DS1865T+T&R [MAXIM]

PON Triplexer Control and Monitoring Circuit; PON三工器控制及监测电路
DS1865T+T&R
型号: DS1865T+T&R
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

PON Triplexer Control and Monitoring Circuit
PON三工器控制及监测电路

监控
文件: 总66页 (文件大小:525K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Rev 0; 3/07  
PON Triplexer Control and  
Monitoring Circuit  
General Description  
Features  
The DS1865 controls and monitors all the burst-mode  
transmitter and video receiver biasing functions for a  
passive optical network (PON) triplexer. It has an APC  
loop with tracking-error compensation that provides the  
reference for the laser driver bias current and a temper-  
ature-indexed lookup table (LUT) that controls the mod-  
ulation current. It continually monitors for high output  
current, high bias current, and low and high transmit  
power with its internal fast comparators to ensure that  
laser shutdown for eye safety requirements are met with-  
out adding external components. Six ADC channels  
Meets GEPON, BPON, and GPON Timing  
Requirements for Burst-Mode Transmitters  
Bias Current Control Provided by APC Loop with  
Tracking-Error Compensation  
Modulation Current is Controlled by a  
Temperature-Indexed Lookup Table  
Laser Power Leveling from -6dB to +0dB  
Two 8-Bit Analog Outputs, One is Controlled by  
MON4 Voltage for Video Amplifier Gain Control  
monitor V , internal temperature, and four external  
CC  
monitor inputs (MON1–MON4) that can be used to meet  
transmitter and video receive signal monitoring require-  
ments. Two digital-to-analog converter (DAC) outputs  
are available for biasing the video receiver channel, and  
five digital I/O pins are present to allow additional moni-  
toring and configuration.  
Internal Direct-to-Digital Temperature Sensor  
Six Analog Monitor Channels: Temperature, V  
,
CC  
MON1, MON2, MON3, and MON4  
Five Digital I/O Pins for Additional Control and  
Monitoring Functions  
Comprehensive Fault Management System with  
Applications  
Optical Triplexers with GEPON, BPON, or GPON  
Transceiver  
Maskable Laser Shutdown Capability  
Two-Level Password Access to Protect  
Calibration Data  
120 Bytes of Password 1 Protected Nonvolatile  
Memory  
128 Bytes of Password 2 Protected Nonvolatile  
Pin Configuration  
Memory in Main Device Address  
128 Bytes of Nonvolatile Memory Located at A0h  
TOP VIEW  
Slave Address  
2
I C-Compatible Interface for Calibration and  
28 27 26 25 24 23 22  
Monitoring  
Operating Voltage: 2.85V to 5.5V  
Operating Temperature Range: -40°C to +95°C  
BEN  
TX-D  
TX-F  
FETG  
1
2
3
4
5
6
7
21  
20  
19  
MOD  
BIAS  
V
CC  
Packaging: 28-Pin Lead-Free TQFN (5mm x 5mm  
18 GND  
x 0.8mm)  
DS1865  
V
M4DAC  
17  
16  
15  
CC  
GND  
N.C.  
DAC1  
Ordering Information  
MON4  
PART  
TEMP RANGE  
PIN-PACKAGE  
8
9
10 11 12 13 14  
28 TQFN-EP*  
(5mm x 5mm x 0.8mm)  
DS1865T+  
-40°C to +95°C  
28 TQFN-EP*  
(5mm x 5mm x 0.8mm)  
tape-and-reel  
TQFN  
(5mm x 5mm x 0.8mm)  
DS1865T+T&R -40°C to +95°C  
+Denotes lead-free package.  
*EP = Exposed pad.  
______________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
PON Triplexer Control and  
Monitoring Circuit  
ABSOLUTE MAXIMUM RATINGS  
Voltage Range on MON1MON4, BEN, BMD, and  
Operating Temperature Range ...........................-40°C to +95°C  
TX-D Pins Relative to Ground.................-0.5V to (V  
+ 0.5V)  
Programming Temperature Range.........................0°C to +70°C  
Storage Temperature Range.............................-55°C to +125°C  
Soldering Temperature...................See J-STD-020 Specification  
CC  
(subject to not exceeding +6V)  
Voltage Range on V , SDA, SCL, D0D3, and  
CC  
TX-F Pins Relative to Ground ...............................-0.5V to +6V  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
RECOMMENDED OPERATING CONDITIONS  
(T = -40°C to +95°C, unless otherwise noted.)  
A
PARAMETER  
Supply Voltage  
SYMBOL  
CONDITIONS  
MIN  
+2.85  
0.7 x  
TYP  
MAX  
UNITS  
V
(Note 1)  
+5.5  
V
CC  
High-Level Input Voltage  
(SDA, SCL, BEN)  
V
+
CC  
V
V
V
V
V
IH:1  
V
0.3  
CC  
Low-Level Input Voltage  
(SDA, SCL, BEN)  
0.3 x  
V
-0.3  
2.0  
IL:1  
V
CC  
High-Level Input Voltage  
(TX-D, LOSI, D0, D1, D2, D3)  
V
+
CC  
V
IH:2  
0.3  
Low-Level Input Voltage  
(TX-D, LOSI, D0, D1, D2, D3)  
V
-0.3  
0.8  
IL:2  
DC ELECTRICAL CHARACTERISTICS  
(VCC = +2.85V to +5.5V, T = -40°C to +95°C, unless otherwise noted.)  
A
PARAMETER  
Supply Current  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
(Notes 1, 2)  
5
10  
mA  
CC  
Output Leakage  
(SDA, TX-F, D0, D1, D2, D3)  
I
1
µA  
V
LO  
I
I
= 4mA  
= 6mA  
0.4  
0.6  
OL  
Low-Level Output Voltage  
(SDA, TX-F, FETG, D0, D1, D2, D3)  
V
OL  
OL  
High-Level Output Voltage  
(FETG)  
V
0.4  
-
CC  
V
I
= 4mA  
V
OH  
OH  
FETG Before Recall  
(Note 3)  
10  
100  
1
nA  
µA  
Input-Leakage Current  
(SCL, BEN, TX-D, LOSI)  
I
LI  
Digital Power-On Reset  
Analog Power-On Reset  
POD  
POA  
1.0  
2.1  
2.2  
V
V
2.75  
2
_____________________________________________________________________  
PON Triplexer Control and  
Monitoring Circuit  
ELECTRICAL CHARACTERISTICS (DAC1 and M4DAC)  
(VCC = +2.85V to +5.5V, T = -40°C to +95°C, unless otherwise noted.)  
A
PARAMETER  
DAC Output Range  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
0
2.5  
DAC Output Resolution  
DAC Output Integral Nonlinearity  
DAC Output Differential Nonlinearity  
DAC Error  
8
Bits  
LSB  
LSB  
LSB  
% FS  
µV  
-2  
-1  
+2  
+1  
T
= +25°C  
-1.25  
-2  
+1.25  
+2  
A
DAC Temperature Drift  
DAC Offset  
V
= 2.85V to 3.6V  
-20  
-500  
+20  
+500  
250  
CC  
Maximum Load  
µA  
Maximum Load Capacitance  
pF  
ANALOG INPUT CHARACTERISTICS (BMD, TXP-HI, TXP-LO, HBIAS)  
(VCC = +2.85V to +5.5V, T = -40°C to +95°C, unless otherwise noted.)  
A
PARAMETER  
BMD, TXP-HI, TXP-LO Full-Scale Voltage  
HBIAS Full-Scale Voltage  
BMD Input Resistance  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
2.5  
1.25  
50  
MAX  
UNITS  
V
V
(Note 4)  
APC  
mA  
35  
65  
k  
(Note 4)  
8
Bits  
%FS  
LSB  
LSB  
%FS  
Error  
T
= +25°C (Note 5)  
2
A
Integral Nonlinearity  
Differential Nonlinearity  
Temperature Drift  
-1  
-1  
+1  
+1  
-2.5  
+2.5  
ANALOG OUTPUT CHARACTERISTICS  
(VCC = +2.85V to +5.5V, T = -40°C to +95°C, unless otherwise noted.)  
A
PARAMETER  
BIAS Current  
Shutdown Current  
SYMBOL  
CONDITIONS  
MIN  
TYP  
1.2  
10  
MAX  
UNITS  
mA  
nA  
I
(Note 1)  
BIAS  
I
I
100  
1.4  
BIAS  
BIAS:OFF  
Voltage at I  
0.7  
1.2  
1.25  
3
V
BIAS  
MOD Full-Scale Voltage  
MOD Output Impedance  
V
(Note 6)  
(Note 7)  
V
MOD  
kΩ  
V
V
V
V
Error  
T
A
= +25°C (Note 8)  
-2.5  
-3  
+2.5  
+3  
%FS  
LSB  
LSB  
%FS  
MOD  
MOD  
MOD  
MOD  
Integral Nonlinearity  
Differential Nonlinearity  
Temperature Drift  
-1  
+1  
-2  
+2  
_____________________________________________________________________  
3
PON Triplexer Control and  
Monitoring Circuit  
ANALOG VOLTAGE MONITORING  
(V  
CC  
= 2.85V to 5.5V, T = -40°C to +95°C, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
610  
1.6  
MAX  
UNITS  
µV  
Input Resolution  
VMON  
Supply Resolution  
V  
mV  
CC  
Input/Supply Accuracy  
(MON1, MON2, MON3, MON4, V  
% FS  
(full scale)  
A
At factory setting  
0.25  
30  
0
0.5  
45  
5
CC  
)
CC  
Update Rate for MON1, MON2,  
MON3, MON4 Temp, or V  
t
ms  
FRAME  
CC  
Input/Supply Offset  
(MON1, MON2, MON3, MON4, V  
V
(Note 14)  
LSB  
OS  
)
CC  
MON1, MON2,  
MON3, MON4  
2.5  
Factory Setting  
V
V
CC  
6.5536  
DIGITAL THERMOMETER  
(V  
CC  
= 2.85V to 5.5V, T = -40°C to +95°C, unless otherwise noted.)  
A
PARAMETER  
Thermometer Error  
SYMBOL  
CONDITIONS  
-40°C to +95°C  
MIN  
TYP  
MAX  
UNITS  
T
3.0  
°C  
ERR  
TIMING CHARACTERISTICS (CONTROL LOOP AND QUICK-TRIP)  
(VCC = +2.85V to +5.5V, T = -40°C to +95°C, unless otherwise noted.)  
A
PARAMETER  
First MD Sample Following BEN  
Remaining Updates During BEN  
BEN High Time  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
t
(Note 9)  
(Note 9)  
FIRST  
t
UPDATE  
t
400  
96  
ns  
ns  
ms  
µs  
µs  
µs  
µs  
BEN:HIGH  
BEN Low Time  
t
BEN:LOW  
Output-Enable Time Following POA  
BIAS and MOD Turn-Off Delay  
BIAS and MOD Turn-On Delay  
FETG Turn-On Delay  
t
10  
INIT  
OFF  
t
5
5
5
5
t
ON  
t
FETG:ON  
t
FETG:OFF  
FETG Turn-Off Delay  
BIAS  
Samples  
Binary Search Time  
t
(Note 10)  
5
13  
75  
SEARCH  
ADC Round-Robin Time  
t
ms  
RR  
4
_____________________________________________________________________  
PON Triplexer Control and  
Monitoring Circuit  
2
I C AC ELECTRICAL CHARACTERISTICS  
(VCC = 2.85V to 5.5V, T = -40°C to +95°C, timing referenced to V  
and V .) (See Figure 9.)  
IH(MIN)  
A
IL(MAX)  
PARAMETER  
SCL Clock Frequency  
SYMBOL  
CONDITIONS  
MIN  
0
TYP  
MAX  
UNITS  
kHz  
µs  
f
(Note 11)  
400  
SCL  
Clock Pulse-Width Low  
Clock Pulse-Width High  
t
1.3  
0.6  
LOW  
t
µs  
HIGH  
Bus-Free Time Between STOP and  
START Condition  
t
1.3  
µs  
BUF  
Start Hold Time  
Start Setup Time  
Data in Hold Time  
t
0.6  
0.6  
0
µs  
µs  
µs  
HD:STA  
t
SU:STA  
t
0.9  
HD:DAT  
Data in Setup Time  
t
100  
ns  
ns  
ns  
SU:DAT  
Rise Time of Both SDA and SCL  
Signals  
20 +  
t
R
(Note 12)  
(Note 12)  
300  
300  
0.1C  
B
Fall Time of Both SDA and SCL  
Signals  
20 +  
t
F
0.1C  
B
STOP Setup Time  
t
0.6  
µs  
pF  
ms  
SU:STO  
Capacitive Load for Each Bus Line  
EEPROM Write Time  
C
(Note 12)  
(Note 13)  
400  
20  
B
t
W
NONVOLATILE MEMORY CHARACTERISTICS  
(V  
= +2.85V to +5.5V)  
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
EEPROM Write Cycles  
At +70°C  
50,000  
Note 1: All voltages are referenced to ground. Current into IC is positive, out of the IC is negative.  
Note 2: Digital inputs are at rail. FETG is disconnected. SDA = SCL = V . DAC1 and M4DAC are not loaded.  
CC  
Note 3: See the Safety Shutdown (FETG) Output section for details.  
Note 4: Eight ranges allow the full-scale range to change from 625mV to 2.5V.  
Note 5: This specification applies to the expected full-scale value for the selected range. See the Comp Ranging byte for available  
full-scale ranges.  
Note 6: Eight ranges allow the BMD full-scale range to change from 312.5mV to 1.25V.  
Note 7: The output impedance of the DS1865 is proportional to its scale setting. For instance, if using the 1/2 scale, the output  
impedance would be approximately 1.56k.  
Note 8: This specification applies to the expected full-scale value for the selected range. See the Mod Ranging byte for available  
full-scale ranges.  
Note 9: See the APC and Quick-Trip Shared Comparator Timing section for details.  
Note 10: Assuming an appropriate initial step is programmed that would cause the power to exceed the APC set point within four  
steps, the bias current will be 1% within the time specified by the binary search time. See the Bias and MOD Output During  
Power-Up section.  
2
2
Note 11: I C interface timing shown is for fast-mode (400kHz) operation. This device is also backward-compatible with the I C stan-  
dard mode.  
Note 12: C total capacitance of one bus line in picofarads.  
B
Note 13: EEPROM write begins after a STOP condition occurs.  
Note 14: Guaranteed by design.  
_____________________________________________________________________  
5
PON Triplexer Control and  
Monitoring Circuit  
Typical Operating Characteristics  
(VCC = 3.3V, T = +25°C, unless otherwise noted.)  
A
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
DAC1 AND M4DAC DNL  
7.000  
6.500  
7.000  
6.500  
1.0  
0.8  
SDA = SCL = V  
SDA = SCL = V  
CC  
CC  
0.6  
6.000  
5.500  
6.000  
5.500  
+95°C  
0.4  
V
= 5.5V  
CC  
0.2  
0
5.000  
4.500  
5.000  
4.500  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
+25°C  
V
= 2.85V  
CC  
-40°C  
4.000  
3.500  
3.000  
4.000  
3.500  
3.000  
2.850 3.350 3.850 4.350  
4.80  
5.350  
-40 -20  
0
20  
40  
60  
0
50  
100  
150  
200  
250  
80  
V
(V)  
TEMPERATURE (°C)  
DAC1 AND M4DAC POSITION (DEC)  
CC  
DAC1 AND M4DAC OFFSET VARIATION  
vs. LOAD CURRENT  
DAC1 AND M4DAC INL  
DAC1 AND M4DAC OFFSET vs. V  
CC  
0.002  
0
1.0  
0.8  
0.05  
V
= 2.85V  
CC  
T
= -40°C TO +95°C  
A
0.04  
0.03  
0.02  
0.01  
LOAD = -0.5mA TO +0.5mA  
0.6  
V
= 3.6V  
-0.002  
-0.004  
CC  
0.4  
0.2  
0
0
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
V
= 5.0V  
CC  
-0.006  
-0.008  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
V
= 5.5V  
CC  
-0.010  
-0.012  
-0.5 -0.4 -0.3 -0.2 -0.1  
0
0.1 0.2 0.3 0.4 0.5  
0
50  
100  
150  
200  
250  
2.85  
3.35  
3.85  
4.35  
(V)  
4.85  
5.35  
LOAD CURRENT (mA)  
DAC1 AND M4DAC POSITION (DEC)  
V
CC  
CALCULATED AND DESIRED % CHANGE  
DESIRED AND CALCULATED CHANGE  
DAC1 AND M4DAC OUTPUT  
vs. LOAD CURRENT  
IN V  
vs. MOD RANGING  
IN V  
vs. COMP RANGING  
MOD  
BMD  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.255  
1.254  
1.253  
1.252  
DESIRED VALUE  
DESIRED VALUE  
OUTPUT WITHOUT OFFSET  
CALCULATED VALUE  
CALCULATED VALUE  
V
= 2.85V  
CC  
1.251  
1.250  
1.249  
V
= 5.0V  
CC  
1.248  
1.247  
1.246  
1.245  
000 001 010 011 100 101 110 111  
MOD RANGING VALUE (DEC)  
000 001 010 011 100 101 110 111  
COMP RANGING (DEC)  
-0.5 -0.4 -0.3 -0.2 -0.1  
0 0.1 0.2 0.3 0.4 0.5  
LOAD CURRENT (mA)  
6
_____________________________________________________________________  
PON Triplexer Control and  
Monitoring Circuit  
Typical Operating Characteristics (continued)  
(VCC = 3.3V, T = +25°C, unless otherwise noted.)  
A
MON1–MON4 INL  
MON1MON4 DNL  
1.0  
0.8  
1.0  
0.8  
USING FACTORY-PROGRAMMED  
FULL-SCALE VALUE OF 2.5V  
USING FACTORY-PROGRAMMED  
FULL-SCALE VALUE OF 2.5V  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
MON1–MON4 INPUT VOLTAGE (V)  
MON1MON4 INPUT VOLTAGE (V)  
V
MOD  
INL vs. MOD INDEX  
V
BMD  
INL vs. APC INDEX  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
MOD INDEX (DEC)  
APC INDEX (DEC)  
_____________________________________________________________________  
7
PON Triplexer Control and  
Monitoring Circuit  
Pin Description  
PIN  
1
NAME  
BEN  
FUNCTION  
Burst Enable Input. Triggers the sampling of the APC and quick-trip monitors.  
Transmit Disable Input. Disables BIAS and MOD outputs.  
Transmit Fault Output, Open Drain  
2
TX-D  
TX-F  
3
4
FETG  
Output to FET Gate. Signals an external n- or p-channel MOSFET to enable/disable the lasers current.  
5, 19  
6, 18  
V
Supply Voltage  
Ground  
CC  
GND  
7, 10, 11,  
25  
N.C.  
No Connection  
2
2
8
9
SDA  
SCL  
I C Serial Data. Input/output for I C data.  
2
2
I C Serial Clock. Input for I C clock.  
External Monitor Input 14. The voltage at these pins are digitized by the internal analog-to-digital  
2
1215  
MON1MON4 converter and can be read through the I C interface. Alarm and warning values can be assigned to  
interrupt the processor based on the ADC result.  
Digital-to-Analog Output DAC1 and M4DAC. Two 8-bit DAC outputs for generating analog voltages.  
Typically used to control the video photodiode bias. M4DAC is controlled by the input voltage on MON4  
and Table 06h LUT.  
16  
DAC1  
17  
20  
M4DAC  
BIAS  
Bias Current Output. This current DAC generates the bias current reference for the MAX3643.  
Modulation Output Voltage. This 8-bit voltage output has eight full-scale ranges from 1.25V to 0.3125V.  
This pin is connected to the MAX3643s VMSET input to control the modulation current.  
21  
MOD  
22  
23  
BMD  
LOSI  
Monitor Diode Input (Feedback Voltage, Transmit Power Monitor)  
2
Loss-of-Signal Input. This input is accessible in the status register through the I C interface.  
Digital I/O 0. This signal is either the open-drain output driver for LOSI, or can be controlled by the  
OUT0 bit (D0OUT). The logic level of this pin is indicated by the D0IN and LOS status bits.  
24  
D0  
26, 27,  
28  
Digital I/O 13. These are bidirectional pins controlled by internally addressable bits. The outputs are  
open-drain.  
D1, D2, D3  
EP  
Exposed Pad. This contact should be connected to GND.  
8
_____________________________________________________________________  
PON Triplexer Control and  
Monitoring Circuit  
Block Diagram  
V
CC  
DS1865 MEMORY ORGANIZATION  
V
CC  
MAIN MEMORY  
EEPROM/SRAM  
SDA  
SCL  
SRAM RESET  
2
I C  
ADC CONFIGURATION/RESULTS  
SYSTEM STATUS BITS  
ALARM/WARNING COMPARISON RESULTS/THRESHOLDS  
INTERFACE  
TABLE 01h (EEPROM)  
TABLE 04h (EEPROM)  
MODULATION LUT  
EEPROM  
128 BYTES AT  
A0h SLAVE  
ADDRESS  
PW1 USER MEMORY, ALARM TRAP  
TABLE 02h (EEPROM)  
CONFIGURATION AND CALIBRATION  
TABLE 05h (EEPROM)  
APC LUT  
POWER-ON ANALOG  
> V  
V
TABLE 03h (EEPROM)  
PW2 USER MEMORY  
TABLE 06h (EEPROM)  
M4DAC (VIDEO GAIN LUT)  
CC  
V
CC  
POA  
NONMASKABLE  
INTERRUPT  
MON1  
MON2  
MON3  
MON4  
TX-F  
INTERRUPT  
MASK  
INTERRUPT  
LATCH  
DIGITAL LIMIT  
COMPARATOR FOR  
ADC RESULTS  
13-BIT  
ADC  
LATCH  
ENABLE  
TEMP  
SENSOR  
INTERRUPT  
MASK  
INTERRUPT  
LATCH  
FETG  
SAMPLE  
CONTROL  
BIAS MAX  
QUICKTRIP  
BEN  
MUX  
BMD  
HBIAS QUICK-  
TRIP LIMIT  
MUX  
HTXP QUICK-  
TRIP LIMIT  
8-BIT DAC  
W/SCALING  
MUX  
LTXP QUICK-  
TRIP LIMIT  
DIGITAL APC  
INTEGRATOR  
13-BIT  
DAC  
BIAS  
MOD  
APC SET POINT  
FROM APC LUT  
DS1865  
8-BIT DAC  
W/SCALING  
MOD LUT  
TX-D  
D0  
TTL  
D0 IN/LOS STATUS  
D0 OUT  
INV LOSI  
0
1
TTL  
TTL  
TTL  
TTL  
LOSI  
D1  
MUX LOSI  
M4DAC  
8-BIT, 2.5V  
FULL SCALE  
TABLE 06h  
VIDEO POWER  
LOOKUP TABLE  
M4DAC  
DAC1  
D1 IN  
2
D1 OUT  
I C CONTROL  
DAC1  
8-BIT, 2.5V  
FULL SCALE  
2
I C PROGRAMMED  
NONVOLATILE SETTING  
D2  
D3  
D2 IN  
D2 OUT  
D3 IN  
D3 OUT  
GND  
_____________________________________________________________________  
9
PON Triplexer Control and  
Monitoring Circuit  
Typical Operating Circuit  
3.3V  
IN+  
V
CC  
IN-  
OUT+  
OUT-  
BIAS-  
BEN+  
BEN-  
DIS  
MAX3643  
BIAS+  
MDIN  
COMPACT BURST-MODE  
LASER DRIVER  
MDOUT  
12V  
SDA  
SCL  
TX-F  
TX-D  
LOSI  
D0  
BMD  
MON1  
MON2  
MON3  
MON4  
FETG  
2
3.3V  
I C COMMUNICATION  
FAULT OUTPUT  
DISABLE INPUT  
TRANSMIT POWER  
RECEIVE POWER  
DS1865  
MAX3654  
CATV  
BURST-MODE  
MONITOR/CONTROL CIRCUIT  
FTTH CATV  
RECEIVER LOS  
TIA  
OPEN-DRAIN LOS OUTPUT  
D1  
DAC1  
ADDITIONAL  
DIGITAL I/O  
D2  
M4DAC  
D3  
THERMISTOR  
APD BOOST DC-DC  
Table 1. Acronyms  
Detailed Description  
The DS1865 integrates the control and monitoring func-  
tionality required to implement a PON system using  
Maxims MAX3643 compact burst-mode laser driver.  
The compact laser driver solution offers a considerable  
cost benefit by integrating control and monitoring fea-  
tures in the low-power CMOS process, while leaving  
only the high-speed portions to the laser driver. Key  
components of the DS1865 are shown in the Block  
Diagram and described in subsequent sections. Table 1  
contains a list of acronyms used in this data sheet.  
ACRONYM  
DEFINITION  
ADC  
APC  
ATB  
DAC  
LUT  
NV  
Analog-to-Digital Converter  
Average Power Control  
Alarm Trap Bytes  
Digital-to-Analog Converter  
Lookup Table  
Nonvolatile  
PON  
QT  
Passive Optical Network  
Quick Trip  
APC Control  
BIAS current is controlled by an average power control  
(APC) loop. The APC loop uses digital techniques to  
overcome the difficulties associated with controlling  
burst-mode systems.  
SEE  
TE  
Shadowed EEPROM  
Tracking Error  
TXP  
Transmit Power  
10  
____________________________________________________________________  
PON Triplexer Control and  
Monitoring Circuit  
The APC loops feedback is the monitor diode (BMD)  
current, which is converted to a voltage using an exter-  
nal resistor. The feedback voltage is compared to an 8-  
bit scaleable voltage reference that determines the  
APC set point of the system. Scaling of the reference  
voltage accommodates the wide range in photodiode  
sensitivities. This allows the application to take full  
advantage of the APC references resolution.  
All quick-trip alarm flags are masked until the binary  
search is completed. However, the BIAS MAX alarm is  
monitored during this time to prevent the bias output  
from exceeding MAX IBIAS. During the bias current ini-  
tialization, the bias current is not allowed to exceed  
MAX IBIAS. If this occurs during the I  
sequence,  
STEP  
the binary search routine begins. If MAX IBIAS is  
exceeded during the binary search, the next smaller  
step is activated. I  
or binary increments that would  
STEP  
The DS1865 has an LUT to allow the APC set point to  
change as a function of temperature to compensate for  
tracking error (TE). The TE LUT (Table 05h) has 36  
entries that determine the APC setting in 4°C windows  
between -40°C to +100°C. Ranging of the APC DAC is  
possible by programming a single byte in Table 02h.  
cause I  
to exceed MAX IBIAS are not taken.  
BIAS  
Masking the alarms until the completion of the binary  
search prevents false trips during startup.  
I
is programmed by the customer using the Startup  
STEP  
Step register. This value should be programmed to the  
maximum safe current increase that is allowable during  
startup. If this value is programmed too low, the DS1865  
will still operate, but it could take significantly longer for  
the algorithm to converge and hence to control the aver-  
age power.  
Modulation Control  
The MOD output is an 8-bit scaleable voltage output that  
interfaces with the MAX3643s VMSET input. An external  
resistor to ground from the MAX3643s MODSET pin sets  
the maximum current the voltage at VMSET input can  
produce for a given output range. This resistor value  
should be chosen to produce the maximum modulation  
current the laser type requires over temperature. Then  
the MOD outputs scaling is used to calibrate the full-  
scale (FS) modulation output to a particular lasers  
requirements. This allows the application to take full  
advantage of the MOD outputs resolution. The modula-  
tion LUT can be programmed in 2°C increments over the  
-40°C to +102°C range.  
If a fault is detected and TX-D is toggled to re-enable the  
outputs, the DS1865 powers up following a similar  
sequence to an initial power-up. The only difference is  
that the DS1865 already has determined the present tem-  
perature, so the t  
time is not required for the DS1865  
INIT  
to recall the APC and MOD set points from EEPROM.  
If the Bias-En bit (Table 02h, Register 80h) is written to  
0, the BIAS DAC is manually controlled by the MAN  
IBIAS register (Table 02h, Registers F8hF9h).  
Ranging of the MOD DAC is possible by programming  
a single byte in Table 02h.  
BIAS and MOD Output as a Function  
of Transmit Disable (TX-D)  
If the TX-D pin is asserted (logic 1) during normal oper-  
BIAS and MOD Output  
During Power-Up  
On power-up, the modulation and bias outputs remain  
ation, the outputs are disabled within t  
. When TX-D  
OFF  
is deasserted (logic 0), the DS1865 turns on the MOD  
output with the value associated with the present tem-  
perature, and initializes the BIAS using the same  
search algorithm used at startup. When asserted, the  
soft TX-D (Lower Memory, Register 6Eh) offers a soft-  
ware control identical to the TX-D pin (see Figure 2).  
off until V  
is above V  
and a temperature conver-  
POA  
CC  
sion has been completed. If the V  
LO ADC alarm is  
CC  
enabled, then a V  
defined V  
conversion above the customer-  
CC  
low alarm level is required before the  
CC  
outputs are enabled with the value determined by the  
temperature conversion and the modulation LUT.  
APC and Quick-Trip Shared  
Comparator Timing  
When the MOD output is enabled and BEN is high, the  
BIAS output is turned on to a value equal to I  
(see  
As shown in Figure 3, the DS1865s input comparator is  
shared between the APC control loop and the three  
quick-trip alarms (TXP-HI, TXP-LO, and BIAS HI). The  
comparator polls the alarms in a round-robin multi-  
plexed sequence. Six of every eight comparator read-  
ings are used for APC loop-bias current control. The  
other two updates are used to check the HTXP/LTXP  
(monitor diode voltage) and the HBIAS (MON1) signals  
against the internal APC and BIAS reference. The  
HTXP/LTXP comparison checks HTXP to see if the last  
STEP  
Figure 1). The startup algorithm checks if this bias cur-  
rent causes a feedback voltage above the APC set point,  
and if it does not it continues increasing the BIAS by  
I
until the APC set point is exceeded. When the APC  
STEP  
set point is exceeded, the DS1865 begins a binary  
search to quickly reach the bias current corresponding  
to the proper power level. After the binary search is com-  
pleted the APC integrator is enabled, and single LSB  
steps are taken to tightly control the average power.  
____________________________________________________________________ 11  
PON Triplexer Control and  
Monitoring Circuit  
V
POA  
V
CC  
t
INIT  
V
MOD  
t
SEARCH  
4x I  
STEP  
APC  
INTEGRATOR  
ON  
3x I  
STEP  
BINARY SEARCH  
I
BIAS  
2x I  
STEP  
I
STEP  
BIAS  
SAMPLE  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
Figure 1. Power-Up Timing  
edge of BEN. The internal clock is asynchronous to BEN,  
causing a 50ns uncertainty regarding when the first  
sample will occur following BEN. After the first sample  
occurs, subsequent samples occur on a regular interval,  
TX-D  
t
ON  
I
t
t
. Table 2 shows the sample rate options available.  
BIAS  
OFF  
REP  
t
V
ON  
MOD  
t
OFF  
Table 2. Update Rate Timing  
MINIMUM TIME  
FROM BEN TO  
REPEATED  
SAMPLE PERIOD  
FOLLOWING FIRST  
SR SR  
3
0
Figure 2. TX-D Timing (Normal Operating Conditions)  
FIRST SAMPLE  
(t 50ns  
)
SAMPLE (t  
)
FIRST  
REP  
bias update comparison was above the APC set point,  
and checks LTXP to see if the last bias update compari-  
son was below the APC set point. Depending on the  
results of the comparison, the corresponding alarms  
and warnings (TXP-HI, TXP-LO) are asserted or  
deasserted.  
0000b  
0001b  
0010b  
0011b  
0100b  
0101b  
0110b  
0111b  
1000b  
1001b*  
350ns  
550ns  
800ns  
1200ns  
1600ns  
2000ns  
2800ns  
3200ns  
3600ns  
4400ns  
6000ns  
6400ns  
750ns  
950ns  
1350ns  
1550ns  
1750ns  
2150ns  
2950ns  
3150ns  
The DS1865 has a programmable comparator sample  
time based on an internally generated clock to facilitate a  
wide variety of external filtering options suitable  
for burst-mode transmitter data rates between 155Mbps  
and 1250Mbps. The rising edge of the burst enable  
(BEN) triggers the sample to occur, and the Update Rate  
register (Table 02h, Register 88h) determines the sam-  
*All codes greater than 1001b (1010b–1111b) use the maximum  
sample time of code 1001b.  
pling time. The first sample occurs t  
after the rising  
FIRST  
12  
____________________________________________________________________  
PON Triplexer Control and  
Monitoring Circuit  
t
FIRST  
BEN  
BIAS  
SAMPLE  
BIAS  
SAMPLE  
BIAS  
SAMPLE  
BIAS  
SAMPLE  
BIAS  
SAMPLE  
BIAS  
SAMPLE  
BIAS  
SAMPLE  
LAST BURST'S  
BIAS SAMPLE  
BIAS DAC CODE  
t
REP  
HTXP/LTXP  
SAMPLE  
HBIAS  
SAMPLE  
QUICK-TRIP  
SAMPLE TIMES  
Figure 3. APC and Quick-Trip Alarm Sample Timing  
Updates to the TXP-HI, TXP-LO, and BIAS HI quick-trip  
alarms do not occur during the burst-enable low time.  
Any quick-trip alarm that is detected by default remains  
active until a subsequent comparator sample shows the  
condition no longer exists.  
current is above specification. I  
is not allowed to  
BIAS  
exceed the value set in the MAX IBIAS register. When  
the DS1865 detects that the bias is at the limit, it sets the  
BIAS MAX status bit and holds the bias current at the  
MAX IBIAS level. The quick-trips are routed to the TX-F  
and FETG outputs through interrupt masks to allow com-  
binations of these alarms to be used to trigger these out-  
puts. When FETG is triggered, the DS1865 also disables  
the MOD and BIAS outputs. See the BIAS and MOD  
Output During Power-Up section for details.  
A second bias-current monitor (BIAS MAX) compares  
the DS1865s BIAS DACs code to a digital value stored  
in the MAX IBIAS register. This comparison is made  
every bias-current update to ensure that a high bias  
current is quickly detected.  
Six ADC Monitors And Alarms  
Monitors and Fault Detection  
The ADC monitors six channels that measure tempera-  
Monitors  
Monitoring functions on the DS1865 include four quick-  
trip comparators and six ADC channels. This monitor-  
ing, combined with the interrupt masks, determines  
when/if the DS1865 shuts down its outputs and triggers  
the TX-F and FETG outputs. All the monitoring levels  
and interrupt masks are user programmable.  
ture (internal temp sensor), V , MON1, MON2, MON3,  
CC  
and MON4 using an analog multiplexer to measure  
them round-robin with a single ADC. Each channel has  
a customer-programmable full-scale range and offset  
value that is factory programmed to a default value (see  
Table 3). Additionally, MON1MON4 can right shift  
results by up to 7 bits before the results are compared  
2
to alarm thresholds or read over the I C bus. This  
Four Quick-Trip Monitors and Alarms  
Four quick-trip monitors are provided to detect potential  
laser safety issues. These monitor:  
allows customers with specified ADC ranges to cali-  
brate the ADC full scale to a factor of 1/2n of their spec-  
ified range to measure small signals. The DS1865 can  
then right shift the results by n bits to maintain the bit  
weight of their specification.  
1) High Bias Current (HBIAS)  
2) Low Transmit Power (LTXP)  
3) High Transmit Power (HTXP)  
4) Max Output Current (MAX IBIAS)  
Table 3. ADC Default Monitor Full-Scale  
Ranges  
The high and low transmit power quick-trip registers  
(HTXP and LTXP) set the thresholds used to compare  
against the BMD voltage to determine if the transmit  
power is within specification. The HBIAS quick-trip com-  
pares the MON1 input (generally from the MAX3643  
bias monitor output) against its threshold setting to  
determine if the present bias current is above specifica-  
tion. The BIAS MAX quick-trip is a digital comparison  
that determines if the BIAS DAC indicates that the bias  
+FS  
SIGNAL  
+FS  
HEX  
-FS  
SIGNAL  
SIGNAL (UNITS)  
-FS HEX  
Temperature (oC)  
127.996  
6.5528  
7FFF  
FFF8  
-128  
0V  
8000  
0000  
V
(V)  
CC  
MON1MON4 (V)  
2.4997  
FFF8  
0V  
0000  
____________________________________________________________________ 13  
PON Triplexer Control and  
Monitoring Circuit  
The ADC results (after right shifting, if used) are com-  
pared to high alarm thresholds, low alarm thresholds,  
and the warning threshold after each conversion, and  
the corresponding alarms are set, which can be used  
to trigger the TX-F or FETG outputs. These ADC thresh-  
olds are user programmable, as are the masking regis-  
ters that can be used to prevent the alarms from  
triggering the TX-F and FETG outputs.  
ations are allowed and are executed as a part of every  
conversion before the results are compared to the high  
and low alarm levels, or loaded into their corresponding  
measurement registers (Table 01h, Registers  
62h6Bh). This is true during the setup of internal cali-  
bration as well as during subsequent data conversions.  
Transmit Fault (TX-F) Output  
The TX-F output has masking registers for the six ADC  
alarms and the four QT alarms to select which compar-  
isons cause it to assert. In addition, the FETG alarm is  
selectable through the TX-F mask to cause TX-F to  
assert. All alarms, with the exception of FETG, only  
cause TX-F to remain active while the alarm condition  
persists. However, the TX-F latch bit can enable the TX-F  
output to remain active until it is cleared by the TX-F  
reset bit, TX-D, soft TX-D, or by power cycling the part. If  
the FETG output is configured to trigger TX-F, it indicates  
that the DS1865 is in shutdown, and requires TX-D, soft  
TX-D, or cycling power to reset. The QT alarms are  
masked until the completion of the binary search. Only  
enabled alarms will activate TX-F. See Figure 5.  
ADC Timing  
There are six analog channels that are digitized in a  
round-robin fashion in the order as shown in Figure 4. The  
total time required to convert all six channels is t (see  
RR  
Timing Characteristics (Control Loop and Quick-Trip)  
for details).  
Right Shifting ADC Result  
If the weighting of the ADC digital reading must con-  
form to a predetermined full-scale value defined by a  
standards specification, then right shifting can be used  
to adjust the predetermined full-scale analog measure-  
ment range while maintaining the weighting of the ADC  
results. The DS1865s range is wide enough to cover all  
requirements; when the maximum input value is far  
short of the FS value, right shifting can be used to  
obtain greater accuracy. For instance, the maximum  
voltage might be 1/8th the specified predetermined full-  
scale value, so only 1/8th the converters range is used.  
An alternative is to calibrate the ADCs full-scale range  
to 1/8th the readable predetermined full-scale value  
and use a right-shift value of 3. With this implementa-  
tion, the resolution of the measurement is increased by  
a factor of 8, and because the result is digitally divided  
by 8 by right shifting, the bit weight of the measurement  
still meets the standards specification (i.e., SFF-8472).  
Table 4 shows TX-F as a function of TX-D and the alarm  
sources.  
Safety Shutdown (FETG) Output  
The FETG output has masking registers (separate from  
TX-F) for the five ADC alarms and the four QT alarms to  
select which comparisons cause it to assert. Unlike TX-F,  
the FETG output is always latched in case it is triggered  
by an unmasked alarm condition. Its output polarity is  
programmable to allow an external nMOSFET or  
pMOSFET to open during alarms to shut off the laser  
diode current. If the FETG output triggers, indicating that  
the DS1865 is in shutdown, it requires TX-D, soft TX-D, or  
cycling power to be reset. Under all conditions, when the  
analog outputs are reinitialized after being disabled, all  
The right-shift operation on the ADC result is carried out  
based on the contents of Right Shift Control registers  
(Table 02h, Registers 8Eh-8Fh) in EEPROM. Four ana-  
log channels, MON1MON4, each have 3 bits allocated  
to set the number of right shifts. Up to 7 right-shift oper-  
the alarms with the exception of the V  
low ADC alarm  
CC  
are cleared. The V  
low alarm must remain active to  
CC  
prevent the output from attempting to operate when  
ONE ROUND-ROBIN ADC CYCLE  
MON4  
TEMP  
VCC  
MON1  
MON2  
MON3  
MON4  
TEMP  
VCC  
t
RR  
NOTE: AT POWER-UP, IF THE V LOW ALARM IS SET FOR EITHER THE TX-F OR FETG OUTPUT, THE ADC ROUND-ROBIN  
CC  
TIMING CYCLES BETWEEN TEMP AND V ONLY UNTIL V IS ABOVE THE V LOW THRESHOLD.  
CC  
CC  
CC  
Figure 4. ADC Round-Robin Timing  
14  
____________________________________________________________________  
PON Triplexer Control and  
Monitoring Circuit  
TX-F LATCHED OPERATION  
DETECTION OF  
TX-F FAULT  
TX-D OR  
TX-F RESET  
TX-F  
TX-F NON LATCHED OPERATION  
DETECTION OF  
TX-F FAULT  
TX-F  
Figure 5. TX-F Timing  
Determining Alarm Causes  
Table 4. TX-F as a Function of TX-D and  
Alarm Sources  
2
Using the I C Interface  
To determine the cause of the TX-F or FETG alarm, the  
NONMASKED  
system processor can read the DS1865s Alarm Trap  
V
CC  
> V  
TX-D  
TX-F  
POA  
2
TX-F ALARM  
Bytes (ATB) through the I C interface (in Table 01h). The  
ATB has a bit for each alarm. Any time an alarm occurs,  
regardless of the mask bits state, the DS1865 sets the  
corresponding bit in the ATB. Active ATB bits remain set  
No  
Yes  
Yes  
Yes  
X
0
0
1
X
0
1
X
1
0
1
0
2
until written to zeros through the I C interface. On power-  
up, the ATB is zeros until alarms dictate otherwise.  
Die Identification  
The DS1865 has an ID hard coded to its die. Two regis-  
ters (Table 02h bytes 86h87h) are assigned for this  
feature. Byte 86h reads 65h to identify the part as the  
DS1865, byte 87h reads the die revision.  
inadequate V  
exists to operate the laser driver. Once  
CC  
adequate V  
is present to clear the V  
low alarm, the  
CC  
CC  
outputs are enabled following the same sequence as the  
power-up sequence.  
As previously mentioned, the FETG is an output used to  
disable the laser current through a series nMOSFET or  
pMOSFET. This requires that the FETG output can sink  
or source current. Because the DS1865 does not know  
Low-Voltage Operation  
The DS1865 contains two power-on reset (POR) levels.  
The lower level is a digital POR (V  
) and the higher  
POD  
level is an analog POR (V  
). At startup, before the  
POA  
if it should sink or source current before V  
exceeds  
CC  
supply voltage rises above V  
, the outputs are dis-  
POA  
V
, which triggers the EE recall, this output will  
POA  
abled (FETG and BIAS outputs are high impedance,  
MOD is low), all SRAM locations are low (including  
shadowed EEPROM), and all analog circuitry is dis-  
be high impedance when V  
is below V  
(see the  
POA  
CC  
Low-Voltage Operation section for details and  
diagram). The application circuit must use a pullup or  
pulldown resistor on this pin that pulls FETG to the  
alarm/shutdown state (high for a pMOS, low for a  
abled. When V  
reaches V  
, the SEE is recalled,  
POA  
CC  
and the analog circuitry is enabled. While V  
remains  
CC  
above V  
, the device is in its normal operating state,  
POA  
nMOS). Once V  
is above V  
, the DS1865 pulls the  
CC  
POA  
and it responds based on its nonvolatile configuration.  
If during operation V falls below V but is still  
FETG output to the state determined by the FETG DIR  
bit (Table 02h, Register 89h). FETG DIR is 0 if an nMOS  
is used and 1 if a pMOS is used.  
CC  
POA  
above V  
, the SRAM retains the SEE settings from  
POD  
____________________________________________________________________ 15  
PON Triplexer Control and  
Monitoring Circuit  
DETECTION OF  
FETG FAULT  
TX-D  
t
t
ON  
ON  
t
t
I
OFF  
BIAS  
V
MOD  
OFF  
t
t
FETG:ON  
FETG:OFF  
FETG*  
*FETG DIR = 0  
Figure 6. FETG/Modulation and Bias Timing (Fault Condition Detected)  
For all device addresses sourced from EEPROM (Table  
02h, Register 8Ch), the default device address is A2h  
Table 5. FETG, MOD, and BIAS Outputs  
as a Function of TX-D and Alarm Sources  
until V  
exceeds V  
allowing the device address to  
CC  
POA  
be recalled from the EEPROM.  
MOD AND  
BIAS  
OUTPUTS  
V
V
>
POA  
NONMASKED  
FETG ALARM  
CC  
TX-D  
FETG  
Power-On Analog (POA)  
POA holds the DS1865 in reset until V is at a suitable  
CC  
Yes  
Yes  
Yes  
0
0
1
0
1
X
FETG DIR  
FETG DIR  
FETG DIR  
Enabled  
Disabled  
Disabled  
level (V  
> V  
) for the part to accurately measure  
CC  
POA  
with its ADC and compare analog signals with its quick-  
trip monitors. Because V cannot be measured by the  
CC  
ADC when V  
CC  
is less than V  
low alarm, which is cleared by a V  
sion greater than the customer-programmable V  
, POA also asserts the  
CC  
POA  
V
ADC conver-  
CC  
the first SEE recall, but the device analog is shut down  
and the outputs are disabled. FETG is driven to its  
alarm state defined by the FETG DIR bit (Table 02h,  
Register 89h). If the supply voltage recovers back  
low  
CC  
ADC limit. This prevents the TX-F and FETG outputs  
from glitching during a slow power-up. The TX-F and  
FETG outputs do not latch until there is a conversion  
above V  
, the device immediately resumes normal  
above V  
low limit.  
POA  
CC  
functioning. If the supply voltage falls below V  
, the  
POD  
The POA alarm is nonmaskable. The TX-F and FETG  
device SRAM is placed in its default state and another  
SEE recall is required to reload the nonvolatile settings.  
outputs are asserted when V  
is below V  
. See the  
CC  
POA  
Low-Voltage Operation section for more information.  
The EEPROM recall occurs the next time V  
POA  
voltage varies.  
exceeds  
CC  
V
. Figure 7 shows the sequence of events as the  
DAC1 Output  
The DAC1 output has a 0 to 2.5V range, 8 bits of resolu-  
2
tion, and is programmed through the I C interface. The  
2
Any time V  
is above V  
, the I C interface can be  
CC  
POD  
DAC1 setting is nonvolatile and password 2 (PW2) pro-  
tected.  
used to determine if V  
is below the V  
level. This is  
CC  
POA  
accomplished by checking the RDYB bit in the status  
(Lower Memory, Register 6Eh) byte. RDYB is set when  
M4DAC Output  
The M4DAC output has a 0 to 2.5V range, 8 bits of res-  
olution, and is controlled by an LUT indexed by the  
MON4 voltage. The M4DAC LUT (Table 06h) is non-  
volatile and PW2 protected. See the Memory  
Organization section for details.  
V
CC  
is below V  
. When V  
rises above V , RDYB  
POA  
POA  
CC  
is timed (within 500µs) to go to 0, at which point the part  
is fully functional.  
16  
____________________________________________________________________  
PON Triplexer Control and  
Monitoring Circuit  
SEE RECALL  
SEE RECALL  
V
POA  
V
CC  
V
POD  
HIGH  
NORMAL  
OPERATION  
DRIVEN TO  
FETG DIR  
HIGH  
NORMAL  
OPERATION  
NORMAL  
HIGH  
DRIVEN TO  
FETG DIR  
DRIVEN TO  
FETG DIR  
FETG  
SEE*  
IMPEDANCE  
IMPEDANCE  
OPERATION  
IMPEDANCE  
PRECHARGED  
TO 0  
RECALLED  
VALUE  
PRECHARGED  
TO 0  
RECALLED  
VALUE  
PRECHARGED  
TO 0  
*SEE = SHADOWED EEPROM  
Figure 7. Low-Voltage Hysteresis Example  
allows the outputs to be used to control serial interfaces  
without wearing out the default EEPROM setting.  
Digital I/O Pins  
Five digital I/O pins are provided for additional monitor-  
ing and control of the triplexer. By default the LOSI pin  
is used to convert a standard comparator output for  
loss of signal (LOSI) to an open-collector output. This  
means the mux shown on the block diagram by default  
selects the LOSI pin as the source for the D0 output  
transistor. The level of the D0 pin can be read in the  
status byte (Lower Memory, Register 6Eh) as the LOS  
status bit. The LOS status bit reports back the logic  
level of the D0 pin, so an external pullup resistor must  
be provided for this pin to output a high level. The LOSI  
signal can be inverted before driving the open-drain  
output transistor using the XOR gate provided. The  
mux LOSI allows the D0 pin to be used identically to the  
D1, D2, and D3 pins. However, the mux setting (stored  
Memory Organization  
The DS1865 features eight banks of memory composed  
of the following.  
The Lower Memory is addressed from 00h to 7Fh  
and contains alarm and warning thresholds, flags,  
masks, several control registers, password entry  
area (PWE), and the table select byte. The table  
select byte determines which table (01h06h) will be  
mapped into the upper memory locations, namely  
80hFFh (unless stated otherwise).  
Table 01h primarily contains user EEPROM (with  
PW1 level access) as well as some alarm and warn-  
ing status bytes.  
in the EEPROM) does not take effect until V  
> V  
,
POA  
CC  
Table 02h is a multifunction space that contains  
configuration registers, scaling and offset values,  
passwords, interrupt registers, as well as other mis-  
cellaneous control bytes.  
allowing the EEPROM to recall. This requires the LOSI  
pin to be grounded for D0 to act identical to the D1, D2,  
and D3 pins.  
Digital pins D1, D2, and D3 can be used as inputs or  
outputs. External pullup resistors must be provided to  
realize high logic levels. The levels of these input pins  
can be read by reading the DIN byte (Lower Memory,  
Register 79h), and the open-drain outputs can be con-  
trolled using the DOUT byte (Lower Memory, Register  
Table 03h is strictly user EEPROM that is protected  
by a PW2 level access.  
Table 04h contains a temperature-indexed LUT for  
control of the modulation voltage. The modulation  
LUT can be programmed in 2°C increments over the  
-40°C to +102°C range. This register is protected by  
a PW2 level access.  
78h). When V  
ance. Once V  
< V  
, these outputs are high imped-  
, the outputs go to the power-on  
CC  
CC  
POA  
V  
POA  
default state stored in the DPU byte (Table 02h, Register  
C0h). The EEPROM determined default state of the pin  
can be modified with PW2 access. After the default state  
has been recalled, the SRAM registers controlling out-  
puts can be modified without password access. This  
Table 05h contains another LUT, which allows the  
APC set point to change as a function of tempera-  
ture to compensate for tracking error (TE). This TE  
LUT has 36 entries that determine the APC setting  
in 4°C windows between -40°C to +100°C. This reg-  
ister is protected by a PW2 level access.  
____________________________________________________________________ 17  
PON Triplexer Control and  
Monitoring Circuit  
2
2
I C SLAVE ADDRESS A0h  
00h  
I C SLAVE ADDRESS A2h (DEFAULT)  
DEC HEX  
0
0
00h  
AUXILLARY MEMORY  
LOWER MEMORY  
EEPROM  
DIGITAL DIAGNOSTIC  
FUNCTIONS  
PASSWORD ENTRY (PWE)  
(4 BYTES)  
7Fh  
TABLE SELECT BYTE 7Fh  
127 7F  
128 80  
80h  
80h  
80h  
80h  
80h  
80h  
TABLE 01h  
TABLE 02h  
TABLE 03h  
TABLE 04h  
TABLE 05h  
TABLE 06h  
PW1 LEVEL ACCESS  
EEPROM  
(120 BYTES)  
CONFIGURATION AND  
CONTROL  
PW2 LEVEL ACCESS  
EEPROM  
(128 BYTES)  
MODULATION LUT  
APC LUT  
M4DAC LUT  
A7h  
9Fh  
C7h  
C7h  
C8h  
NO MEMORY  
F7h  
FFh  
F7h  
FFh  
F8h  
F8h  
ATB  
MISC. CONTROL  
BITS  
255 FF  
FFh  
Figure 8. Memory Map  
Table 06h contains a MON4-indexed LUT for con-  
trol of the M4DAC voltage. The M4DAC LUT has 32  
entries that are configurable to act as one 32-entry  
LUT or two 16-entry LUTs. When configured as one  
32-byte LUT, each entry corresponds to an incre-  
ment of 1/32 of the full scale. When configured as  
two 16-byte LUTs, the first 16 bytes and the last 16  
bytes each correspond to 1/16 of full scale. Either  
of the two sections is selected with a separate con-  
figuration bit. This LUT is protected by a PW2 level  
access.  
EEPROM. Shadowed EEPROM (SEE) can be configured  
as either volatile or nonvolatile memory using the SEEB  
bit in Table 02h, Register 80h.  
The DS1865 uses shadowed EEPROM memory for key  
memory addresses that can be rewritten many times. By  
default the shadowed EEPROM bit, SEEB, is not set and  
these locations act as ordinary EEPROM. By setting  
SEEB, these locations function like SRAM cells, which  
allow an infinite number of write cycles without concern  
of wearing out the EEPROM. This also eliminates the  
requirement for the EEPROM write time, t . Because  
WR  
Auxiliary Memory is EEPROM accessible at the  
changes made with SEEB enabled do not affect the  
EEPROM, these changes are not retained through  
power cycles. The power-up value is the last value writ-  
ten with SEEB disabled. This function can be used to  
limit the number of EEPROM writes during calibration or  
to change the monitor thresholds periodically during nor-  
mal operation, helping to reduce the number of times  
EEPROM is written. The Memory Organization descrip-  
tion indicates which locations are shadowed EEPROM.  
2
I C slave address, A0h.  
See the register map tables for a more complete detail  
of each bytes function, as well as for read/write permis-  
sions for each byte.  
Shadowed EEPROM  
In addition to volatile memory (SRAM) and nonvolatile  
memory (EEPROM), the DS1865 also features shadowed  
18  
____________________________________________________________________  
PON Triplexer Control and  
Monitoring Circuit  
I2C Definitions  
during a write operation) performs an ACK by transmit-  
ting a zero during the 9th bit. A device performs a  
NACK by transmitting a one during the 9th bit. Timing  
for the ACK and NACK is identical to all other bit writes.  
An ACK is the acknowledgment that the device is prop-  
erly receiving data. A NACK is used to terminate a read  
sequence or as an indication that the device is not  
receiving data.  
The following terminology is commonly used to  
2
describe I C data transfers.  
Master Device: The master device controls the slave  
devices on the bus. The master device generates SCL  
clock pulses and START and STOP conditions.  
Slave Devices: Slave devices send and receive data at  
the masters request.  
Byte Write: A byte write consists of 8 bits of information  
transferred from the master to the slave (most signifi-  
cant bit first) plus a 1-bit acknowledgement from the  
slave to the master. The 8 bits transmitted by the mas-  
ter are done according to the bit write definition and the  
acknowledgement is read using the bit read definition.  
Bus Idle or Not Busy: Time between STOP and START  
conditions when both SDA and SCL are inactive and in  
their logic-high states. When the bus is idle, it often initi-  
ates a low-power mode for slave devices.  
START Condition: A START condition is generated by  
the master to initiate a new data transfer with a slave.  
Transitioning SDA from high to low while SCL remains  
high generates a START condition. See Figure 9 for  
applicable timing.  
Byte Read: A byte read is an 8-bit information transfer  
from the slave to the master plus a 1-bit ACK or NACK  
from the master to the slave. The 8 bits of information  
that are transferred (most significant bit first) from the  
slave to the master are read by the master using the bit  
read definition, and the master transmits an ACK using  
the bit write definition to receive additional data bytes.  
The master must NACK the last byte read to terminate  
communication so the slave returns control of SDA to  
the master.  
STOP Condition: A STOP condition is generated by  
the master to end a data transfer with a slave.  
Transitioning SDA from low to high while SCL remains  
high generates a STOP condition. See Figure 9 for  
applicable timing.  
Repeated START Condition: The master can use a  
repeated START condition at the end of one data trans-  
fer to indicate that it will immediately initiate a new data  
transfer following the current one. Repeated START  
conditions are commonly used during read operations  
to identify a specific memory address to begin a data  
transfer. A repeated START condition is issued identi-  
cally to a normal START condition. See Figure 9 for  
applicable timing.  
2
Slave Address Byte: Each slave on the I C bus  
responds to a slave addressing byte (Figure 9) sent  
immediately following a START condition. The slave  
address byte contains the slave address in the most sig-  
nificant 7 bits and the R/W bit in the least significant bit.  
The DS1865 responds to two slave addresses. The auxil-  
2
iary memory always responds to a fixed I C slave address,  
A0h. The Lower Memory and tables 01h06h respond to  
2
I C slave addresses that can be configured to any value  
Bit Write: Transitions of SDA must occur during the low  
state of SCL. The data on SDA must remain valid and  
unchanged during the entire high pulse of SCL plus the  
setup and hold-time requirements (Figure 9). Data is shift-  
ed into the device during the rising edge of the SCL.  
between 00hFEh using the Device Address byte (Table  
02h, Register 8Ch). The user also must set the ASEL bit  
(Table 02h, Register 89h) for this address to be active. By  
writing the correct slave address with R/W = 0, the master  
indicates it will write data to the slave. If R/W = 1, the mas-  
ter reads data from the slave. If an incorrect slave address  
is written, the DS1865 assumes the master is communicat-  
Bit Read: At the end of a write operation, the master  
must release the SDA bus line for the proper amount of  
setup time before the next rising edge of SCL during a  
bit read. The device shifts out each bit of data on SDA at  
the falling edge of the previous SCL pulse and the data  
bit is valid at the rising edge of the current SCL pulse.  
Remember that the master generates all SCL clock puls-  
es including when it is reading bits from the slave.  
2
ing with another I C device and ignores the communica-  
tions until the next START condition is sent.  
2
Memory Address: During an I C write operation, the  
master must transmit a memory address to identify the  
memory location where the slave is to store the data.  
The memory address is always the second byte trans-  
mitted during a write operation following the slave  
address byte.  
Acknowledgement (ACK and NACK): An acknowledge-  
ment (ACK) or not acknowledge (NACK) is always the  
9th bit transmitted during a byte transfer. The device  
receiving data (the master during a read or the slave  
____________________________________________________________________ 19  
PON Triplexer Control and  
Monitoring Circuit  
SDA  
t
BUF  
t
SP  
t
HD:STA  
t
LOW  
t
t
F
R
SCL  
t
SU:STA  
t
HD:STA  
t
HIGH  
t
REPEATED  
START  
t
SU:STO  
SU:DAT  
STOP  
START  
t
HD:DAT  
NOTE: TIMING IS REFERENCED TO V  
AND V  
.
IL(MAX)  
IH(MIN)  
2
Figure 9. I C Timing Diagram  
I2C Communication  
condition, and write the slave address byte (R/W = 0)  
and the first memory address of the next memory row  
before continuing to write data.  
Writing a Single Byte to a Slave: The master must  
2
generate a START condition, write the I C slave address  
Acknowledge Polling: Any time an EEPROM location  
byte (R/W = 0), write the byte of data, and generate a  
STOP condition. The master must read the slaves  
acknowledgement during all byte write operations.  
is written, the DS1865 requires the EEPROM write time  
(t ) after the STOP condition to write the contents of  
W
the byte of data to EEPROM. During the EEPROM write  
time, the device does not acknowledge its slave  
address because it is busy. It is possible to take advan-  
tage of that phenomenon by repeatedly addressing the  
DS1865, which allows the next page to be written as  
soon as the DS1865 is ready to receive the data. The  
alternative to acknowledge polling is to wait for a maxi-  
Writing Multiple Bytes to a Slave: To write multiple  
bytes to a slave, the master generates a START condi-  
tion, writes the slave address byte (R/W = 0), writes the  
memory address, writes up to 8 data bytes, and gener-  
ates a STOP condition. The DS1865 writes 1 to 8 bytes  
(1 page or row) with a single write transaction. This is  
internally controlled by an address counter that allows  
data to be written to consecutive addresses without  
transmitting a memory address before each data byte is  
sent. The address counter limits the write to one 8-byte  
page (one row of the memory map). Attempts to write to  
additional pages of memory without sending a STOP  
condition between pages result in the address counter  
wrapping around to the beginning of the present row.  
mum period of t to elapse before attempting to write  
W
again to the DS1865.  
EEPROM Write Cycles: When EEPROM writes occur  
to the memory, the DS1865 writes to all three EEPROM  
memory locations, even if only a single byte was modi-  
fied. Because all three bytes are written, the bytes that  
were not modified during the write transaction are still  
subject to a write cycle. This can result in all three bytes  
being worn out over time by writing a single byte  
repeatedly. The DS1865s EEPROM write cycles are  
specified in the Nonvolatile Memory Characteristics  
table. The specification shown is at the worst-case tem-  
perature. It can handle approximately 10 times that  
many writes at room temperature. Writing to SRAM-  
shadowed EEPROM memory with SEEB = 1 does not  
count as an EEPROM write cycle when evaluating the  
EEPROMs estimated lifetime.  
Example: A 3-byte write starts at address 06h and  
writes three data bytes (11h, 22h, and 33h) to three  
consecutiveaddresses. The result is that addresses  
06h and 07h contain 11h and 22h, respectively, and  
the third data byte, 33h, is written to address 00h.  
To prevent address wrapping from occurring, the mas-  
ter must send a STOP condition at the end of the page,  
then wait for the bus-free or EEPROM-write time to  
elapse. Then the master can generate a new START  
20  
____________________________________________________________________  
PON Triplexer Control and  
Monitoring Circuit  
Reading a Single Byte from a Slave: Unlike the write  
operation that uses the memory address byte to define  
where the data is to be written, the read operation occurs  
at the present value of the memory address counter. To  
read a single byte from the slave, the master generates a  
START condition, writes the slave address byte with R/W  
= 1, reads the data byte with a NACK to indicate the end  
of the transfer, and generates a STOP condition.  
Manipulating the Address Counter for Reads: A  
dummy write cycle can be used to force the address  
pointer to a particular value. To do this, the master gen-  
erates a START condition, writes the slave address byte  
(R/W = 0), writes the memory address where it desires to  
read, generates a repeated START condition, writes the  
slave address byte (R/W = 1), reads data with ACK or  
NACK as applicable, and generates a STOP condition.  
____________________________________________________________________ 21  
PON Triplexer Control and  
Monitoring Circuit  
Register Maps  
Lower Memory Register Map  
This register map shows each byte/word in terms of the  
row it is on in the memory. The first byte in the row is  
located in memory at the hexadecimal row address in  
the left-most column. Each subsequent byte on the row  
is one/two memory locations beyond the previous  
byte/words address. A total of 8 bytes are present on  
each row. For more information about each of these  
bytes, see the corresponding register description in the  
following tables.  
LOWER MEMORY  
WORD 1  
BYTE 2/A BYTE 3/B  
TEMP ALARM LO  
ALARM LO  
WORD 0  
BYTE 0/8 BYTE 1/9  
TEMP ALARM HI  
ALARM HI  
WORD 2  
BYTE 4/C BYTE 5/D  
TEMP WARN HI  
WARN HI  
WORD 3  
BYTE 6/E BYTE 7/F  
TEMP WARN LO  
WARN LO  
ROW  
(HEX)  
ROW  
NAME  
00  
08  
10  
18  
20  
28  
30  
38  
40  
48  
50  
58  
60  
68  
70  
78  
<1>THRESHOLD  
<1>THRESHOLD  
<1>THRESHOLD  
<1>THRESHOLD  
<1>THRESHOLD  
<1>THRESHOLD  
<1>PW2 EE  
0
1
2
3
4
5
V
CC  
V
CC  
V
CC  
V
CC  
MON1 ALARM HI  
MON2 ALARM HI  
MON3 ALARM HI  
MON4 ALARM HI  
MON1 ALARM LO  
MON2 ALARM LO  
MON3 ALARM LO  
MON4 ALARM LO  
MON1 WARN HI  
MON2 WARN HI  
MON3 WARN HI  
MON4 WARN HI  
MON1 WARN LO  
MON2 WARN LO  
MON3 WARN LO  
MON4 WARN LO  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
<1>PW2 EE  
<1>PW2 EE  
<1>PW2 EE  
<1>PW2 EE  
EE  
EE  
EE  
EE  
EE  
<1>PW2 EE  
<2>ADC VALUES  
<0> ADC VALUES  
<2>ALARM/WARN  
<0>TABLE SELECT  
TEMP VALUE  
<2>MON3 VALUE  
ALARM ALARM  
V
VALUE  
MON1 VALUE  
<2>RESERVED  
WARN WARN  
2
MON2 VALUE  
0
CC  
<2> MON4 VALUE  
<0>STATUS  
<3>UPDATE  
1
ALARM  
ALARM  
RESERVED  
3
2
1
0
3
<2>DOUT  
<2>DIN  
<6>RESERVED  
<6>PWE MSB  
<6>PWE LSB  
<5>TBL SEL  
ACCESS CODE  
<0>  
<1>  
<2>  
<3>  
All  
<4>  
<5>  
<6>  
<7>  
<8>  
<9>  
<10>  
<11>  
Read Access  
All  
All  
PW2  
All  
N/A  
PW1  
PW2  
N/A  
PW2  
All  
See each  
bit/byte  
separately  
All and  
DS1865  
hardware  
PW2 +  
mode bit  
Write Access  
PW2  
N/A  
All  
All  
PW1  
PW2  
PW2  
N/A  
PW1  
22  
____________________________________________________________________  
PON Triplexer Control and  
Monitoring Circuit  
Table 01h Register Map  
TABLE 01h (PW1)  
WORD 0  
WORD 1  
WORD 2  
WORD 3  
ROW  
ROW  
(HEX)  
NAME  
BYTE 0/8  
BYTE 1/9  
EE  
BYTE 2/A  
BYTE 3/B  
EE  
BYTE 4/C  
BYTE 5/D  
EE  
BYTE 6/E  
BYTE 7/F  
EE  
80  
88  
90  
98  
A0  
A8  
B0  
B8  
C0  
C8  
D0  
D8  
E0  
E8  
F0  
F8  
<7>PW1 EE  
<7>PW1 EE  
<7>PW1 EE  
<7>PW1 EE  
<7>PW1 EE  
<7>PW1 EE  
<7>PW1 EE  
<7>PW1 EE  
<7>PW1 EE  
<7>PW1 EE  
<7>PW1 EE  
<7>PW1 EE  
<7>PW1 EE  
<7>PW1 EE  
<7>PW1 EE  
<11>ALARM TRAP  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
ALARM  
ALARM  
2
ALARM  
ALARM  
0
WARN  
WARN  
2
RESERVED  
3
1
3
ACCESS CODE  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
<8>  
<9>  
<10>  
<11>  
Read Access  
All  
All  
All  
PW2  
All  
N/A  
PW1  
PW2  
N/A  
PW2  
All  
See each  
bit/byte  
separately  
All and  
DS1865  
hardware  
PW2 +  
mode bit  
Write Access  
PW2  
N/A  
All  
All  
PW1  
PW2  
PW2  
N/A  
PW1  
____________________________________________________________________ 23  
PON Triplexer Control and  
Monitoring Circuit  
Table 02h Register Map  
TABLE 02h (PW2)  
WORD 0  
WORD 1  
BYTE 2/A BYTE 3/B  
<4> MOD DAC <4> APC DAC  
WORD 2  
WORD 3  
BYTE 6/E BYTE 7/F  
<10> DEVICE ID <10> DEVICEVER  
ROW  
ROW  
(HEX)  
NAME  
BYTE 0/8  
BYTE 1/9  
BYTE 4/C  
BYTE 5/D  
80  
88  
<0> CONFIG  
<8> CONFIG  
<8> SCALE  
<8>MODE  
<4>T INDEX  
<4> V INDEX  
<4> M4DAC  
0
UPDATE  
RATE  
STARTUP  
STEP  
MOD  
RANGING  
DEVICE  
COMP  
CONFIG  
RSHIFT  
RSHIFT  
0
1
1
ADDRESS  
RANGING  
90  
98  
RESERVED  
V
CC  
SCALE  
MON1 SCALE  
MON2 SCALE  
RESERVED  
0
<8> SCALE  
MON3 SCALE  
RESERVED  
MON4 SCALE  
OFFSET  
RESERVED  
MON1 OFFSET  
RESERVED  
1
A0  
<8> OFFSET  
<8> OFFSET  
V
CC  
MON2 OFFSET  
0
*
A8  
MON3 OFFSET  
PW1 MSW  
MON4 OFFSET  
PW1 LSW  
INTERNAL TEMP OFFSET  
PW2 LSW  
1
B0  
<9> PWD VALUE  
<8> INTERRUPT  
<8> CNTL OUT  
EMPTY  
PW2 MSW  
B8  
FETG EN  
FETG EN  
TX-F EN  
TX-F EN  
HTXP  
LTXP  
HBIAS  
RESERVED  
EMPTY  
MAX IBIAS  
M4 LUT CNTL  
EMPTY  
1
0
1
0
C0  
DPU  
RESERVED  
RESERVED  
RESERVED  
DAC1  
RESERVED  
EMPTY  
C8-F7  
F8  
EMPTY  
EMPTY  
EMPTY  
EMPTY  
EMPTY  
<0> MAN IBIAS <4> MAN IBIAS <4> MAN IBIAS  
<4> MAN_CNTL <10> BIAS DAC  
<10> BIAS DAC  
0
RESERVED  
RESERVED  
RESERVED  
1
0
1
*The final result must be XORed with BB40h before writing to this register.  
ACCESS CODE  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
<8>  
<9>  
<10>  
<11>  
Read Access  
All  
All  
All  
PW2  
All  
N/A  
PW1  
PW2  
N/A  
PW2  
All  
See each  
bit/byte  
separately  
All and  
DS1865  
hardware  
PW2 +  
mode bit  
Write Access  
PW2  
N/A  
All  
All  
PW1  
PW2  
PW2  
N/A  
PW1  
24  
____________________________________________________________________  
PON Triplexer Control and  
Monitoring Circuit  
Table 03h Register Map  
TABLE 03h (PW3)  
WORD 0  
WORD 1  
WORD 2  
WORD 3  
ROW  
ROW  
(HEX)  
NAME  
BYTE 0/8  
BYTE 1/9  
EE  
BYTE 2/A  
BYTE 3/B  
EE  
BYTE 4/C  
BYTE 5/D  
EE  
BYTE 6/E  
BYTE 7/F  
EE  
80  
88  
90  
98  
A0  
A8  
B0  
B8  
C0  
C8  
D0  
D8  
E0  
E8  
F0  
F8  
<8>PW2 EE  
<8>PW2 EE  
<8>PW2 EE  
<8>PW2 EE  
<8>PW2 EE  
<8>PW2 EE  
<8>PW2 EE  
<8>PW2 EE  
<8>PW2 EE  
<8>PW2 EE  
<8>PW2 EE  
<8>PW2 EE  
<8>PW2 EE  
<8>PW2 EE  
<8>PW2 EE  
<8>PW2 EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
ACCESS CODE  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
<8>  
<9>  
<10>  
<11>  
Read Access  
All  
All  
All  
PW2  
All  
N/A  
PW1  
PW2  
N/A  
PW2  
All  
See each  
bit/byte  
separately  
All and  
DS1865  
hardware  
PW2 +  
mode bit  
Write Access  
PW2  
N/A  
All  
All  
PW1  
PW2  
PW2  
N/A  
PW1  
____________________________________________________________________ 25  
PON Triplexer Control and  
Monitoring Circuit  
Table 04h Register Map  
TABLE 04h (MOD LUT)  
WORD 1  
BYTE 2/A  
WORD 0  
BYTE 0/8  
WORD 2  
BYTE 4/C  
WORD 3  
BYTE 6/E  
ROW  
(HEX)  
ROW  
NAME  
BYTE 1/9  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
BYTE 3/B  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
BYTE 5/D  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
BYTE 7/F  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
80  
88  
90  
98  
A0  
A8  
B0  
B8  
C0  
<8>LUT4  
<8>LUT4  
<8>LUT4  
<8>LUT4  
<8>LUT4  
<8>LUT4  
<8>LUT4  
<8>LUT4  
<8>LUT4  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
MOD  
ACCESS CODE  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
<8>  
<9>  
<10>  
<11>  
Read Access  
All  
All  
All  
PW2  
All  
N/A  
PW1  
PW2  
N/A  
PW2  
All  
See each  
bit/byte  
separately  
All and  
DS1865  
hardware  
PW2 +  
mode bit  
Write Access  
PW2  
N/A  
All  
All  
PW1  
PW2  
PW2  
N/A  
PW1  
Table 05h Register Map  
TABLE 05h (APC LUT)  
WORD 0  
WORD 1  
WORD 2  
BYTE 4/C  
WORD 3  
ROW  
(HEX)  
ROW  
NAME  
BYTE 0/8  
BYTE 1/9  
APC REF  
APC REF  
APC REF  
APC REF  
APC REF  
BYTE 2/A  
APC REF  
APC REF  
APC REF  
APC REF  
APC REF  
BYTE 3/B  
APC REF  
APC REF  
APC REF  
APC REF  
BYTE 5/D  
APC REF  
APC REF  
APC REF  
APC REF  
BYTE 6/E  
APC REF  
APC REF  
APC REF  
APC REF  
BYTE 7/F  
APC REF  
APC REF  
APC REF  
APC REF  
80  
88  
90  
98  
A0  
<8>LUT5  
<8>LUT5  
<8>LUT5  
<8>LUT5  
<8>LUT5  
APC REF  
APC REF  
APC REF  
APC REF  
APC REF  
APC REF  
APC REF  
APC REF  
APC REF  
APC REF RESERVED RESERVED RESERVED RESERVED  
ACCESS CODE  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
<8>  
<9>  
<10>  
<11>  
Read Access  
All  
All  
All  
PW2  
All  
N/A  
PW1  
PW2  
N/A  
PW2  
All  
See each  
bit/byte  
separately  
All and  
DS1865  
hardware  
PW2 +  
mode bit  
Write Access  
PW2  
N/A  
All  
All  
PW1  
PW2  
PW2  
N/A  
PW1  
26  
____________________________________________________________________  
PON Triplexer Control and  
Monitoring Circuit  
Table 06h Register Map  
TABLE 06h (LUT FOR M4DAC)  
WORD 1  
BYTE 2/A  
WORD 0  
BYTE 0/8  
WORD 2  
BYTE 4/C  
WORD 3  
BYTE 6/E  
ROW  
(HEX)  
ROW  
NAME  
BYTE 1/9  
M4DAC  
M4DAC  
M4DAC  
M4DAC  
BYTE 3/B  
M4DAC  
M4DAC  
M4DAC  
M4DAC  
BYTE 5/D  
M4DAC  
M4DAC  
M4DAC  
M4DAC  
BYTE 7/F  
M4DAC  
M4DAC  
M4DAC  
M4DAC  
80  
88  
90  
98  
<8>LUT6  
<8>LUT6  
<8>LUT6  
<8>LUT6  
M4DAC  
M4DAC  
M4DAC  
M4DAC  
M4DAC  
M4DAC  
M4DAC  
M4DAC  
M4DAC  
M4DAC  
M4DAC  
M4DAC  
M4DAC  
M4DAC  
M4DAC  
M4DAC  
ACCESS CODE  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
<8>  
<9>  
<10>  
<11>  
Read Access  
All  
All  
All  
PW2  
All  
N/A  
PW1  
PW2  
N/A  
PW2  
All  
See each  
bit/byte  
separately  
All and  
DS1865  
hardware  
PW2 +  
mode bit  
Write Access  
PW2  
N/A  
All  
All  
PW1  
PW2  
PW2  
N/A  
PW1  
____________________________________________________________________ 27  
PON Triplexer Control and  
Monitoring Circuit  
AUX A0h Memory Register Map  
AUX MEMORY (A0h)  
WORD 0  
WORD 1  
WORD 2  
WORD 3  
ROW  
ROW  
(HEX)  
NAME  
BYTE 0/8  
BYTE 1/9  
EE  
BYTE 2/A  
BYTE 3/B  
EE  
BYTE 4/C  
BYTE 5/D  
EE  
BYTE 6/E  
BYTE 7/F  
EE  
00  
08  
10  
18  
20  
28  
30  
38  
40  
48  
50  
58  
60  
68  
70  
78  
<5>AUX EE  
<5>AUX EE  
<5>AUX EE  
<5>AUX EE  
<5>AUX EE  
<5>AUX EE  
<5>AUX EE  
<5>AUX EE  
<5>AUX EE  
<5>AUX EE  
<5>AUX EE  
<5>AUX EE  
<5>AUX EE  
<5>AUX EE  
<5>AUX EE  
<5>AUX EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
ACCESS CODE  
<0>  
<1>  
<2>  
<3>  
<4>  
<5>  
<6>  
<7>  
<8>  
<9>  
<10>  
<11>  
Read Access  
All  
All  
All  
PW2  
All  
N/A  
PW1  
PW2  
N/A  
PW2  
All  
See each  
bit/byte  
separately  
All and  
DS1865  
hardware  
PW2 +  
mode bit  
Write Access  
PW2  
N/A  
All  
All  
PW1  
PW2  
PW2  
N/A  
PW1  
28  
____________________________________________________________________  
Springer  
PON Triplexer Control and  
Monitoring Circuit  
Lower Memory Registers  
Lower Memory, Register 00h to 01h: Temp Alarm Hi  
Lower Memory, Register 04h to 05h: Temp Warn Hi  
FACTORY DEFAULT:  
READ ACCESS  
7FFFh  
All  
WRITE ACCESS  
PW2  
MEMORY TYPE:  
Nonvolatile (SEE)  
00h, 04h  
01h, 05h  
S
2-1  
26  
2-2  
25  
2-3  
24  
2-4  
23  
2-5  
22  
2-6  
21  
2-7  
20  
2-8  
bit7  
bit0  
Temperature measurement updates above this two’s complement threshold will set its corresponding alarm or warning bit.  
Temperature measurement updates equal to or below this threshold will clear its alarm or warning bit.  
Lower Memory, Register 02h to 03h: Temp Alarm Lo  
Lower Memory, Register 06h to 07h: Temp Warn Lo  
FACTORY DEFAULT:  
READ ACCESS  
8000h  
All  
WRITE ACCESS  
PW2  
MEMORY TYPE:  
Nonvolatile (SEE)  
02h, 06h  
03h, 07h  
S
2-1  
26  
2-2  
25  
2-3  
24  
2-4  
23  
2-5  
22  
2-6  
21  
2-7  
20  
2-8  
bit7  
bit0  
Temperature measurement updates above this twos complement threshold will set its corresponding alarm or warning bit.  
Temperature measurement updates equal to or below this threshold will clear its alarm or warning bit.  
____________________________________________________________________ 29  
PON Triplexer Control and  
Monitoring Circuit  
Lower Memory, Register 08h to 09h: V Alarm Hi  
cc  
Lower Memory, Register 0Ch to 0dh: V Warn Hi  
cc  
Lower Memory, Register 10h to 11h: MON1 Alarm Hi  
Lower Memory, Register 14h to 15h: MON1 Warn Hi  
Lower Memory, Register 18h to 19h: MON2 Alarm Hi  
Lower Memory, Register 1Ch to 1Dh: MON2 Warn Hi  
Lower Memory, Register 20h to 21h: MON3 Alarm Hi  
Lower Memory, Register 24h to 25h: MON3 Warn Hi  
Lower Memory, Register 28h to 29h: MON4 Alarm Hi  
Lower Memory, Register 2Ch to 2Dh: MON4 Warn Hi  
FACTORY DEFAULT:  
READ ACCESS  
FFFFh  
All  
WRITE ACCESS  
PW2  
MEMORY TYPE:  
Nonvolatile (SEE)  
08, 0C, 10,  
14, 18, 1C,  
20, 24, 28,  
2Ch  
215  
214  
213  
212  
211  
210  
29  
28  
09, 0D, 11,  
15, 19, 1D,  
21, 25, 29,  
2Dh  
27  
26  
25  
24  
23  
22  
21  
20  
bit7  
bit0  
Voltage measurement updates above this unsigned threshold will set its corresponding alarm or warning bit.  
Voltage measurements equal to or below this threshold will clear its alarm or warning bit.  
30  
____________________________________________________________________  
PON Triplexer Control and  
Monitoring Circuit  
Lower Memory, Register 0Ah to 0Bh: V Alarm Lo  
cc  
Lower Memory, Register 0Eh to 0Fh: V Warn Lo  
cc  
Lower Memory, Register 12h to 13h: MON1 Alarm Lo  
Lower Memory, Register 16h to 17h: MON1 Warn Lo  
Lower Memory, Register 1Ah to 1Bh: MON2 Alarm Lo  
Lower Memory, Register 1Eh to 1Fh: MON2 Warn Lo  
Lower Memory, Register 22h to 23h: MON3 Alarm Lo  
Lower Memory, Register 26h to 27h: MON3 Warn Lo  
Lower Memory, Register 2Ah to 2Bh: MON4 Alarm Lo  
Lower Memory, Register 2Eh to 2Fh: MON4 Warn Lo  
FACTORY DEFAULT:  
READ ACCESS  
0000h  
All  
WRITE ACCESS  
PW2  
MEMORY TYPE:  
Nonvolatile (SEE)  
0A, 0E, 12,  
16, 1A, 1E,  
22, 26, 2A,  
2Eh  
215  
214  
213  
212  
211  
210  
29  
28  
0B, 0F, 13,  
17, 1B, 1F,  
23, 27, 2B,  
2Fh  
27  
26  
25  
24  
23  
22  
21  
20  
bit7  
bit0  
Voltage measurement updates above this unsigned threshold will set its corresponding alarm or warning bit.  
Voltage measurements equal to or below this threshold will clear its alarm or warning bit.  
Lower Memory, Register 30h to 5Fh: PW2 EE  
FACTORY DEFAULT:  
READ ACCESS  
00h  
All  
WRITE ACCESS  
PW2  
MEMORY TYPE:  
Nonvolatile (EE)  
30h to 5Fh  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
bit7  
bit0  
PW2 level access controlled EEPROM.  
____________________________________________________________________ 31  
PON Triplexer Control and  
Monitoring Circuit  
Lower Memory, Register 60h to 61h: Temp Value  
POWER-ON VALUE  
READ ACCESS  
0000h  
All  
WRITE ACCESS  
N/A  
MEMORY TYPE:  
Volatile  
26  
2-2  
25  
2-3  
24  
2-4  
23  
2-5  
22  
2-6  
21  
2-7  
20  
2-8  
60h  
61h  
S
2-1  
bit7  
Signed twos complement direct-to-temperature measurement.  
bit0  
Lower Memory, Register 62h to 63h: V  
Value  
CC  
Lower Memory, Register 64h to 65h: MON1 Value  
Lower Memory, Register 66h to 67h: MON2 Value  
Lower Memory, Register 68h to 69h: MON3 Value  
Lower Memory, Register 6Ah to 6Bh: MON4 Value  
POWER-ON VALUE  
READ ACCESS  
0000h  
All  
WRITE ACCESS  
N/A  
MEMORY TYPE:  
Volatile  
214  
62, 64, 66,  
68, 6Ah  
215  
27  
213  
25  
212  
24  
211  
23  
210  
22  
29  
21  
28  
63, 65, 67,  
69, 6Bh  
26  
20  
bit7  
bit0  
Left-justified unsigned voltage measurement.  
Lower Memory, Register 6Ch to 6D: Reserved  
POWER-ON VALUE  
READ ACCESS  
00h  
All  
WRITE ACCESS  
N/A  
MEMORY TYPE:  
6C, 6Dh  
0
0
0
0
00  
0
0
0
bit7  
These registers are reserved. The value when read is 00h.  
bit0  
32  
____________________________________________________________________  
PON Triplexer Control and  
Monitoring Circuit  
Lower Memory, Register 6Eh: Status  
POWER-ON VALUE  
READ ACCESS  
x000 0x0x b  
All  
WRITE ACCESS  
See Below  
MEMORY TYPE:  
Volatile  
ALL  
Write Access  
6Eh  
N/A  
N/A  
ALL  
ALL  
N/A  
N/A  
N/A  
FETG  
STATUS  
SOFT  
FETG  
TX-F  
RESET  
SOFT  
TX-D  
TX-F  
STATUS  
LOS  
STATUS  
RESERVED  
RDYB  
bit7  
bit0  
FETG STATUS: Reflects the active state of FETG. The FETG-DIR bit in Table 02h, Register 89h  
defines the polarity of FETG.  
bit7  
0 = Normal operation. Bias and modulation outputs are enabled.  
1 = The FETG output is active. Bias and modulation outputs are disabled.  
SOFT FETG:  
0 = (Default)  
bit6  
bit5  
bit4  
1 = Forces the bias and modulation outputs to their off states and asserts the FETG output.  
RESERVED (Default = 0)  
TX-F RESET:  
0 = Does not affect the TX-F output. (Default)  
1 = Resets the latch for the TX-F output. This bit is self-clearing after the reset.  
SOFT TX-D: This bit allows a software control is identical to the TX-D pin. See the section on TX-D for  
further information. Its value is wired-ORed with the logic value of the TX-D pin.  
bit3  
bit2  
bit1  
0 = Internal TX-D signal is equal to external TX-D pin.  
1 = Internal TX-D signal is high.  
TX-F STATUS: Reflects the active state of TX-F.  
0 = TX-F pin is not active.  
1 = TX-F pin is active.  
LOS STATUS: Loss of Signal. Reflects the logic level of the D0 input pin. Note that with the use of the  
MUX LOSI and INV LOSI bits (Table 02h, Register C0h), the D0 pin is controlled by the LOSI pin.  
0 = D0 is logic-low.  
1 = D0 is logic-high.  
RDYB: Ready Bar.  
0 = V is above POA.  
CC  
bit0  
2
1 = V  
is below POA or too low to communicate over the I C bus.  
CC  
____________________________________________________________________ 33  
PON Triplexer Control and  
Monitoring Circuit  
Lower Memory, Register 6Fh: Update  
POWER-ON VALUE  
READ ACCESS  
00h  
All  
WRITE ACCESS  
All + DS1865 Hardware  
MEMORY TYPE:  
Volatile  
6Fh TEMP RDY  
bit7  
V
RDY  
MON1 RDY MON2 RDY MON3 RDY  
MON4 RDY  
RESERVED  
RESERVED  
bit0  
CC  
Update of completed conversions. At power-on, these bits are cleared and are set as each conversion is completed.  
These bits can be cleared so that a completion of a new conversion is verified.  
34  
____________________________________________________________________  
PON Triplexer Control and  
Monitoring Circuit  
Lower Memory, Register 70h: Alarm  
3
POWER-ON VALUE  
READ ACCESS  
10h  
All  
WRITE ACCESS  
N/A  
MEMORY TYPE:  
Volatile  
70h  
TEMP HI  
TEMP LO  
V
HI  
V
LO  
CC  
MON1 HI  
MON1 LO  
MON2 HI  
MON2 LO  
bit0  
CC  
bit7  
TEMP HI: High Alarm Status for Temperature Measurement.  
0 = (Default) Last measurement was equal to or below threshold setting.  
1 = Last measurement was above threshold setting.  
bit7  
TEMP LO: Low Alarm Status for Temperature Measurement.  
0 = (Default) Last measurement was equal to or above threshold setting.  
1 = Last measurement was below threshold setting.  
bit6  
bit5  
V
CC  
HI: High Alarm Status for V  
Measurement.  
CC  
0 = (Default) Last measurement was equal to or below threshold setting.  
1 = Last measurement was above threshold setting.  
V
LO: Low Alarm Status for V  
Measurement. This bit is set when the V  
supply is below the  
CC  
CC  
CC  
POA trip point value. It will clear itself when a V  
the low threshold.  
measurement is completed and the value is above  
CC  
bit4  
0 = Last measurement was equal to or above threshold setting.  
1 = (Default) Last measurement was below threshold setting.  
MON1 HI: High Alarm Status for MON1 Measurement.  
0 = (Default) Last measurement was equal to or below threshold setting.  
1 = Last measurement was above threshold setting.  
bit3  
bit2  
bit1  
bit0  
MON1 LO: Low Alarm Status for MON1 Measurement.  
0 = (Default) Last measurement was equal to or above threshold setting.  
1 = Last measurement was below threshold setting.  
MON2 HI: High Alarm Status for MON2 Measurement.  
0 = (Default) Last measurement was equal to or below threshold setting.  
1 = Last measurement was above threshold setting.  
MON2 LO: Low Alarm Status for MON2 Measurement.  
0 = (Default) Last measurement was equal to or above threshold setting.  
1 = Last measurement was below threshold setting.  
____________________________________________________________________ 35  
PON Triplexer Control and  
Monitoring Circuit  
Lower Memory, Register 71h: Alarm  
2
POWER-ON VALUE  
READ ACCESS  
00h  
All  
WRITE ACCESS  
N/A  
MEMORY TYPE:  
Volatile  
71h  
MON3 HI  
MON3 LO  
MON4 HI  
MON4 LO  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
bit0  
bit7  
MON3 HI: High Alarm Status for MON3 Measurement.  
0 = (Default) Last measurement was equal to or below threshold setting.  
1 = Last measurement was above threshold setting.  
bit7  
MON3 LO: Low Alarm Status for MON3 Measurement.  
0 = (Default) Last measurement was equal to or above threshold setting.  
1 = Last measurement was below threshold setting.  
bit6  
bit5  
MON4 HI: High Alarm Status for MON4 Measurement.  
0 = (Default) Last measurement was equal to or below threshold setting.  
1 = Last measurement was above threshold setting.  
MON4 LO: Low Alarm Status for MON4 Measurement.  
0 = (Default) Last measurement was equal to or above threshold setting.  
1 = Last measurement was below threshold setting.  
bit4  
bit3:0  
RESERVED  
Lower Memory, Register 72h: Alarm  
1
POWER-ON VALUE  
READ ACCESS  
00h  
All  
WRITE ACCESS  
N/A  
MEMORY TYPE:  
Volatile  
72h RESERVED  
RESERVED  
RESERVED  
RESERVED  
BIAS HI  
RESERVED  
TXP HI  
TXP LO  
bit0  
bit7  
bit7:4  
RESERVED  
BIAS HI: High Alarm Status Bias; Fast Comparison.  
0 = (Default) Last comparison was below threshold setting.  
1 = Last comparison was above threshold setting.  
bit3  
bit2  
bit1  
RESERVED  
TXP HI: High Alarm Status TX-P; Fast Comparison.  
0 = (Default) Last comparison was below threshold setting.  
1 = Last comparison was above threshold setting.  
TXP LO: Low Alarm Status TX-P; Fast Comparison.  
0 = (Default) Last comparison was above threshold setting.  
1 = Last comparison was below threshold setting.  
bit0  
36  
____________________________________________________________________  
PON Triplexer Control and  
Monitoring Circuit  
Lower Memory, Register 73h: Alarm  
0
POWER-ON VALUE  
READ ACCESS  
00h  
All  
WRITE ACCESS  
N/A  
MEMORY TYPE:  
Volatile  
73h RESERVED  
RESERVED  
RESERVED  
RESERVED  
BIAS MAX  
RESERVED  
RESERVED  
RESERVED  
bit0  
bit7  
bit7:4  
RESERVED  
BIAS MAX: Alarm Status for Maximum Digital Setting of I  
.
BIAS  
0 = (Default) The value for I  
is equal to or below the MAX IBIAS setting.  
bit3  
BIAS  
1 = Requested value for I  
is greater than the MAX IBIAS setting.  
BIAS  
bit2:0  
RESERVED  
____________________________________________________________________ 37  
PON Triplexer Control and  
Monitoring Circuit  
Lower Memory, Register 74h: Warn  
3
POWER-ON VALUE  
READ ACCESS  
10h  
All  
WRITE ACCESS  
N/A  
MEMORY TYPE:  
Volatile  
74h  
TEMP HI  
TEMP LO  
V
HI  
V
LO  
CC  
MON1 HI  
MON1 LO  
MON2 HI  
MON2 LO  
bit0  
CC  
bit7  
TEMP HI: High Warning Status for Temperature Measurement.  
0 = (Default) Last measurement was equal to or below threshold setting.  
1 = Last measurement was above threshold setting.  
bit7  
TEMP LO: Low Warning Status for Temperature Measurement.  
0 = (Default) Last measurement was equal to or above threshold setting.  
1 = Last measurement was below threshold setting.  
bit6  
bit5  
V
CC  
HI: High Warning Status for V  
Measurement.  
CC  
0 = (Default) Last measurement was equal to or below threshold setting.  
1 = Last measurement was above threshold setting.  
V
LO: Low Warning Status for V  
Measurement. This bit is set when the V  
supply is below the  
CC  
CC  
CC  
POA trip point value. It will clear itself when a V  
the low threshold.  
measurement is completed and the value is above  
CC  
bit4  
0 = Last measurement was equal to or above threshold setting.  
1 = (Default) Last measurement was below threshold setting.  
MON1 HI: High Warning Status for MON1 Measurement.  
0 = (Default) Last measurement was equal to or below threshold setting.  
1 = Last measurement was above threshold setting.  
bit3  
bit2  
bit1  
bit0  
MON1 LO: Low Warning Status for MON1 Measurement.  
0 = (Default) Last measurement was equal to or above threshold setting.  
1 = Last measurement was below threshold setting.  
MON2 HI: High Warning Status for MON2 Measurement.  
0 = (Default) Last measurement was equal to or below threshold setting.  
1 = Last measurement was above threshold setting.  
MON2 LO: Low Warning Status for MON2 Measurement.  
0 = (Default) Last measurement was equal to or above threshold setting.  
1 = Last measurement was below threshold setting.  
38  
____________________________________________________________________  
PON Triplexer Control and  
Monitoring Circuit  
Lower Memory, Register 75h: Warn  
2
POWER-ON VALUE  
READ ACCESS  
00h  
All  
WRITE ACCESS  
N/A  
MEMORY TYPE:  
Volatile  
75h  
MON3 HI  
MON3 LO  
MON4 HI  
MON4 LO  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
bit0  
bit7  
MON3 HI: High Warning Status for MON3 Measurement.  
0 = (Default) Last measurement was equal to or below threshold setting.  
1 = Last measurement was above threshold setting.  
bit7  
MON3 LO: Low Warning Status for MON3 Measurement.  
0 = (Default) Last measurement was equal to or above threshold setting.  
1 = Last measurement was below threshold setting.  
bit6  
bit5  
MON4 HI: High Warning Status for MON4 Measurement.  
0 = (Default) Last measurement was equal to or below threshold setting.  
1 = Last measurement was above threshold setting.  
MON4 LO: Low Warning Status for MON4 Measurement.  
0 = (Default) Last measurement was equal to or above threshold setting.  
1 = Last measurement was below threshold setting.  
RESERVED  
bit4  
bit3:0  
Lower Memory, Register 76h to 77h: Reserved  
POWER-ON VALUE  
READ ACCESS  
00h  
All  
WRITE ACCESS  
N/A  
MEMORY TYPE:  
76, 77h  
0
0
0
0
00  
0
0
0
bit7  
These registers are reserved. The value when read is 00h.  
bit0  
____________________________________________________________________ 39  
PON Triplexer Control and  
Monitoring Circuit  
Lower Memory, Register 78h: DOUT  
POWER-ON VALUE  
READ ACCESS  
Recalled from Table 02h, Register C0h  
All  
All  
WRITE ACCESS  
MEMORY TYPE:  
Volatile  
78h RESERVED  
bit7  
RESERVED  
RESERVED  
RESERVED  
D3 OUT  
D2 OUT  
D1 OUT  
D0 OUT  
bit0  
At power-on, these bits are defined by the value stored in the DPU byte (Table 02h, Register C0h).  
These bits define the value of the logic states of their corresponding output pins.  
Lower Memory, Register 79h: DIN  
POWER-ON VALUE  
READ ACCESS  
See description  
All  
WRITE ACCESS  
N/A  
MEMORY TYPE:  
Volatile  
79h RESERVED  
RESERVED  
INV LOSI  
MUX LOSI  
D3 IN  
D2 IN  
D1 IN  
D0 IN  
bit0  
bit7  
bit7:6  
RESERVED  
INV LOSI: Allows for inversion of LOSI pin to D0 pin. MUX LOSI bit must be set to 1 or this bit does  
not affect the output. This bit is controlled (or set) by the DPU byte (Table 02h, Register C0h).  
bit5  
1 = LOS buffered OUT is inverted.  
0
MUX LOSI: Determines control of D0 pin. This bit is controlled (or set) by the DPU byte (Table 02h,  
Register C0h).  
bit4  
0 = Logic value of D0 is controlled by DOUT byte.  
1 = Logic value of D0is controlled by LOSI pin and INV LOSI bit.  
bit3  
bit2  
bit1  
bit0  
D3 IN: Reflects the logic value of D3 pin.  
D2 IN: Reflects the logic value of D2 pin.  
D1 IN: Reflects the logic value of D1 pin.  
D0 IN: Reflects the logic value of D0 pin.  
Lower Memory, Register 7Ah: Reserved  
POWER-ON VALUE  
READ ACCESS  
00h  
All  
WRITE ACCESS  
N/A  
MEMORY TYPE:  
7Ah  
0
0
0
0
00  
0
0
0
bit7  
This register is reserved. The value when read is 00h.  
bit0  
40  
____________________________________________________________________  
PON Triplexer Control and  
Monitoring Circuit  
Lower Memory, Register 7Bh to 7Eh: Password Entry (PWE)  
POWER-ON VALUE  
READ ACCESS  
FFFF FFFFh  
N/A  
All  
WRITE ACCESS  
MEMORY TYPE:  
Volatile  
7Bh  
7Ch  
7Dh  
7Eh  
231  
223  
215  
27  
230  
222  
214  
26  
229  
221  
213  
25  
228  
220  
212  
24  
227  
219  
211  
23  
226  
218  
210  
22  
225  
217  
29  
224  
216  
28  
21  
20  
bit7  
bit0  
Password Entry. There are two passwords for the DS1865. Each password is 4 bytes long. The lower level password (PW1) will  
have access to all unprotected areas plus those made available with PW1. The higher level password (PW2) will have all the  
access of PW1 plus those made available with PW2. The values of the passwords reside in EEPROM inside of PW2 memory. At  
power-up, all PWE bits are set to 1. All reads at this location are 0.  
Lower Memory, Register 7Fh: Table Select (TBL SEL)  
POWER-ON VALUE  
READ ACCESS  
00h  
All  
WRITE ACCESS  
All  
MEMORY TYPE  
7Fh  
Volatile  
26  
27  
bit7  
The upper memory tables (Table 01h06h) of the DS1865 are accessible by writing the desired table value in this register.  
25  
24  
23  
22  
21  
20  
bit0  
____________________________________________________________________ 41  
PON Triplexer Control and  
Monitoring Circuit  
Table 01h Register Descriptions  
Table 01h, Register 80h to F7h: PW1 EEPROM  
POWER-ON VALUE  
READ ACCESS  
00h  
PW1  
PW1  
WRITE ACCESS  
MEMORY TYPE  
80h-F7h  
Nonvolatile (EE)  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
bit7  
bit0  
EEPROM for PW1 level access.  
Table 01h, Register F8h: Alarm  
3
POWER-ON VALUE  
READ ACCESS  
00h  
All  
WRITE ACCESS  
PW1  
MEMORY TYPE:  
Volatile  
F8h  
TEMP HI  
bit7  
TEMP LO  
V
HI  
V
LO  
CC  
MON1 HI  
MON1 LO  
MON2 HI  
MON2 LO  
bit0  
CC  
Layout is identical to Alarm in Lower Memory, Register 70h with two exceptions.  
3
1.  
2.  
V
low alarm is not set at power-on.  
CC  
These bits are latched. They are cleared by power-down or a write with PW1 access.  
Table 01h, Register F9h: Alarm  
2
POWER-ON VALUE  
READ ACCESS  
00h  
All  
WRITE ACCESS  
PW1  
MEMORY TYPE:  
Volatile  
F9h  
MON3 HI  
bit7  
MON3 LO  
MON4 HI  
MON4 LO  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
bit0  
Layout is identical to Alarm in Lower Memory, Register 71h with one exception.  
2
1.  
These bits are latched. They are cleared by power-down or a write with PW1 access.  
42  
____________________________________________________________________  
PON Triplexer Control and  
Monitoring Circuit  
Table 01h, Register FAh: Alarm  
1
POWER-ON VALUE  
READ ACCESS  
00h  
All  
WRITE ACCESS  
PW1  
MEMORY TYPE:  
Volatile  
FAh RESERVED  
bit7  
RESERVED  
RESERVED  
BIAS HI  
RESERVED  
RESERVED  
TXP HI  
TXP LO  
bit0  
Layout is identical to Alarm in Lower Memory, Register 72h with one exception.  
1
1.  
These bits are latched. They are cleared by power-down or a write with PW1 access.  
Table 01h, Register FBh: Alarm  
0
POWER-ON VALUE  
READ ACCESS  
00h  
All  
WRITE ACCESS  
PW1  
MEMORY TYPE:  
Volatile  
FBh RESERVED  
bit7  
RESERVED  
RESERVED  
RESERVED  
BIAS MAX  
RESERVED  
RESERVED  
RESERVED  
bit0  
Layout is identical to Alarm in Lower Memory, Register 73h with one exception.  
0
1.  
These bits are latched. They are cleared by power-down or a write with PW1 access.  
Table 01h, Register FCh: Warn  
3
POWER-ON VALUE  
READ ACCESS  
00h  
All  
WRITE ACCESS  
PW1  
MEMORY TYPE:  
Volatile  
FCh  
TEMP HI  
bit7  
TEMP LO  
V
HI  
V
LO  
CC  
MON1 HI  
MON1 LO  
MON2 HI  
MON2 LO  
bit0  
CC  
Layout is identical to Warn in Lower Memory, Register 74h with two exceptions.  
3
1.  
2.  
V
Low Warning is not set at power-on.  
CC  
These bits are latched. They are cleared by power-down or a write with PW1 access.  
____________________________________________________________________ 43  
PON Triplexer Control and  
Monitoring Circuit  
Table 01h, Register FDh: Warn  
2
POWER-ON VALUE  
READ ACCESS  
00h  
All  
WRITE ACCESS  
PW1  
MEMORY TYPE:  
Volatile  
FDh  
MON3 HI  
bit7  
MON3 LO  
MON4 HI  
MON4 LO  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
bit0  
Layout is identical to Warn in Lower Memory, Register 75h with one exception.  
2
1.  
These bits are latched. They are cleared by power-down or a write with PW1 access.  
Table 01h, Register FEh to FFh: Reserved  
POWER-ON VALUE  
READ ACCESS  
00h  
All  
WRITE ACCESS  
PW1  
MEMORY TYPE:  
Volatile  
These registers are reserved.  
44  
____________________________________________________________________  
PON Triplexer Control and  
Monitoring Circuit  
Table 02h Register Descriptions  
Table 02h, Register 80h: Mode  
POWER-ON VALUE  
READ ACCESS  
1Fh  
PW2  
PW2  
WRITE ACCESS  
MEMORY TYPE:  
Volatile  
80h  
SEEB  
bit7  
RESERVED  
RESERVED  
M4DAC-EN  
AEN  
MOD-EN  
APC-EN  
BIAS-EN  
bit0  
SEEB:  
0 = (Default) Enables EEPROM writes to SEE bytes.  
bit7  
bit6:5  
bit4  
1 = Disables EEPROM writes to SEE bytes during configuration, so that the configuration of the part is  
not delayed by the EE cycle time. Once the values are known, write this bit to a 0 and write the SEE  
locations again for data to be written to the EEPROM.  
RESERVED  
M4DAC-EN:  
0 = M4DAC is writeable by the user and the LUT recalls are disabled. This allows users to  
interactively test their modules by writing the DAC value for M4DAC. The output is updated with the  
2
new value at the end of the write cycle. The I C STOP condition is the end of the write cycle.  
1 = (Default) Enables auto control of the LUT for M4DAC.  
AEN:  
0 = The temperature-calculated index value (T INDEX) is writeable by the user and the updates of  
calculated indexes are disabled. This allows users to interactively test their modules by controlling the  
indexing for the lookup tables. The recalled values from the LUTs will appear in the DAC registers  
after the next completion of a temperature conversion (just like it would happen in auto mode). Both  
DACs will update at the same time (just like in auto mode).  
bit3  
1 = (Default) Enables auto control of the LUT.  
MOD-EN:  
0 = MOD DAC is writeable by the user and the LUT recalls are disabled. This allows users to  
interactively test their modules by writing the DAC value for modulation. The output is updated with  
the new value at the end of the write cycle. The I C STOP condition is the end of the write cycle.  
bit2  
bit1  
2
1 = (Default) Enables auto control of the LUT for modulation.  
APC-EN:  
0 = APC DAC is writeable by the user and the LUT recalls are disabled. This allows users to  
interactively test their modules by writing the DAC value for APC reference. The output is updated  
2
with the new value at the end of the write cycle. The I C STOP condition is the end of the write cycle.  
1 = (Default) Enables auto control of the LUT for APC reference.  
BIAS-EN:  
0 = BIAS DAC is controlled by the user and the APC is open loop. The BIAS DAC value is written to  
the MAN IBIAS register. All values that are written to MAN IBIAS and are greater than the MAX IBIAS  
register setting are not updated and will set the BIAS MAX alarm bit. The BIAS DAC register will  
continue to reflect the value of the BIAS DAC. This allows users to interactively test their modules by  
bit0  
writing the DAC value for I  
. The output is updated with the new value at the end of the write cycle  
2
BIAS  
to the MAN IBIAS register. The I C STOP condition is the end of the write cycle.  
1 = (Default) Enables auto control for the APC feedback.  
____________________________________________________________________ 45  
PON Triplexer Control and  
Monitoring Circuit  
Table 02h, Register 81h: Tindex  
POWER-ON VALUE  
READ ACCESS  
00h  
PW2  
WRITE ACCESS  
PW2 and (AEN = 0)  
MEMORY TYPE  
81h  
Volatile  
27  
bit7  
26  
25  
24  
23  
22  
21  
20  
bit0  
Holds the calculated index based on the Temperature Measurement. This index is used for the address during lookup of tables 04h  
and 05h. Temperature measurements below -40°C or above 102°C are clamped to 00h and C7h, respectively. The calculation of  
Tindex is as follows:  
Temp + 40°C  
Tindex =  
+ 80h  
2°C  
For the two temperature-indexed LUTs, the index used during the lookup function for each table is as follows:  
Table 04h MOD  
Table 05h APC  
1
1
Tindex6  
0
Tindex5  
Tindex6  
Tindex4  
Tindex5  
Tindex3  
Tindex4  
Tindex2  
Tindex3  
Tindex1  
Tindex2  
Tindex0  
Tindex1  
Table 02h, Register 82h: MOD DAC  
POWER-ON VALUE  
READ ACCESS  
00h  
PW2  
WRITE ACCESS  
PW2 and (MOD-EN = 0)  
MEMORY TYPE  
82h  
Volatile  
27  
bit7  
26  
25  
24  
23  
22  
21  
20  
bit0  
The digital value used for MOD and recalled from Table 04h at the adjusted memory address is found in Tindex. (R.O.)  
This register is updated at the end of every temperature conversion.  
Table 02h, Register 83h: APC DAC  
POWER-ON VALUE  
READ ACCESS  
00h  
PW2  
WRITE ACCESS  
PW2 and (APC-EN = 0)  
MEMORY TYPE  
83h  
Volatile  
27  
bit7  
26  
25  
24  
23  
22  
21  
20  
bit0  
The digital value used for APC reference and recalled from Table 05h at the adjusted memory address found in Tindex. (R.O.)  
This register is updated at the end of the temperature conversion.  
46  
____________________________________________________________________  
PON Triplexer Control and  
Monitoring Circuit  
Table 02h, Register 84h: Vindex  
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2  
WRITE ACCESS  
PW2 and (AEN = 0)  
MEMORY TYPE  
Volatile  
27  
26  
25  
24  
23  
22  
21  
20  
84h  
bit7  
bit0  
Holds the calculated index based on the MON4 voltage measurement. This index is used for the address during lookup of Table  
06h. M4DAC LUT (Table 06h) is 32 bytes from address 80h to 9Fh. The calculation of Vindex is as follows:  
Mon4  
800h  
Vindex =  
+ 80h  
When configured as a single LUT, all 32 bytes are used for lookup.  
When configured as a double LUT, the first 16 bytes (80h-8Fh) form the lower LUT and the last 16 bytes (90h-9Fh) form the upper LUT.  
For the three different modes, the index used during the lookup function of Table 06h is as follows:  
Single  
1
1
1
0
0
0
0
0
0
Vindex4  
Vindex3  
Vindex4  
Vindex4  
Vindex2  
Vindex3  
Vindex3  
Vindex1  
Vindex2  
Vindex2  
Vindex0  
Vindex1  
Vindex1  
Double / Lower  
Double / Upper  
0
1
Table 02h, Register 85h: M4DAC  
FACTORY DEFAULT  
READ ACCESS  
00 00h  
PW2  
WRITE ACCESS  
PW2 and (M4DAC-EN = 0)  
Volatile  
MEMORY TYPE:  
85h  
27  
26  
25  
24  
23  
22  
21  
20  
bit7  
bit0  
The digital value used for M4DAC and recalled from Table 06h at the adjusted memory address is found in Vindex. (R.O.)  
This register is updated at the end of the MON4 conversion.  
Table 02h, Register 86h: Device ID  
FACTORY DEFAULT  
READ ACCESS  
65h  
PW2  
N/A  
WRITE ACCESS  
MEMORY TYPE  
86h  
ROM  
1
0
1
0
0
1
0
1
bit7  
Hardwired connections to show device ID.  
bit0  
____________________________________________________________________ 47  
PON Triplexer Control and  
Monitoring Circuit  
Table 02h, Register 87h: Device VER  
FACTORY DEFAULT  
READ ACCESS  
Device Version  
PW2  
N/A  
WRITE ACCESS  
MEMORY TYPE  
87h  
ROM  
DEVICE VERSION  
bit7  
bit0  
Hardwired connections to show device version.  
Table 02h, Register 88h: Update Rate  
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2  
PW2  
WRITE ACCESS  
MEMORY TYPE  
Nonvolatile (SEE)  
Defines the update rate for comparison of APC control.  
88h  
0
0
0
0
SR3  
SR2  
SR1  
SR0  
bit0  
bit7  
bit7:4  
bit3:0  
0:  
SR(3:0): 4-bit sample rate for comparison of APC control.  
MINIMUM TIME  
FROM BEN TO  
REPEATED  
SAMPLE PERIOD  
FOLLOWING FIRST  
BIT SR –SR  
3
0
FIRST SAMPLE  
(t 50ns  
)
SAMPLE (t  
)
FIRST  
REP  
0000b  
0001b  
0010b  
0011b  
0100b  
0101b  
0110b  
0111b  
1000b  
*1001b  
350ns  
550ns  
800ns  
1200ns  
1600ns  
2000ns  
2800ns  
3200ns  
3600ns  
4400ns  
6000ns  
6400ns  
750ns  
950ns  
1350ns  
1550ns  
1750ns  
2150ns  
2950ns  
3150ns  
*All codes greater than 1001b (1010b–1111b) use the maximum  
sample time of code 1001b.  
48  
____________________________________________________________________  
PON Triplexer Control and  
Monitoring Circuit  
Table 02h, Register 89h: Config  
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2  
PW2  
WRITE ACCESS  
MEMORY TYPE:  
Nonvolatile (SEE)  
89h  
FETG DIR  
bit7  
TX-F EN  
RESERVED  
ASEL  
RESERVED  
RESERVED  
RESERVED RESERVED  
bit0  
Configure the memory location and the polarity of the digital outputs.  
FETG DIR: Chooses the direction or polarity of the FETG output for normal operation.  
0 = (Default) Under normal operation, FETG is pulled low. Intended for use with nMOS.  
1 = Under normal operation, FETG is pulled high. Intended for use with pMOS.  
bit7  
bit6  
TX-F EN: The TX-F output pin always reflects the wired-OR of all TXF enabled alarm states. This bit  
will enable the latching of the alarm state for the TXF output pin.  
0 = (Default) Not latched.  
1 = The alarm bits are latched until cleared by a TX-D transition or power-down. If V _Lo_Alarm is  
CC  
enabled for either FETG or TX-F then latching is disabled until the after the first V  
measurement is  
CC  
made above the V _Lo set point to allow for proper operation during slow power-on cycles.  
CC  
bit5  
bit4  
RESERVED  
ASEL: Address Select.  
0 = (Default) Device Address of A2h.  
2
1 = I C slave address is determined by the value programmed in the DEVICE ADDRESS byte  
(Table 02h, Register 8Ch).  
bit3:0  
RESERVED  
Table 02h, Register 8Ah: Startup Step  
FACTORY DEFAULT:  
READ ACCESS  
00h  
PW2  
PW2  
WRITE ACCESS  
MEMORY TYPE:  
8Ah  
Nonvolatile (SEE)  
212  
bit7  
211  
210  
29  
28  
27  
26  
25  
bit0  
This value will define the maximum allowed step for the upper 8 bits of I  
output during startup. Programming this value to 00h  
BIAS  
cause the device to take single LSB (20) steps towards convergence. See the BIAS and MOD Output During Power-Up section for  
details.  
____________________________________________________________________ 49  
PON Triplexer Control and  
Monitoring Circuit  
Table 02h, Register 8Bh: MOD Ranging  
FACTORY DEFAULT:  
READ ACCESS  
00h  
PW2  
PW2  
WRITE ACCESS  
MEMORY TYPE:  
Nonvolatile (SEE)  
8Bh  
RESERVED  
bit7  
The lower nibble of this byte controls the full-scale range of the modulation DAC.  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
MOD2  
MOD1  
MOD0  
bit0  
bit7:3  
bit2:0  
RESERVED (Default = 0)  
MOD2, MOD1, MOD0: MOD FS Ranging. 3-bit value to select the FS output voltage for VMOD.  
Default is 000b and creates a FS of 1.25V.  
MOD MOD  
% OF 1.25V  
100.00  
80.05  
FS VOLTAGE (V)  
1.250  
2
0
000b  
001b  
010b  
011b  
100b  
101b  
110b  
111b  
1.001  
66.75  
0.833  
50.13  
0.627  
40.16  
0.502  
33.50  
0.419  
28.75  
0.359  
25.18  
0.315  
Table 02h, Register 8Ch: Device Address  
FACTORY DEFAULT:  
READ ACCESS  
00h  
PW2  
PW2  
WRITE ACCESS  
MEMORY TYPE:  
8Ch  
Nonvolatile (SEE)  
26 25  
27  
bit7  
24  
23  
22  
21  
20  
bit0  
2
This value becomes the I C slave address for the main memory when the ASEL bit (Table 02h, Register 89h) is set.  
50  
____________________________________________________________________  
PON Triplexer Control and  
Monitoring Circuit  
Table 02h, Register 8Dh: Comp Ranging  
FACTORY DEFAULT:  
READ ACCESS  
00h  
PW2  
PW2  
WRITE ACCESS  
MEMORY TYPE:  
Nonvolatile (SEE)  
8Dh  
RESERVED  
bit7  
BIAS2  
BIAS1  
BIAS0  
RESERVED  
APC2  
APC1  
APC0  
bit0  
The upper nibble of this byte controls the Full-Scale range of the Quick-Trip monitoring for BIAS. The Lower nibble of this byte  
controls the Full-Scale range for the Quick-Trip monitoring of the APC reference as well as the closed loop monitoring of APC.  
bit7  
bit6.4  
bit3  
RESERVED (Default = 0)  
BIAS2, BIAS1, BIAS0: BIAS FS Ranging: 3-bit value to select the FS comparison voltage for BIAS  
found on MON1. Default is 000b and creates an FS of 1.25V.  
RESERVED (Default = 0)  
APC2, APC1, APC0: APC FS Ranging: 3-bit value to select the FS comparison voltage for BMD with  
the APC. Default is 000b and creates an FS of 2.5V.  
bit2:0  
BIAS BIAS  
% OF 1.25V  
100.00  
80.10  
FS VOLTAGE (V)  
1.250  
2
0
000b  
001b  
010b  
011b  
100b  
101b  
110b  
111b  
1.001  
66.83  
0.835  
50.25  
0.628  
40.30  
0.504  
33.66  
0.421  
28.92  
0.362  
25.39  
0.317  
APC APC  
% OF 2.50V  
100.00  
80.10  
FS VOLTAGE (V)  
1.250  
2
0
000b  
001b  
1.001  
010b  
011b  
66.83  
0.835  
50.25  
0.628  
100b  
40.30  
0.504  
101b  
110b  
33.66  
0.421  
28.92  
0.362  
0.317  
111b  
25.39  
____________________________________________________________________ 51  
PON Triplexer Control and  
Monitoring Circuit  
Table 02h, Register 8Eh: Right Shift (RSHIFT )  
1
1
FACTORY DEFAULT:  
READ ACCESS  
00h  
PW2  
PW2  
WRITE ACCESS  
MEMORY TYPE:  
Nonvolatile (SEE)  
MON12 MON11  
8Eh  
RESERVED  
bit7  
MON10  
RESERVED  
MON22  
MON21  
MON20  
bit0  
Allows for right-shifting the final answer of MON1 and MON2 voltage measurements. This allows for scaling the measurements to  
the smallest full-scale voltage and then right-shifting the final result so the reading is weighted to the correct LSB. See the Right  
Shifting ADC Results section for details.  
Table 02h, Register 8Fh: Right Shift (RSHIFT )  
0
0
FACTORY DEFAULT:  
READ ACCESS  
00h  
PW2  
PW2  
WRITE ACCESS  
MEMORY TYPE:  
Nonvolatile (SEE)  
MON32 MON31  
8Fh  
RESERVED  
bit7  
MON30  
RESERVED  
MON42  
MON41  
MON40  
bit0  
Allows for right-shifting the final answer of MON3 and MON4 voltage measurements. This allows for scaling the measurements to  
the smallest full-scale voltage and then right-shifting the final result so the reading is weighted to the correct LSB. See the Right  
Shifting ADC Results section for details.  
Table 02h, Register 90h to 91h: Reserved  
FACTORY DEFAULT:  
READ ACCESS  
0000h  
PW2  
WRITE ACCESS  
PW2  
MEMORY TYPE:  
Nonvolatile (SEE)  
These registers are reserved.  
52  
____________________________________________________________________  
PON Triplexer Control and  
Monitoring Circuit  
Table 02h, Register 92h to 93h: V  
Scale  
CC  
Table 02h, Register 94h to 95h: MON1 Scale  
Table 02h, Register 96h to 97h: MON2 Scale  
Table 02h, Register 98h to 99h: MON3 Scale  
Table 02h, Register 9Ah to 9Bh: MON4 Scale  
FACTORY CALIBRATED  
READ ACCESS  
WRITE ACCESS  
PW2  
PW2  
MEMORY TYPE:  
Nonvolatile (SEE)  
92, 94, 96,  
98, 9Ah  
215  
214  
26  
213  
25  
212  
24  
211  
23  
210  
22  
29  
21  
28  
93, 95, 97,  
99, 9Bh  
27  
20  
bit7  
bit0  
Controls the scaling or gain of the FS voltage measurements. The factory-calibrated value produces an FS voltage of 6.5536V for  
and 2.5V for MON1, MON2, MON3, and MON4.  
V
CC  
Table 02h, Register 9Ch to A1h: Reserved  
FACTORY DEFAULT:  
READ ACCESS  
0000h  
PW2  
WRITE ACCESS  
PW2  
MEMORY TYPE:  
Nonvolatile (SEE)  
These registers are reserved.  
Table 02h, Register A2h to A3h: V  
Offset  
CC  
Table 02h, Register A4h to A5h: MON1 Offset  
Table 02h, Register A6h to A7h: MON2 Offset  
Table 02h, Register A8h to A9h: MON3 Offset  
Table 02h, Register AAh to ABh: MON4 Offset  
FACTORY DEFAULT:  
READ ACCESS  
0000h  
PW2  
WRITE ACCESS  
PW2  
MEMORY TYPE:  
Nonvolatile (SEE)  
A2, A4, A6,  
S
S
215  
27  
214  
26  
213  
25  
212  
24  
211  
23  
210  
A8, AAh  
A3, A5, A7,  
A9, ABh  
29  
28  
22  
bit7  
bit0  
Allows for offset control of these voltage measurements if desired.  
____________________________________________________________________ 53  
PON Triplexer Control and  
Monitoring Circuit  
Table 02h, Register ACh to ADh: Reserved  
FACTORY DEFAULT:  
READ ACCESS  
0000 0000h  
PW2  
WRITE ACCESS  
PW2  
MEMORY TYPE:  
Nonvolatile (SEE)  
These registers are reserved.  
Table 02h, Register AEh to AFh: Internal Temp Offset  
FACTORY CALIBRATED  
READ ACCESS  
WRITE ACCESS  
PW2  
PW2  
MEMORY TYPE  
Nonvolatile (SEE)  
28  
20  
27  
2-1  
26  
2-2  
25  
2-3  
24  
2-4  
23  
2-5  
22  
2-6  
AEh  
AFh  
S
21  
bit7  
bit0  
Allows for offset control of the temperature measurement if desired. The final result must be XORed with BB40h before writing to  
this register. Factory calibration contains the desired value for a reading in degrees Celsius.  
Table 02h, Register B0h to B3h: PW1  
FACTORY DEFAULT  
READ ACCESS  
FFFF FFFFh  
N/A  
WRITE ACCESS  
PW2  
MEMORY TYPE  
Nonvolatile (SEE)  
B0h  
B1h  
B2h  
B3h  
231  
230  
222  
214  
26  
229  
221  
213  
25  
228  
220  
212  
24  
227  
219  
211  
23  
226  
218  
210  
22  
225  
217  
29  
224  
216  
28  
223  
215  
27  
21  
20  
bit7  
bit0  
The PWE value is compared against the value written to this location to enable PW1 access. At power-on, the PWE value is set to all  
ones. Thus, writing these bytes to all ones grants PW1 access on power-up without writing the password entry. All reads of this  
register are 00h.  
54  
____________________________________________________________________  
PON Triplexer Control and  
Monitoring Circuit  
Table 02h, Register B4h to B7h: PW2  
FACTORY DEFAULT  
READ ACCESS  
FFFF FFFFh  
N/A  
WRITE ACCESS  
PW2  
MEMORY TYPE  
Nonvolatile (SEE)  
B4h  
B5h  
B6h  
B7h  
231  
230  
222  
214  
26  
229  
221  
213  
25  
228  
220  
212  
24  
227  
219  
211  
23  
226  
218  
210  
22  
225  
217  
29  
224  
216  
28  
223  
215  
27  
21  
20  
bit7  
bit0  
The PWE value is compared against the value written to this location to enable PW2 access. At power-on, the PWE value is set to all  
ones. Thus, writing these bytes to all ones grants PW2 access on power-up without writing the password entry. All reads of this  
register are 00h.  
____________________________________________________________________ 55  
PON Triplexer Control and  
Monitoring Circuit  
Table 02h, Register B8h: FETG Enable (FETG EN )  
1
1
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2  
PW2  
WRITE ACCESS  
MEMORY TYPE:  
Nonvolatile (SEE)  
EN MON1 EN  
B8h  
TEMP EN  
bit7  
V
MON2 EN  
MON3 EN  
MON4 EN  
RESERVED RESERVED  
bit0  
CC  
Configures the maskable interrupt for the FETG pin.  
TEMP EN: Enables/disables active interrupts on the FETG pin due to temperature measurements  
outside the threshold limits.  
bit7  
bit6  
bit5  
bit4  
bit3  
0 = Disable (Default).  
1 = Enable.  
V
CC  
EN: Enables/disables active interrupts on the FETG pin due to V  
measurements outside the  
CC  
threshold limits.  
0 = Disable (Default).  
1 = Enable.  
MON1 EN: Enables/disables active interrupts on the FETG pin due to MON1 measurements  
outside the threshold limits.  
0 = Disable (Default).  
1 = Enable.  
MON2 EN: Enables/disables active interrupts on the FETG pin due to MON2 measurements  
outside the threshold limits.  
0 = Disable (Default).  
1 = Enable.  
MON3 EN: Enables/disables active interrupts on the FETG pin due to MON3 measurements  
outside the threshold limits.  
0 = Disable (Default).  
1 = Enable.  
MON4 EN: Enables/disables active interrupts on the FETG pin due to MON4 measurements  
outside the threshold limits.  
bit2  
0 = Disable (Default).  
1 = Enable.  
RESERVED (Default = 0)  
bit1:0  
56  
____________________________________________________________________  
PON Triplexer Control and  
Monitoring Circuit  
Table 02h, Register B9h: FETG Enable (FETG EN )  
0
0
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2  
PW2  
WRITE ACCESS  
MEMORY TYPE:  
Nonvolatile (SEE)  
LTXP EN BIAS-HI EN BIAS MAX EN RESERVED  
B9h  
HTXP EN  
bit7  
RESERVED  
RESERVED  
RESERVED  
bit0  
Configures the maskable interrupt for the FETG pin.  
HTXP EN: Enables/disables active interrupts on the FETG pin due to TXP fast comparisons above  
the threshold limit.  
bit7  
bit6  
bit5  
0 = Disable (Default).  
1 = Enable.  
LTXP EN: Enables/disables active interrupts on the FETG pin due to TXP fast comparisons below  
the threshold limit.  
0 = Disable (Default).  
1 = Enable.  
BIAS HI EN: Enables/disables active interrupts on the FETG pin due to BIAS fast comparisons  
above the threshold limit.  
0 = (Default) Disable.  
1 = Enable.  
BIAS MAX EN: Enables/disables active interrupts on the FETG pin due to BIAS fast comparisons  
below the threshold limit.  
bit4  
0 = (Default) Disable.  
1 = Enable.  
bit3:0  
RESERVED (Default = 0)  
____________________________________________________________________ 57  
PON Triplexer Control and  
Monitoring Circuit  
Table 02h, Register BAh: TX-F Enable (TX-F EN )  
1
1
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2  
PW2  
WRITE ACCESS  
MEMORY TYPE:  
Nonvolatile (SEE)  
EN MON1 EN  
BAh  
TEMP EN  
bit7  
V
MON2 EN  
MON3 EN  
MON4 EN  
RESERVED  
RESERVED  
bit0  
CC  
Configures the maskable interrupt for the TX-F pin.  
TEMP EN: Enables/disables active interrupts on the TX-F pin due to temperature measurements  
outside the threshold limits.  
bit7  
bit6  
bit5  
bit4  
bit3  
0 = Disable (Default).  
1 = Enable.  
V
CC  
EN: Enables/disables active interrupts on the TX-F pin due to V  
measurements outside the  
CC  
threshold limits.  
0 = Disable (Default).  
1 = Enable.  
MON1 EN: Enables/disables active interrupts on the TX-F pin due to MON1measurements outside  
the threshold limits.  
0 = Disable (Default).  
1 = Enable.  
MON2 EN: Enables/disables active interrupts on the TX-F pin due to MON2 measurements outside  
the threshold limits.  
0 = Disable (Default).  
1 = Enable.  
MON3 EN: Enables/disables active interrupts on the TX-F pin due to MON3 measurements outside  
the threshold limits.  
0 = Disable (Default).  
1 = Enable.  
MON4 EN: Enables/disables active interrupts on the TX-F pin due to MON4 measurements outside  
the threshold limits.  
bit2  
0 = Disable (Default).  
1 = Enable.  
bit2:0  
RESERVED (Default = 0)  
58  
____________________________________________________________________  
PON Triplexer Control and  
Monitoring Circuit  
Table 02h, Register BBh: TX-F Enable (TX-F EN )  
0
0
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2  
PW2  
WRITE ACCESS  
MEMORY TYPE:  
Nonvolatile (SEE)  
LTXP EN BIAS-HI EN BIAS MAX EN RESERVED  
BBh  
HTXP EN  
bit7  
RESERVED  
RESERVED  
FETG EN  
bit0  
Configures the maskable interrupt for the Tx-F pin.  
HTXP EN: Enables/disables active interrupts on the TX-F pin due to TXP fast comparisons above  
the threshold limit.  
bit7  
bit6  
bit5  
bit4  
0 = Disable (Default).  
1 = Enable.  
LTXP EN: Enables/disables active interrupts on the TX-F pin due to TXP fast comparisons below  
the threshold limit.  
0 = Disable (Default).  
1 = Enable.  
BIAS-HI EN: Enables/disables active interrupts on the TX-F pin due to BIAS fast comparisons  
above the threshold limit.  
0 = Disable (Default).  
1 = Enable.  
BIAS MAX EN: Enables/disables active interrupts on the TX-F pin due to BIAS fast comparisons  
above the threshold limit.  
0 = Disable (Default).  
1 = Enable.  
bit3:1  
bit0  
RESERVED (Default = 0)  
FETG EN:  
0 = Normal FETG operation (Default).  
1 = Enables FETG to act as an input to TX-F output.  
____________________________________________________________________ 59  
PON Triplexer Control and  
Monitoring Circuit  
Table 02h, Register BCh: HTXP  
FACTORY DEFAULT:  
READ ACCESS  
00h  
PW2  
PW2  
WRITE ACCESS  
MEMORY TYPE:  
BCh  
Nonvolatile (SEE)  
27  
bit7  
26  
25  
24  
23  
22  
21  
20  
bit0  
Fast-comparison DAC threshold adjust for high transmit power. This value is added to the APC_DAC value recalled from Table 04h.  
If the sum is greater than 0xFF, 0xFF is used. Comparisons greater than APC_DAC plus this value, found on the BMD pin, will  
create a TXP-HI alarm.  
Table 02h, Register BDh: LTXP  
FACTORY DEFAULT:  
READ ACCESS  
00h  
PW2  
PW2  
WRITE ACCESS  
MEMORY TYPE:  
BDh  
Nonvolatile (SEE)  
27  
bit7  
26  
25  
24  
23  
22  
21  
20  
bit0  
Fast-comparison DAC threshold adjust for low transmit power. This value is subtracted from the APC_DAC value recalled from  
Table 04h. If the difference is less than 0x00, 0x00 is used. Comparisons less than APC_DAC minus this value, found on the BMD  
pin, create a TXP-LO alarm.  
Table 02h, Register BEh: HBIAS  
FACTORY DEFAULT:  
READ ACCESS  
00h  
PW2  
PW2  
WRITE ACCESS  
MEMORY TYPE:  
BEh  
Nonvolatile (SEE)  
27  
bit7  
26  
25  
24  
23  
22  
21  
20  
bit0  
Fast-comparison DAC setting for high BIAS. Comparisons greater than this value, found on the MON1 pin, create a BIAS HI alarm.  
Table 02h, Register BFh: MAX IBIAS  
FACTORY DEFAULT:  
READ ACCESS  
00h  
PW2  
PW2  
WRITE ACCESS  
MEMORY TYPE:  
Nonvolatile (SEE)  
BFh  
212  
bit7  
This value defines the maximum DAC value allowed for the upper 8 bits of I  
211  
210  
29  
28  
27  
26  
25  
bit0  
output during all operations. During the intial step and  
BIAS  
binary search, this value will not cause an alarm but will still clamp the I  
DAC output. After the startup seqence (or normal APC  
BIAS  
operations), if the APC loop tries to create an I  
value greater than this setting, it is clamped and creates a BIAS MAX alarm. Settings  
BIAS  
00h through FEh are intended for normal APC mode of operation. Setting FFh is reserved for manual IBIAS mode.  
60 ____________________________________________________________________  
PON Triplexer Control and  
Monitoring Circuit  
Table 02h, Register C0h: DPU  
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2  
PW2  
WRITE ACCESS  
MEMORY TYPE:  
Nonvolatile (SEE)  
C0h  
RESERVED RESERVED  
bit7  
INV LOSI  
MUX LOSI  
D3 CNTL  
D2 CNTL  
D1 CNTL  
D0 CNTL  
bit0  
Controls the power-on values for D3, D2, D1, and D0 output pins and mux and invertion of the LOSI pin.  
Bit7:6  
Bit5  
RESERVED  
INV LOSI: Inverts the buffered input pin LOSI to output pin D0 if MUX LOSI is set. If MUX LOSI is not  
set then this bits value is a dont care.  
0 = (Default) noninverted LOSI to D0 pin.  
1 = Inverted LOSI to D0 pin.  
MUX LOSI: chooses the control for D0 output pin.  
0 = (Default) DO is controlled by bit D0 OUT found in Lower Memory, Register 78h.  
1 = LOSI is buffered to D0 pin.  
Bit4  
D3 CNTL: At power-on, this value is loaded into bit D3 OUT of Lower Memory, Register 78h to  
Bit3  
Bit2  
bit1  
bit0  
control the output pin D3.  
D2 CNTL: At power-on, this value is loaded into bit D2 OUT of Lower Memory, Register 78h to  
control the output pin D2.  
D1 CNTL: At power-on, this value is loaded into bit D1 OUT of Lower Memory, Register 78h to  
control the output pin D1.  
D0 CNTL: At power-on, this value is loaded into bit D0 OUT of Lower Memory, Register 78h to  
control the output pin D0.  
Table 02h, Register C1h to C3h: Reserved  
FACTORY DEFAULT:  
READ ACCESS  
0000 0000h  
PW2  
WRITE ACCESS  
PW2  
MEMORY TYPE:  
Nonvolatile (SEE)  
These registers are reserved.  
Table 02h, Register C4h: DAC1  
FACTORY DEFAULT:  
READ ACCESS  
00h  
PW2  
PW2  
WRITE ACCESS  
MEMORY TYPE:  
Nonvolatile (SEE)  
27  
26  
25  
24  
23  
22  
21  
20  
C4h  
bit7  
bit0  
Register to control DAC1.  
____________________________________________________________________ 61  
PON Triplexer Control and  
Monitoring Circuit  
Table 02h, Register C5h to C6h: Reserved  
FACTORY DEFAULT:  
READ ACCESS  
0000 0000h  
PW2  
WRITE ACCESS  
PW2  
MEMORY TYPE:  
Nonvolatile (SEE)  
These registers are reserved.  
Table 02h, Register C7h: M4 LUT Cntl  
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2  
PW2  
WRITE ACCESS  
MEMORY TYPE:  
Nonvolatile (SEE)  
C7h  
RESERVED  
bit7  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DBL_SB  
UP_LOWB  
bit0  
Controls the size and location of LUT functions for the MON4 measurement.  
Bit7:2  
Bit1  
RESERVED: Default = 000000b.  
DBL_SB: Chooses the size of LUT for Table 06h.  
0 = (Default) Single LUT of 32 bytes.  
1 = Double LUT of 16 bytes.  
UP_LOWB: Determines which 16-byte LUT is used if DBL_SB = 1. If DBL_SB = 0, the value of this  
bit is a dont care.  
Bit0  
0 = (Default) Chooses the lower 16 bytes of Table 06h (Registers 80h-8Fh).  
1 = Chooses the upper 16 bytes of Table 06h (Registers 90h-9Fh).  
Table 02h, Register C8h to F7h: No Memory  
Table 02h, Register F8h to F9h: MAN IBIAS  
FACTORY DEFAULT:  
READ ACCESS  
00h  
PW2  
WRITE ACCESS  
PW2 and (BIAS-EN = 0)  
MEMORY TYPE:  
Volatile  
212  
25  
211  
24  
210  
23  
29  
22  
28  
21  
27  
20  
F8h  
RESERVED  
RESERVED  
26  
27  
F9h  
bit7  
bit0  
When BIAS-EN (Table 02h, Register 80h) is written to 0, writes to these bytes will control the I  
Register FAh) for details.  
DAC. See MAN_CNTL (Table 02h,  
BIAS  
62  
____________________________________________________________________  
PON Triplexer Control and  
Monitoring Circuit  
Table 02h, Register FAh: MAN_CNTL  
FACTORY DEFAULT:  
READ ACCESS  
00h  
PW2  
WRITE ACCESS  
PW2 and (Bias-En = 1)  
MEMORY TYPE:  
Volatile  
FAh RESERVED  
bit7  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
MAN_CLK  
bit0  
When BIAS-EN (Table 02h, Register 80h) is written to zero, bit zero of this byte will control the updates of the MAN IBIAS value to  
the BIAS output. The values of MAN IBIAS should be written with a separate write command. Setting bit zero to a 1 will clock the  
MAN IBIAS value to the output DAC for control of I  
.
BIAS  
1.  
2.  
3.  
Write the MAN IBIAS value with a write command.  
Set the MAN_CLK bit to a 1 with a separate write command.  
Clear the MAN_CLK bit to a 0 with a separate write command.  
Table 02h, Register FBh to FCh: BIAS DAC  
FACTORY DEFAULT:  
READ ACCESS  
00 00h  
PW2  
N/A  
WRITE ACCESS  
MEMORY TYPE:  
Nonvolatile (SEE)  
212  
25  
211  
24  
210  
23  
29  
22  
28  
21  
27  
20  
FBh  
0
27  
0
26  
FCh  
bit7  
bit0  
The digital value indicating the DAC value used for I  
output.  
BIAS  
Table 02h, Register FDh to FFh: Reserved  
FACTORY DEFAULT:  
READ ACCESS  
WRITE ACCESS  
PW2  
N/A  
MEMORY TYPE:  
FDh  
FEh  
FFh  
0
0
0
0
X
0
0
X
0
0
X
0
0
X
0
0
X
0
0
X
0
X
X
X
bit7  
bit0  
These registers are reserved.  
____________________________________________________________________ 63  
PON Triplexer Control and  
Monitoring Circuit  
Table 03h Register Descriptions  
Table 03h, Register 80h to FFh: PW2 EEPROM  
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2  
PW2  
WRITE ACCESS  
MEMORY TYPE:  
Nonvolatile (EE)  
80h-FFh  
EE  
bit7  
PW2 protected EEPROM.  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
bit0  
Table 04h Register Descriptions  
Table 04h, Register 80h to C7h: MOD LUT  
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2  
PW2  
WRITE ACCESS  
MEMORY TYPE:  
Nonvolatile (EE)  
80h-C7h  
27  
bit7  
26  
25  
24  
23  
22  
21  
20  
bit0  
The digital value for the modulation DAC output.  
The Modulation LUT is a set of registers assigned to hold the temperature profile for the modulation DAC. The values in this table  
combined with the MOD bits in the MOD Ranging register (Table 02h, Register 8Bh) determine the set point for the modulation  
voltage. The temperature measurement is used to index the LUT (T INDEX, Table 02h, Register 81h) in 2°C increments from -40°C  
to +102°C, starting at 80h in Table 04h. Register 80h defines the -40°C to -38°C MOD output, register 81h defines -38°C to -36°C  
MOD output, and so on. Values recalled from this EEPROM memory table are written into the MOD_DAC (Table 02h, Register 82h)  
location that holds the value until the next temperature conversion. The part can be placed into a manual mode (MOD-EN bit, Table  
02h, Register 80h), where MOD_DAC is directly controlled for calibration. If the temperature compensation functionality is not  
required, then program the entire Table 04h to the desired modulation setting.  
64  
____________________________________________________________________  
PON Triplexer Control and  
Monitoring Circuit  
Table 05h Register Descriptions  
Table 05h, Register 80h to A3h: APC Tracking Error LUT (APC REF)  
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2  
PW2  
WRITE ACCESS  
MEMORY TYPE:  
Nonvolatile (EE)  
80h-A3h  
27  
bit7  
26  
25  
24  
23  
22  
21  
20  
bit0  
The Tracking Error LUT is set of registers assigned to hold the temperature profile for the APC reference DAC. The values in this  
table combined with the APC bits in the Comp Ranging register (Table 02h, Register 8Dh) determine the set point for the APC loop.  
The temperature measurement is used to index the LUT (T INDEX, Table 02h, Register 81h) in 4°C increments from -40°C to  
+100°C, starting at register 80h in Table 05h. Register 80h defines the -40°C to -36°C APC reference value, register 81h defines  
-36°C to -32°C APC reference value, and so on. Values recalled from this EEPROM memory table are written into the APC DAC  
(Table 02h, Register 83h) location that holds the value until the next temperature conversion. The part can be placed into a manual  
mode (APC-EN bit, Table 02h, Register 80h), where APC DAC can be directly controlled for calibration. If tracking error  
temperature compensation is not required by the application, program the entire LUT to the desired APC set point.  
Table 05h, Register A4h to A7h: Reserved  
FACTORY DEFAULT:  
READ ACCESS  
00h  
PW2  
PW2  
WRITE ACCESS  
MEMORY TYPE:  
Nonvolatile (SEE)  
These registers are reserved.  
____________________________________________________________________ 65  
PON Triplexer Control and  
Monitoring Circuit  
Table 06h Register Descriptions  
Table 06h, Register 80h to 9Fh: M4DAC LUT  
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2  
PW2  
WRITE ACCESS  
MEMORY TYPE:  
Nonvolatile (EE)  
80h-9Fh  
27  
bit7  
26  
25  
24  
23  
22  
21  
20  
bit0  
The M4DAC LUT is set of registers assigned to hold the voltage profile for the M4DAC. The values in this table determine the set  
point for the M4DAC. The MON4 voltage measurement is used to index the LUT (Vindex, Table 02h, Register 84h), starting at  
register 80h in Table 06h. Values recalled from this EEPROM memory table are written into the M4DAC (Table 02h, Register 85h)  
location that holds the value until the next MON4 voltage conversion. The part can be placed into a manual mode (M4DAC-EN bit,  
Table 02h, Register 80h), where M4DAC is directly controlled for calibration. If voltage compensation is not required by the  
application, program the entire LUT to the desired M4DAC set point.  
Auxiliary Memory A0h Register Descriptions  
Auxiliary Memory A0h, Register 00h to 7fh: EEPROM  
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2  
PW2  
WRITE ACCESS  
MEMORY TYPE:  
Nonvolatile (EE)  
00h-7Fh  
EE  
bit7  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
bit0  
EEPROM  
Package Information  
For the latest package outline information, go to  
www.maxim-ic.com/DallasPackInfo.  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
66 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2007 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  
is a registered trademark of Dallas Semiconductor Corporation.  
Springer  

相关型号:

DS1865T+TR

PON Triplexer Control and Monitoring Circuit
MAXIM

DS1865_09

PON Triplexer Control and Monitoring Circuit
MAXIM

DS1866

Log Trimmer Potentiometer
DALLAS

DS1866+

Digital Potentiometer, 1 Func, PDIP8, 0.300 INCH, DIP-8
MAXIM

DS1866N

Interface IC
ETC

DS1866S

Interface IC
ETC

DS1866SN

Interface IC
ETC

DS1866Z

Log Trimmer Potentiometer
DALLAS

DS1866Z

Digital Potentiometer, 1 Func, PDSO8, 0.150 INCH, SOIC-8
MAXIM

DS1866Z+T&R

Digital Potentiometer, 1 Func, PDSO8, 0.150 INCH, SOIC-8
MAXIM

DS1866ZN

Interface IC
ETC

DS1867

Dual Digital Potentiometer with EEPROM
DALLAS