LTM9001CV-AA#PBF [Linear]

LTM9001-A and -B - 16-Bit IF/Baseband Receiver Subsystem; Package: LGA; Pins: 81; Temperature Range: 0°C to 70°C;
LTM9001CV-AA#PBF
型号: LTM9001CV-AA#PBF
厂家: Linear    Linear
描述:

LTM9001-A and -B - 16-Bit IF/Baseband Receiver Subsystem; Package: LGA; Pins: 81; Temperature Range: 0°C to 70°C

文件: 总28页 (文件大小:413K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM9001  
16-Bit IF/Baseband  
Receiver Subsystem  
FEATURES  
DESCRIPTION  
The LTM®9001 is an integrated System in a Package (SiP)  
that includes a high-speed 16-bit A/D converter, matching  
network, anti-aliasing filter and a low noise, differential  
amplifier with fixed gain. It is designed for digitizing wide  
dynamicrangesignalswithanintermediatefrequency(IF)  
range up to 300MHz. The amplifier allows either AC- or  
DC-coupled input drive. A low-pass or bandpass filter  
network can be implemented with various bandwidths.  
Contact Linear Technology regarding semi-custom con-  
figurations.  
n
Integrated 16-Bit, High-Speed ADC, Passive Filter  
and Fixed Gain Differential Amplifier  
n
Up to 300MHz IF Range  
Low-Pass and Bandpass Filter Versions  
n
Low Noise, Low Distortion Amplifiers  
Fixed Gain: 8dB, 14dB, 20dB or 26dB  
50Ω, 200Ω or 400Ω Input Impedance  
n
72dB SNR, 82dB SFDR (LTM9001-AA)  
n
Integrated Bypass Capacitance, No External  
Components Required  
Optional Internal Dither  
n
The LTM9001 is perfect for IF receivers in demanding  
communications applications, with AC performance that  
includes 72dBFS noise floor and 82dB spurious free dy-  
namic range (SFDR) at 162.5MHz (LTM9001-AA).  
n
Optional Data Output Randomizer  
n
LVDS or CMOS Outputs  
n
3.3V Single Supply  
n
Power Dissipation: 1.65W  
n
n
The digital outputs can be either differential LVDS or  
single-ended CMOS. There are two format options for the  
CMOS outputs: a single bus running at the full data rate or  
demultiplexed buses running at half data rate. A separate  
output power supply allows the CMOS output swing to  
range from 0.5V to 3.3V.  
Clock Duty Cycle Stabilizer  
11.25mm × 11.25mm × 2.32mm LGA Package  
APPLICATIONS  
n
Telecommunications  
n
+
High Sensitivity Receivers  
The differential ENC and ENC inputs may be driven with  
asinewave, PECL, LVDS, TTLorCMOSinputs. Anoptional  
clock duty cycle stabilizer allows high performance at full  
speed with a wide range of clock duty cycles.  
n
Cellular Base Stations  
Spectrum Analyzers  
n
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other  
trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
Simplified IF Receiver Channel  
64k Point FFT, FIN = 162.4MHz,  
–1dBFS, PGA = 1  
V
V
DD  
= 3.3V  
CC  
SENSE  
0
LTM9001  
0V = 0.5V TO 3.6V  
DD  
–20  
–40  
D15  
CMOS  
–60  
OR  
+
LVDS  
IN  
ANTI-ALIAS  
FILTER  
16-BIT  
130Msps ADC  
D0  
RF  
HD3  
HD2  
–80  
SAW  
CLKOUT  
OF  
IN  
–100  
–120  
LO  
DIFFERENTIAL  
FIXED GAIN  
AMPLIFIER  
OGND  
9001 TA01  
0
4096  
12288  
20480  
28672  
GND  
+
ENC ENC  
FFT BIN NUMBER (32k TOTAL)  
ADC CONTROL PINS  
9001 TA01b  
9001fa  
1
LTM9001  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Notes 1, 2)  
ALL ELSE  
= GND  
TOP VIEW  
DATA  
Supply Voltage (V ) ................................ –0.3V to 3.6V  
CC  
CONTROL  
Supply Voltage (V ) ................................... –0.3V to 4V  
DD  
1
2
3
4
5
6
7
8
9
Digital Output Supply Voltage (OV ).......... –0.3V to 4V  
DD  
J
OGND  
+
Analog Input Current (IN , IN )............................ 10mA  
IN  
IN  
H
G
F
Digital Input Voltage  
+
OV  
DD  
(Except AMPSHDN)..................–0.3V to (V + 0.3V)  
DD  
Digital Input Voltage  
E
V
CC  
(AMPSHDN)..............................0.3V to (V + 0.3V)  
Digital Output Voltage ................ –0.3V to (OV + 0.3V)  
D
C
B
A
CC  
DD  
DNC  
+
ENC  
Operating Temperature Range  
ENC  
LTM9001C................................................ 0°C to 70°C  
LTM9001I............................................. –40°C to 85°C  
Storage Temperature Range................... –45°C to 125°C  
Maximum Junction Temperature........................... 125°C  
OGND  
CONTROL  
V
OGND OV  
DD DD  
LGA PACKAGE  
T
= 125°C, θ = 15°C/W, θ = 19°C/W  
JMAX  
JA JC  
θ
JA  
DERIVED FROM 60mm × 70mm PCB WITH 4 LAYERS  
WEIGHT = 0.71g  
ORDER INFORMATION  
LEAD FREE FINISH  
LTM9001CV-AA#PBF  
LTM9001IV-AA#PBF  
LTM9001CV-BA#PBF  
LTM9001IV-BA#PBF  
PART MARKING*  
LTM9001V-AA  
LTM9001V-AA  
LTM9001V-BA  
LTM9001V-BA  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
81-Lead (11.25mm × 11.25mm × 2.3mm) LGA  
81-Lead (11.25mm × 11.25mm × 2.3mm) LGA  
81-Lead (11.25mm × 11.25mm × 2.3mm) LGA  
81-Lead (11.25mm × 11.25mm × 2.3mm) LGA  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
G
DIFF  
Gain  
DC, LTM9001-AA  
IN  
19.1  
19.7  
19  
20.3  
dB  
dB  
f
= 162.5MHz (Note 3)  
DC, LTM9001-BA  
7.1  
8.2  
7.8  
9.4  
dB  
dB  
f
IN  
= 140MHz (Note 3)  
G
Gain Temperature Drift  
V
= Maximum, (Note 3)  
2
mdB/°C  
V
TEMP  
INCM  
IN  
IN  
+
V
V
Input Common Mode Voltage Range  
Input Voltage Range at –1dBFS  
(IN + IN )/2  
1.0–1.6  
LTM9001-AA at 162.5MHz  
LTM9001-BA at 140MHz  
233  
820  
mV  
mV  
P-P  
P-P  
9001fa  
2
LTM9001  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
R
INDIFF  
Differential Input Impedance  
LTM9001-AA  
LTM9001-BA  
200  
400  
Ω
Ω
C
V
Differential Input Capacitance  
Offset Error (Note 6)  
Includes Parasitic  
1
pF  
INDIFF  
OS  
l
l
Including Amplifier and ADC (LTM9001-AA)  
Including Amplifier and ADC (LTM9001-BA)  
–8  
–20  
–3.2  
–10  
–0.5  
–0.5  
mV  
mV  
Offset Drift  
Including Amplifier and ADC  
10  
μV/°C  
Full-Scale Drift  
Internal Reference  
External Reference  
30  
15  
ppm/°C  
ppm/°C  
CMRR  
Common Mode Rejection Ratio  
60  
dB  
μA  
μA  
μA  
ns  
l
I
I
I
t
t
SENSE Input Leakage Current  
0V < SENSE < V  
–3  
3
SENSE  
MODE  
LVDS  
AP  
DD  
MODE Pin Pull-Down Current to GND  
LVDS Pin Pull-Down Current to GND  
Sample-and-Hold Acquisition Delay Time  
Sample-and-Hold Acquisition Delay Time Jitter  
10  
10  
1
70  
fs  
RMS  
JITTER  
CONVERTER CHARACTERISTICS The l indicates specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
Resolution (No Missing Codes)  
Integral Linearity Error  
16  
Bits  
l
l
Differential Input LTM9001-AA (Notes 5, 7)  
Differential Input LTM9001-BA (Notes 5, 7)  
2.4  
8
10  
LSB  
LSB  
l
Differential Linearity Error  
Transition Noise  
Differential Input (Notes 5, 7)  
External Reference  
0.3  
1
1
LSB  
LSB  
RMS  
DYNAMIC ACCURACY The l indicates specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SNR  
Signal-to-Noise Ratio  
162.5MHz Input (PGA = 0) LTM9001-AA  
162.5MHz Input (PGA = 1) LTM9001-AA  
72  
dBFS  
dBFS  
l
l
67.2  
67  
68.5  
140MHz Input (PGA = 0) LTM9001-BA  
140MHz Input (PGA = 1) LTM9001-BA  
69.2  
67.2  
dBFS  
dBFS  
SFDR  
SFDR  
Spurious Free Dynamic Range, 2nd or 3rd  
Harmonic  
162.5MHz Input (PGA = 0) LTM9001-AA  
162.5MHz Input (PGA = 1) LTM9001-AA  
78  
82  
dBc  
dBc  
l
l
72  
64  
140MHz Input (PGA = 0) LTM9001-BA  
140MHz Input (PGA = 1) LTM9001-BA  
72  
82  
dBc  
dBc  
Spurious Free Dynamic Range 4th or Higher  
162.5MHz Input (PGA = 0) LTM9001-AA  
162.5MHz Input (PGA = 1) LTM9001-AA  
95  
95  
dBc  
dBc  
l
l
86  
86  
140MHz Input (PGA = 0) LTM9001-BA  
140MHz Input (PGA = 1) LTM9001-BA  
95  
104  
dBc  
dBc  
9001fa  
3
LTM9001  
DYNAMIC ACCURACY The l indicates specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
S/(N+D)  
Signal-to-Noise Plus Distortion Ratio  
162.5MHz Input (PGA = 0) LTM9001-AA  
162.5MHz Input (PGA = 1) LTM9001-AA  
71.4  
68  
dBFS  
dBFS  
l
l
67  
64  
140MHz Input (PGA = 0) LTM9001-BA  
140MHz Input (PGA = 1) LTM9001-BA  
67.5  
66.4  
dBFS  
dBFS  
SFDR  
SFDR  
Spurious Free Dynamic Range at –25dBFS,  
Dither “OFF”  
162.5MHz Input (PGA = 0) LTM9001-AA  
162.5MHz Input (PGA = 1) LTM9001-AA  
90  
93  
dBFS  
dBFS  
Spurious Free Dynamic Range at –15dBFS,  
Dither “OFF”  
140MHz Input (PGA = 0) LTM9001-BA  
140MHz Input (PGA = 1) LTM9001-BA  
91  
92  
dBFS  
dBFS  
Spurious Free Dynamic Range at –25dBFS,  
Dither “ON”  
162.5MHz Input (PGA = 0) LTM9001-AA  
162.5MHz Input (PGA = 1) LTM9001-AA  
95  
100  
dBFS  
dBFS  
l
l
90  
90  
Spurious Free Dynamic Range at –15dBFS,  
Dither “ON”  
140MHz Input (PGA = 0) LTM9001-BA  
140MHz Input (PGA = 1) LTM9001-BA  
95  
96  
dBFS  
dBFS  
IMD  
Third Order Intermodulation Distortion;  
1MHz Tone Spacing, 2 Tones at –7dBFS  
f
IN  
f
IN  
= 162.5MHz LTM9001-AA  
= 140MHz LTM9001-BA  
–78  
–84  
dB  
dB  
3
IIP  
3
Equivalent Third Order Input Intercept Point,  
2 Tone  
f
IN  
f
IN  
= 162.5MHz LTM9001-AA  
= 140MHz LTM9001-BA  
24  
29.2  
dBm  
dBm  
DIGITAL INPUTS AND OUTPUTS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
Encode Inputs (ENC , ENC )  
l
V
V
Differential Input Voltage  
0.2  
1.2  
V
ID  
Common Mode Input Voltage  
Internally Set  
Externally Set  
1.6  
V
V
ICM  
3.1  
R
Input Resistance  
Input Capacitance  
100  
3
Ω
IN  
C
(Note 7)  
pF  
IN  
Logic Inputs (DITH, PGA, ADCSHDN, RAND)  
l
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Current  
V
V
V
= 3.3V  
= 3.3V  
2
2
V
V
IH  
IL  
DD  
DD  
IN  
0.8  
10  
I
= 0V to V  
μA  
pF  
IN  
DD  
C
Input Capacitance  
(Note 7)  
1.5  
IN  
Logic Inputs (AMPSHDN)  
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input High Current  
V
V
V
V
= 3.3V  
= 3.3V  
= 2V  
V
V
IH  
IL  
CC  
CC  
IN  
0.8  
I
IH  
I
IL  
1.3  
0.1  
1.5  
μA  
μA  
pF  
Input Low Current  
= 0.8V  
IN  
C
Input Capacitance  
(Note 7)  
IN  
Logic Outputs (CMOS Mode)  
OV = 3.3V  
DD  
V
High Level Output Voltage  
V
V
= 3.3V, I = 10μA  
3.299  
3.29  
V
V
OH  
DD  
DD  
O
= 3.3V, I = 200μA  
l
l
3.1  
O
V
Low Level Output Voltage  
V
DD  
V
DD  
= 3.3V, I = 10μA  
0.01  
0.1  
V
V
OL  
O
= 3.3V, I = 1.6mA  
0.4  
O
9001fa  
4
LTM9001  
DIGITAL INPUTS AND OUTPUTS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
–50  
50  
MAX  
UNITS  
mA  
I
Output Source Current  
Output Sink Current  
V
= 0V  
SOURCE  
SINK  
OUT  
OUT  
I
V
= 3.3V  
mA  
OV = 2.5V  
DD  
V
High Level Output Voltage  
Low Level Output Voltage  
V
V
= 3.3V, I = 200μA  
2.49  
0.1  
V
V
OH  
OL  
DD  
O
V
= 3.3V, I = 1.6mA  
DD  
O
OV = 1.8V  
DD  
V
OH  
V
OL  
High Level Output Voltage  
Low Level Output Voltage  
V
V
= 3.3V, I = 200μA  
1.79  
0.1  
V
V
DD  
O
= 3.3V, I = 1.6μA  
DD  
O
Logic Outputs (LVDS Mode)  
Standard LVDS  
l
l
V
Differential Output Voltage  
100Ω Differential Load  
100Ω Differential Load  
247  
350  
1.2  
454  
mV  
V
OD  
OS  
V
Output Common Mode Voltage  
1.125  
1.375  
Low Power LVDS  
l
l
V
Differential Output Voltage  
100Ω Differential Load  
100Ω Differential Load  
125  
175  
1.2  
250  
mV  
V
OD  
OS  
V
Output Common Mode Voltage  
1.125  
1.375  
POWER REQUIREMENTS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
3.135  
2.85  
TYP  
MAX  
3.465  
3.5  
UNITS  
V
l
l
V
DD  
V
CC  
ADC Analog Supply Voltage  
Amplifier Supply Voltage  
Amplifier Supply Current  
Total Shutdown Power  
(Note 9)  
3.3  
V
I
CC  
100  
10  
136  
mA  
mW  
P
AMPSHDN = ADCSHDN = 3.3V  
(Note 9)  
SHDN  
Standard LVDS Output Mode  
l
OV  
Output Supply Voltage  
Analog Supply Current  
3
3
3.3  
3.6  
V
DD  
l
l
I
LTM9001-AA  
LTM9001-BA  
400  
465  
500  
550  
mA  
mA  
VDD  
l
I
Output Supply Current  
Power Dissipation  
74  
90  
mA  
OVDD  
l
l
P
DISS  
LTM9001-AA  
LTM9001-BA  
1564  
1779  
1947  
2112  
mW  
mW  
Low Power LVDS Output Mode  
l
OV  
DD  
Output Supply Voltage  
Analog Supply Current  
(Note 9)  
3.3  
3.6  
V
l
l
I
LTM9001-AA  
LTM9001-BA  
400  
465  
500  
550  
mA  
mA  
VDD  
l
I
Output Supply Current  
Power Dissipation  
41  
50  
mA  
OVDD  
l
l
P
LTM9001-AA  
LTM9001-BA  
1455  
1670  
1815  
1980  
mW  
mW  
DISS  
CMOS Output Mode  
OV  
l
Output Supply Voltage  
Analog Supply Current  
(Note 9)  
0.5  
3.6  
V
DD  
l
l
I
LTM9001-AA  
LTM9001-BA  
380  
460  
450  
530  
mA  
mA  
VDD  
9001fa  
5
LTM9001  
POWER REQUIREMENTS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
P
ADC Power Dissipation  
LTM9001-AA  
LTM9001-BA  
1320  
1584  
1650  
1914  
mW  
mW  
DISS  
P
Total Power Dissipation  
LTM9001-AA  
LTM9001-BA  
1650  
1914  
mW  
mW  
DISS(TOTAL)  
TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
f
Sampling Frequency (Note 9)  
LTM9001-AA  
LTM9001-BA  
1
1
130  
160  
MHz  
MHz  
S
l
l
l
l
t
ENC Low Time (Note 7)  
ENC High Time (Note 7)  
Duty Cycle Stabilizer Off (LTM9001-AA)  
Duty Cycle Stabilizer Off (LTM9001-BA)  
Duty Cycle Stabilizer On (LTM9001-AA)  
Duty Cycle Stabilizer On (LTM9001-BA)  
3.65  
2.97  
2.6  
3.846  
3.125  
3.846  
3.125  
1000  
1000  
1000  
1000  
ns  
ns  
ns  
ns  
L
2.1  
l
l
l
l
t
Duty Cycle Stabilizer Off (LTM9001-AA)  
Duty Cycle Stabilizer Off (LTM9001-BA)  
Duty Cycle Stabilizer On (LTM9001-AA)  
Duty Cycle Stabilizer On (LTM9001-BA)  
3.65  
2.97  
2.6  
3.846  
3.125  
3.846  
3.125  
1000  
1000  
1000  
1000  
ns  
ns  
ns  
ns  
H
2.1  
LVDS Output Mode (Standard and Low Power)  
l
l
l
t
t
t
t
t
ENC to DATA Delay  
ENC to CLKOUT Delay  
DATA to CLKOUT Skew  
Output Rise Time  
Output Fall Time  
(Note 7)  
(Note 7)  
1.3  
1.3  
2.7  
2.7  
4.3  
0.5  
0.5  
7
4
4
ns  
ns  
D
C
(t – t ) (Note 7)  
10  
ns  
SKEW  
RISE  
FALL  
C
D
ns  
ns  
Data Latency  
Cycles  
CMOS Output Mode  
l
l
l
t
t
t
ENC to DATA Delay  
ENC to CLKOUT Delay  
DATA to CLKOUT Skew  
Data Latency  
(Note 7)  
(Note 7)  
1.3  
1.3  
2.7  
2.7  
4.3  
4
4
ns  
ns  
ns  
D
C
(t – t ) (Note 7)  
10  
SKEW  
C
D
Full Rate CMOS  
Demuxed  
7
7
Cycles  
Cycles  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 5: Integral nonlinearity is defined as the deviation of a code from  
a “best fit straight line” to the transfer curve. The deviation is measured  
from the center of the quantization band.  
Note 6: Offset error is the voltage applied between the IN and IN pins  
required to make the output code flicker between 0000 0000 0000 0000  
and 1111 1111 1111 1111.  
+
Note 2: All voltage values are with respect to ground with GND and OGND  
wired together (unless otherwise noted).  
+
Note 3: Gain is measured from IN /IN through the ADC. The amplifier  
provides approximately 20dB of gain and the filter has 1dB loss  
(LTM9001-AA).  
Note 7: Guaranteed by design, not subject to test.  
Note 8: Amplifier dynamic performance tests are done from IN /IN  
+
through the DNC pins without using the ADC.  
Note 4: V = V = 3.3V, f  
differential ENC /ENC = 2V with 1.6V common mode, input range =  
= maximum sample frequency,  
CC  
DD  
+
SAMPLE  
Note 9: Recommended operating conditions.  
P-P  
–1dBFS with PGA = 0 with differential drive, AC-coupled inputs, unless  
otherwise noted.  
9001fa  
6
LTM9001  
TIMING DIAGRAM  
LVDS Output Mode Timing  
All Outputs are Differential and Have LVDS Levels  
t
AP  
N + 1  
N + 4  
ANALOG  
INPUT  
N + 3  
N
N + 2  
t
H
t
L
ENC  
+
ENC  
t
D
N – 7  
N – 6  
N – 5  
N – 4  
N – 3  
D0-D15, OF  
t
C
+
CLKOUT  
9001 TD01  
CLKOUT  
Full-Rate CMOS Output Mode Timing  
All Outputs are Single-Ended and Have CMOS Levels  
t
AP  
N + 1  
N + 4  
ANALOG  
INPUT  
N + 3  
N
N + 2  
t
H
t
L
ENC  
+
ENC  
t
D
N – 7  
N – 6  
N – 5  
N – 4  
N – 3  
DA0-DA15, OFA  
t
C
CLKOUTA  
CLKOUTB  
HIGH IMPEDANCE  
DB0-DB15, OFB  
9001 TD02  
9001fa  
7
LTM9001  
TIMING DIAGRAM  
Demultiplexed CMOS Output Mode Timing  
All Outputs are Single-Ended and Have CMOS Levels  
t
AP  
N + 1  
N + 4  
ANALOG  
INPUT  
N + 3  
N
N + 2  
t
H
t
L
ENC  
+
ENC  
t
t
D
D
N – 8  
N – 6  
N – 4  
DA0-DA15, OFA  
DB0-DB15, OFB  
N – 7  
N – 5  
N – 3  
t
C
CLKOUTA  
CLKOUTB  
9001 TD03  
9001fa  
8
LTM9001  
(LTM9001-AA)  
TYPICAL PERFORMANCE CHARACTERISTICS  
Shorted Inputs Histogram with  
130k Samples  
IF Frequency Response  
Input Impedance vs Frequency  
250  
200  
150  
100  
50  
0
0
–2  
–4  
9000  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
MAGNITUDE  
PHASE  
–45  
–90  
–6  
–8  
1000  
0
–10  
10  
100  
1000  
160  
33524  
33504  
ADC OUTPUT CODE  
120 130 140 150  
170 180 190 200  
33484  
33544  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
9001 G02  
9001 G01  
9001 G03  
Best Fit Integral Non-Linearity  
(INL) vs Output Code  
Differential Non-Linearity (DNL)  
vs Output Code  
64k Point FFT, FIN = 162.4MHz,  
–1dBFS, PGA = 0  
0
–20  
5
4
0.5  
0.4  
0.3  
0.2  
0.1  
0
3
2
–40  
1
–60  
0
–1  
–2  
–0.1  
–0.2  
HD3  
HD2  
–80  
–3  
–4  
–5  
–0.3  
–0.4  
–0.5  
–100  
–120  
65536  
6553  
0
16384  
32768  
49152  
0
16384  
32768  
49152  
0
4096  
12288  
20480  
28672  
ADC OUTPUT CODE  
ADC OUTPUT CODE  
FFT BIN NUMBER (32k TOTAL)  
9001 G04  
9001 G05  
9001 G06  
64k Point FFT, FIN = 162.4MHz,  
–1dBFS, PGA = 1  
64k Point 2-Tone FFT, FIN = 161.5MHz,  
and 163.5MHz, –7dBFS, PGA = 0  
0
–20  
0
–20  
–40  
–40  
–60  
–60  
HD3  
HD2  
–80  
–80  
–100  
–120  
–100  
–120  
0
4096  
12288  
20480  
28672  
0
4096  
12288  
20480  
28672  
FFT BIN NUMBER (32k TOTAL)  
FFT BIN NUMBER (32k TOTAL)  
9001 G07  
9001 G08  
9001fa  
9
LTM9001  
(LTM9001-AA)  
TYPICAL PERFORMANCE CHARACTERISTICS  
64k Point FFT, FIN = 162.4MHz,  
–15dBFS, PGA = 0, Dither “Off”  
64k Point FFT, FIN = 162.4MHz,  
–15dBFS, PGA = 0, Dither “On”  
64k Point 2-Tone FFT, FIN = 161.5MHz,  
and 163.5MHz, –15dBFS, PGA = 0  
0
–20  
0
–20  
0
–20  
–40  
–40  
–40  
–60  
–60  
–60  
–80  
–80  
–80  
–100  
–100  
–120  
–100  
–120  
–120  
0
4096  
12288  
20480  
28672  
0
4096  
12288  
20480  
28672  
0
4096  
12288  
20480  
28672  
FFT BIN NUMBER (32k TOTAL)  
FFT BIN NUMBER (32k TOTAL)  
FFT BIN NUMBER (32k TOTAL)  
9001 G09  
9001 G10  
9001 G11  
SFDR vs Input Level, FIN = 162.4MHz,  
PGA = 0, Dither = “On”  
SFDR and SNR vs Sample Rate,  
FIN = 162.4MHz, –1dBFS, PGA = 0  
SFDR vs Input Level, FIN = 162.4MHz,  
PGA = 0, Dither = “Off”  
140  
120  
100  
80  
140  
120  
100  
80  
84  
80  
76  
SFDR dBc  
SFDR dBFS  
SNR  
SFDR  
SFDR dBc  
SFDR dBFS  
60  
60  
72  
68  
64  
40  
20  
0
40  
20  
0
200  
ADC SAMPLE RATE (Msps)  
0
50  
100  
150  
250  
–50  
–50  
–90 –80 –70 –60  
–40 –30 –20 –10  
0
–90 –80 –70 –60  
–40 –30 –20 –10  
0
INPUT LEVEL (dBFS)  
INPUT LEVEL (dBFS)  
9001 G14  
9001 G13  
9001 G12  
SFDR vs VCC Supply Voltage,  
FIN = 162.4MHz, –1dBFS,  
PGA = 0  
SFDR vs Input Common-Mode Voltage,  
FIN = 162.4MHz, –1dBFS, PGA = 0  
81.0  
80.5  
80.0  
79.5  
79.0  
78.5  
78.0  
77.5  
77.0  
76.5  
76.0  
75.5  
90  
85  
80  
75  
70  
65  
60  
3.2 3.3 3.4  
INPUT COMMON-MODE VOLTAGE (V)  
2.8  
2.9 3.0 3.1  
3.5  
2.5  
INPUT COMMON-MODE VOLTAGE (V)  
0.5  
1.0  
1.5  
2.0  
3.0  
9001 G16  
9001 G15  
9001fa  
10  
LTM9001  
(LTM9001-BA)  
TYPICAL PERFORMANCE CHARACTERISTICS  
Differential Non-Linearity (DNL)  
vs Output Code  
Best Fit Integral Non-Linearity  
(INL) vs Output Code  
SNR vs Frequency  
1.0  
0.8  
4.0  
3.5  
71  
69  
67  
65  
63  
61  
59  
57  
55  
53  
51  
3.0  
2.5  
0.6  
2.0  
0.4  
1.5  
1.0  
0.2  
0.5  
0.0  
0.0  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
16384  
32768  
49152  
65536  
0
16384  
32768  
49152  
65536  
1
10  
100  
1000  
OUTPUT CODE  
IF FREQUENCY (MHz)  
OUTPUT CODE  
9001 G19  
9001 G17  
9001 G18  
Input Impedance vs Frequency  
IF Frequency Response  
400  
350  
300  
250  
200  
150  
100  
50  
0
0
MAGNITUDE  
–5  
–10  
–15  
–20  
–25  
–30  
–8  
PHASE  
–16  
–24  
–32  
0
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
9001 G20  
9001 G21  
64k Point FFT, fIN = 140MHz,  
–1dBFS, PGA = 0, RAND “Off”,  
Dither “Off”  
64k Point FFT, fIN = 250MHz,  
–1dBFS, PGA = 0, RAND “Off”,  
Dither “Off”  
64k Point 2-Tone FFT, fIN = 136MHz,  
–7dBFS Per Tone, PGA = 0, RAND  
“Off”, Dither “Off”  
0
–10  
0
–10  
0
–10  
–20  
–20  
–20  
–30  
–30  
–30  
–40  
–40  
–40  
HD3  
–50  
–50  
–50  
–60  
–60  
–60  
HD2  
–70  
–70  
–70  
HD3  
HD2  
40  
–80  
–80  
–80  
–90  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
0
10 20 30 40 50 60 70 80  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
50  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
9001 G23  
9001 G24  
9001 G22  
9001fa  
11  
LTM9001  
PIN FUNCTIONS  
Supply Pins  
AMPSHDN (Pin H3): Power Shutdown Pin for Amplifier.  
This pin is a logic input referenced to analog ground.  
AMPSHDN = low results in normal operation. AMPSHDN  
= high results in powered down amplifier with typically  
3mA amplifier supply current.  
V
(Pins E1, E2): 3.3V Analog Supply Pin for Amplifier.  
CC  
The voltage on this pin provides power for the amplifier  
stage only and is internally bypassed to GND.  
V
(Pins E5, D5): 3.3V Analog Supply Pin for ADC. This  
DD  
MODE (Pin G3): Output Format and Clock Duty Cycle  
Stabilizer Selection Pin. Connecting MODE to 0V selects  
offset binary output format and disables the clock duty  
supply is internally bypassed to GND.  
OV (Pins A6, G9): Positive Supply for the ADC Output  
DD  
Drivers. This supply is internally bypassed to OGND.  
cyclestabilizer. ConnectingMODEto1/3V selectsoffset  
DD  
binary output format and enables the clock duty cycle sta-  
GND(PinsA1,A2,A4,B2,B4,C2,C4,D1,D2,D4,E4,F1,  
F2, F4, G2, G4, H2, H4, J1, J2, J4): Analog Ground.  
bilizer.ConnectingMODEto2/3V selects2scomplement  
DD  
output format and enables the clock duty cycle stabilizer.  
OGND (Pins A5, A9, G8, J9): ADC Output Driver Ground.  
Connecting MODE to V selects 2’s complement output  
DD  
format and disables the clock duty cycle stabilizer.  
Analog Inputs  
RAND (Pin F3): Digital Output Randomization Selection  
Pin. RAND = low results in normal operation. RAND =  
high selects D1 to D15 to be EXCLUSIVE-ORed with D0  
(the LSB). The output can be decoded by again applying  
an XOR operation between the LSB and all other bits. This  
mode of operation reduces the effects of digital output  
interference.  
+
IN (Pin G1): Positive (Non-Inverting) Amplifier Input.  
IN (Pin H1): Negative (Inverting) Amplifier Input.  
DNC (Pins C3, D3): Do Not Connect. These pins are used  
for testing and should not be connected on the PCB. They  
may be soldered to unconnected pads and should be well  
isolated. The DNC pins connect to the signal path prior to  
the ADC inputs; therefore, care should be taken to keep  
other signals away from these sensitive nodes.  
PGA (Pin E3): Programmable Gain Amplifier Control Pin.  
PGA = low selects the normal (maximum) input voltage  
range. PGA = high selects a 3.5dB reduced input range  
for slightly better distortion performance at the expense  
of SNR.  
+
ENC (Pin C1): Positive Differential Encode Input. The  
sampled analog input is held on the rising edge of ENC .  
This input is internally biased to 1.6V through a 6.2k  
resistor. Output data can be latched on the rising edge  
of ENC . The Encode pins have a differential 100Ω input  
impedance.  
+
ADCSHDN (Pin B3): Power Shutdown Pin for ADC.  
ADCSHDN = low results in normal operation. ADCSHDN  
= high results in powered down analog circuitry and the  
digital outputs are placed in a high impedance state.  
+
ENC (Pin B1): Negative Differential Encode Input. The  
sampled analog input is held on the falling edge of ENC .  
Thisinputisinternallybiasedto1.6Vthrougha6.2kresistor.  
Bypasstogroundwitha0.1μFcapacitorforasingle-ended  
Encode signal. The Encode pins have a differential 100Ω  
input impedance.  
DITH (Pin A3): Internal Dither Enable Pin. DITH = low  
disablesinternaldither.DITH=highenablesinternaldither.  
RefertoInternalDithersectionofthisdatasheetfordetails  
on dither operation.  
LVDS (Pin F5): Data Output Mode Select Pin. Connecting  
LVDSto0VselectsfullrateCMOSmode.ConnectingLVDS  
Control Inputs  
to1/3V selectsdemultiplexedCMOSmode. Connecting  
DD  
SENSE (Pin J3): Reference Mode Select and External  
Reference Input. Tie SENSE to V to select the internal  
2.5V bandgap reference. An external reference of 2.5V  
or 1.25V may be used; both reference values will set the  
maximum full scale input range.  
LVDS to 2/3V selects Low Power LVDS mode. Connect-  
DD  
ing LVDS to V selects Standard LVDS mode.  
DD  
DD  
9001fa  
12  
LTM9001  
PIN FUNCTIONS  
Digital Outputs  
CLKOUTB(PinE7):DataValidOutput.CLKOUTBwilltoggle  
at the sample rate in full rate CMOS mode or at 1/2 the  
sample rate in demultiplexed mode. Latch the data on the  
falling edge of CLKOUTB.  
For CMOS Mode, Full Rate or Demultiplexed  
DA0 to DA15 (Pins E9 to H5): Digital Outputs, A Bus.  
DA15 is the MSB. Output bus for full rate CMOS mode  
and demultiplexed mode.  
OFA (Pin G5): Over/Under Flow Digital Output for the A  
Bus. OFA is high when an over or under flow has occurred  
on the A bus.  
CLKOUTA (Pin E8): Inverted Data Valid Output. CLKOUTA  
will toggle at the sample rate in full rate CMOS mode or  
at 1/2 the sample rate in demultiplexed mode. Latch the  
data on the rising edge of CLKOUTA.  
For LVDS Mode, STANDARD or LOW POWER  
+
+
D0 /D0 to D15 /D15 (Pins B5 to G6): LVDS Digital Out-  
puts.AllLVDSoutputsrequiredifferential100Ωtermination  
resistors at the LVDS receiver. D15 /D15 is the MSB.  
OFB (Pin E6): Over/Under Flow Digital Output for the B  
Bus. OFB is high when an over or under flow has occurred  
on the B bus. OFB is in a high impedance state in full rate  
CMOS mode.  
+
+
CLKOUT /CLKOUT (PinsE6,E7):LVDSDataValidOutput.  
+
Latch data on the rising edge of CLKOUT , falling edge  
of CLKOUT .  
DB0toDB15(PinsB5toD9):DigitalOutputs,BBus.DB15  
is the MSB. Active in demultiplexed mode. The B bus is in  
a high impedance state in full rate CMOS mode.  
+
OF /OF (Pins H5, G5): Over/Under Flow Digital Output.  
OF is high when an over or under flow has occurred.  
Pin Configuration (LVDS Outputs/CMOS Outputs)  
1
2
3
SENSE  
AMPSHDN  
MODE  
RAND  
PGA  
4
5
6
7
8
9
+
+
J
H
G
F
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
D14 /DA12  
D14 /DA11  
D12 /DA8  
D12 /DA7  
OGND  
+
IN  
OF /DA15  
D15 /DA13  
D13 /DA9  
D11 /DA5  
D11 /DA6  
+
+
+
+
IN  
OF /OFA  
D15 /DA14  
D13 /DA10  
OGND  
OV  
DD  
+
+
GND  
LVDS  
D9 /DA1  
D9 /DA2  
D10 /DA3  
D10 /DA4  
+
+
E
V
CC  
V
V
CLKOUT /OFB CLKOUT /CLKOUTB D8 /CLKOUTA  
D8 /DA0  
CC  
DD  
DD  
+
+
D
C
B
A
GND  
GND  
GND  
GND  
GND  
DNC  
V
D6 /DB12  
D6 /DB13  
D7 /DB14  
D7 /DB15  
+
+
+
+
ENC  
ENC  
DNC  
D0 /DB1  
D4 /DB8  
D4 /DB9  
D5 /DB10  
D5 /DB11  
+
+
ADCSHDN  
DITH  
D0 /DB0  
D1 /DB2  
D1 /DB3  
D3 /DB7  
D3 /DB6  
GND  
OGND  
OV  
D2 /DB4  
D2+/DB5  
OGND  
DD  
9001fa  
13  
LTM9001  
PIN FUNCTIONS  
Top View of LGA Pinout (Looking Through Component)  
ALL ELSE  
= GND  
TOP VIEW  
DATA  
CONTROL  
1
2
3
4
5
6
7
8
9
J
OGND  
IN  
IN  
H
G
F
+
OV  
DD  
E
V
CC  
D
C
B
A
DNC  
+
ENC  
ENC  
OGND  
9001 LGA01  
CONTROL  
V
OGND OV  
DD DD  
9001fa  
14  
LTM9001  
FUNCTIONAL BLOCK DIAGRAM  
9001fa  
15  
LTM9001  
OPERATION  
DYNAMIC PERFORMANCE DEFINITIONS  
distortion products at the sum and difference frequencies  
of mfa nfb, where m and n = 0, 1, 2, 3, etc.  
Signal-to-Noise Plus Distortion Ratio  
For example, the 3rd order IMD terms include (2fa + fb),  
(fa + 2fb), (2fa – fb) and (fa – 2fb). The 3rd order IMD is  
defined as the ration of the RMS value of either input tone  
to the RMS value of the largest 3rd order IMD product.  
The signal-to-noise plus distortion ratio [S/(N+D)] is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency and the RMS amplitude of all other frequency  
components at the ADC output.  
Spurious Free Dynamic Range (SFDR)  
Signal-to-Noise Ratio  
The ratio of the RMS input signal amplitude to the RMS  
value of the peak spurious spectral component expressed  
in dBc. SFDR may also be calculated relative to full scale  
and expressed in dBFS.  
The signal-to-noise (SNR) is the ratio between the RMS  
amplitudeofthefundamentalinputfrequencyandtheRMS  
amplitude of all other frequency components, except the  
first five harmonics.  
Aperture Delay Time  
Total Harmonic Distortion  
+
Aperture Delay is the time from when a rising ENC equals  
Total harmonic distortion is the ratio of the RMS sum  
of all harmonics of the input signal to the fundamental  
itself. The out-of-band harmonics alias into the frequency  
band between DC and half the sampling frequency. THD  
is expressed as:  
the ENC voltage to the instant that the input signal is held  
by the sample and-hold circuit.  
Aperture Delay Jitter  
The variation in the aperture delay time from conversion  
to conversion. This random variation will result in noise  
when sampling an AC input. The signal to noise ratio due  
to the jitter alone will be:  
THD= –20Log (V22 + V32 + V42 +...Vn2)/V1  
where V1 is the RMS amplitude of the fundamental  
frequency and V2 through Vn are the amplitudes of the  
second through nth harmonics.  
SNR  
= –20log (2π • f • t  
)
JITTER  
IN JITTER  
DESCRIPTION  
Intermodulation Distortion  
The LTM9001 is an integrated System in a Package (SiP)  
μModule™ receiver that includes a high-speed, sampling  
16-bitA/Dconverter, matchingnetwork, anti-aliasinglter  
and a low noise, differential amplifier with fixed gain. It  
is designed for digitizing high frequency, wide dynamic  
range signals with an Intermediate Frequency (IF) range  
up to 300MHz.  
If the input signal consists of more than one spectral  
component,thetransferfunctionnonlinearitycanproduce  
intermodulationdistortion(IMD)inadditiontoTHD.IMDis  
the change in one sinusoidal input caused by the presence  
of another sinusoidal input at a different frequency.  
If two pure sine waves of frequencies fa and fb are applied  
totheinput,nonlinearitiesinthetransferfunctioncancreate  
μModule is a trademark of Linear Technology Corporation.  
9001fa  
16  
LTM9001  
OPERATION  
The following sections describe in further detail the func-  
tionaloperationoftheLTM9001.TheSiPtechnologyallows  
the LTM9001 to be customized and this is described in  
the first section. The remaining outline follows the basic  
functional elements as shown in Figure 1.  
However, other options are possible through Linear  
Technology’s semi-custom development program. Linear  
Technology has in place a program to deliver other speed,  
resolution, IF range, gain and filter configurations for a  
widerangeofapplications.SeeTable1fortheLTM9001-AA  
configuration and potential options. These semi-custom  
designs are based on existing ADCs and amplifiers with  
an appropriately modified matching network. The final  
subsystem is then tested to the exact parameters defined  
for the application. The final result is a fully integrated,  
accurately tested and reliable solution. For more details  
onthesemi-customreceiversubsystemprogram,contact  
Linear Technology.  
ADC  
AMPLIFIER  
INPUT  
ADC  
NETWORK  
9001 F01  
Figure 1. Basic Functional Elements  
Note that not all combinations of options in Table 1 are  
possible at this time and specified performance may differ  
significantly from existing values.  
SEMI-CUSTOM OPTIONS  
The μModule construction affords a new level of flexibility  
in application-specific standard products. Standard ADC  
and amplifier components can be integrated regardless  
of their process technology and matched with passive  
components to a particular application. The LTM9001-AA,  
as the first example, is configured with a 16-bit ADC sam-  
pling at rates up to 130Msps. The amplifier gain is 20dB  
with an input impedance of 200Ω and an input range of  
AMPLIFIER INFORMATION  
The amplifiers used in the LTM9001 are low noise and low  
distortion fully differential ADC drivers. The amplifiers are  
very flexible in terms of I/O coupling. They can be AC- or  
DC-coupled at the inputs. Users are advised to keep the  
input common mode voltage between 1V and 1.6V for  
proper operation. If the inputs are AC-coupled, the input  
common mode voltage is automatically biased. The input  
signalcanbeeithersingle-endedordifferentialwithalmost  
no difference in distortion performance.  
250mV . The matching network is designed to optimize  
P-P  
the interface between the amplifier output and the ADC  
undertheseconditions.Additionally,thereisa2-poleband  
pass filter designed for 162.5MHz 25MHz.  
Table 1. Semi-Custom Options  
AMPLIFIER IF  
RANGE  
AMPLIFIER INPUT  
IMPEDANCE  
AMPLIFIER GAIN  
FILTER  
ADC SAMPLE  
RATE  
ADC  
RESOLUTION  
PART NUMBER  
300MHz  
300MHz  
200Ω  
400Ω  
14dB  
8dB  
162.5MHz BPF, 50MHz BW  
DC-300MHz LPF  
130Msps  
160Msps  
16-bit  
16-bit  
LTM9001-AA  
LTM9001-BA  
Select Combination of Options from Columns Below  
DC-300MHz  
DC-140MHz  
DC-70MHz  
DC-35MHz  
50Ω  
200Ω  
200Ω  
400Ω  
200Ω  
26dB  
20dB  
14dB  
8dB  
LPF TBD  
BPF TBD  
160Msps  
130Msps  
105Msps  
80Msps  
65Msps  
40Msps  
25Msps  
10Msps  
16-bit  
14-bit  
6dB  
9001fa  
17  
LTM9001  
OPERATION  
ADC INPUT NETWORK  
CONVERTER INFORMATION  
The passive network between the amplifier output stage  
and the ADC input stage can be configured for bandpass  
or low-pass response with different cut-off frequencies  
and bandwidths. The LTM9001-AA, for example, imple-  
ments a 2-pole band-pass filter centered at 162.5MHz  
with 50MHz bandwidth. Note that the filter attenuates the  
signal at 162.5MHz by 1dB, making the overall gain of the  
subsystem 19dB.  
Theanalog-to-digitalconverter(ADC)isaCMOSpipelined  
multistep converter with a front-end PGA. As shown in the  
FunctionalBlockDiagram, theconverterhasvepipelined  
ADCstages;asampledanaloginputwillresultinadigitized  
value seven cycles later (see the Timing Diagram section).  
The encode input is differential for improved common  
mode noise immunity.  
For production test purposes the filter is designed to allow  
DC inputs into the ADC.  
APPLICATIONS INFORMATION  
INPUT SPAN  
LTM9001  
The LTM9001 is configured with a fixed input span and  
inputimpedance.WiththeamplifiergainandtheADCinput  
network described above for LTM9001-AA, the full-scale  
Z
/2  
R
F
IN  
25Ω  
+
IN  
input range of the driver circuit is 250mV . The recom-  
P-P  
V
IN  
+
mended ADC input span is achieved by tying the SENSE  
R
T
pin to V . However, the ADC input span can be changed  
DD  
by applying a DC voltage to the SENSE pin.  
R
F
25Ω  
Z /2  
IN  
IN  
Input Impedance and Matching  
9001 F02  
The differential input impedance of the LTM9001 can be  
50Ω, 200Ω or 400Ω. In some applications the differential  
inputs may need to be terminated to a lower value imped-  
ance, e.g. 50Ω, in order to provide an impedance match  
for the source. Several choices are available.  
Figure 2. Input Termination for Differential 50Ω Input Impedance  
Using Shunt Resistor (See Table 2 for RT Values)  
LTM9001  
+
IN  
R
F
25Ω  
Z /2  
IN  
One approach is to use a differential shunt resistor  
(Figure 2). Another approach is to employ a wide band  
transformer(Figure3). Bothmethodsprovideawideband  
match. The termination resistor or the transformer must  
be placed close to the input pins in order to minimize the  
reflection due to input mismatch.  
• •  
V
IN  
+
R
25Ω  
Z /2  
IN  
IN  
F
Table 2. Differential Amplifier Input Termination Values  
Z
IN  
R FIG 2  
T
9001 F03  
400ꢁ  
200ꢁ  
50ꢁ  
57ꢁ  
66.5ꢁ  
None  
Figure 3. Input Termination for Differential 50Ω  
Input Impedance Using a Wideband Transformer  
9001fa  
18  
LTM9001  
APPLICATIONS INFORMATION  
Alternatively, one could apply a narrowband impedance  
match at the inputs for frequency selection and/or noise  
reduction.  
R
LTM9001  
S
0.1μF  
R
50Ω  
+
IN  
Z /2  
IN  
F
V
IN  
+
R
T
Referring to Figure 4, amplifier inputs can be easily con-  
figured for single-ended input without a balun. The signal  
is fed to one of the inputs through a matching network  
while the other input is connected to the same imped-  
ance. In general, the single-ended input impedance and  
0.1μF  
0.1μF  
R /R  
S
R
T
Z
/2  
IN  
F
IN  
terminationresistorR aredeterminedbythecombination  
T
9001 F04  
of R , Z /2 and R .  
S
IN  
F
Figure 4. Input Termination for Differential  
50Ω Input Impedance Using Shunt Resistor  
Table 3. Single-Ended Amplifier Input Termination Values  
Z
IN  
R FIG 4  
T
400ꢁ  
200ꢁ  
50ꢁ  
59ꢁ  
68.5ꢁ  
150ꢁ  
LTM9001  
Z
/2  
R
F
IN  
R /2  
s
+
IN  
The LTM9001 amplifier is stable with all source imped-  
ances.Theoveralldifferentialgainisaffectedbythesource  
impedance in Figure 5:  
V
IN  
+
R
T
A = | V /V | = (1000/(R + Z /2))  
V
OUT IN  
S
IN  
R
R /2  
s
Z /2  
IN  
Thenoiseperformanceoftheamplifieralsodependsupon  
the source impedance and termination. For example, an  
input 1:4 transformer in Figure 3 improves the input noise  
figure by adding 6dB voltage gain at the inputs.  
F
IN  
9001 F05  
Figure 5. Calculate Differential Gain  
Reference and SENSE Pin Operation  
Figure6showstheconverterreferencecircuitryconsisting  
of a 2.5V bandgap reference, a programmable gain ampli-  
fier and control circuit. There are three modes of reference  
operation: Internal Reference, 1.25V external reference  
or 2.5V external reference. To use the internal reference,  
tie the SENSE pin to V . To use an external reference,  
DD  
simplyapplyeithera1.25Vor2.5Vreferencevoltagetothe  
SENSE input pin. Both 1.25V and 2.5V applied to SENSE  
will result in the maximum full scale range.  
RANGE  
SELECT  
AND GAIN  
CONTROL  
TIE TO V TO USE  
DD  
INTERNAL  
ADC  
INTERNAL 2.5V  
REFERENCE  
REFERENCE  
OR INPUT FOR  
EXTERNAL 2.5V  
REFERENCE  
OR INPUT FOR  
EXTERNAL 1.25V  
REFERENCE  
SENSE  
PGA  
2.5V  
BANDGAP  
REFERENCE  
9001 F06  
Figure 6. Reference Circuit  
9001fa  
19  
LTM9001  
APPLICATIONS INFORMATION  
PGA Pin  
3. If the ADC is clocked with a fixed frequency sinusoidal  
signal, filter the encode signal to reduce wideband  
noise.  
The PGA pin selects between two gain settings for the  
ADC front-end. PGA = low selects the maximum input  
span; PGA = high selects a 3.5dB lower input span. The  
high input range has the best SNR. For applications with  
high linearity requirements, the low input range will have  
improveddistortion;however,theSNRwillbe1.8dBworse.  
See the Typical Performance Characteristics section.  
4. Balance the capacitance and series resistance at both  
encode inputs such that any coupled noise will appear  
at both inputs as common mode noise.  
The encode inputs have a common mode range of 1.2V  
to V . Each input may be driven from ground to V for  
DD  
DD  
single-ended drive.  
Driving the Encode Inputs  
The encode clock inputs have a differential 100Ω input  
impedance. For 50Ω inputs e.g. signal generators, an  
additional 100Ω impedance will provide an impedance  
match, as shown in Figure 7b.  
The noise performance of the converter can depend on  
the encode signal quality as much as the analog input.  
The encode inputs are intended to be driven differentially,  
primarily for noise immunity from common mode noise  
sources. Each input is biased through a 6k resistor to a  
1.6V bias. The bias resistors set the DC operating point  
fortransformercoupleddrivecircuitsandcansetthelogic  
threshold for single-ended drive circuits.  
Maximum and Minimum Encode Rates  
ThemaximumencoderatefortheLTM9001-AAis130Msps  
and 160Msps for LTM9001-BA. For the ADC to operate  
properly the encode signal should have a 50% ( 5%)  
duty cycle. Each half cycle must have at least 3.65ns  
(LTM9001-AA, or 2.97ns for LTM9001-BA) for the ADC  
internal circuitry to have enough settling time for proper  
operation. Achieving a precise 50% duty cycle is easy with  
differential sinusoidal drive using a transformer or using  
symmetric differential logic such as PECL or LVDS. When  
usingasingle-endedencodesignalasymmetricriseandfall  
times can result in duty cycles that are far from 50%.  
Any noise present on the encode signal will result in ad-  
ditional aperture jitter that will be RMS summed with the  
inherent ADC aperture jitter. In applications where jitter  
is critical (high input frequencies), take the following into  
consideration:  
1. Differential drive should be used.  
2. Usethelargestamplitudepossible.Ifusingtransformer  
coupling, use a higher turns ratio to increase the am-  
plitude.  
LTM9001  
V
DD  
TO INTERNAL  
ADC CLOCK  
DRIVERS  
LTM9001  
0.1μF  
0.1μF  
+
ENC  
1.6V  
6k  
V
DD  
50Ω  
50Ω  
T1  
100Ω  
+
ENC  
8.2pF  
1.6V  
6k  
V
100Ω  
DD  
0.1μF  
ENC  
ENC  
9001 F07b  
T1 = M/A-COM ETC1-1-13  
9001 F07a  
Figure 7b. Transformer Driven Encode  
Figure 7a. Equivalent Encode Input Circuit  
9001fa  
20  
LTM9001  
APPLICATIONS INFORMATION  
An optional clock duty cycle stabilizer can be used if the  
input clock does not have a 50% duty cycle. This circuit  
uses the rising edge of ENC to sample the analog input.  
The falling edge of ENC is ignored and an internal falling  
edge is generated by a phase-locked loop. The input clock  
duty cycle can vary from 30% to 70% and the clock duty  
cycle stabilizer will maintain a constant 50% internal duty  
cycle. If the clock is turned off for a long period of time,  
the duty cycle stabilizer circuit will require one hundred  
clock cycles for the PLL to lock onto the input clock. To  
use the clock duty cycle stabilizer, the MODE pin must be  
DIGITAL OUTPUTS  
Digital Output Modes  
The LTM9001 can operate in four digital output modes:  
standard LVDS, low power LVDS, full rate CMOS, and  
demultiplexed CMOS. The LVDS pin selects the mode of  
operation. This pin has a four level logic input, centered at  
0, 1/3V , 2/3V and V . An external resistive divider  
DD  
DD  
DD  
can be used to set the 1/3V and 2/3V logic levels.  
DD  
DD  
Table 4 shows the logic states for the LVDS pin.  
Table 4. LVDS Pin Function  
connected to 1/3V or 2/3V using external resistors.  
DD  
DD  
LVDS  
DIGITAL OUTPUT MODE  
Full-Rate CMOS  
Demultiplexed CMOS  
Low Power LVDS  
LVDS  
The lower limit of the sample rate is determined by the  
droop of the sample and hold circuits. The pipelined ar-  
chitecture of this ADC relies on storing analog signals on  
small valued capacitors. Junction leakage will discharge  
thecapacitors.Thespecifiedminimumoperatingfrequency  
for the LTM9001 is 1Msps.  
0V(GND)  
1/3V  
2/3V  
DD  
DD  
V
DD  
Digital Output Buffers (CMOS Modes)  
Figure 10 shows an equivalent circuit for a single output  
buffer in CMOS Mode, Full-Rate or Demultiplexed. Each  
+
ENC  
V
= 1.6V  
THRESHOLD  
buffer is powered by OV and OGND, isolated from the  
DD  
LTM9001  
1.6V  
ENC  
ADCpowerandground.TheadditionalN-channeltransistor  
intheoutputdriverallowsoperationdowntolowvoltages.  
The internal resistor in series with the output makes the  
output appear as 50Ω to external circuitry and eliminates  
the need for external damping resistors.  
0.1μF  
9001F8  
Figure 8. Single-Ended ENC Drive,  
Not Recommended for Low Jitter  
LTM9001  
OV  
DD  
0.5V  
TO 3.6V  
V
V
DD  
DD  
3.3V  
3.3V  
MC100LVELT22  
D0  
261Ω  
Q0  
261Ω  
LTM9001  
100Ω  
OV  
DD  
+
ENC  
DATA  
FROM  
LATCH  
PREDRIVER  
LOGIC  
43Ω  
TYPICAL  
DATA  
OUTPUT  
ENC  
Q0  
165Ω  
OGND  
165Ω  
9001 F09  
9001 F10  
Figure 9. ENC Drive Using a CMOS to PECL Translator  
Figure 10. Equivalent Circuit for a Digital Output Buffer  
9001fa  
21  
LTM9001  
APPLICATIONS INFORMATION  
As with all high speed/high resolution converters, the  
digital output loading can affect the performance. The  
digital outputs of the LTM9001 should drive a minimum  
capacitive load to avoid possible interaction between the  
digital outputs and sensitive input circuitry. The output  
should be buffered with a device such as an ALVCH16373  
CMOS latch. For full speed operation the capacitive load  
should be kept under 10pF. A resistor in series with the  
output may be used but is not required since the ADC has  
a series resistor of 43Ω on chip.  
In Low Power LVDS Mode 1.75mA is steered between  
the differential outputs, resulting in 175mV at the LVDS  
receiver’s 100Ω termination resistor. The output common  
mode voltage is 1.2V, the same as standard LVDS Mode.  
Data Format  
The LTM9001 parallel digital output can be selected for  
offset binary or 2’s complement format. The format is  
selected with the MODE pin. This pin has a four level  
logic input, centered at 0, 1/3V , 2/3V and V . An  
DD  
DD  
DD  
external resistive divider can be used to set the 1/3V  
Lower OV voltages will also help reduce interference  
DD  
DD  
and 2/3V logic levels. Table 5 shows the logic states  
from the digital outputs.  
DD  
for the MODE pin.  
Digital Output Buffers (LVDS Modes)  
Table 5. MODE Pin Function  
Figure 11 shows an equivalent circuit for an LVDS output  
MODE  
OUTPUT FORMAT  
Offset Binary  
CLOCK DUTY CYCLE STABILIZER  
+
pair. A 3.5mA current is steered from OUT to OUT or vice  
versa, which creates a 350mV differential voltage across  
the 100Ω termination resistor at the LVDS receiver.  
0V(GND)  
Off  
On  
On  
Off  
1/3V  
2/3V  
Offset Binary  
DD  
DD  
2’s Complement  
2’s Complement  
A feedback loop regulates the common mode output volt-  
age to 1.2V. For proper operation each LVDS output pair  
must be terminated with an external 100Ω termination  
V
DD  
Overflow Bit  
+
resistor, even if the signal is not used (such as OF /OF or  
An overflow output bit (OF) indicates when the converter is  
over-ranged or under-ranged. In CMOS mode, a logic high  
on the OFA pin indicates an overflow or underflow on the  
A data bus, while a logic high on the OFB pin indicates an  
overflowontheBdatabus.InLVDSmode,adifferentiallogic  
+
CLKOUT /CLKOUT ). To minimize noise the PC board  
traces for each LVDS output pair should be routed close  
together. To minimize clock skew all LVDS PC board traces  
should have about the same length.  
+
high on OF /OF pins indicates an overflow or underflow.  
LTM9001  
OV  
DD  
3.3V  
3.5mA  
V
DD  
V
DD  
OV  
DD  
43Ω  
43Ω  
DATA  
FROM  
LATCH  
10k  
10k  
PREDRIVER  
LOGIC  
LVDS  
RECEIVER  
OV  
DD  
100Ω  
+
1.20V  
OGND  
9001 F11  
Figure 11. Equivalent Output Buffer in LVDS Mode  
9001fa  
22  
LTM9001  
APPLICATIONS INFORMATION  
Output Clock  
LTM9001  
CLKOUT  
CLKOUT  
OF  
TheADChasadelayedversionoftheencodeinputavailable  
as a digital output, CLKOUT. The CLKOUT pin can be used  
to synchronize the converter data to the digital system.  
This is necessary when using a sinusoidal encode.  
OF  
D15  
D15/D0  
D14/D0  
In both CMOS modes, A bus data will be updated as CLK-  
OUTA falls and CLKOUTB rises. In demultiplexed CMOS  
mode the B bus data will be updated as CLKOUTA falls  
and CLKOUTB rises.  
D14  
In Full Rate CMOS Mode, only the A data bus is active;  
data may be latched on the rising edge of CLKOUTA or  
the falling edge of CLKOUTB.  
D2  
D1  
D2/D0  
D1/D0  
In demultiplexed CMOS mode CLKOUTA and CLKOUTB  
will toggle at 1/2 the frequency of the encode signal. Both  
the A bus and the B bus may be latched on the rising edge  
of CLKOUTA or the falling edge of CLKOUTB.  
RAND = HIGH,  
RANDOMIZER  
ENABLED  
RAND  
D0  
D0  
9001 F12  
Digital Output Randomizer  
Figure 12. Functional Equivalent of Digital Output Randomizer  
Interference from the ADC digital outputs is sometimes  
unavoidable. Interference from the digital outputs may  
be from capacitive or inductive coupling or coupling  
through the ground plane. Even a tiny coupling factor can  
result in discernible unwanted tones in the ADC output  
spectrum.  
PC BOARD  
FPGA  
CLKOUT  
OF  
By randomizing the digital output before it is transmitted  
offchip,theseunwantedtonescanberandomized,trading  
a slight increase in the noise floor for a large reduction in  
unwanted tone amplitude.  
D15 D0  
D15  
D14 D0  
D14  
The digital output is “Randomized” by applying an exclu-  
sive-ORlogicoperationbetweentheLSBandallotherdata  
output bits. To decode, the reverse operation is applied;  
that is, an exclusive-OR operation is applied between the  
LSB and all other bits. The LSB, OF and CLKOUT output  
are not affected. The output Randomizer function is active  
when the RAND pin is high.  
LTM9001  
D2 D0  
D2  
D1 D0  
D1  
D0  
D0  
Output Driver Power  
Separate output power and ground pins allow the output  
drivers to be isolated from the analog circuitry. The power  
supply for the digital output buffers, OV , should be tied  
DD  
9001 F13  
to the same power supply as for the logic being driven.  
Figure 13. Derandomizing a Randomized Digital Output  
9001fa  
23  
LTM9001  
APPLICATIONS INFORMATION  
For example, if the converter is driving a DSP powered  
dither signal will be seen at the output. The dither signal  
thatdoesleakthroughwillappearaswhitenoise.Thedither  
DAC will cause a small elevation in the noise floor of the  
ADC, as compared to the noise floor with dither off.  
by a 1.8V supply, then OV should be tied to that same  
DD  
1.8V supply. In CMOS mode OV can be powered with  
DD  
any logic voltage up to the 3.6V. OGND can be powered  
with any voltage from ground up to 1V and must be less  
For best noise performance with the dither signal on, the  
than OV . The logic outputs will swing between OGND  
+
DD  
driving impedance connected across pins IN /IN should  
closely match that of the module (see Table 1). A source  
impedancethatisresistiveandmatchesthatofthemodule  
within 10% will give the best results.  
and OV . In LVDS Mode, OV should be connected to  
DD  
DD  
a 3.3V supply and OGND should be connected to GND.  
Internal Dither  
The LTM9001 is a 16-bit receiver subsystem with a very  
linear transfer function; however, at low input levels even  
slight imperfections in the transfer function will result in  
unwanted tones. Small errors in the transfer function are  
usually a result of ADC element mismatches. An optional  
internaldithermodecanbeenabledtorandomizetheinput  
location on the ADC transfer curve, resulting in improved  
SFDR for low signal levels.  
Supply Sequencing  
TheV pinprovidesthesupplytotheamplifierandtheV  
CC  
DD  
pin provides the supply to the ADC. The amplifier and the  
ADC are separate integrated circuits within the LTM9001;  
however, there are no supply sequencing considerations  
beyond standard practice. It is recommended that the am-  
plifier and ADC both use the same low noise, 3.3V supply,  
but the amplifier may be operated from a lower voltage  
level if desired. Both devices can operate from the same  
3.3V linear regulator but place a ferrite bead between the  
As shown in Figure 14, the output of the sample-and-hold  
amplifier is summed with the output of a dither DAC. The  
dither DAC is driven by a long sequence pseudo-random  
number generator; the random number fed to the dither  
DAC is also subtracted from the ADC result. If the dither  
DAC is precisely calibrated to the ADC, very little of the  
V
and V pins. Separate linear regulators can be used  
CC  
DD  
withoutadditionalsupplysequencingcircuitryiftheyhave  
common input supplies.  
LTM9001  
CLKOUT  
OF  
+
D15  
IN  
16-BIT  
PIPELINED  
ADC CORE  
DIGITAL  
SUMMATION  
OUTPUT  
DRIVERS  
S/H  
AMP  
IN  
D0  
CLOCK/DUTY  
CYCLE  
CONTROL  
MULTIBIT DEEP  
PSEUDO-RANDOM  
NUMBER  
PRECISION  
DAC  
GENERATOR  
9001 F14  
+
ENC  
ENC  
DITH  
DITHER ENABLE  
HIGH = DITHER ON  
LOW = DITHER OFF  
Figure 14. Functional Equivalent Block Diagram of Internal Dither Circuit  
9001fa  
24  
LTM9001  
APPLICATIONS INFORMATION  
Grounding and Bypassing  
Recommended Layout  
The LTM9001 requires a printed circuit board with a  
clean unbroken ground plane; a multilayer board with an  
internal ground plane is recommended. The pinout of the  
LTM9001 has been optimized for a flow-through layout  
so that the interaction between inputs and digital outputs  
is minimized. A continuous row of ground pads facilitate  
a layout that ensures that digital and analog signal lines  
are separated as much as possible.  
The high integration of the LTM9001 makes the PC board  
layoutverysimpleandeasy.However,tooptimizeitselectri-  
cal and thermal performance, some layout considerations  
are still necessary, see Figures 15-18.  
• Use large PCB copper areas for ground. This helps to  
dissipate heat in the package through the board and  
also helps to shield sensitive on-board analog signals.  
Common ground (GND) and output ground (OGND)  
are electrically isolated on the LTM9001, but can be  
connected on the PCB underneath the part to provide  
a common return path.  
TheLTM9001isinternallybypassedwiththeamplifier(V )  
CC  
and ADC (V ) supplies returning to a common ground  
DD  
(GND). The digital output supply (0V ) is returned to  
DD  
OGND. Additional bypass capacitance is optional and may  
• Use multiple ground vias. Using as many vias as pos-  
sible helps to improve the thermal performance of the  
boardandcreatesnecessarybarriersseparatinganalog  
and digital traces on the board at high frequencies.  
be required if power supply noise is significant.  
Thedifferentialinputsshouldrunparallelandclosetoeach  
other. The input traces should be as short as possible to  
minimize capacitance and to minimize noise pickup.  
• Separate analog and digital traces as much as pos-  
sible, using vias to create high-frequency barriers.  
This will reduce digital feedback that can reduce the  
signal-to-noise ratio (SNR) and dynamic range of the  
LTM9001.  
Heat Transfer  
Most of the heat generated by the LTM9001 is transferred  
through the bottom-side ground pads. For good electrical  
and thermal performance, it is critical that all ground pins  
are connected to a ground plane of sufficient area with as  
many vias as possible.  
The quality of the paste print is an important factor in  
producing high yield assemblies. It is recommended to  
useatype3or4printingno-cleansolderpaste. Thesolder  
stencil design should follow the guidelines outlined in  
Application Note 100.  
The LTM9001 employs gold-finished pads for use with  
Pb-basedortin-basedsolderpaste.ItisinherentlyPb-free  
and complies with the JEDEC (e4) standard. The materi-  
als declaration is available online at http://www.linear.  
com/designtools/leadfree/mat_dec.jsp.  
9001fa  
25  
LTM9001  
APPLICATIONS INFORMATION  
Figure 15. Layer 1  
Figure 16. Layer 2  
Figure 17. Layer 3  
Figure 18. Layer 4  
9001fa  
26  
LTM9001  
PACKAGE DESCRIPTION  
LGA Package  
81-Lead (11.25mm × 11.25mm × 2.32mm)  
(Reference LTC DWG # 05-08-1809 Rev A)  
Z
b b b  
Z
5 . 0 8 0  
3 . 8 1 0  
2 . 5 4 0  
1 . 2 7 0  
0 . 0 0 0  
0 . 9 5 2 5  
1 . 5 8 7 5  
1 . 2 7 0  
2 . 5 4 0  
3 . 8 1 0  
5 . 0 8 0  
a a a  
Z
9001fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LTM9001  
TYPICAL APPLICATIONS  
LTM9001 with Ground-Referenced Single-Ended Input  
3.3V  
75Ω  
75Ω  
R
50Ω  
V
S
CC  
+
GROUND–  
REFERENCED  
SOURCE  
IN LTM9001  
IN  
+
0V  
51.1Ω  
9001 TA02  
RELATED PARTS  
PART NUMBER  
LTC2202  
DESCRIPTION  
COMMENTS  
16-Bit, 10Msps ADC  
16-Bit, 25Msps ADC  
16-Bit, 40Msps ADC  
16-Bit, 65Msps ADC  
16-Bit, 80Msps ADC  
140mW, 81.6dB SNR, 100dB SFDR  
220mW, 81.6dB SNR, 100dB SFDR  
480mW, 79.1dB SNR, 100dB SFDR  
610mW, 79dB SNR, 100dB SFDR  
725mW, 77.9dB SNR, 100dB SFDR  
900mW, 77.9dB SNR, 100dB SFDR  
1250mW, 77.7dB SNR, 100dB SFDR  
1450mW, 77.1dB SNR, 100dB SFDR  
LTC2203  
LTC2204  
LTC2205  
LTC2206  
LTC2207  
16-Bit, 105Msps ADC  
16-Bit, 130Msps ADC  
16-BIT, 160Msps ADC  
LTC2208  
LTC2209  
LTC6400-20/LTC6400-26  
Low Noise, Low Distortion Differential Amplifier for 3V, 90mA, 39.5dBm OIP3 at 300MHz, 6dB NF  
300MHz IF, Fixed Gain of 20dB or 26dB  
LTC6401-20/LTC6401-26  
Low Noise, Low Distortion Differential Amplifier for 3V, 45mA, 45.5dBm OIP3 at 140MHz, 6dB NF  
140MHz IF, Fixed Gain of 20dB or 26dB  
9001fa  
LT 1108 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
28  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTM9001CV-AA-PBF

16-Bit IF/Baseband Receiver Subsystem
Linear

LTM9001CV-AAPBF

16-Bit IF/Baseband Receiver Subsystem
Linear

LTM9001CV-AD

16-Bit IF/Baseband Receiver Subsystem
Linear

LTM9001CV-ADPBF

16-Bit IF/Baseband Receiver Subsystem
Linear

LTM9001CV-BA

16-Bit IF/Baseband Receiver Subsystem
Linear

LTM9001CV-BA-PBF

16-Bit IF/Baseband Receiver Subsystem
Linear

LTM9001CV-BAPBF

16-Bit IF/Baseband Receiver Subsystem
Linear

LTM9001CV-GA

16-Bit IF/Baseband Receiver Subsystem
Linear

LTM9001CV-GAPBF

16-Bit IF/Baseband Receiver Subsystem
Linear

LTM9001IV-AA

16-Bit IF/Baseband Receiver Subsystem
Linear

LTM9001IV-AA-PBF

16-Bit IF/Baseband Receiver Subsystem
Linear

LTM9001IV-AAPBF

16-Bit IF/Baseband Receiver Subsystem
Linear