DS2070W-100# [MAXIM]

Non-Volatile SRAM, 2MX8, 100ns, CMOS, PBGA256, 27 X 27 MM, ROHS COMPLIANT, PLASTIC, BGA-256;
DS2070W-100#
型号: DS2070W-100#
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Non-Volatile SRAM, 2MX8, 100ns, CMOS, PBGA256, 27 X 27 MM, ROHS COMPLIANT, PLASTIC, BGA-256

静态存储器
文件: 总12页 (文件大小:218K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Rev 0; 8/06  
3.3V Single-Piece 16Mb  
Nonvolatile SRAM  
General Description  
Features  
Single-Piece, Reflowable, (27mm)2 PBGA Package  
The DS2070W is a 16Mb reflowable nonvolatile (NV)  
SRAM, which consists of a static RAM (SRAM), an NV  
controller, and an internal rechargeable manganese  
lithium (ML) battery. These components are encased in  
a surface-mount module with a 256-ball BGA footprint.  
Footprint  
Internal ML Battery and Charger  
Unconditionally Write-Protects SRAM when V  
CC  
is Out-of-Tolerance  
Whenever V  
is applied to the module, it recharges the  
CC  
Automatically Switches to Battery Supply when  
Power Failures Occur  
ML battery, powers the SRAM from the external power  
source, and allows the contents of the SRAM to be mod-  
V
CC  
ified. When V  
is powered down or out-of-tolerance,  
CC  
Internal Power-Supply Monitor Detects Power Fail  
Below Nominal V (3.3V)  
the controller write-protects the SRAM’s contents and  
powers the SRAM from the battery. The DS2070W also  
contains a power-supply monitor output, RST, which can  
be used as a CPU supervisor for a microprocessor.  
CC  
Reset Output can be Used as a CPU Supervisor  
for a Microprocessor  
Industrial Temperature Range (-40 C to +85 C)  
UL Recognized  
Applications  
RAID Systems and Servers  
Industrial Controllers  
Data-Acquisition Systems  
Gaming  
POS Terminals  
Routers/Switches  
Fire Alarms  
PLC  
Pin Configuration appears at end of data sheet.  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +85°C  
PIN-PACKAGE  
SPEED (ns)  
SUPPLY TOLERANCE  
2
DS2070W-100#  
256 Ball (27mm) BGA Module  
100  
3.3V 0.3V  
#Denotes a RoHS-compliant device that may include lead that is exempt under the RoHS requirements.  
Typical Operating Circuit  
(CE)  
(WR)  
(RD)  
CE  
WE  
OE  
DS2070W  
2048k x 8  
NV SRAM  
MICROPROCESSOR  
OR DSP  
8 BITS  
DQ0–DQ7  
DATA  
21 BITS  
ADDRESS  
(INT)  
A0–A20  
RST  
______________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
3.3V Single-Piece 16Mb  
Nonvolatile SRAM  
ABSOLUTE MAXIMUM RATINGS  
Voltage on Any Pin Relative to Ground .................-0.3V to +4.6V  
Storage Temperature Range...............................-40°C to +85°C  
Operating Temperature Range ...........................-40°C to +85°C  
Soldering Temperature .....................See IPC/JEDEC J-STD-020  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
RECOMMENDED OPERATING CONDITIONS  
(T = -40 C to +85 C.)  
A
PARAMETER  
Supply Voltage  
Input Logic 1  
SYMBOL  
CONDITIONS  
MIN  
3.0  
2.2  
0
TYP  
MAX  
UNITS  
V
3.3  
3.6  
V
V
V
CC  
V
V
CC  
IH  
Input Logic 0  
V
0.4  
IL  
DC ELECTRICAL CHARACTERISTICS  
(V  
= 3.3V 0.3Vꢀ T = -40 C to +85 C.)  
A
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
-1.0  
-1.0  
-1.0  
2.0  
TYP  
MAX  
+1.0  
+1.0  
UNITS  
µA  
Input Leakage Current  
I/O Leakage Current  
Output-Current High  
Output-Current Low  
Output-Current Low RST  
I
IL  
I
CE = V  
At 2.4V  
At 0.4V  
µA  
IO  
CC  
I
mA  
OH  
I
mA  
OL  
I
RST  
At 0.4V (Note 1)  
10.0  
mA  
OL  
I
I
CE = 2.2V  
0.5  
0.2  
7
5
CCS1  
CCS2  
Standby Current  
mA  
CE = V - 0.2V  
CC  
Operating Current  
I
t
= 200nsꢀ outputs open  
50  
3.0  
mA  
V
CCO1  
RC  
Write-Protection Voltage  
V
2.8  
2.9  
TP  
CAPACITANCE  
(T = +25 C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
7
MAX  
UNITS  
pF  
Input Capacitance  
C
Not tested  
Not tested  
IN  
Input/Output Capacitance  
C
7
pF  
OUT  
AC ELECTRICAL CHARACTERISTICS  
(V  
= 3.3V 0.3Vꢀ T = -40 C to +85 C.)  
A
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
100  
MAX  
UNITS  
ns  
t
Read Cycle Time  
Access Time  
RC  
t
100  
50  
ns  
ACC  
t
OE to Output Valid  
CE to Output Valid  
ns  
OE  
t
100  
ns  
CO  
2
_____________________________________________________________________  
3.3V Single-Piece 16Mb  
Nonvolatile SRAM  
AC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3.3V 0.3Vꢀ T = -40 C to +85 C.)  
A
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
MAX  
UNITS  
t
OE or CE to Output Active  
(Note 2)  
(Note 2)  
5
ns  
COE  
Output High Impedance from  
Deselection  
t
35  
ns  
OD  
OH  
t
t
Output Hold from Address Change  
Write Cycle Time  
5
100  
75  
0
ns  
ns  
ns  
ns  
WC  
t
Write Pulse Width  
(Note 3)  
WP  
AW  
t
Address Setup Time  
t
t
(Note 4)  
(Note 5)  
(Note 2)  
(Note 2)  
(Note 6)  
(Note 4)  
(Note 5)  
5
WR1  
WR2  
Write Recovery Time  
ns  
20  
t
Output High Impedance from WE  
Output Active from WE  
Data Setup Time  
35  
ns  
ns  
ns  
ODW  
t
5
40  
0
OEW  
t
DS  
t
DH1  
DH2  
Data Hold Time  
ns  
t
20  
POWER-DOWN/POWER-UP TIMING  
(T = -40 C to +85 C.)  
A
SYMBOL  
PARAMETER  
Fail Detect to CE and WE Inactive  
CONDITIONS  
(Note 7)  
MIN  
TYP  
MAX  
UNITS  
µs  
V
V
V
V
V
V
V
t
1.5  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
PD  
Slew from V to 0V  
t
150  
150  
µs  
TP  
F
Slew from 0V to V  
t
R
µs  
TP  
Valid to CE and WE Inactive  
Valid to End of Write Protection  
Fail Detect to RST Active  
Valid to RST Inactive  
t
2
ms  
ms  
µs  
PU  
t
t
t
125  
3.0  
525  
REC  
RPD  
RPU  
(Note 1)  
(Note 1)  
225  
350  
ms  
DATA RETENTION  
(T = +25 C.)  
A
SYMBOL  
PARAMETER  
CONDITIONS  
(Note 8)  
MIN  
TYP  
MAX  
UNITS  
Expected Data-Retention Time (Per Charge)  
t
2
3
years  
DR  
AC TEST CONDITIONS  
Input Pulse Levels:  
V
= 0.0Vꢀ V = 3.0V  
IH  
IL  
Input Pulse Rise and Fall Times:  
5ns  
Input and Output Timing Reference Level: 1.5V  
Output Load: 1 TTL Gate + C (100pF) including scope and jig  
L
_____________________________________________________________________  
3
3.3V Single-Piece 16Mb  
Nonvolatile SRAM  
Read Cycle  
t
RC  
V
V
V
V
IH  
IH  
IH  
ADDRESSES  
V
V
IL  
IL  
IL  
t
t
OH  
OD  
t
ACC  
V
IH  
V
IH  
t
CE  
OE  
CO  
V
IL  
V
t
OE  
IH  
V
IH  
V
IL  
t
t
OD  
COE  
t
COE  
V
V
V
OH  
OH  
OUTPUT  
DATA VALID  
D
OUT  
V
OL  
OL  
(SEE NOTE 9.)  
4
_____________________________________________________________________  
3.3V Single-Piece 16Mb  
Nonvolatile SRAM  
Write Cycle 1  
t
WC  
V
V
V
V
IH  
IL  
IH  
IH  
ADDRESSES  
V
IL  
V
IL  
t
AW  
CE  
V
IL  
V
IL  
t
t
WP  
WR1  
WE  
V
IH  
V
IH  
V
IL  
V
IL  
t
OEW  
t
ODW  
HIGH  
IMPEDANCE  
D
OUT  
t
DS  
t
DH1  
V
IH  
V
IH  
D
IN  
DATA IN STABLE  
V
IL  
V
IL  
(SEE NOTES 2, 3, 4, 6, 1013.)  
Write Cycle 2  
t
WC  
V
IH  
V
V
V
V
IL  
IH  
IH  
ADDRESSES  
CE  
V
IL  
IL  
t
t
AW  
t
WP  
WR2  
V
V
IH  
IH  
V
V
V
IL  
IL  
V
IL  
WE  
V
IL  
IL  
t
t
ODW  
COE  
D
OUT  
t
t
DS  
DH2  
V
IH  
V
IH  
D
IN  
DATA IN STABLE  
V
IL  
V
IL  
(SEE NOTES 2, 3, 5, 6, 1013.)  
_____________________________________________________________________  
5
3.3V Single-Piece 16Mb  
Nonvolatile SRAM  
Power-Down/Power-Up Condition  
V
CC  
V
TP  
t
DR  
~2.5V  
t
F
t
R
t
REC  
t
t
PU  
PD  
SLEWS WITH  
V
CC  
CE,  
WE  
V
IH  
BACKUP CURRENT  
SUPPLIED FROM  
LITHIUM BATTERY  
t
t
RPU  
RPD  
RST  
V
V
OL  
OL  
(SEE NOTES 1, 7.)  
Note 1: RST is an open-drain output and cannot source current. An external pullup resistor should be connected to this pin to real-  
ize a logic-high level.  
Note 2: These parameters are sampled with a 5pF load and are not 100% tested.  
Note 3:  
t
is specified as the logical AND of CE and WE. t  
is measured from the latter of CE or WE going low to the earlier of  
WP  
WP  
CE or WE going high.  
Note 4:  
Note 5:  
Note 6:  
t
t
t
and t  
and t  
are measured from WE going high.  
are measured from CE going high.  
WR1  
WR2  
DH1  
DH2  
is measured from the earlier of CE or WE going high.  
DS  
Note 7: In a power-down conditionꢀ the voltage on any pin cannot exceed the voltage on V  
.
CC  
Note 8: The expected t is defined as accumulative time in the absence of V  
starting from the time power is first applied by the  
DR  
CC  
user. Minimum expected data-retention time is based on a maximum of two +230°C convection solder reflow exposuresꢀ  
followed by a fully charged cell. Full charge occurs with the initial application of V for a minimum of 96 hours. This para-  
CC  
meter is assured by component selectionꢀ process controlꢀ and design. It is not measured directly in production testing.  
Note 9: WE is high for a read cycle.  
Note 10: OE = V or V . If OE = V during write cycleꢀ the output buffers remain in a high-impedance state.  
IH  
IL  
IH  
Note 11: If the CE low transition occurs simultaneously with or later than the WE low transitionꢀ the output buffers remain in a high-  
impedance state during this period.  
Note 12: If the CE high transition occurs prior to or simultaneously with the WE high transitionꢀ the output buffers remain in a high-  
impedance state during this period.  
Note 13: If WE is low or the WE low transition occurs prior to or simultaneously with the CE low transitionꢀ the output buffers remain  
in a high-impedance state during this period.  
Note 14: DS2070W BGA modules are recognized by Underwriters Laboratory (UL) under file E99151.  
6
_____________________________________________________________________  
3.3V Single-Piece 16Mb  
Nonvolatile SRAM  
Typical Operating Characteristics  
(V  
= +3.3Vꢀ T = +25 Cꢀ unless otherwise noted.)  
A
CC  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs. OPERATING FREQUENCY  
BATTERY CHARGER CURRENT  
vs. BATTERY VOLTAGE  
8
7
6
5
4
3
2
1
0
12  
10  
8
1000  
900  
800  
700  
600  
500  
V
V
= CE = 3.3V,  
T
= +25 C  
V
= CE = 3.3V  
CC  
CC  
A
= V  
,
BAT  
CHARGE  
OSC = ON  
5MHz CE-ACTIVATED  
50% DUTY CYCLE  
1MHz CE-ACTIVATED  
50% DUTY CYCLE  
6
5MHz ADDRESS-  
ACTIVATED  
100% DUTY CYCLE  
1MHz ADDRESS-  
ACTIVATED  
100% DUTY CYCLE  
4
2
V
CHARGE  
0
3.0  
3.1  
3.2  
3.3  
(V)  
3.4  
3.5  
3.6  
85  
5
3.0  
3.1  
3.2  
3.3  
(V)  
3.4  
3.5  
3.6  
0
0.2  
DELTA V BELOW V  
CHARGE  
0.4  
0.6  
0.8  
(V)  
1.0  
V
V
CC  
CC  
V
PERCENT CHANGE  
vs. TEMPERATURE  
CHARGE  
V
TP  
vs. TEMPERATURE  
DQ V vs. DQ I  
OH OH  
1.0  
0.5  
0
3.00  
2.95  
2.90  
2.85  
2.80  
3.5  
3.3  
3.1  
2.9  
2.7  
2.5  
V
V
= 3.3V,  
CC  
V
= 3.3V  
CC  
= V  
BAT  
CHARGE  
-0.5  
-1.0  
-40  
-15  
10  
35  
60  
-40  
-15  
10  
35  
60  
85  
-5  
-4  
-3  
-2  
(mA)  
-1  
0
TEMPERATURE ( C)  
TEMPERATURE ( C)  
I
OH  
RST OUTPUT-VOLTAGE LOW  
vs. OUTPUT-CURRENT LOW  
RST VOLTAGE  
vs. V DURING POWER-UP  
DQ V vs. DQ I  
CC  
OL  
OL  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.4  
0.3  
0.2  
0.1  
0
T
= +25 C  
V
= 2.8V  
A
V
= 3.3V  
CC  
CC  
0
5
10  
15  
20  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
POWER-UP (V)  
0
1
2
I
3
4
I
(mA)  
V
CC  
(mA)  
OL  
OL  
_____________________________________________________________________  
7
3.3V Single-Piece 16Mb  
Nonvolatile SRAM  
Pin Description  
BALLS  
A1ꢀ A2ꢀ A3ꢀ A4  
NAME  
GND  
N.C.  
A15  
DESCRIPTION  
Ground  
BALLS  
NAME  
A5  
DESCRIPTION  
Address Input 5  
Address Input 4  
Address Input 3  
Address Input 2  
Address Input 1  
Address Input 0  
Ground  
N17ꢀ N18ꢀ N19ꢀ N20  
P17ꢀ P18ꢀ P19ꢀ P20  
R17ꢀ R18ꢀ R19ꢀ R20  
T17ꢀ T18ꢀ T19ꢀ T20  
U17ꢀ U18ꢀ U19ꢀ U20  
V17ꢀ V18ꢀ V19ꢀ V20  
W17ꢀ W18ꢀ W19ꢀ W20  
Y17ꢀ Y18ꢀ Y19ꢀ Y20  
A5ꢀ B5ꢀ C5ꢀ D5  
B1ꢀ B2ꢀ B3ꢀ B4  
No Connection  
A4  
C1ꢀ C2ꢀ C3ꢀ C4  
D1ꢀ D2ꢀ D3ꢀ D4  
E1ꢀ E2ꢀ E3ꢀ E4  
Address Input 15  
Address Input 16  
Open-Drain Reset Output  
Supply Voltage  
A3  
A16  
A2  
RST  
A1  
F1ꢀ F2ꢀ F3ꢀ F4  
V
A0  
CC  
G1ꢀ G2ꢀ G3ꢀ G4  
H1ꢀ H2ꢀ H3ꢀ H4  
J1ꢀ J2ꢀ J3ꢀ J4  
WE  
OE  
Write-Enable Input  
Output-Enable Input  
Chip-Enable Input  
Data Input/Output 7  
Data Input/Output 6  
Data Input/Output 5  
Data Input/Output 4  
Data Input/Output 3  
Data Input/Output 2  
Data Input/Output 1  
Data Input/Output 0  
Ground  
GND  
GND  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
A19  
A20  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
Ground  
CE  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
Address Input 19  
Address Input 20  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
No Connection  
K1ꢀ K2ꢀ K3ꢀ K4  
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
DQ2  
DQ1  
DQ0  
GND  
GND  
GND  
GND  
A18  
A17  
A14  
A13  
A12  
A11  
A10  
A9  
A6ꢀ B6ꢀ C6ꢀ D6  
L1ꢀ L2ꢀ L3ꢀ L4  
A7ꢀ B7ꢀ C7ꢀ D7  
M1ꢀ M2ꢀ M3ꢀ M4  
N1ꢀ N2ꢀ N3ꢀ N4  
P1ꢀ P2ꢀ P3ꢀ P4  
A8ꢀ B8ꢀ C8ꢀ D8  
A9ꢀ B9ꢀ C9ꢀ D9  
A10ꢀ B10ꢀ C10ꢀ D10  
A11ꢀ B11ꢀ C11ꢀ D11  
A12ꢀ B12ꢀ C12ꢀ D12  
A13ꢀ B13ꢀ C13ꢀ D13  
A14ꢀ B14ꢀ C14ꢀ D14  
A15ꢀ B15ꢀ C15ꢀ D15  
A16ꢀ B16ꢀ C16ꢀ D16  
U5ꢀ V5ꢀ W5ꢀ Y5  
R1ꢀ R2ꢀ R3ꢀ R4  
T1ꢀ T2ꢀ T3ꢀ T4  
U1ꢀ U2ꢀ U3ꢀ U4  
V1ꢀ V2ꢀ V3ꢀ V4  
W1ꢀ W2ꢀ W3ꢀ W4  
Y1ꢀ Y2ꢀ Y3ꢀ Y4  
Ground  
Ground  
A17ꢀ A18ꢀ A19ꢀ A20  
B17ꢀ B18ꢀ B19ꢀ B20  
C17ꢀ C18ꢀ C19ꢀ C20  
D17ꢀ D18ꢀ D19ꢀ D20  
E17ꢀ E18ꢀ E19ꢀ E20  
F17ꢀ F18ꢀ F19ꢀ F20  
G17ꢀ G18ꢀ G19ꢀ G20  
H17ꢀ H18ꢀ H19ꢀ H20  
J17ꢀ J18ꢀ J19ꢀ J20  
K17ꢀ K18ꢀ K19ꢀ K20  
L17ꢀ L18ꢀ L19ꢀ L20  
M17ꢀ M18ꢀ M19ꢀ M20  
Ground  
Address Input 18  
Address Input 17  
Address Input 14  
Address Input 13  
Address Input 12  
Address Input 11  
Address Input 10  
Address Input 9  
Address Input 8  
Address Input 7  
Address Input 6  
U6ꢀ V6ꢀ W6ꢀ Y6  
U7ꢀ V7ꢀ W7ꢀ Y7  
U8ꢀ V8ꢀ W8ꢀ Y8  
U9ꢀ V9ꢀ W9ꢀ Y9  
U10ꢀ V10ꢀ W10ꢀ Y10  
U11ꢀ V11ꢀ W11ꢀ Y11  
U12ꢀ V12ꢀ W12ꢀ Y12  
U13ꢀ V13ꢀ W13ꢀ Y13  
U14ꢀ V14ꢀ W14ꢀ Y14  
U15ꢀ V15ꢀ W15ꢀ Y15  
U16ꢀ V16ꢀ W16ꢀ Y16  
A8  
A7  
A6  
8
_____________________________________________________________________  
3.3V Single-Piece 16Mb  
Nonvolatile SRAM  
Functional Diagram  
CE  
RST  
DELAY TIMING  
CIRCUITRY  
V
REF  
TP  
UNINTERRUPTED  
POWER SUPPLY  
FOR THE SRAM  
CHARGER  
CURRENT-LIMITING  
RESISTOR  
V
CC  
V
CC  
CE  
OE  
WE  
SRAM  
DQ0DQ7  
V
SW  
REF  
REDUNDANT LOGIC  
REDUNDANT  
SERIES FET  
CURRENT-LIMITING  
ML  
RESISTOR  
BATTERY-CHARGING/SHORTING  
PROTECTION CIRCUITRY (UL RECOGNIZED)  
GND  
OE  
WE  
DS2070W  
A0A20  
The DS2070W assembly consists of a low-power SRAMꢀ  
an ML batteryꢀ and an NV controller with a battery charg-  
Detailed Description  
The DS2070W is a 16Mb (2048kb x 8 bits) fully staticꢀ NV  
memory similar in function and organization to the  
DS1270W NV SRAMꢀ but containing a rechargeable ML  
battery. The DS2070W NV SRAM constantly monitors  
2
erꢀ integrated on a standard 256-ballꢀ (27mm) BGA sub-  
strate. Unlike other surface-mount NV memory modules  
that require the battery to be removable for solderingꢀ the  
internal ML battery can tolerate exposure to convection  
reflow soldering temperatures allowing this single-piece  
component to be handled with standard BGA assembly  
techniques.  
V
CC  
for an out-of-tolerance condition. When such a con-  
dition occursꢀ the lithium energy source is automatically  
switched on and write protection is unconditionally  
enabled to prevent data corruption. There is no limit to  
the number of write cycles that can be executed and no  
additional support circuitry is required for microprocessor  
interfacing. This device can be used in place of SRAMꢀ  
EEPROMꢀ or flash components.  
The DS2070W also contains a power-supply monitor  
outputꢀ RSTꢀ which can be used as a CPU supervisor  
for a microprocessor.  
_____________________________________________________________________  
9
3.3V Single-Piece 16Mb  
Nonvolatile SRAM  
Memory Operation Truth Table  
WE  
CE  
0
OE  
0
MODE  
Read  
I
OUTPUTS  
Active  
CC  
1
Active  
Active  
1
0
1
Read  
High Impedance  
High Impedance  
High Impedance  
0
0
X
Write  
Active  
X
1
X
Standby  
Standby  
X = Don’t care.  
energy source to the RAM to retain data. During power-  
upꢀ when V rises above V ꢀ the power-switching  
Read Mode  
The DS2070W executes a read cycle whenever WE (write  
enable) is inactive (high) and CE (chip enable) is active  
(low). The unique address specified by the 21 address  
inputs (A0 to A20) defines which of the 2ꢀ097ꢀ152 bytes of  
data is to be accessed. Valid data will be available to the  
SW  
CC  
circuit connects external V  
to the RAM and discon-  
CC  
nects the lithium energy source. Normal RAM operation  
can resume after V exceeds V for a minimum  
CC  
TP  
duration of t  
.
REC  
eight data output drivers within t  
(access time) after  
ACC  
Battery Charging  
is greater than V ꢀ an internal regulator  
the last address input signal is stableꢀ providing that CE  
and OE (output enable) access times are also satisfied. If  
CE and OE access times are not satisfiedꢀ then data  
access must be measured from the later-occurring signal  
When V  
CC  
TP  
charges the battery. The UL-approved charger circuit  
includes short-circuit protection and a temperature-sta-  
bilized voltage reference for on-demand charging of  
the internal battery. Typical data-retention expectations  
of 3 years per charge cycle are achievable.  
(CE or OE) and the limiting parameter is either t  
for CE  
CO  
or t for OE, rather than address access.  
OE  
Write Mode  
A maximum of 96 hours of charging time is required to  
fully charge a depleted battery.  
The DS2070W executes a write cycle whenever the CE  
and WE signals are active (low) after address inputs  
are stable. The later-occurring falling edge of CE or WE  
will determine the start of the write cycle. The write  
cycle is terminated by the earlier rising edge of CE or  
WE. All address inputs must be kept valid throughout  
the write cycle. WE must return to the high state for a  
System Power Monitoring  
When the external V  
supply falls below the selected  
CC  
out-of-tolerance trip pointꢀ the output RST is forced  
active (low). Once activeꢀ the RST is held active until  
the V  
supply has fallen below that of the internal bat-  
CC  
minimum recovery time (t ) before another cycle can  
WR  
tery. On power-upꢀ the RST output is held active until  
be initiated. The OE control signal should be kept inac-  
tive (high) during write cycles to avoid bus contention.  
Howeverꢀ if the output drivers have been enabled (CE  
the external supply is greater than the selected trip  
point and one reset timeout period (t  
This is sufficiently longer than t  
SRAM is ready for access by the microprocessor.  
) has elapsed.  
RPU  
to ensure that the  
REC  
and OE active) then WE will disable the outputs in t  
ODW  
from its falling edge.  
Freshness Seal and Shipping  
The DS2070W is shipped from Dallas Semiconductor  
with the lithium battery electrically disconnectedꢀ guar-  
anteeing that no battery capacity has been consumed  
during transit or storage. As shippedꢀ the lithium battery  
is ~60% chargedꢀ and no preassembly charging oper-  
ations should be attempted.  
Data-Retention Mode  
The DS2070W provides full functional capability for V  
CC  
greater than 3.0V and write-protects by 2.8V. Data is  
maintained in the absence of V without additional  
CC  
support circuitry. The NV static RAM constantly moni-  
tors V . Should the supply voltage decayꢀ the NV  
CC  
SRAM automatically write-protects itself. All inputs  
When V  
is first applied at a level greater than V  
CC  
TP  
become dont careꢀ and all data outputs become high  
the lithium battery is enabled for backup operation. A  
96-hour initial battery charge time is recommended for  
new system installations.  
impedance. As V  
SW  
falls below approximately 2.5V  
CC  
(V )ꢀ the power-switching circuit connects the lithium  
10  
____________________________________________________________________  
3.3V Single-Piece 16Mb  
Nonvolatile SRAM  
Applications Information  
Recommended Reflow Temperature Profile  
Power-Supply Decoupling  
To achieve the best results when using the DS2070Wꢀ  
decouple the power supply with a 0.1µF capacitor. Use  
a high-qualityꢀ ceramic surface-mount capacitor if pos-  
sible. Surface-mount components minimize lead induc-  
tanceꢀ which improves performanceꢀ while ceramic  
capacitors have adequately high frequency response  
for decoupling applications.  
Sn-Pb EUTECTIC  
PROFILE FEATURE  
ASSEMBLY  
Average ramp-up rate  
3 C/second max  
(T to T )  
L
P
Preheat  
- Temperature min (T  
- Temperature max (T  
)
+100 C  
+150 C  
Smin  
)
Smax  
- Time (min to max) (t )  
60 to 120 seconds  
S
Using the Open-Drain RST Output  
The RST output is open drainꢀ and therefore requires a  
pullup resistor to realize a high logic output level. Pullup  
resistor values between 1k and 10k are typical.  
T
Smax  
to T  
L
- Ramp-up rate  
Time maintained above:  
Battery Charging/Lifetime  
The DS2070W charges an ML battery to maximum  
capacity in approximately 96 hours of operation when  
Temperature (T )  
+183 C  
60 to 150 seconds  
-
L
- Time (t )  
L
Peak temperature (T )  
+225 +0/-5 C  
P
V
is greater than V . Once the battery is chargedꢀ  
TP  
CC  
Time within 5 C of actual peak  
temperature (T )  
P
its lifetime depends primarily on the V  
duty cycle.  
CC  
10 to 30 seconds  
The DS2070W can maintain data from a singleꢀ initial  
charge for up to 3 years. Once rechargedꢀ this deep-  
discharge cycle can be repeated up to 20 timesꢀ pro-  
ducing a worst-case service life of 60 years. More  
typical duty cycles are of shorter durationꢀ enabling the  
DS2070W to be charged hundreds of timesꢀ therefore  
extending the service life well beyond 60 years.  
Ramp-down rate  
6 C/second max  
6 minutes max  
Time +25 C to peak temperature  
Note: All temperatures refer to top side of the package, mea-  
sured on the package body surface.  
Recommended Cleaning Procedures  
The DS2070W may be cleaned using aqueous-based  
cleaning solutions. No special precautions are needed  
when cleaning boards containing a DS2070W module.  
Removal of the topside label violates the environmen-  
tal integrity of the package and voids the warranty of  
the product.  
____________________________________________________________________ 11  
3.3V Single-Piece 16Mb  
Nonvolatile SRAM  
Pin Configuration  
TOP VIEW  
1
2
6
11  
15  
16  
17 18 19  
3
4
5
7
9
10  
13  
14  
20  
8
12  
GND  
A18  
A17  
A14  
A13  
A12  
A11  
A10  
A9  
GND  
A
B
A
B
N.C.  
A15  
A16  
RST  
C
D
E
C
D
E
V
CC  
F
F
WE  
OE  
G
H
G
H
CE  
J
J
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
DQ2  
DQ1  
DQ0  
GND  
GND  
GND  
A8  
A7  
K
L
K
L
DS2070W  
A6  
M
N
P
M
N
P
A5  
A4  
A3  
R
T
R
T
A2  
A1  
U
V
U
V
A0  
W
Y
W
Y
GND  
GND  
1
10  
11  
12  
14  
15  
16  
18  
20  
3
4
6
7
8
9
13  
17  
19  
2
5
Package Information  
For the latest package outline informationꢀ go to  
www.maxim-ic.com/DallasPackInfo.  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2006 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Productsꢀ Inc.  
is a registered trademark of Dallas Semiconductor Corporation.  
Springer  

相关型号:

DS21

power light source Luxeon Line
LUMILEDS

DS210

Analog IC
ETC

DS2101SV

Rectifier Diodes - Disc / Puk Devices
ETC

DS2101SV15

Rectifier Diode, 1 Phase, 1 Element, 7810A, 1500V V(RRM), Silicon, V, 2 PIN
DYNEX

DS2101SY

RECTIFIER DIODE
TRSYS

DS2101SY

Rectifier Diode
DYNEX

DS2101SY10

Rectifier Diode
DYNEX

DS2101SY11

Rectifier Diode
DYNEX

DS2101SY12

Rectifier Diode
DYNEX

DS2101SY13

Rectifier Diode
DYNEX

DS2101SY14

Rectifier Diode
DYNEX

DS2101SY15

Rectifier Diode
DYNEX