this  
thermal resistance value may be useful for comparing  
packages but the test conditions don’t generally match  
the user’s application.  
2
58cm 4-layer FR4 printed circuit board. Boards of other  
sizesandlayercountcanexhibitdifferentthermalbehavior,  
so it is incumbent upon the user to verify proper operation  
over the intended system’s line, load and environmental  
operating conditions.  
θ
isdeterminedwithnearlyallofthecomponentpower  
JCtop  
dissipation flowing through the top of the package. As the  
electricalconnectionsofthetypicalµModuleconverterare  
on the bottom of the package, it is rare for an application  
to operate such that most of the heat flows from the junc-  
tion to the top of the part. As in the case of θ  
value may be useful for comparing packages but the test  
conditions don’t generally match the user’s application.  
ThethermalresistancenumberslistedinthePinConfigura-  
tion of the data sheet are based on modeling the µModule  
package mounted on a test board specified per JESD 51-9  
(TestBoardsforAreaArraySurfaceMountPackageThermal  
Measurements). Thethermalcoefficientsprovidedonthis  
page are based on JESD 51-12 (Guidelines for Reporting  
and Using Electronic Package Thermal Information).  
, this  
JCbottom  
θ
JB  
is the junction-to-board thermal resistance where  
Forincreasedaccuracyandfidelitytotheactualapplication,  
many designers use FEA to predict thermal performance.  
To that end, the Pin Configuration of the data sheet typi-  
cally gives four thermal coefficients:  
almost all of the heat flows through the bottom of the  
µModule converter and into the board, and is really the  
sum of the θ  
bottom of the part through the solder joints and through a  
portion of the board. The board temperature is measured  
a specified distance from the package, using a 2-sided,  
2-layer board. This board is described in JESD 51-9.  
and the thermal resistance of the  
JCbottom  
θ
JA  
– Thermal resistance from junction to ambient.  
θ
Thermalresistancefromjunctiontothebottom  
JCbottom  
of the product case.  
θ
– Thermal resistance from junction to top of the  
JCtop  
product case.  
Rev C  
17  
For more information www.analog.com  
LTM8055/LTM8055-1  
APPLICATIONS INFORMATION  
ꢏꢉꢌCꢎꢐꢇꢌꢑꢎꢇꢑꢒꢆꢗꢐꢋꢌꢎ RꢋꢓꢐꢓꢎꢒꢌCꢋ ꢔꢏꢋꢓꢈ ꢂꢘꢑꢙ ꢈꢋꢃꢐꢌꢋꢈ ꢗꢇꢒRꢈꢖ  
ꢏꢉꢌCꢎꢐꢇꢌꢑꢎꢇꢑCꢒꢓꢋ ꢔꢎꢇꢕꢖ  
RꢋꢓꢐꢓꢎꢒꢌCꢋ  
Cꢒꢓꢋ ꢔꢎꢇꢕꢖꢑꢎꢇꢑꢒꢆꢗꢐꢋꢌꢎ  
RꢋꢓꢐꢓꢎꢒꢌCꢋ  
ꢏꢉꢌCꢎꢐꢇꢌꢑꢎꢇꢑꢗꢇꢒRꢈ RꢋꢓꢐꢓꢎꢒꢌCꢋ  
ꢏꢉꢌCꢎꢐꢇꢌ  
ꢒꢆꢗꢐꢋꢌꢎ  
ꢏꢉꢌCꢎꢐꢇꢌꢑꢎꢇꢑCꢒꢓꢋ  
ꢔꢗꢇꢎꢎꢇꢆꢖ RꢋꢓꢐꢓꢎꢒꢌCꢋ  
Cꢒꢓꢋ ꢔꢗꢇꢎꢎꢇꢆꢖꢑꢎꢇꢑꢗꢇꢒRꢈ  
ꢗꢇꢒRꢈꢑꢎꢇꢑꢒꢆꢗꢐꢋꢌꢎ  
RꢋꢓꢐꢓꢎꢒꢌCꢋ  
RꢋꢓꢐꢓꢎꢒꢌCꢋ  
ꢀꢁꢂꢂ ꢃꢁꢄ  
ꢅꢆꢇꢈꢉꢊꢋ CꢇꢌꢍꢋRꢎꢋR  
Figure 7  
Giventhesedefinitions,itshouldnowbeapparentthatnone  
of these thermal coefficients reflects an actual physical  
operating condition of a µModule converter. Thus, none  
of them can be individually used to accurately predict the  
thermal performance of the product. Likewise, it would  
be inappropriate to attempt to use any one coefficient to  
correlate to the junction temperature versus load graphs  
givenintheproduct’sdatasheet.Theonlyappropriateway  
to use the coefficients is when running a detailed thermal  
analysis, such as FEA, which considers all of the thermal  
resistances simultaneously.  
The blue resistances are contained within the µModule  
converter, and the green are outside.  
The die temperature of the LTM8055/LTM8055-1 must be  
lower than the maximum rating of 125°C, so care should  
be taken in the layout of the circuit to ensure good heat  
sinking of the LTM8055/LTM8055-1. The bulk of the heat  
flowoutoftheLTM8055/LTM8055-1isthroughthebottom  
oftheμModuleconverterandtheBGApadsintotheprinted  
circuit board. Consequently a poor printed circuit board  
design can cause excessive heating, resulting in impaired  
performance or reliability. Please refer to the PCB Layout  
section for printed circuit board design suggestions.  
A graphical representation of these thermal resistances  
is given in Figure 7.  
Rev C  
18  
For more information www.analog.com  
 
LTM8055/LTM8055-1  
TYPICAL APPLICATIONS  
12VOUT Fan Power from 3VIN to 36VIN with Analog  
Current Control and 2A Input Current Limiting  
Maximum Output Current  
vs CTL Voltage  
1µF  
50V  
ꢌꢍꢎ  
ꢌꢍꢏ  
ꢏꢍꢐ  
ꢏꢍꢑ  
ꢏꢍꢒ  
ꢏꢍꢎ  
ꢌꢎꢂ  
ꢕꢋ  
SV  
0.022Ω  
0.05Ω  
IN  
LTM8055/  
V
V
V
IN  
OUT  
V
IN  
OUT  
LTM8055-1  
3V TO 36V  
12V MAX  
I
I
IN  
OUT  
FAN  
100k  
10µF  
50V  
22µF  
25V  
RUN  
COMP  
SS  
SYNC  
CTL  
RT  
+
CLKOUT  
68µF  
25V  
I
INMON  
I
OUTMON  
FB  
36.5k  
11.0k  
LL MODE  
DAC  
GND  
8055 TA02a  
ꢏꢍꢎ  
ꢏꢍꢒ  
ꢏꢍꢑ  
ꢏꢍꢐ  
ꢌꢍꢎ  
f
= 600kHz  
SW  
Cꢀꢁ ꢂꢃꢅꢆ ꢇꢂꢈ  
ꢐꢏꢓꢓ ꢀꢄꢏꢎꢔ  
FAN CONTROL  
0.2V TO 1.2V  
CONTROL RANGE  
24VOUT from 7VIN to 36VIN with 2.1A Accurate Current Limit  
Output Voltage vs Output Current  
0.027Ω  
LTM8055/  
LTM8055-1  
V
V
V
IN  
OUT  
V
IN  
OUT  
ꢌꢍ  
ꢌꢏ  
ꢎꢍ  
ꢎꢏ  
7V TO 36V  
24V  
SV  
I
IN  
OUT  
ꢎꢌꢉ  
ꢔꢅ  
I
IN  
22µF  
25V  
10µF  
50V  
RUN  
COMP  
SS  
100k  
+
CLKOUT  
33µF  
35V  
SYNC  
CTL  
RT  
I
INMON  
I
36.5k  
OUTMON  
FB  
5.23k  
LL MODE GND  
8055 TA03a  
f
= 600kHz  
SW  
ꢏꢓꢍ  
ꢎꢓꢍ  
ꢌꢓꢍ  
ꢀꢁꢂꢃꢁꢂ CꢁRRꢄꢅꢂ ꢆꢇꢈ  
ꢐꢏꢍꢍ ꢂꢇꢏꢑꢒ  
Rev C  
19  
For more information www.analog.com  
LTM8055/LTM8055-1  
TYPICAL APPLICATIONS  
3.3VOUT from 9VIN to 24VIN with 5A Accurate Current Limit and  
Output Current Monitor  
Output Voltage vs Output Current  
ꢌꢍꢎ  
ꢏꢍꢑ  
ꢏꢍꢎ  
ꢐꢍꢑ  
ꢐꢍꢎ  
0.011Ω  
V
V
LTM8055/  
V
IN  
OUT  
V
IN  
OUT  
LTM8055-1  
9V TO 24V  
3.3V  
SV  
I
IN  
OUT  
I
IN  
10µF  
50V  
RUN  
CTL  
SS  
SYNC  
COMP  
RT  
+
100k  
22µF  
6.3V  
OUTPUT  
CURRENT  
MONITOR  
100µF  
6.3V  
CLKOUT  
I
INMON  
ꢒꢍꢑ  
ꢒꢍꢎ  
ꢎꢍꢑ  
I
OUTMON  
FB  
36.5k  
LL MODE GND  
56.2k  
8055 TA04a  
f
= 600kHz  
SW  
ꢀꢁꢂꢃꢁꢂ CꢁRRꢄꢅꢂ ꢆꢇꢈ  
ꢓꢎꢑꢑ ꢂꢇꢎꢌꢔ  
Two LTM8055/LTM8055-1s Paralleled to Get More Output Current. The Two  
µModules Are Synchronized and Switching 180° Out Of Phase  
I
OUTMON Voltage vs Output Current  
for Each Channel, 12VIN  
0.008Ω  
V
V
LTM8055/  
LTM8055-1  
(MASTER)  
V
IN  
OUT  
V
IN  
OUT  
7V TO 36V  
ꢑꢒꢓ  
ꢑꢒꢔ  
ꢔꢒꢕ  
ꢔꢒꢖ  
ꢔꢒꢗ  
ꢔꢒꢓ  
12V  
SV  
I
IN  
OUT  
I
IN  
10µF  
50V  
RUN  
CTL  
SS  
SYNC  
COMP  
RT  
+
22µF  
25V  
68µF  
25V  
100k  
I
INMON  
47pF  
I
36.5k  
OUTMON  
FB  
+
ꢁꢌꢉꢈꢅR  
ꢉꢍꢌꢐꢅ  
CLKOUT  
11k  
LL MODE GND  
LT1636  
ꢑꢔ  
ꢑꢘ  
0.008Ω  
V
V
LTM8055/  
LTM8055-1  
(SLAVE)  
IN  
OUT  
Cꢀꢁꢂꢃꢄꢅꢆ CꢇRRꢅꢄꢈꢉ ꢀꢊ ꢂꢀꢈꢋ Cꢋꢌꢄꢄꢅꢍꢉ ꢎꢌꢏ  
ꢕꢔꢘꢘ ꢈꢌꢔꢘꢙ  
SV  
I
IN  
OUT  
I
IN  
+
22µF  
25V  
47pF  
68µF  
25V  
10µF  
50V  
RUN  
COMP  
SS  
CTL  
CLKOUT  
100k  
SYNC  
I
INMON  
I
36.5k  
OUTMON  
FB  
9.31k  
RT  
LL MODE GND  
8055 TA05a  
f
= 600kHz  
SW  
Rev C  
20  
For more information www.analog.com  
LTM8055/LTM8055-1  
TYPICAL APPLICATIONS  
Two LTM8055/LTM8055-1s Powered from Different Input Sources to Run a Single Load. Each LTM8055/LTM8055-1 Draws No More  
Than 1.8A from Its Respective Power Source, and Are Synchronized 180° Out Of Phase with Each Other  
0.025Ω  
V
V
LTM8055/  
LTM8055-1  
SUPPLY 1  
IN  
OUT  
6V TO 36V  
3A MAX  
IN  
SV  
IN  
I
V
OUT  
OUT  
I
IN  
12V  
22µF  
25V  
+
68µF  
35V  
10µF  
50V  
RUN  
CTL  
SS  
SYNC  
COMP  
RT  
I
INMON  
47pF  
I
OUTMON  
FB  
36.5k  
100k  
11k  
CLKOUT  
LL MODE GND  
0.025Ω  
V
V
LTM8055/  
LTM8055-1  
IN  
OUT  
SUPPLY 2  
6V TO 36V  
IN  
SV  
I
OUT  
IN  
I
IN  
100k  
10µF  
50V  
22µF  
25V  
RUN  
CTL  
SS  
CLKOUT  
I
INMON  
47pF  
SYNC  
COMP  
RT  
I
OUTMON  
FB  
36.5k  
11k  
LL  
GND  
MODE  
8055 TA06a  
f
= 600kHz  
SW  
Input Current and Output Voltage vs  
Output Current 12VIN  
ꢎꢐ  
ꢎꢋ  
ꢎꢏ  
ꢋꢌꢍ  
ꢋꢌꢏ  
ꢎꢌꢍ  
ꢎꢌꢏ  
ꢏꢌꢍ  
ꢀꢁꢂ  
ꢉꢅꢃꢁꢂ CꢁRRꢄꢅ ꢕ  
RꢄꢖꢁꢗꢇꢂꢀR ꢎ  
ꢉꢅꢃꢁꢂ CꢁRRꢄꢅ ꢕ  
RꢄꢖꢁꢗꢇꢂꢀR ꢋ  
ꢀꢁꢂꢃꢁꢂ CꢁRRꢄꢅꢂ ꢆꢇꢈ  
ꢑꢏꢍꢍ ꢂꢇꢏꢒꢓ  
Rev C  
21  
For more information www.analog.com  
LTM8055/LTM8055-1  
PACKAGE DESCRIPTION  
Table 4. LTM8055/LTM8055-1 Pin Assignment (Arranged by Pin Number)  
PIN ID  
A1  
FUNCTION  
PIN ID  
B1  
FUNCTION  
PIN ID  
C1  
FUNCTION  
PIN ID  
D1  
FUNCTION  
PIN ID  
E1  
FUNCTION  
GND  
PIN ID  
F1  
FUNCTION  
LL  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
I
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
A2  
B2  
C2  
D2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
E2  
GND  
F2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
A3  
B3  
C3  
D3  
E3  
GND  
F3  
A4  
B4  
C4  
D4  
E4  
GND  
F4  
A5  
B5  
C5  
D5  
E5  
GND  
F5  
A6  
B6  
C6  
D6  
E6  
GND  
F6  
A7  
GND  
GND  
GND  
GND  
GND  
B7  
GND  
GND  
GND  
GND  
GND  
C7  
GND  
GND  
GND  
GND  
GND  
D7  
E7  
GND  
F7  
A8  
B8  
C8  
D8  
E8  
GND  
F8  
A9  
B9  
C9  
D9  
E9  
GND  
F9  
A10  
A11  
B10  
B11  
C10  
C11  
D10  
D11  
E10  
E11  
GND  
F10  
F11  
SV  
IN  
SV  
IN  
GND  
PIN ID  
G1  
FUNCTION  
CLKOUT  
MODE  
GND  
PIN ID  
H1  
FUNCTION  
RT  
PIN ID  
J1  
FUNCTION  
FB  
PIN ID  
K1  
FUNCTION  
SS  
PIN ID  
L1  
FUNCTION  
GND  
G2  
H2  
SYNC  
GND  
J2  
COMP  
GND  
K2  
CTL  
L2  
I
OUTMON  
G3  
H3  
J3  
K3  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
L3  
I
INMON  
G4  
GND  
H4  
GND  
J4  
GND  
K4  
L4  
RUN  
G5  
GND  
H5  
GND  
J5  
GND  
K5  
L5  
GND  
GND  
GND  
GND  
G6  
GND  
H6  
GND  
J6  
GND  
K6  
L6  
G7  
GND  
H7  
GND  
J7  
GND  
K7  
L7  
G8  
GND  
H8  
GND  
J8  
GND  
K8  
L8  
G9  
GND  
H9  
GND  
J9  
GND  
K9  
L9  
I
IN  
G10  
G11  
V
V
H10  
H11  
V
V
J10  
J11  
V
IN  
V
IN  
K10  
K11  
V
IN  
V
IN  
L10  
L11  
V
IN  
V
IN  
IN  
IN  
IN  
IN  
Rev C  
22  
For more information www.analog.com  
LTM8055/LTM8055-1  
PACKAGE PHOTO  
Rev C  
23  
For more information www.analog.com  
LTM8055/LTM8055-1  
PACKAGE DESCRIPTION  
ꢯ ꢯ ꢲ ꢲ ꢲ  
ꢡ ꢬ ꢗ ꢠ ꢟ  
ꢠ ꢬ ꢟ ꢝ ꢟ  
ꢗ ꢬ ꢝ ꢍ ꢟ  
ꢜ ꢬ ꢠ ꢊ ꢟ  
ꢍ ꢬ ꢜ ꢢ ꢟ  
ꢟ ꢬ ꢗ ꢍ ꢢ ꢠ  
ꢟ ꢬ ꢗ ꢍ ꢢ
ꢍ ꢬ ꢜ ꢢ ꢟ  
ꢟ ꢬ ꢟ ꢟ ꢟ  
ꢜ ꢬ ꢠ ꢊ ꢟ  
ꢗ ꢬ ꢝ ꢍ ꢟ  
ꢠ ꢬ ꢟ ꢝ ꢟ  
ꢡ ꢬ ꢗ ꢠ ꢟ  
Rev C  
24  
For more information www.analog.com  
LTM8055/LTM8055-1  
REVISION HISTORY  
REV  
DATE  
01/16 Added Buck-Bost Selection Table  
05/17 Added text to I (pin L2)  
DESCRIPTION  
PAGE NUMBER  
A
1
8
B
OUTMON  
C
08/18 Added LTM8055-1  
1, 2, 7, 9, 10,  
23  
Rev C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
25  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
LTM8055/LTM8055-1  
TYPICAL APPLICATION  
Input Current vs Input Voltage,  
14.4V, 3A Lead-Acid Battery Charger Input Current Limited to 2.1A  
IOUT = 3A  
ꢍꢎꢏ  
ꢍꢎꢐ  
ꢑꢎꢏ  
ꢑꢎꢐ  
ꢐꢎꢏ  
1µF  
50V  
SV  
0.022Ω  
0.02Ω  
IN  
V
V
LTM8055/  
V
IN  
OUT  
V
IN  
3V TO 36V  
OUT  
LTM8055-1  
14.4V  
I
I
IN  
OUT  
+
100k  
47µF  
25V  
10µF  
50V  
RUN  
CTL  
SS  
SYNC  
COMP  
RT  
CLKOUT  
22µF  
25V  
I
INMON  
I
OUTMON  
FB  
36.5k  
9.09k  
ꢑꢐ  
ꢍꢐ  
ꢕꢐ  
ꢖꢐ  
LL MODE GND  
ꢀꢁꢂꢃꢄ ꢅꢆꢉꢊ ꢋꢅꢌ  
8055 TA07a  
ꢒꢐꢏꢏ ꢄꢈꢐꢓꢔ  
f
= 600kHz  
SW  
DESIGN RESOURCES  
SUBJECT  
DESCRIPTION  
µModule Design and Manufacturing Resources  
Design:  
Manufacturing:  
• Quick Start Guide/Demo Manual  
• Selector Guides  
• Demo Boards and Gerber Files  
• Free Simulation Tools  
• PCB Design, Assembly and Manufacturing Guidelines  
• Package and Board Level Reliability  
µModule Regulator Products Search  
1. Sort table of products by parameters and download the result as a spread sheet.  
2. Search using the Quick Power Search parametric table.  
Digital Power System Management  
Analog Devices’ family of digital power supply management ICs are highly integrated solutions that  
offer essential functions, including power supply monitoring, supervision, margining and sequencing,  
and feature EEPROM for storing user configurations and fault logging.  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LTM4605  
LTM4607  
Higher Power Buck-Boost (Up to 60W)  
Higher Power Buck-Boost (Up to 60W)  
External Inductor, Synchronous Switching Buck-Boost; Up to 36V , 0.8V ≤ V  
≤ 16V  
≤ 24V  
IN  
OUT  
External Inductor, Synchronous Switching Buck-Boost; Up to 36V , 0.8V ≤ V  
IN  
OUT  
LTM4609  
LTM8045  
LTM8046  
Higher Power Buck-Boost (Up to 60W)  
Smaller, Lower Power  
External Inductor, Synchronous Switching Buck-Boost; Up to 36V , 0.8V ≤ V  
≤ 34V  
IN  
OUT  
SEPIC and Inverting; 700mA, 6.25mm × 11.25mm × 4.92mm BGA  
Isolated, Lower Power  
Flyback Topology, 550mA (5V , 24V ), UL60950, 2kVAC  
OUT IN  
Rev C  
D17085-0-8/18(C)  
www.analog.com  
26  
ANALOG DEVICES, INC. 2015-2018  

相关型号:

LTM8055IY#PBF

LTM8055 - 36VIN, 8.5A Buck-Boost &#181;Module (Power Module) Regulator; Package: BGA; Pins: 121; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8055MPY#PBF

LTM8055 - 36VIN, 8.5A Buck-Boost &#181;Module (Power Module) Regulator; Package: BGA; Pins: 121; Temperature Range: -55&deg;C to 125&deg;C
Linear

LTM8056

60VIN, 3A Silent Switcher μModule Regulator
Linear

LTM8056EY#PBF

LTM8056 - 58VIN, 48Vout Buck-Boost &#181;Module (Power Module) Regulator; Package: BGA; Pins: 121; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8056IY

LTM8056 - 58VIN, 48Vout Buck-Boost &#181;Module (Power Module) Regulator; Package: BGA; Pins: 121; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8056MPY

LTM8056 - 58VIN, 48Vout Buck-Boost &#181;Module (Power Module) Regulator; Package: BGA; Pins: 121; Temperature Range: -55&deg;C to 125&deg;C
Linear

LTM8056MPY#PBF

LTM8056 - 58VIN, 48Vout Buck-Boost &#181;Module (Power Module) Regulator; Package: BGA; Pins: 121; Temperature Range: -55&deg;C to 125&deg;C
Linear

LTM8057

3.1VIN to 31VIN, 2kVAC Isolated DC/DC μModule Converter
Linear

LTM8057EY#PBF

LTM8057 - 3.1Vin to 31Vin Isolated &#181;Module (Power Module) DC/DC Converter; Package: BGA; Pins: 38; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8057IY

LTM8057 - 3.1Vin to 31Vin Isolated &#181;Module (Power Module) DC/DC Converter; Package: BGA; Pins: 38; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8057IY#PBF

LTM8057 - 3.1Vin to 31Vin Isolated &#181;Module (Power Module) DC/DC Converter; Package: BGA; Pins: 38; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8057MPY

LTM8057 - 3.1Vin to 31Vin Isolated &#181;Module (Power Module) DC/DC Converter; Package: BGA; Pins: 38; Temperature Range: -55&deg;C to 125&deg;C
Linear