78M6613-IMR/F/PW4

更新时间:2024-09-18 14:15:14
品牌:MAXIM
描述:Power Supply Management Circuit, Fixed, 1 Channel, 5 X 5 MM, ROHS COMPLIANT, QFN-32

78M6613-IMR/F/PW4 概述

Power Supply Management Circuit, Fixed, 1 Channel, 5 X 5 MM, ROHS COMPLIANT, QFN-32 电源管理电路

78M6613-IMR/F/PW4 规格参数

是否无铅:含铅生命周期:Transferred
包装说明:5 X 5 MM, ROHS COMPLIANT, QFN-32Reach Compliance Code:unknown
ECCN代码:EAR99HTS代码:8542.39.00.01
风险等级:5.67Is Samacsys:N
可调阈值:NO模拟集成电路 - 其他类型:POWER SUPPLY MANAGEMENT CIRCUIT
JESD-30 代码:S-XQCC-N32长度:5 mm
信道数量:1功能数量:1
端子数量:32最高工作温度:85 °C
最低工作温度:-40 °C封装主体材料:UNSPECIFIED
封装代码:HVQCCN封装形状:SQUARE
封装形式:CHIP CARRIER, HEAT SINK/SLUG, VERY THIN PROFILE峰值回流温度(摄氏度):NOT SPECIFIED
座面最大高度:0.9 mm最大供电电压 (Vsup):3.6 V
最小供电电压 (Vsup):3 V标称供电电压 (Vsup):3.3 V
表面贴装:YES温度等级:INDUSTRIAL
端子形式:NO LEAD端子节距:0.5 mm
端子位置:QUAD处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:5 mmBase Number Matches:1

78M6613-IMR/F/PW4 数据手册

通过下载78M6613-IMR/F/PW4数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
19-5348; Rev 2; 1/12  
78M6613  
Single-Phase  
AC Power Measurement IC  
DATA SHEET  
DS_6613_018  
DESCRIPTION  
FEATURES  
The Teridian™ 78M6613 is a highly integrated IC for  
simplified implementation of single-phase AC power  
measurement into power supplies, smart appliances, and  
other applications with embedded AC load monitoring and  
control. It is packaged in a small, 5mm x 5mm, 32-pin QFN  
package for optimal space savings.  
< 0.5% Wh Accuracy Over Wide 2000:1  
Current Range and Over Temperature  
Voltage Reference < 40ppm/°C  
Four Sensor Inputs—V3P3A Referenced  
22-Bit Delta-Sigma ADC with Independent  
32-Bit Compute Engine (CE)  
At the measurement interface, the device provides four  
analog inputs for interfacing to voltage and current sensors.  
Voltages from the sensors are fed to our Single Converter  
8-Bit MPU (80515), One Clock Cycle per  
Instruction with 2KB MPU XRAM  
32KB Flash with Security  
Technology® that uses  
a
22-bit delta-sigma ADC,  
independent 32-bit compute engine (CE), digital  
temperature compensation, and precision voltage  
references to provide better than 0.5% power measurement  
accuracy over a wide 2000:1 dynamic range.  
Integrated In-Circuit Emulator (ICE) Interface  
for MPU Debug  
32kHz Time Base with Hardware Watchdog  
Timer  
The integrated MPU core and 32 KB of flash memory  
provides a flexible means of configuration, post-processing,  
data formatting, and interfacing to any host processor  
through the UART interface and/or DIO pins. Complete  
application firmware is available and can be preloaded into  
the IC during manufacturing test. Alternatively, a complete  
array of ICE, development tools, and programming libraries  
are available to allow customization for each application.  
UART Interface and Up to 10 General-  
Purpose 5V Tolerant I/O Pins  
Packaged in a RoHS-Compliant (6/6)  
Lead(Pb)-Free, 32-Pin QFN (5mm x 5mm)  
Complete Application Firmware Provides:  
o
True RMS Calculations for Current,  
Voltage, Line Frequency, Real Power,  
Reactive Power, Apparent Power, and  
Power Factor  
LIVE  
Earth Ground  
Isolated Supply  
NEUT  
o
o
Accumulated Watt-Hours, Kilowatt-Hours  
Intelligent Switch Control at Zero  
Crossings  
CONVERTER  
V3P3  
GND  
o
o
o
o
Digital Temperature Compensation  
Phase Compensation (±15°)  
Quick Calibration Routines  
46–64Hz Line Frequency Range with  
Same Calibration  
A0  
A1  
A2  
A3  
TERIDIAN  
78M6613  
REGULATOR  
DIO, PULSE  
VOLTAGE REF  
2KB RAM  
VREF  
DIO 4-8  
DIO 14-17, 19  
32KB  
FLASH  
TEMP  
SERIAL PORT  
32-bit  
COMPUTE  
ENGINE  
SENSOR  
TX  
RX  
OSC/PLL  
80515  
MPU  
ICE  
XIN  
32 kHz  
V3P3  
GND  
ICE_E  
XOUT  
TIMERS  
Teridian is a emark and Single Converter Technology is a  
registered trademark of Maxim Integrated Products, Inc.  
For pricing, delivery, and ordering information, please contact Maxim Direct  
at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com.  
78M6613 Data Sheet  
DS_6613_018  
Table of Contents  
1
Hardware Description....................................................................................................................5  
1.1 Hardware Overview ................................................................................................................5  
1.2 Analog Front End (AFE)..........................................................................................................6  
1.2.1 Input Multiplexer..........................................................................................................6  
1.2.2 A/D Converter (ADC) ..................................................................................................6  
1.2.3 FIR Filter.....................................................................................................................6  
1.2.4 Voltage References.....................................................................................................6  
1.2.5 Temperature Sensor ...................................................................................................7  
1.2.6 Functional Description.................................................................................................7  
1.3 Digital Computation Engine (CE) ............................................................................................8  
1.4 80515 MPU Core ....................................................................................................................8  
1.4.1 UART..........................................................................................................................8  
1.4.2 Timers and Counters...................................................................................................9  
1.5 On-Chip Resources.................................................................................................................9  
1.5.1 Oscillator.....................................................................................................................9  
1.5.2 PLL and Internal Clocks ..............................................................................................9  
1.5.3 Temperature Sensor ...................................................................................................9  
1.5.4 Flash Memory .............................................................................................................9  
1.5.5 Digital I/O..................................................................................................................10  
1.5.6 Hardware Watchdog Timer........................................................................................10  
1.5.7 Program Security ......................................................................................................10  
1.5.8 Test Ports..................................................................................................................10  
2
3
Functional Description................................................................................................................11  
2.1 Theory of Operation..............................................................................................................11  
2.2 Reset Behavior .....................................................................................................................12  
2.3 Data Flow .............................................................................................................................12  
2.4 CE/MPU Communication......................................................................................................13  
Application Information ..............................................................................................................14  
3.1 Connection of Sensors (CT, Resistive Shunt)........................................................................14  
3.2 Temperature Measurement...................................................................................................15  
3.3 Temperature Compensation..................................................................................................15  
3.4 Connecting 5V Devices.........................................................................................................16  
3.5 UART (TX/RX)......................................................................................................................16  
3.6 Reset Function and Reset Pin Connections...........................................................................16  
3.7 Connecting the Emulator Port Pins .......................................................................................18  
3.8 Crystal Oscillator...................................................................................................................19  
3.9 Flash Programming ..............................................................................................................19  
3.10 MPU Firmware Library..........................................................................................................19  
3.11 Measurement Calibration......................................................................................................19  
4
Electrical Specifications .............................................................................................................20  
4.1 Absolute Maximum Ratings ..................................................................................................20  
4.2 Recommended External Components...................................................................................21  
4.3 Recommended Operating Conditions....................................................................................21  
4.4 Performance Specifications ..................................................................................................21  
4.4.1 Input Logic Levels.....................................................................................................21  
4.4.2 Output Logic Levels ..................................................................................................21  
4.4.3 Supply Current ..........................................................................................................22  
4.4.4 Crystal Oscillator.......................................................................................................22  
4.4.5 VREF........................................................................................................................22  
4.4.6 ADC Converter, V3P3 Referenced............................................................................23  
4.4.7 Temperature Sensor .................................................................................................23  
DS_6613_018  
78M6613 Data Sheet  
4.5 Timing Specifications............................................................................................................24  
4.5.1 RAM and Flash Memory............................................................................................24  
4.5.2 RESET......................................................................................................................24  
4.5.3 Typical Performance Data.........................................................................................25  
5
6
Packaging ....................................................................................................................................26  
5.1 Pinout ...................................................................................................................................26  
5.2 Package Outline (QFN 32)....................................................................................................27  
5.3 Recommended PCB Land Pattern for the QFN-32 Package .................................................28  
Pin Descriptions..........................................................................................................................29  
6.1 Power/Ground Pins...............................................................................................................29  
6.2 Analog Pins ..........................................................................................................................29  
6.3 Digital Pins ...........................................................................................................................30  
7
8
9
I/O Equivalent Circuits ................................................................................................................31  
Ordering Information...................................................................................................................32  
Contact Information ....................................................................................................................32  
Revision History..................................................................................................................................33  
Figures  
Figure 1: IC Functional Block Diagram ....................................................................................................4  
Figure 2: AFE Block Diagram ..................................................................................................................7  
Figure 3: Connecting an External Load to DIO Pins............................................................................... 10  
Figure 4: Voltage. Current, Momentary and Accumulated Energy.......................................................... 11  
Figure 5: MPU/CE Data Flow ................................................................................................................ 12  
Figure 6: MPU/CE Communication........................................................................................................ 13  
Figure 7: Resistive Voltage Divider........................................................................................................ 14  
Figure 8: Resistive Current Shunt.......................................................................................................... 14  
Figure 9: Current Transformer............................................................................................................... 14  
Figure 10: Connections for the RX Pin................................................................................................... 16  
Figure 11: 78M6613 External Reset Behavior........................................................................................ 17  
Figure 12: MAX810S Connections to the 78M6613................................................................................ 17  
Figure 13: Reset Generator Based On TL431 Shunt Regulator.............................................................. 18  
Figure 14: External Components for the Emulator Interface .................................................................. 18  
Figure 15: Wh Accuracy, 10 mA to 20 A at 120 V/60 Hz and Room Temperature Using a 4 mΩ  
Current Shunt....................................................................................................................... 25  
Figure 16: Typical Measurement Accuracy over Temperature Relative to 25°C..................................... 25  
Figure 17: 32-Pin QFN Pinout ............................................................................................................... 26  
Figure 18: Package Outline (QFN 32).................................................................................................... 27  
Figure 19: Recommended PCB Land Pattern Dimensions..................................................................... 28  
Figure 20: I/O Equivalent Circuits.......................................................................................................... 31  
Table  
Table 1: Inputs Selected in Regular and Alternate Multiplexer Cycles...................................................... 6  
78M6613 Data Sheet  
DS_6613_018  
V3P3D GNDD  
VREF  
V3P3A GNDA  
∆Σ ADC  
CONVERTER  
A0  
A1  
A2  
VBIAS  
V3P3  
VBIAS  
VREF  
A3  
MUX  
-
+
FIR  
TEMP  
VREF  
MUX  
CROSS  
CK32  
MUX  
CTRL  
VOLT  
REG  
MCK  
PLL  
DIV  
ADC  
OSC  
(32KHz)  
RTCLK (32KHz)  
CK32  
XIN  
32KHz  
XOUT  
CKADC  
4.9152MHz  
CKFIR  
CKTEST  
4.9152MHz  
CK_2X  
4.9152MHz  
CK_GEN  
CE RAM  
(0.5KB)  
MUX_SYNC  
STRT  
MUX  
CKCE  
CE  
<4.9152MHz  
DIO4  
DATA  
00-7F  
32 bit Compute  
Engine  
TEST  
MODE  
MEMORY SHARE  
TEST  
DIO5  
PROG  
000-7FF  
DIO6  
1000-11FF  
CE  
CONTROL  
DIO7  
DIO8  
DIO14  
DIO15  
DIO16  
DIO17  
DIO19  
DIGITAL I/O  
CKMPU  
<4.9152MHz  
SDCK  
RX  
TX  
SDOUT  
SDIN  
UART  
2000-20FF  
0000-07FF  
DATA  
0000-FFFF  
MPU  
(80515)  
MPU XRAM  
(2KB)  
0000-  
7FFF  
FLASH  
(32KB)  
PROG  
0000-7FFF  
MEMORY  
SHARE  
MPU_RSTZ  
EMULATOR  
PORT  
TEST  
MUX  
TMUXOUT  
E_RXTX  
E_TCLK  
E_RST (Open Drain)  
E_RXTX  
RESET  
ICE_E  
E_TCLK  
E_RST  
Figure 1: IC Functional Block Diagram  
 
DS_6613_018  
78M6613 Data Sheet  
1 Hardware Description  
1.1 Hardware Overview  
The Teridian 78M6613 single-chip measurement unit integrates all primary functional blocks required to  
embed solid-state AC power and energy measurement. Included on chip are:  
An analog front end (AFE)  
An independent digital computation engine (CE)  
An 8051-compatible microprocessor (MPU) which executes one instruction per clock cycle (80515)  
A voltage reference  
A temperature sensor  
RAM and Flash memory  
A variety of I/O pins  
Current sensor technologies supported include Current Transformers (CT) and Resistive Shunts.  
In a typical application, the 32-bit compute engine (CE) of the 78M6613 sequentially processes the  
samples from the voltage inputs on pins A0, A1, A2, A3 and performs calculations to measure active  
energy (Wh), reactive energy (VARh), A2h, and V2h for four-quadrant measurement. These  
measurements are then accessed by the MPU, processed further and output using the peripheral  
interfaces available to the MPU.  
In addition to the temperature-trimmed ultra-precision voltage reference, the on-chip digital temperature  
compensation mechanism includes a temperature sensor and associated controls for correction of  
unwanted temperature effects on measurement. Temperature dependent external components such as  
crystal oscillator, current transformers (CTs), and their corresponding signal conditioning circuits can be  
characterized and their correction factors can be programmed to produce measurements with  
exceptional accuracy over the industrial temperature range, if desired.  
A block diagram of the IC is shown in Figure 1. A detailed description of various functional blocks  
follows.  
 
 
78M6613 Data Sheet  
DS_6613_018  
1.2 Analog Front End (AFE)  
The AFE of the 78M6613 is comprised of an input multiplexer, a delta-sigma A/D converter and a  
voltage reference.  
1.2.1 Input Multiplexer  
The input multiplexer supports up to four input signals that are applied to pins A0, A1, A2 and A3 of the  
device. Additionally, using the alternate mux selection, it has the ability to select the on-chip  
temperature sensor. The multiplexer can be operated in two modes:  
During a normal multiplexer cycle, the signals from the A0, A2, A1, and A3 pins are selected.  
During the alternate multiplexer cycle, the temperature signal (TEMP) is selected, along with the  
signal sources shown in Table 1.  
The alternate mux cycles are usually performed infrequently (e.g. every second) by the MPU. Table 1  
details the regular and alternative MUX sequences. Missing samples due to an ALT multiplexer  
sequence are filled in by the CE.  
Table 1: Inputs Selected in Regular and Alternate Multiplexer Cycles  
Regular MUX Sequence  
Mux State  
ALT MUX Sequence  
Mux State  
0
1
2
3
0
1
2
3
A0  
A1  
A2  
A3  
TEMP  
A1  
V3P3D  
A3  
In a typical application, A1 and A3 are connected to current sensors that sense the current on each  
branch of the line voltage. A0 and A2 are typically connected to voltage sensors through resistor  
dividers. The multiplexer control circuit is clocked by CK32, the 32.768 kHz clock from the PLL block,  
and launches with each new pass of the CE program.  
1.2.2 A/D Converter (ADC)  
A single delta-sigma A/D converter digitizes the voltage and current inputs to the 78M6613. The  
resolution of the ADC is 22 bits. Conversion time is two cycles of the CK32 clock.  
Initiation of each ADC conversion is controlled by the multiplexer control circuit as described previously.  
At the end of each ADC conversion, the FIR filter output data is stored into the CE DRAM location.  
1.2.3 FIR Filter  
The finite impulse response filter is an integral part of the ADC and it is optimized for use with the  
multiplexer. The purpose of the FIR filter is to decimate the ADC output to the desired resolution. At the  
end of each ADC conversion, the output data is stored into the fixed CE DRAM location determined by  
the multiplexer selection.  
1.2.4 Voltage References  
The device includes an on-chip precision bandgap voltage reference that incorporates auto-zero  
techniques. The reference is trimmed to minimize errors caused by component mismatch and drift. The  
result is a voltage output with a predictable temperature coefficient.  
 
 
 
 
 
 
DS_6613_018  
78M6613 Data Sheet  
1.2.5 Temperature Sensor  
The 78M6613 includes an on-chip temperature sensor implemented as a bandgap reference. It is used  
to determine the die temperature. The MPU reads the temperature sensor output during alternate  
multiplexer cycles. The primary use of the temperature data is to determine the magnitude of  
compensation required to offset the thermal drift in the system (see Section 3.3 Temperature  
Compensation).  
1.2.6 Functional Description  
The AFE functions as a data acquisition system, controlled by the MPU. The input signals (A0, A1, A2,  
and A3) are sampled and the ADC counts obtained are stored in CE DRAM where they can be accessed  
by the CE and, if necessary, by the MPU. Alternate multiplexer cycles are initiated less frequently by the  
MPU to gather access to the slow temperature signal.  
VREF  
∆Σ ADC  
CONVERTER  
A0  
A1  
VBIAS  
VBIAS  
A2  
MUX  
A3  
-
V3P3A  
+
FIR  
TEMP  
VREF  
VREF  
MUX  
CROSS  
CK32  
MUX  
CTRL  
4.9152 MHz  
FIR_DONE  
FIR_START  
Figure 2: AFE Block Diagram  
 
 
 
78M6613 Data Sheet  
DS_6613_018  
1.3 Digital Computation Engine (CE)  
The CE, a dedicated 32-bit signal processor, performs the precision computations necessary to  
accurately measure energy. The CE calculations and processes include:  
Multiplication of each current sample with its associated voltage sample to obtain the energy per  
sample (when multiplied with the constant sample time).  
Frequency-insensitive delay cancellation on all channels (to compensate for the delay between  
samples caused by the multiplexing scheme).  
90° phase shifter (for narrowband VARh calculations).  
Monitoring of the input signal frequency (for frequency and phase information).  
Monitoring of the input signal amplitude (for sag detection).  
Scaling of the processed samples based on calibration coefficients.  
CE code is provided by Maxim as a part of the application firmware available. The CE is not  
programmable by the user. Measurement algorithms in the CE code can be customized by  
Maxim upon request.  
The CE program resides in Flash memory. Common access to Flash memory by CE and MPU is  
controlled by a memory share circuit. Allocated Flash space for the CE program cannot exceed 1024  
words (2KB).  
The CE DRAM can be accessed by the CE and the MPU. Holding registers are used to convert 8-bit  
wide MPU data to/from 32-bit wide CE DRAM data, and wait states are inserted as needed, depending  
on the frequency of CKMPU. The CE DRAM contains 128 32-bit words. The MPU can read and write  
the CE DRAM as the primary means of data communication between the two processors. CE hardware  
issues an interrupt when accumulation is complete.  
1.4 80515 MPU Core  
The 78M6613 includes an 80515 MPU (8-bit, 8051-compatible) that processes most instructions in one  
clock cycle. Using a 5 MHz (4.9152 MHz) clock results in a processing throughput of 5 MIPS. The  
80515 architecture eliminates redundant bus states and implements parallel execution of fetch and  
execution phases. Normally a machine cycle is aligned with a memory fetch, therefore, most of the  
1-byte instructions are performed in a single cycle. This leads to an 8x performance (in average)  
improvement (in terms of MIPS) over the Intel 8051 device running at the same clock frequency. Actual  
processor clocking speed can be adjusted to the total processing demand of the application  
(measurement calculations, memory management and I/O management).  
Typical power and energy measurement functions based on the results provided by the internal  
32-bit compute engine (CE) are available for the MPU as part of Maxim’s standard library. MPU  
Memory Organization, Special Function Registers, Interrupts, Counters, and other controls are  
described in the applicable firmware documentation.  
1.4.1 UART  
The 78M6613 includes a UART that can be programmed to communicate with a variety of external  
devices. The UART is a dedicated 2-wire serial interface, which can communicate with an external  
device at up to 38,400 bits/s. All UART transfers are programmable for parity enable, parity, 2 stop  
bits/1 stop bit and XON/XOFF options for variable communication baud rates from 300 to 38,400 bps.  
 
 
 
DS_6613_018  
78M6613 Data Sheet  
1.4.2 Timers and Counters  
The 80515 has two 16-bit timer/counter registers: Timer 0 and Timer 1. These registers can be  
configured for counter or timer operations.  
In timer mode, the register is incremented every machine cycle, meaning that it counts up after every 12  
periods of the MPU clock signal.  
In counter mode, the register is incremented when the falling edge is observed at the corresponding  
input signal T0 or T1 (T0 and T1 are the timer gating inputs derived from certain DIO pins, see the DIO  
Ports section). Since it takes 2 machine cycles to recognize a 1-to-0 event, the maximum input count  
rate is 1/2 of the oscillator frequency. There are no restrictions on the duty cycle, however to ensure  
proper recognition of 0 or 1 state, an input should be stable for at least 1 machine cycle.  
1.5 On-Chip Resources  
1.5.1 Oscillator  
The 78M6613 oscillator drives a standard 32.768 kHz watch crystal. These crystals are accurate and do  
not require a high-current oscillator circuit. The 78M6613 oscillator has been designed specifically to  
handle these crystals and is compatible with their high impedance and limited power handling capability.  
1.5.2 PLL and Internal Clocks  
Timing for the device is derived from the 32.768 kHz oscillator output. On-chip timing functions include  
the MPU master clock and the delta-sigma sample clock. In addition, the MPU has two general  
counter/timers.  
The ADC master clock, CKADC, is generated by an on-chip PLL. It multiplies the oscillator output  
frequency (CK32) by 150.  
The CE clock frequency is always CK32 * 150, or 4.9152 MHz, where CK32 is the 32 kHz clock. The  
MPU clock frequency is scalable from 4.9152 MHz down to 38.4 kHz. The circuit can also generate a 2x  
MPU clock for use by the emulator.  
1.5.3 Temperature Sensor  
The device includes an on-chip temperature sensor for determining the temperature of the bandgap  
reference. The primary use of the temperature data is to determine the magnitude of compensation required  
to offset the thermal drift in the system (see Section 3.3 Temperature Compensation).  
1.5.4 Flash Memory  
The 78M6613 includes 32 KB of on-chip Flash memory. The Flash memory primarily contains MPU and  
CE program code. It also contains images of the CE DRAM, MPU RAM, and I/O RAM. On power-up,  
before enabling the CE, the MPU copies these images to their respective locations. Allocated Flash  
space for the CE program cannot exceed 1024 words (2 KB).  
MPU RAM: The 78M6613 includes 2KB of static RAM memory on-chip (XRAM) plus 256B of internal  
RAM in the MPU core. The 2KB of static RAM are used for data storage during normal MPU operations.  
CE DRAM: The CE DRAM is the working data memory of the CE (128 32-bit words). The MPU can read  
and write the CE DRAM as the primary means of data communication between the two processors.  
 
 
 
 
 
 
78M6613 Data Sheet  
DS_6613_018  
1.5.5 Digital I/O  
The device includes up to 10 pins of general purpose digital I/O. When configured as inputs, these pins  
are 5V compatible (no current-limiting resistors are needed). On reset or power-up, all DIO pins are  
inputs until they are configured for the desired direction under MPU control.  
When driving LEDs, relay coils etc., the DIO pins should sink the current into ground (as  
shown in Figure 3, right), not source it from V3P3 (as in Figure 3, left).  
If more than one input is connected to the same resource, the resources are combined using a logical  
OR.  
78M6613  
78M6613  
V3P3D  
DIO  
V3P3D  
DIO  
3.3V  
3.3V  
LED  
R
R
LED  
GNDD  
GNDD  
Not recommended  
Figure 3: Connecting an External Load to DIO Pins  
Recommended  
1.5.6 Hardware Watchdog Timer  
In addition to the basic watchdog timer included in the 80515 MPU, an independent, robust, fixed-  
duration, watchdog timer (WDT) is included in the device. It uses the crystal oscillator as its time base  
and must be refreshed by the MPU firmware at least every 1.5 seconds. When not refreshed on time  
the WDT overflows, and the part is reset as if the RESET pin were pulled high, except that the I/O RAM  
bits will be maintained. 4096 oscillator cycles (or 125 ms) after the WDT overflow, the MPU will be  
launched from program address 0x0000. Asserting ICE_E will deactivate the WDT.  
1.5.7 Program Security  
When enabled, the security feature limits the ICE to global Flash erase operations only. All other ICE  
operations are blocked. This guarantees the security of the user’s MPU and CE program code. Security  
is enabled by MPU code that is executed in a 32 cycle preboot interval before the primary boot  
sequence begins. Once security is enabled, the only way to disable it is to perform a global erase of the  
Flash, followed by a chip reset.  
1.5.8 Test Ports  
TMUXOUT Pin: One out of 16 digital or 8 analog signals can be selected to be output on the TMUXOUT  
pin. The function of the multiplexer is described in the applicable firmware documentation.  
 
 
 
 
 
DS_6613_018  
78M6613 Data Sheet  
2 Functional Description  
2.1 Theory of Operation  
The energy delivered by a power source into a load can be expressed as:  
t
E = V (t)I(t)dt  
0
The following formulae apply for wide band mode (true RMS):  
P = (i(t) * v(t))  
Q = √(S2 – P2)  
S = V * I  
V = √∑v(t)2  
I = √∑i(t)2  
For a practical measurement, not only voltage and current amplitudes, but also phase angles and  
harmonic content may change constantly. Thus, simple RMS measurements are inherently inaccurate,  
and true RMS measurements must be utilized. A modern solid-state electricity Power and Energy  
Measurement IC such as the 78M6613 functions by emulating the integral operation above, i.e. it  
processes current and voltage samples through an ADC at a constant frequency. As long as the ADC  
resolution is high enough and the sample frequency is beyond the harmonic range of interest, the current  
and voltage samples, multiplied with the time period of sampling will yield an accurate quantity for the  
momentary energy. Summing up the momentary energy quantities over time will result in accumulated  
energy.  
500  
400  
300  
200  
100  
0
0
5
10  
15  
20  
-100  
-200  
-300  
-400  
-500  
Current [A]  
Voltage [V]  
Energy per Interval [Ws]  
Accumulated Energy [Ws]  
Figure 4: Voltage. Current, Momentary and Accumulated Energy  
Figure 4 shows the shapes of V(t), I(t), the momentary power and the accumulated power, resulting from  
50 samples of the voltage and current signals over a period of 20 ms. The application of 240 VAC and  
100 A results in an accumulation of 480 Ws (= 0.133 Wh) over the 20 ms period, as indicated by the  
Accumulated Power curve. The described sampling method works reliably, even in the presence of  
dynamic phase shift and harmonic distortion.  
For acmeasurement equations, refer to the applicable firmware documentation.  
 
 
 
78M6613 Data Sheet  
DS_6613_018  
2.2 Reset Behavior  
Reset Mode: When the RESET pin is pulled high all digital activity stops. The oscillator continues to  
run. Additionally, all I/O RAM bits are set to their default states.  
Once initiated, the reset mode will persist until the reset timer times out. This will occur in 4096 CK32  
clock cycles (32768 Hz clock cycles from PLL block) after RESET goes low, at which time the MPU will  
begin executing its preboot and boot sequences from address 00.  
2.3 Data Flow  
The data flow between CE and MPU is shown in Figure 5. In a typical application, the 32-bit compute  
engine (CE) sequentially processes the samples from the voltage inputs on pins A0, A1, A2, and A3,  
performing calculations to measure active power (Wh), reactive power (VARh), A2h, and V2h for  
four-quadrant measurements. These measurements are then accessed by the MPU, processed further  
and output using the peripheral devices available to the MPU.  
IRQ  
Processed  
CE  
MPU  
Measurement  
Data  
Samples  
Data  
Post  
-
Pre  
-
Processor  
Processor  
I/O RAM (Configuration RAM)  
Figure 5: MPU/CE Data Flow  
 
 
 
DS_6613_018  
78M6613 Data Sheet  
2.4 CE/MPU Communication  
Figure 6 shows the functional relationship between CE and MPU. The CE is controlled by the MPU via  
shared registers in the I/O RAM and by registers in the CE DRAM. The CE outputs two interrupt signals  
to the MPU to indicate when the CE is actively processing data and when the CE is updating data to the  
output region of the CE DRAM.  
CONTROL  
MPU  
SERIAL  
(UART)  
SAMPLES  
ADC  
DATA  
CE_BUSY  
DIO  
XFER_BUSY  
CE  
Mux Ctrl.  
INTERRUPTS  
I/O RAM (CONFIGURATION RAM)  
Figure 6: MPU/CE Communication  
 
 
78M6613 Data Sheet  
DS_6613_018  
3 Application Information  
3.1 Connection of Sensors (CT, Resistive Shunt)  
Figure 7, Figure 8, and Figure 9 show how resistive voltage dividers, resistive current shunts, and  
current transformers are connected to the voltage and current inputs of the 78M6613.  
Figure 7: Resistive Voltage Divider  
Figure 8: Resistive Current Shunt  
Figure 9: Current Transformer  
 
 
 
 
 
DS_6613_018  
78M6613 Data Sheet  
3.2 Temperature Measurement  
Measurement of absolute temperature uses the on-chip temperature sensor while applying the following  
formula:  
(N(T) Nn )  
T =  
+Tn  
Sn  
In the above formula, T is the temperature in °C, N(T) is the ADC count at temperature T, Nn is the ADC  
count at 25°C, Sn is the sensitivity in LSB/°C and Tn is +25°C.  
Example: At 25°C a temperature sensor value of 518,203,584 (Nn) is read by the ADC by a 78M6613 in  
the 32-pin QFN package. At an unknown temperature T the value 449,648,000 is read at (N(T)). The  
absolute temperature is then determined by dividing both Nn and N(T) by 512 to account for the 9-bit  
shift of the ADC value and then inserting the results into the above formula, using –2220 for LSB/°C:  
449,648,000 -518,203,584  
T =  
+ 25C = 85.3°C  
512(2220)  
3.3 Temperature Compensation  
Temperature Coefficients: The internal voltage reference is calibrated during device manufacture.  
The temperature coefficients TC1 and TC2 are given as constants that represent typical component  
behavior (in µV/°C and µV/°C2, respectively).  
Since TC1 and TC2 are given in µV/°C and µV/°C2, respectively, the value of the VREF voltage  
(1.195V) has to be taken into account when transitioning to PPM/°C and PPM/°C2. This means  
that PPMC = 26.84*TC1/1.195, and PPMC2 = 1374*TC2/1.195).  
Temperature Compensation: The CE provides the bandgap temperature to the MPU, which then may  
digitally compensate the power outputs for the temperature dependence of VREF.  
The MPU, not the CE, is entirely in charge of providing temperature compensation. The MPU applies  
the following formula to determine any gain adjustments. In this formula TEMP_X is the deviation from  
nominal or calibration temperature expressed in multiples of 0.1°C:  
TEMP _ X PPMC TEMP _ X 2 PPMC2  
GAIN _ ADJ =16385+  
+
214  
223  
In a power and energy measurement unit, the 78M6613 is not the only component contributing to  
temperature dependency. A whole range of components (e.g. current transformers, resistor  
dividers, power sources, filter capacitors) will contribute temperature effects. Since the output of  
the on-chip temperature sensor is accessible to the MPU, temperature-compensation  
mechanisms with great flexibility are possible (e.g. system-wide temperature correction over the  
entire unit rather than local to the chip).  
 
 
78M6613 Data Sheet  
DS_6613_018  
3.4 Connecting 5V Devices  
All digital input pins of the 78M6613 are compatible with external 5V devices. I/O pins configured as  
inputs do not require current-limiting resistors when they are connected to external 5V devices.  
3.5 UART (TX/RX)  
The RX pin should be pulled down by a 10 kresistor and optionally protected by a 100 pF ceramic  
capacitor, as shown in Figure 10.  
Optional  
78M6613  
10kΩ  
100pF  
RX  
RX  
TX  
TX  
Figure 10: Connections for the RX Pin  
3.6 Reset Function and Reset Pin Connections  
The 78M6613 requires an external reset circuit to drive the RESET input pin. The reset is used to  
prevent the 78M6613 from operating at supply voltages outside the recommended operating conditions.  
Reset ensures the device is set to a known set of initial conditions and that it begins executing  
instructions from a predetermined starting address.  
The reset can be forced by applying a high level to the RESET pin. The reset input is internally filtered  
(low-pass filter) in order to eliminate spurious reset conditions that can be triggered in a noisy  
environment. For this reason the RESET pin must be asserted (high) for at least 1μs in order to initiate a  
reset sequence.  
The external reset circuitry should be designed in order to hold the RESET pin high (active) whenever  
V3P3D is below normal operating level. Refer to Section 4.3, Recommended Operating Conditions.  
Figure 11 shows the behavior of the external reset circuitry.  
 
 
 
 
DS_6613_018  
78M6613 Data Sheet  
>1µs  
>1µs  
Max  
Typ  
Min  
0.0V  
Time  
V3P3  
RESET  
Figure 11: 78M6613 External Reset Behavior  
The RESET signal can be generated in a number of different ways. For example, a voltage supervisory  
device such as Maxim’s MAX810S can be used to implement the reset/supply voltage supervisory  
function as shown in Figure 12.  
V3P3  
Vcc  
MAX810S  
RST  
GND  
RESET  
78M6613  
GND  
Figure 12: MAX810S Connections to the 78M6613  
 
 
78M6613 Data Sheet  
DS_6613_018  
An alternate solution using discrete components can be used. Figure 13 shows an implementation using  
a shunt regulator and two transistors.  
Figure 13: Reset Generator Based On TL431 Shunt Regulator  
As long as V3P3 is below the 2.79V threshold set by the voltage divider of R1 and R2, U1 will not  
conduct current, the base of Q2 will be at the same potential as its emitter, so Q1 will be turned off. With  
no current flowing in the collector of Q2, the base of Q1 will be low, Q1 will be turned off, and RESET will  
track V3P3. When the V3P3 rises above 2.79V, the TL431 starts to conduct, the base of Q2 is be pulled  
low, turning on Q2. This drives the base of Q1 high, turning Q1 on and pulling RESET low. The inherent  
turn-on and turn-off delays of the TL4313 provide the ~1µs delay required to ensure proper resetting of  
the 78M6613.  
3.7 Connecting the Emulator Port Pins  
It is important to bring out the ICE_E pin to the programming interface in order to create a way  
for reprogramming parts that have the Flash SECURE bit (SFR 0xB2[6]) set. Providing access to  
ICE_E ensures that the part can be reset between erase and program cycles, which will enable  
programming devices to reprogram the part. The reset required is implemented with a watchdog timer  
reset (i.e. the hardware WDT must be enabled).  
78M6613  
ICE_E  
V3P3  
62Ω  
E_RST  
62Ω  
E_RXTX  
E_TCLK  
62Ω  
300 Ω  
1000pF  
Figure 14: External Components for the Emulator Interface  
 
 
 
DS_6613_018  
78M6613 Data Sheet  
3.8 Crystal Oscillator  
The oscillator of the 78M6613 drives a standard 32.768 kHz watch crystal. The oscillator has been  
designed specifically to handle these crystals and is compatible with their high impedance and limited  
power handling capability. Good layouts will have XIN and XOUT shielded from each other.  
Since the oscillator is self-biasing, an external resistor must not be connected across the crystal.  
3.9 Flash Programming  
Operational or test code can be programmed into the Flash memory using either an in-circuit emulator or  
the Flash Programmer Module (TFP-2) available from Maxim. The Flash programming procedure uses  
the E_RST, E_RXTX, and E_TCLK pins.  
3.10 MPU Firmware Library  
Any application-specific MPU functions mentioned above are available from Maxim as a standard ANSI  
C library and as ANSI “C” source code. The code is pre-programmed in Demonstration and Evaluation  
Kits for the 78M6613 IC and can be pre-programmed into engineering IC samples for system evaluation.  
The application code allows for quick and efficient evaluation of the IC without having to write firmware  
or having to purchase an in-circuit emulator (ICE). A Software Licensing Agreement (SLA) can be  
signed to receive either the source Flash HEX file for use in a production environment or (partial) source  
code and SDK documentation for modification.  
3.11 Measurement Calibration  
Once the 78M6613 Power and Energy Measurement device has been installed in a measurement  
system, it is typically calibrated for tolerances of the current sensors, voltage dividers and signal  
conditioning components. The device can be calibrated using a single gain and a single phase  
adjustment factors accessible to the CE. The gain adjustment is used to compensate for tolerances of  
components used for signal conditioning, especially the resistive components. Phase adjustment is  
provided to compensate for phase shifts introduced by certain types of current sensors.  
Due to the flexibility of the MPU firmware, any calibration method, such as calibration based on energy,  
or current and voltage can be implemented. It is also possible to implement segment-wise calibration  
(depending on current range). Maxim software supports a “quick cal” method.  
 
 
 
 
78M6613 Data Sheet  
DS_6613_018  
4 Electrical Specifications  
4.1 Absolute Maximum Ratings  
Supplies and Ground Pins:  
V3P3  
-0.5 V to 4.6 V  
GNDD, GNDA  
-0.5 V to +0.5 V  
Analog Output Pins:  
-10 mA to +10 mA,  
-0.5 V to V3P3+0.5 V  
VREF  
Analog Input Pins:  
A0, A1, A2, A3  
-10 mA to +10 mA  
-0.5 V to V3P3+0.5 V  
-10 mA to +10 mA  
-0.5 V to 3.0 V  
XIN, XOUT  
All Other Pins:  
-10 mA to +10 mA,  
-0.5 to 6 V  
Configured as Digital Inputs  
-15 mA to +15 mA,  
-0.5 V to V3P3D+0.5 V  
Configured as Digital Outputs  
All other pins  
-0.5 V to V3P3D+0.5 V  
Operating junction temperature (peak, 100 ms)  
Operating junction temperature (continuous)  
Storage temperature  
+140 °C  
+125 °C  
-45 °C to +165 °C  
+250 °C  
Soldering temperature (10 second duration)  
ESD stress on all pins  
±4 kV  
Stresses beyond Absolute Maximum Ratings may cause permanent damage to the device. These are  
stress ratings only and functional operation at these or any other conditions beyond those indicated  
under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated  
conditions for extended periods may affect device reliability. All voltages are with respect to GND.  
 
 
DS_6613_018  
78M6613 Data Sheet  
4.2 Recommended External Components  
Name  
C1  
From  
V3P3A  
V3P3D  
To  
Function  
Value  
Unit  
µF  
GNDA Bypass capacitor for 3.3V supply.  
GNDD Bypass capacitor for V3P3D.  
32.768 kHz crystal – electrically similar to  
0.1±10%  
0.1±10%  
CSYS  
µF  
XTAL  
XIN  
XOUT  
ECS .327-12.5-17X or Vishay XT26T, load  
capacitance 12.5 pF.  
32.768  
kHz  
CXS †  
CXL †  
XIN  
GND  
GND  
pF  
pF  
Load capacitor for crystal (exact value  
depends on crystal specifications and  
parasitic capacitance of board).  
27±10%  
27±10%  
XOUT  
Depending on trace capacitance, higher or lower values for CXS and CXL must be used. Capacitance from  
XIN to GND and XOUT to GND (combining pin, trace and crystal capacitance) should be 35 pF to 37 pF.  
4.3 Recommended Operating Conditions  
Parameter  
Condition  
Min  
3.0  
-40  
Typ  
Max  
3.6  
Unit  
V
3.3V Supply Voltage (V3P3)  
Operating Temperature  
Normal Operation  
3.3  
+85  
ºC  
4.4 Performance Specifications  
4.4.1 Input Logic Levels  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
V
Digital high-level input voltage, VIH  
Digital low-level input voltage, VIL  
2
0.8  
V
Input pull-up current, IIL  
E_RXTX,  
VIN=0V, ICE_E=1  
10  
10  
-1  
100  
100  
1
µA  
µA  
µA  
E_RST, CKTEST  
Other digital inputs  
0
0
Input pull down current, IIH  
ICE_E  
VIN=V3P3  
10  
-1  
100  
1
µA  
µA  
Other digital inputs  
4.4.2 Output Logic Levels  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
V3P3  
–0.4  
ILOAD = 1 mA  
V
Digital high-level output voltage VOH  
V3P3-  
0.61  
ILOAD = 15 mA  
V
I
LOAD = 1 mA  
0
0.4  
0.81  
V
V
Digital low-level output voltage VOL  
ILOAD = 15 mA  
1 Guaranteed by design; not production tested.  
 
 
 
 
 
78M6613 Data Sheet  
DS_6613_018  
4.4.3 Supply Current  
Parameter  
Condition  
Normal Operation,  
Min  
Typ  
Max  
Unit  
V3P3A + V3P3D current  
8.1  
10.3  
mA  
V3P3=3.3V,  
ICE Disabled  
V3P3A + V3P3D current vs.  
MPU clock frequency  
mA/  
MHz  
Same conditions as above  
0.5  
9.1  
Normal Operation as above,  
except write Flash at maximum  
rate, ADC & CE Disabled  
V3P3A + V3PD current,  
10  
mA  
Write Flash  
4.4.4 Crystal Oscillator  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
µW  
pF  
Maximum Output Power to Crystal  
XIN to XOUT Capacitance  
Crystal connected  
1
3
Capacitance to GND  
XIN  
XOUT  
pF  
pF  
5
5
4.4.5 VREF  
Unless otherwise specified, VREF_DIS=0  
Parameter  
Condition  
Min  
Typ  
Max  
1.197  
50  
Unit  
V
VREF output voltage, VNOM(25)  
VREF chop step  
Ta = 22ºC  
1.193  
1.195  
mV  
VREF_CAL =1,  
ILOAD = 10 µA, -10 µA  
VNOM (T) =VREF(22) + (T 22)TC1+ (T 22)2 TC2  
VREF output impedance  
VNOM definition*  
2.5  
kΩ  
V
VREF temperature coefficients  
124.4 - 2.435*TRIMT  
-0.265 + 0.00106*TRIMT  
µV/ºC  
TC1  
TC2  
µV/°C2  
ppm/  
year  
VREF aging  
±25  
VREF(T) deviation from VNOM(T)  
VREF(T) VNOM (T) 106  
ppm/º  
C
Ta = -40ºC to +85ºC  
-401  
+401  
VNOM  
62  
* This relationship describes the nominal behavior of VREF at different temperatures.  
 
 
 
DS_6613_018  
78M6613 Data Sheet  
4.4.6 ADC Converter, V3P3 Referenced  
VREF_DIS=0, LSB values do not include the 9-bit left shift at CE input.  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Recommended Input Range  
(Vin-V3P3A)  
mV  
peak  
-250  
250  
Vin = 200 mV peak,  
65 Hz, on A0  
Voltage to Current Crosstalk:  
-101  
101  
μV/V  
106 *Vcrosstalk  
Vcrosstalk = largest  
measurement on A1 or  
A3  
cos(Vin − ∠Vcrosstalk)  
Vin  
THD (First 10 harmonics)  
250 mV-pk  
20 mV-pk  
Vin=65 Hz,  
64 kpts FFT, Blackman-  
Harris window  
dB  
dB  
-75  
-90  
Input Impedance  
Vin=65 Hz  
40  
90  
kΩ  
Temperature coefficient of Input  
Impedance  
Vin=65 Hz  
1.7  
Ω/°C  
FIR_LEN=0  
FIR_LEN=1  
357  
151  
LSB size  
nV/LSB  
LSB  
FIR_LEN=0  
FIR_LEN=1  
+884736  
+2097152  
Digital Full Scale  
ADC Gain Error vs  
%Power Supply Variation  
Vin=200 mV pk, 65 Hz  
V3P3=3.0V, 3.6V  
50  
10  
ppm/%  
mV  
106 NoutPK 357nV /VIN  
100V3P3A/3.3  
Input Offset (Vin-V3P3A)  
-10  
4.4.7 Temperature Sensor  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
FIR_LEN=0  
FIR_LEN=1  
-669  
-1585  
Nominal Sensitivity (Sn)  
LSB/ºC  
FIR_LEN=0  
FIR_LEN=1  
+429301  
+1017558  
Nominal (Nn) †  
LSB  
ºC  
Temperature Error  
TA = -40ºC to +85ºC  
Tn = 25°C  
-101  
+101  
(N(T) Nn )  
ERR = T −  
+Tn  
Sn  
Nn is measured at Tn during calibration and is stored in MPU or CE for use in temperature calculations.  
1 Guaranteed by design; not production tested.  
 
 
78M6613 Data Sheet  
DS_6613_018  
4.5 Timing Specifications  
4.5.1 RAM and Flash Memory  
Parameter  
Condition  
CKMPU = 4.9152 MHz  
CKMPU = 1.25 MHz  
CKMPU = 614 kHz  
-40 °C to +85 °C  
25 °C  
Min  
Typ  
Max  
Unit  
5
2
Cycles  
Cycles  
Cycles  
Cycles  
Years  
Years  
CE DRAM wait states  
1
Flash write cycles  
Flash data retention  
Flash data retention  
20,000  
100  
10  
85 °C  
Flash byte writes between page or  
mass erase operations  
2
Cycles  
4.5.2 RESET  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
µs  
Reset pulse fall time  
Reset pulse width  
1
5
µs  
 
 
 
DS_6613_018  
78M6613 Data Sheet  
4.5.3 Typical Performance Data  
Wh Accuracy(%)  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Wh Accuracy (%)  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0.01  
0.1  
1
10  
Current(A)  
Figure 15: Wh Accuracy, 10 mA to 20 A at 120 V/60 Hz and Room Temperature Using a 4 m  
Current Shunt  
Relative Accuracy over Temperature  
40  
30  
20  
10  
0
-10  
-20  
-30  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature [°C]  
Figure 16: Typical Measurement Accuracy over Temperature Relative to 25°C  
 
 
 
78M6613 Data Sheet  
DS_6613_018  
5 Packaging  
5.1 Pinout  
32 31 30 29 28 27 26 25  
A1 1  
A3 2  
24  
23  
22  
21  
20  
19  
18  
17  
ICE_E  
GNDD  
DIO4  
A2 3  
A0 4  
DIO19  
DIO16  
DIO15  
DIO14  
DIO17  
VREF 5  
XIN 6  
TEST 7  
XOUT 8  
9
10 11 12 13 14 15 16  
Figure 17: 32-Pin QFN Pinout  
 
 
 
DS_6613_018  
78M6613 Data Sheet  
5.2 Package Outline (QFN 32)  
0.85 NOM.  
/
0.9MAX.  
5
0.00 / 0.005  
0.20 REF.  
2.5  
1
2
3
SEATING  
PLANE  
SIDE VIEW  
TOP VIEW  
3.0 / 3.2  
0.18 / 0.3  
CHAMFERED  
0.30  
1.5 / 1.6  
1
2
3
0.2 MIN.  
0.35 / 0.45  
0.5  
BOTTOM VIEW  
NOTE:  
Controlling  
dimensions are in mm.  
Figure 18: Package Outline (QFN 32)  
 
 
78M6613 Data Sheet  
DS_6613_018  
5.3 Recommended PCB Land Pattern for the QFN-32 Package  
x
y
e
d
A
G
x
y
e
d
A
G
Symbol  
Description  
Min  
Typ  
Max  
e
Lead pitch  
0.50  
mm  
x
y
0.28 mm  
0.69 mm  
3.00 mm  
0.28 mm  
d
See Note 1  
A
G
3.78 mm  
3.93 mm  
Note 1: Do not place unmasked vias in region denoted by dimension “d”.  
Note 2: Soldering of bottom internal pad not required for proper operation of either commercial or  
industrial temperature rated versions.  
Figure 19: Recommended PCB Land Pattern Dimensions  
 
 
DS_6613_018  
78M6613 Data Sheet  
6 Pin Descriptions  
6.1 Power/Ground Pins  
Name  
Type Circuit Description  
GNDA  
GNDD  
V3P3A  
V3P3D  
P
P
These pins should be connected directly to the ground plane.  
A 3.3V power supply should be connected to these pins.  
6.2 Analog Pins  
Name  
Type Circuit Description  
Sense Inputs: These pins are voltage inputs to the internal A/D  
converter. Typically, they are connected to either the outputs of  
current sensors or the outputs of resistor dividers (voltage sensors).  
A0, A1,  
A2, A3  
I
5
Unused pins must be connected to V3P3.  
Voltage Reference for the ADC. This pin is left unconnected. Never  
use as an external reference.  
VREF  
O
I
8
7
Crystal Inputs. A 32 kHz crystal should be connected across these  
pins. Typically, a 27 pF capacitor is also connected from each pin to  
GND. It is important to minimize the capacitance between these  
pins. See the crystal manufacturer datasheet for details.  
XIN  
XOUT  
Pin types: P = Power, O = Output, I = Input, I/O = Input/Output  
The circuit number denotes the equivalent circuit, as specified under “I/O Equivalent Circuits”.  
 
 
 
78M6613 Data Sheet  
DS_6613_018  
6.3 Digital Pins  
Name  
Type Circuit Description  
DIO4  
DIO5  
DIO6  
DIO7  
DIO8  
DIO14  
DIO15  
DIO16  
DIO17  
DIO19  
DIO pins. If unused, these pins must be configured as DIOs and  
set to outputs by the firmware.  
I/O  
3, 4  
E_RXTX,  
E_RST  
I/O  
O
1, 4  
4
Emulator port pins (when ICE_E pulled high) .  
E_TCLK  
ICE enable. When zero, E_RST, E_TCLK, and E_RXTX are disabled.  
For production units, this pin should be pulled to GND to disable the  
emulator port. This pin should be brought out to the programming  
interface in order to create a way for reprogramming parts that have  
the SECURE bit set.  
ICE_E  
I
2
CKTEST  
O
O
4
4
Clock PLL output.  
TMUXOUT  
Digital output test multiplexer.  
This input pin resets the chip into a known state. For normal operation,  
this pin should be pulled low. To force the device into reset state, it should be  
pulled high. Refer to Section 3.6 for RESET pin connections, use, and  
relevant external circuitry.  
RESET  
I
3
UART input. If unused, this pin must be terminated to V3P3 or  
GND.  
RX  
I
3
TX  
O
I
4
7
UART output.  
TEST  
Enables Production Test. Must be grounded in normal operation.  
Pin types: P = Power, O = Output, I = Input, I/O = Input/Output  
The circuit number denotes the equivalent circuit, as specified on the following page.  
 
DS_6613_018  
78M6613 Data Sheet  
7 I/O Equivalent Circuits  
V3P3  
V3P3  
V3P3  
V3P3  
110K  
Digital  
Input  
Pin  
Digital  
Input  
Pin  
CMOS  
Input  
Digital  
Input  
Pin  
CMOS  
Input  
CMOS  
Input  
110K  
GND  
GND  
GND  
GND  
Digital Input Type 3:  
Standard Digital Input or  
Digital Input Equivalent Circuit  
Type 1:  
Digital Input  
Type 2:  
pin configured as DIO Input  
Standard Digital Input or  
pin configured as DIO Input  
with Internal Pull-Up  
Pin configured as DIO Input  
with Internal Pull-Down  
V3P3  
V3P3  
V3P3  
V3P3  
Digital  
Output  
Pin  
CMOS  
Output  
Comparator  
Input  
Pin  
Analog  
Input  
Pin  
To  
To  
MUX  
Comparator  
GND  
GND  
GND  
GND  
Digital Output Equivalent Circuit  
Type 4:  
Comparator Input Equivalent Circuit  
Type 6:  
Analog Input Equivalent Circuit  
Type 5:  
Standard Digital Output or  
pin configured as DIO Output  
Comparator Input  
ADC Input  
V3P3  
from  
VREF  
Oscillator  
Pin  
To  
Oscillator  
internal  
Pin  
reference  
GND  
GND  
Oscillator Equivalent Circuit  
Type 7:  
VREF Equivalent Circuit  
Type 8:  
Oscillator I/O  
VREF  
Figure 20: I/O Equivalent Circuits  
 
 
78M6613 Data Sheet  
DS_6613_018  
8 Ordering Information  
Part  
Package  
Option  
Bulk  
Ordering Number IC Marking  
78M6613-IM/F  
78M6613-IMR/F  
78M6613-IM/F/P  
78M6613-IMR/F/P  
Tape & Reel  
32-pin QFN  
(Lead(Pb)-Free)  
78M6613  
78M6613-IM  
*Programmed, Bulk  
*Programmed, Tape & Reel  
*Contact the factory for more information on programmed part options.  
9 Contact Information  
For more information about Maxim products or to check the availability of the 78M6613, contact  
technical support at www.maxim-ic.com/support.  
 
 
DS_6613_018  
78M6613 Data Sheet  
Revision History  
REVISION  
NUMBER  
REVISION  
PAGES  
CHANGED  
DESCRIPTION  
DATE  
First publication.  
1.0  
1.1  
2
11/10  
30  
1
In Section 6.3, corrected the description of the RESET  
pin.  
3/11  
1/12  
Added Maxim logo.  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical  
Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
33  
The Maxim logo and Maxim Integrated are trademarks of Maxim Integrated Products, Inc.  
Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000  
©
2012 Maxim Integrated  
 

78M6613-IMR/F/PW4 相关器件

型号 制造商 描述 价格 文档
78M6613-IMR/F/PW5 MAXIM Power Supply Management Circuit, Fixed, 1 Channel, 5 X 5 MM, ROHS COMPLIANT, QFN-32 获取价格
78M6613_12 MAXIM Single-Phase AC Power Measurement IC 获取价格
78M6618 TERIDIAN Octal Power and Energy Measurement IC 获取价格
78M6618 SILERGY Octal Power and Energy Measurement IC 获取价格
78M6618-IM TERIDIAN Octal Power and Energy Measurement IC 获取价格
78M6618-IM/F MAXIM Analog Circuit, 1 Func, CMOS, 8 X 8 MM, TQFN-68 获取价格
78M6618-IM/F TERIDIAN Analog Circuit, ROHS COMPLIANT, QFN-68 获取价格
78M6618-IM/F SILERGY Octal Power and Energy Measurement IC 获取价格
78M6618-IM/F/Pxx SILERGY Octal Power and Energy Measurement IC 获取价格
78M6618-IMR TERIDIAN Octal Power and Energy Measurement IC 获取价格

78M6613-IMR/F/PW4 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6