DS21349Q [MAXIM]

3.3V T1/J1 Line Interface Unit; 3.3V T1 / J1线路接口单元
DS21349Q
型号: DS21349Q
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

3.3V T1/J1 Line Interface Unit
3.3V T1 / J1线路接口单元

数字传输接口 电信集成电路 电信电路 PC
文件: 总32页 (文件大小:377K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DEMO KIT AVAILABLE  
DS21349  
3.3V T1/J1 Line Interface Unit  
www.maxim-ic.com  
GENERAL DESCRIPTION  
FEATURES  
The DS21349 is a fully integrated LIU for long-  
haul or short-haul T1 applications over twisted-  
pair installations. It interfaces to two twisted-pair  
lines—one pair for transmit and one pair for  
receive through an appropriate network  
interface. The device can be configured for  
control through software or hardware mode.  
Software control is accomplished over a serial  
port, in hardware mode; individual pin settings  
allow standalone operation. The device provides  
a precise, crystal-less jitter attenuator that can be  
placed in either the transmit or receive path.  
CꢀFully Integrated Line Interface Unit (LIU)  
CꢀPin Compatible with LevelOne LXT362  
CꢀSupports Both Long Haul and Short Haul  
CꢀCrystal-Less Jitter Attenuator  
CꢀJitter Attenuator Programmable for Transmit  
or Receive Path  
CꢀMeets ANSI T1.102, T1.403, T1.408, and  
AT&T 62411  
CꢀUsable Receive Sensitivity of 0dB to -36dB  
That Allows the Device to Operate on  
0.63mm (22AWG) Cables Up to 6k Feet in  
Length  
CꢀFive Line Build-Out Settings for Short-Haul  
Applications  
APPLICATIONS  
Routers  
CꢀFour CSU Filters from 0dB to -22.5dB  
CꢀTransmit/Receive Performance Monitors  
with Driver-Fail, Monitor-Open, and Loss-  
of-Signal Outputs  
Data Service Units (DSUs)  
Channel Service Units (CSUs)  
Muxes  
CꢀBipolar or NRZ Interface  
Switches  
CꢀProgrammable B8ZS Encoder/Decoder  
CꢀQRSS Generator/Detector  
Channel Banks  
T1/E1 Test Equipment  
CꢀLocal, Remote, and Analog Loopbacks  
CꢀGenerates and Detects In-Band Loop-Up and  
Loop-Down Codes  
PIN CONFIGURATION  
CꢀSerial Interface Provides Access to Control  
Registers  
TOP VIEW  
4
3 2 1 28 27 26  
ORDERING INFORMATION  
25  
24  
23  
22  
21  
20  
19  
5
6
PART  
TEMP RANGE  
PIN-PACKAGE  
7
DS21349Q  
0°C to +70°C  
28 PLCC  
28 PLCC  
8
DS21349  
9
DS21349QN  
-40°C to +85°C  
10  
11  
12 13 14 15 16 17 18  
PLCC  
Note: Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of any device  
may be simultaneously available through various sales channels. For information about device errata, click here: www.maxim-ic.com/errata.  
1 of 32  
REV: 010903  
DS21349  
TABLE OF CONTENTS  
1.  
2.  
3.  
4.  
5.  
DETAILED DESCRIPTION.................................................................................................4  
OPERATING MODES.........................................................................................................5  
INITIALIZATION AND RESET............................................................................................9  
REGISTER DEFINITIONS ..................................................................................................9  
TRANSMITTER...................................................................................................................15  
TRANSMIT DIGITAL DATA INTERFACE ...................................................................................15  
TRANSMIT MONITORING......................................................................................................15  
TRANSMIT IDLE MODE.........................................................................................................15  
TRANSMIT PULSE SHAPE ....................................................................................................15  
RECEIVER..........................................................................................................................15  
RECEIVE EQUALIZER ..........................................................................................................15  
RECEIVE DATA RECOVERY..................................................................................................15  
RECEIVE DIGITAL-DATA INTERFACE .....................................................................................16  
RECEIVE MONITOR MODE ...................................................................................................16  
JITTER ATTENUATION .....................................................................................................16  
HARDWARE MODE ...........................................................................................................16  
SOFTWARE MODE............................................................................................................17  
INTERRUPT HANDLING ........................................................................................................17  
DIAGNOSTIC MODE OPERATION....................................................................................19  
5.1  
5.2  
5.3  
5.4  
6.  
6.1  
6.2  
6.3  
6.4  
7.  
8.  
9.  
9.1  
10.  
10.1 LOOPBACK MODES.............................................................................................................20  
10.1.1 Local Loopback (LLB).................................................................................................................20  
10.1.2 Analog Loopback (ALB)..............................................................................................................20  
10.1.3 Remote Loopback (RLB)............................................................................................................20  
10.1.4 Network Loopback......................................................................................................................20  
10.1.5 Dual Loopback ...........................................................................................................................20  
10.2 INTERNAL PATTERN GENERATION AND DETECTION ...............................................................21  
10.2.1 Transmit Alarm-Indication Signal (TAIS).....................................................................................21  
10.2.2 Quasirandom Signal Source (QRSS) .........................................................................................21  
10.2.3 In-Band Network Loop-Up or Loop-Down Code Generator.........................................................22  
10.3 ERROR INSERTION AND DETECTION .....................................................................................22  
10.3.1 Bipolar Violation Insertion (INSBPV)...........................................................................................22  
10.3.2 Logic Error Insertion (INSLE)......................................................................................................22  
10.3.3 Logic Error Detection (QPD).......................................................................................................22  
10.3.4 Bipolar Violation Detection (BPV) ...............................................................................................22  
10.4 ALARM MONITORING...........................................................................................................23  
10.4.1 Receive-Carrier Loss (RCL) .......................................................................................................23  
10.4.2 Alarm-Indication-Signal Detection (AIS)......................................................................................23  
10.4.3 Driver-Fail Monitor-Open (DFMO) ..............................................................................................23  
10.4.4 Jitter Attenuator Limit Trip (JALT)...............................................................................................23  
10.5 OTHER DIAGNOSTIC REPORTS ............................................................................................23  
10.5.1 Receive Line-Attenuation Indication ...........................................................................................23  
11.  
NETWORK INTERFACE ....................................................................................................24  
DC CHARACTERISTICS....................................................................................................28  
PACKAGE INFORMATION................................................................................................32  
2 of 32  
12.  
13.  
DS21349  
LIST OF FIGURES  
Figure 1-1. Block Diagram....................................................................................................................................... 4  
Figure 2-1. Hardware Mode Pinout........................................................................................................................ 6  
Figure 2-2. Serial Port Mode Pinout....................................................................................................................... 6  
Figure 9-1. Serial Data Port Operation for Read Access.................................................................................. 18  
Figure 9-2. Serial Data Port Operation for Write Access.................................................................................. 18  
Figure 10-1. Loopbacks in the DS21349 Block Diagram.................................................................................. 21  
Figure 11-1. Basic Network Interface .................................................................................................................. 25  
Figure 11-2. T1 Transmit Pulse Template .......................................................................................................... 26  
Figure 11-3. Jitter Tolerance................................................................................................................................. 27  
Figure 11-4. Jitter Attenuation............................................................................................................................... 27  
Figure 12-1. Serial Bus Read Timing (MODE1 = 1).......................................................................................... 29  
Figure 12-2. Serial Bus Write Timing (MODE1 = 1).......................................................................................... 29  
Figure 12-3. AC Characteristics for Receive Side............................................................................................. 30  
Figure 12-4. AC Characteristics for Transmit Side............................................................................................ 31  
LIST OF TABLES  
Table 2-A. Operating Modes................................................................................................................................... 5  
Table 2-B. Control Pins for Hardware and Software Modes.............................................................................. 5  
Table 2-C. Signal Descriptions ............................................................................................................................... 7  
Table 4-A. Register Map.......................................................................................................................................... 9  
Table 4-B. Register Bit Positions............................................................................................................................ 9  
Table 4-C. Jitter Attenuator Selection.................................................................................................................. 10  
Table 4-D. Line Code and Interface Selection ................................................................................................... 10  
Table 4-E. Line Build-Out Selection..................................................................................................................... 10  
Table 4-F. Data Pattern Selection........................................................................................................................ 11  
Table 9-A. CLKE Pin Selection............................................................................................................................. 17  
Table 9-B. Control and Operation Mode Selection............................................................................................ 19  
Table 10-A. Diagnostic Modes.............................................................................................................................. 19  
Table 11-A. Specifications for Receive Transformer......................................................................................... 24  
Table 11-B. Specifications for Transmit Transformer........................................................................................ 24  
Table 11-C. Transformer Turns Ratio vs. Series Resistance .......................................................................... 24  
3 of 32  
DS21349  
1. DETAILED DESCRIPTION  
The DS21349 is a complete T1 line interface unit (LIU) for short-haul and long-haul applications.  
Receive sensitivity adjusts automatically to the incoming signal and can be limited to -18dB, -26dB, or  
-36dB. The device can generate the necessary DSX-1 line build-outs or CSU line build-outs of 0dB,  
-7.5dB, -15dB, and -22.5dB. The on-board crystal-less jitter attenuator requires a 1.544MHz reference  
clock. The jitter attenuator FIFO is selectable to either 32 bits or 128 bits in depth and can be placed in  
either the transmit or receive data paths. The DS21349 has diagnostic capabilities such as loopbacks and  
QRSS pattern generation and detection. The device can also generate and detect the in-band loop-up and  
loop-down codes specified in AT&T 62411. The device can be configured for control using a serial  
interface, or for hardware mode. The device fully meets all of the latest T1 specifications including ANSI  
T1.102-1999, ANSI T1.403-1999, ANSI T1.408, and AT&T 62411.  
Figure 1-1. Block Diagram  
VCO / PLL  
NLOOP  
RCL/QPD  
RCLK  
RPOS  
RNEG  
RRING  
RTIP  
TCLK  
TPOS  
TNEG  
TRING  
TTIP  
Power connections  
Hardware Interface  
Serial Interface  
4 of 32  
DS21349  
2. OPERATING MODES  
The DS21349 has several pins with multiple functions and names according to the selected operating  
mode. These operating modes are summarized in the tables below.  
Table 2-A. Operating Modes  
QRSS DISABLED  
QRSS ENABLED  
BIPOLAR NRZ  
PIN  
BIPOLAR  
NRZ  
1
2
MCLK  
TCLK  
3
TPOS  
TNEG  
RNEG  
RPOS  
TDATA  
INSBPV  
BPV  
INSLER  
INSBPV  
4
6
RNEG  
RPOS  
BPV  
7
RDATA  
RDATA  
8
RCLK  
TTIP  
13  
16  
19  
20  
TRING  
RTIP  
RRING  
Control pins are affected by serial port and hardware modes.  
Table 2-B. Control Pins for Hardware and Software Modes  
HARDWARE MODE  
SERIAL PORT MODE  
PIN  
NRZ  
QRSS  
NRZ  
QRSS  
5
9
MODE1  
MODE0  
JASEL  
MODE1  
MODE0  
N.C.  
11  
12  
23  
24  
25  
17  
18  
26  
27  
28  
RCL  
RCL/QPD  
RCL  
RCL/QPD  
L0  
L1  
INT  
SDI  
L2  
SDO  
L3  
N.C.  
NLOOP  
NLOOP  
CS  
RLB  
LLB  
TAIS  
NLB  
ALB  
SCLK  
CLKE  
QRSS  
5 of 32  
DS21349  
Figure 2-1. Hardware Mode Pinout  
L2  
25  
24  
23  
22  
21  
20  
19  
5
MODE1  
RNEG  
RPOS  
L1  
6
L0  
7
DS21349  
GND  
VDD  
RRING  
RTIP  
8
RCLK  
MODE0  
VSM  
9
10  
11  
JASEL  
Figure 2-2. Serial Port Mode Pinout  
SDO  
SDI  
25  
5
MODE1  
RNEG  
RPOS  
RCLK  
MODE0  
VSM  
24  
23  
22  
21  
20  
19  
6
INT  
7
GND  
VDD  
RRING  
RTIP  
DS21349  
8
9
10  
11  
N/C  
6 of 32  
DS21349  
Table 2-C. Signal Descriptions  
PIN  
NAME  
MCLK  
TCLK  
I/O  
FUNCTION  
Master Clock. A 1.544MHz clock source with TTL levels is applied at this pin. This  
clock is used internally for both clock/data recovery and for jitter attenuation.1  
Transmit Clock. A 1.544MHz primary clock. Used to clock data through the transmit  
side formatter. Can be sourced internally by MCLK or RCLK.  
Transmit Positive Data. Sampled on the falling edge of TCLK for data to be  
transmitted out onto the line.  
1
I
I
2
TPOS  
Transmit NRZ Data. Sampled on the falling edge of TCLK for data to be transmitted  
TDATA  
3
I
onto the line.  
Transmit Insert Logic Error. Rising edge on INSLER inserts a logic error into the  
outbound QRSS pattern. Sampled on falling edge of TCLK.  
INSLER  
Transmit Negative Data. Sampled on the falling edge of TCLK for data to be  
TNEG  
INSBPV  
MODE1  
transmitted out onto the line.  
4
5
I
Transmit Insert Bipolar Violation. INSBPV is sampled on the falling edge of TCLK.  
Rising edge inserts one BPV.  
Mode Select 1. Connect low to select hardware mode. Connect high to select serial  
port mode. See also MODE0.  
I2  
Receive Negative Data. Updated on the rising edge (CCR2.0 = 0) or the falling edge  
(CCR2.0 = 1) of RCLK with the bipolar data out of the line interface. Always valid  
on rising edge of RCLK in hardware mode.  
RNEG  
BPV  
6
O
Receive Bipolar Violation. Transitions high for one clock cycle marking an inbound  
bipolar violation. Valid on rising edge of RCLK.  
Receive Positive Data. Updated on the rising edge (CCR2.0 = 0) or the falling edge  
(CCR2.0 = 1) of RCLK with bipolar data out of the line interface. Always valid on  
rising edge of RCLK in hardware mode.  
RPOS  
7
8
O
O
Receive Data. RDATA is the NRZ output from the line interface. Set NRZE  
(CCR1.6) to a 1 for NRZ applications. In NRZ mode, data is output on RPOS while a  
received error causes a positive-going pulse synchronous with RCLK at RNEG  
(Section 6).  
RDATA  
RCLK  
Receive Clock. Buffered recovered clock from the line. Synchronous to MCLK in  
absence of signal at RTIP and RRING.  
Mode Select 0. Set high to disable all output pins (including the serial control port).  
Set low for normal operation. Useful in board level testing. See also MODE1.  
9
MODE0  
VSM  
I2  
I
10  
Voltage Supply Mode. Connect high for 3.3V operation. Has 10kpullup.  
Jitter Attenuator Select  
0 = Place the jitter attenuator on the transmit side  
1 = Place the jitter attenuator on the receive side  
Float = Disable jitter attenuator  
11  
JASEL  
I2  
Not used in software mode  
RCL  
Receive Carrier Loss. An output that toggles high during a receive carrier loss.  
QPD. Output high when QRSS detector is searching for QRSS data pattern. Output  
high for one-half clock cycle on bit error. Connect to external counter to count bit  
errors.  
12  
O
O
QPD  
13/  
16  
14  
15  
TTIP/  
Transmit Tip and Ring. Analog line driver outputs. These pins connect through a  
step-up transformer to the line (Section 5).  
TRING  
Ground for Transmitter Block  
Positive Supply. 3.3V ±5% for the transmitter block. See also VSM pin 10.  
VSS  
TVDD  
7 of 32  
DS21349  
PIN  
NAME  
I/O  
FUNCTION  
LBO3. LBO0 through LBO3 are used to select transmitter output pulse, and receiver  
gain.  
17  
L3  
I
Network Loopback Active. Output high when RLB is activated by in-band loop-up  
command present for 5 seconds. Output is reset when RLP is deactivated by in-band  
loop-down command present for 5 seconds. Activation of remote loopback through  
hardware pin 26 or control bit RLB releases the NLOOP output.  
Receive Tip and Ring. Analog inputs for clock recovery circuitry. These pins connect  
through a 1:1 transformer to the line (Section 6).  
18  
NLOOP  
O
19/  
20  
21  
22  
RTIP/  
RRING  
VDD  
I
Positive Supply. 3.3V ±5%. See also VSM pin 10.  
VSS  
Signal Ground  
LBO0. LBO0 through LBO3 are used to select transmitter output pulse, and receiver  
L0  
INT  
L1  
gain.  
23  
I/O  
INT. Used to alert the host when one or more bits are set in the status register.  
LBO1. LBO0 through LBO3 are used to select transmitter output pulse, and receiver  
gain.  
24  
I
Serial Data Input. Input for serial address and data stream. Sampled on rising of  
SCLK.  
SDI  
L2  
LBO2. LBO0 through LBO3 are used to select transmitter output pulse, and receiver  
gain.  
25  
26  
O
I2  
Serial Data Output. Updated on falling edge of SCLK if CLKE is connected high.  
Updated on rising edge of SCLK if CLKE is connected low. SDO is high-Z during  
write cycle or when CS is high.  
SDO  
RLB  
Remote Loopback. Used to invoke remote loopback. When held high, the transmitter  
inputs are ignored and inbound data received at RTIP and RRING is routed to the  
transmitter outputs, TTIP and TRING and transmitted at the inbound recovered clock  
rate.  
NLB  
Network Loopback. Enables network loopback detection when RLB floats.  
CS  
Chip Select. Must be low to read or write to the device. CS is an active-low signal.  
Local Loopback. Used to invoke local loopback. When held high, digital inputs  
TPOS and TNEG are looped back to RPOS and RNEG, through the jitter attenuator  
if enabled. Floating this input invokes analog loopback. The analog output signal at  
TTIP and TRING is routed to the receive inputs RTIP and RRING.  
LLB  
27  
28  
I2  
SCLK  
TAIS  
Serial Clock Input. Input clock to operate serial port. Max clock rate, 2.048MHz.  
Transmit AIS. Input high forces transmitter to output unframed all ones. Unavailable  
in remote loopback.  
QRSS. Floating this pin enables QRSS pattern generator and detector. Input low  
QRSS  
enables normal transmission of data.  
I2  
Clock Edge Select  
0 = Update RNEG/RPOS on falling edge of RCLK, SDO updated on rising edge of  
CLKE  
SCLK.  
1 = Update RNEG/RPOS on rising edge of RCLK, SDO updated on falling edge of  
SCLK.  
Note 1: G.703 requires an accuracy of ±50ppm for T1. TR62411 and ANSI specifications require an accuracy of ±32ppm for T1 interfaces.  
Note 2: Input pins have three operating modes.  
8 of 32  
DS21349  
3. INITIALIZATION AND RESET  
During power-up, all control registers are cleared, disabling the transmitter outputs. The device requires a  
master clock supplied to the MCLK input pin to operate the PLL. This master clock must be independent,  
free-running, and jitter free.  
A reset initializes the status and state machines for the RCL, AIS, NLOOP, and QRSS blocks. Under  
software control, setting the RESET bit (CR2.7) clears all registers. Allow up to 100ms for the receiver to  
recover from initialization.  
4. REGISTER DEFINITIONS  
The DS21349 contains eight registers for configuring the device and reading status. These are accessible  
using the serial port. Table 4-A lists the register names and addresses.  
Reading or writing to the internal registers requires writing one address/command byte prior to  
transferring register data. The first bit written (LSb) of the address/command byte specifies whether the  
access is a read (1) or a write (0). The next 6 bits identify the register address.  
The last bit (MSb) of the address/command byte is the burst mode bit. When the burst bit is enabled (set  
to 1) and a READ operation is performed, addresses 10h through 17h are read sequentially, starting at  
address 10h. And when the burst bit is enabled and a WRITE operation is performed, addresses 10h  
through 17h are written sequentially, starting at address 10h. Burst operation is stopped once address 17h  
is read. All data transfers are initiated by driving the CS input low. All data transfers are terminated if the  
CS input transitions high. Port control logic is disabled and SDO is tri-stated when CS is high.  
Table 4-A. Register Map  
REGISTER  
SYMBOL  
ADDRESS  
Control Register 1  
Control Register 2  
Control Register 3  
Interrupt Mask Register  
Transition Status Register  
Status Register  
CR1  
CR2  
CR3  
IMR  
TSR  
SR  
B010000  
B010001  
B010010  
B010011  
B010100  
B010101  
B010110  
B010111  
Information Register  
Control Register 4  
IR  
CR4  
Table 4-B. Register Bit Positions  
SYMBOL 7 (MSb)  
6
5
4
3
L3  
2
1
0 (LSb)  
L0  
CR1  
CR2  
CR3  
IMR  
TSR  
SR  
JASEL1  
RESET  
JA6HZ  
Z16D  
Z16D  
JASEL0 ENCENB  
UNIENB  
TAIS  
L2  
L1  
PAT1  
TPD  
JALT  
JALT  
PAT0  
ENLOOP  
ALB  
JA128  
AIS  
LLB  
RLB  
EQZMON20 EQZMON26  
LIRST  
NLOOP  
NLOOP  
NLOOP  
TSCD  
TAOZ  
RCL  
DFMO  
DFMO  
DFMO  
RL1  
B8ZSD  
B8ZSD  
RL0  
QRSS  
QRSS  
QRSS  
LUP  
AIS  
RCL  
AIS  
RCL  
IR  
CR4  
RL3  
RL2  
LDN  
LOTC  
XFMR1  
RCL2048 XFMR2  
Note: Set unused bits to 0 for normal operation.  
9 of 32  
 
DS21349  
CR1 (B010000): Control Register 1  
MSb  
LSb  
JASEL1 JASEL0  
ENCENB  
UNIENB  
L3  
L2  
L1  
L0  
SYMBOL  
POSITION  
FUNCTION  
JASEL1  
JASEL0  
ENCENB  
UNIENB  
L3  
CR1.7  
CR1.6  
CR1.5  
CR1.4  
CR1.3  
CR1.2  
CR1.1  
CR1.0  
Jitter attenuator select (Table 4-C)  
Jitter attenuator select (Table 4-C)  
B8ZS and NRZ control (Table 4-D)  
BPV and NRZ control (Table 4-D)  
Line build-out control (Table 4-E)  
Line build-out control (Table 4-E)  
Line build-out control (Table 4-E)  
Line build-out control (Table 4-E)  
L2  
L1  
L0  
Table 4-C. Jitter Attenuator Selection  
JASEL1  
JASEL0  
JITTER ATTENUATOR FUNCTION  
0
1
X
1
1
0
Transmit path  
Receive path  
Disabled  
Table 4-D. Line Code and Interface Selection  
UNIENB  
ENCENB  
LINE CODE  
INTERFACE  
0
1
X
0
0
1
AMI  
AMI  
B8ZS  
Bipolar  
NRZ  
NRZ  
Table 4-E. Line Build-Out Selection  
L3  
L2  
L1  
L0  
APPLICATION  
OUTPUT SIGNAL  
Rx GAIN (dB)  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
1
1
0
0
0
0
1
1
1
1
1
1
0
1
0
1
T1 Long Haul  
T1 Long Haul  
T1 Long Haul  
T1 Long Haul  
T1 Long Haul  
T1 Long Haul  
T1 Long Haul  
T1 Long Haul  
D4 Short Haul  
T1 Short Haul  
T1 Short Haul  
T1 Short Haul  
T1 Short Haul  
T1 Short Haul  
0dB  
36  
36  
36  
36  
26  
26  
26  
26  
18  
18  
18  
18  
18  
18  
-7.5dB  
-15dB  
-22.5dB  
0dB  
-7.5dB  
-15dB  
-22.5dB  
6V  
DSX-1 (0ft to 133ft)  
DSX-1 (133ft to 266ft)  
DSX-1 (266ft to 399ft)  
DSX-1 (399ft to 533ft)  
DSX-1 (533ft to 655ft)  
10 of 32  
 
 
 
DS21349  
CR2 (B010001): Control Register 2  
MSb  
LSb  
RESET  
PAT1  
PAT0  
TAIS  
ENLOOP  
ALB  
LLB  
RLB  
SYMBOL  
POSITION  
FUNCTION  
RESET  
PAT1  
PAT0  
CR2.7  
CR2.6  
CR2.5  
Resets device states and clears all registers.  
Selects output data pattern (Table 4-F).  
Selects output data pattern (Table 4-F).  
0 = Transmit data normally  
TAIS  
ENLOOP  
ALB  
CR2.4  
CR2.3  
CR2.2  
CR2.1  
CR2.0  
1 = Transmit unframed all ones  
0 = Disable in-band loop-code detection  
1 = Enable in-band loop-code detection  
0 = Disable analog loopback  
1 = Enable analog loopback  
0 = Disable local loopback  
LLB  
1 = Enable local loopback  
0 = Disable remote loopback  
RLB  
1 = Enable remote loopback  
Table 4-F. Data Pattern Selection  
PAT0  
PAT1  
DATA SOURCE  
0
0
1
1
0
1
0
1
TPOS/TNEG  
Transmit QRSS  
In-band loop-up 00001  
In-band loop-down 001  
CR3 (B010010): Control Register 3  
MSb  
LSb  
JA6HZ  
TPD  
EQZMON20 EQZMON26  
JA128  
LIRST TAOZ  
SYMBOL  
JA6HZ  
POSITION  
FUNCTION  
0 = Set bandwidth of jitter attenuator to 3Hz  
CR3.7  
1 = Set bandwidth of jitter attenuator to 6Hz; not available if  
JA128 = 1  
0 = Enable transmitter outputs  
TPD  
CR3.6  
CR3.5  
CR3.4  
1 = Disable transmitter outputs  
0 = Normal receiver operation  
EQZMON20  
1 = Add 20dB of resistive gain to inbound signal  
0 = Normal receiver operation  
EQZMON26  
JA128  
CR3.3  
CR3.2  
CR3.1  
CR3.0  
1 = Add 26dB of resistive gain to inbound signal  
0 = Jitter attenuator buffer depth = 32 bits  
1 = Jitter attenuator buffer depth = 128 bits  
0 = Normal operation  
LIRST  
1 = Reset the receive LIU state machine  
0 = Disable transmit alternate 1s and 0s  
1 = Enable transmit alternate 1s and 0s  
TAOZ  
11 of 32  
 
DS21349  
IMR (B010011): Interrupt Mask Register  
MSb  
LSb  
Z16D  
JALT  
DFMO  
B8ZSD  
QRSS  
AIS  
NLOOP  
RCL  
SYMBOL  
POSITION  
FUNCTION  
0 = Enable 16-zero detect interrupt  
Z16D  
IMR.7  
1 = Disable 16-zero detect interrupt  
0 = Enable jitter-attenuator limit-trip interrupt  
1 = Disable jitter-attenuator limit-trip interrupt  
0 = Enable driver-open interrupt  
1 = Disable driver-open interrupt  
0 = Enable B8ZS-detect interrupt  
1 = Disable B8ZS-detect interrupt  
0 = Enable QRSS interrupt  
JALT  
DFMO  
B8ZSD  
QRSS  
AIS  
IMR.6  
IMR.5  
IMR.4  
IMR.3  
IMR.2  
IMR.1  
IMR.0  
1 = Disable QRSS interrupt  
0 = Enable AIS interrupt  
1 = Disable AIS interrupt  
0 = Enable network-loopback interrupt  
1 = Disable network-loopback interrupt  
0 = Enable receive carrier-loss interrupt  
1 = Disable receive carrier-loss interrupt  
NLOOP  
RCL  
TSR (B010100): Transition Status Register  
MSb  
LSb  
Z16D  
JALT  
DFMO  
B8ZSD  
QRSS  
AIS  
NLOOP  
RCL  
SYMBOL  
POSITION  
FUNCTION  
Set when the receiver detects 16 consecutive 0s; cleared when  
Z16D  
TSR.7  
IMR.7 is cleared.  
Set when the jitter attenuator FIFO reaches to within 4 bits of its  
limit; cleared when IMR.6 is cleared.  
Set when SR.5 changes state; cleared when IMR.5 is cleared.  
JALT  
DFMO  
B8ZSD  
TSR.6  
TSR.5  
TSR.4  
Set when the receiver detects B8ZS codewords; cleared when  
IMR.4 is cleared.  
QRSS  
AIS  
NLOOP  
RCL  
TSR.3  
TSR.2  
TSR.1  
TSR.0  
Set when SR.3 changes state; cleared when IMR.3 is cleared.  
Set when SR.2 changes state; cleared when IMR.2 is cleared.  
Set when SR.1 changes state; cleared when IMR.1 is cleared.  
Set when SR.0 changes state; cleared when IMR.0 is cleared.  
12 of 32  
DS21349  
SR (B010101): Status Register  
MSb  
LSb  
DFMO  
QRSS  
AIS  
NLOOP  
RCL  
SYMBOL  
POSITION  
FUNCTION  
SR.7  
SR.6  
SR.5  
SR.4  
SR.3  
SR.2  
SR.1  
DFMO  
Set when transmitter detects open circuit.  
QRSS  
AIS  
Set when the QRSS pattern is present at the receiver.  
Set when the AIS pattern is present at the receiver.  
NLOOP  
Set when the in-band loop-up code is present at the receiver.  
Set when receiver has detected consecutive s set forth by CR4.2.  
Cleared when the receiver detects 14 1s in a window of 112 clock  
cycles.  
RCL  
SR.0  
IR (B010110): Information Register  
MSb  
LSb  
RL3  
RL2  
RL1  
RL0  
LUP  
LDN  
TSCD  
LOTC  
SYMBOL  
POSITION  
FUNCTION  
RL3  
RL2  
IR.7  
IR.6  
IR.5  
IR.4  
IR.3  
IR.2  
IR.1  
IR.0  
RL1  
RL0  
LUP  
LDN  
TSCD  
LOTC  
Set when in-band loop-up code is being received.  
Set when in-band loop-down code is being received.  
Set when transmitter detects a short circuit.  
Set when TCLK has not transitioned for approximately 5s.  
Receive Level Indication: RL0 is the LSB and RL3 is the MSB of a 4-bit nibble that is used to indicate the inbound  
signal strength. Convert the binary to decimal and multiply by -2.5dB. The result indicates the approximate  
attenuation seen at the receiver inputs.  
13 of 32  
DS21349  
CR4 (B010111): Control Register 4  
MSb  
LSb  
RCL2048 XFMR2  
FUNCTION  
XFMR1  
SYMBOL  
POSITION  
CR4.7  
CR4.6  
CR4.5  
CR4.4  
CR4.3  
0 = RCL threshold: 192 consecutive 0s  
RCL2048  
XFMR2  
XFMR1  
CR4.2  
CR4.1  
CR4.0  
1 = RCL threshold: 2048 consecutive 0s  
Set to 0 for use with standard transformers.  
Set to 1 for use with alternate transformers (Table 11-C)  
Set to 0 for use with standard transformers.  
Set to 1 for use with alternate transformers (Table 11-C)  
14 of 32  
DS21349  
5. TRANSMITTER  
5.1 Transmit Digital Data Interface  
Data is clocked into the device at the TCLK rate. In bipolar mode, TPOS and TNEG are the data inputs;  
in NRZ mode, TDATA is the data input. Input data can pass through either the jitter attenuator or the  
B8ZS encoder or both. In software mode, setting ENCENB enables B8ZS encoding. In hardware mode,  
floating the MODE1 pin enables B8ZS encoding. With B8ZS encoding enabled, the L0 through L3 inputs  
determine the coding and is listed in Table 4-E. TCLK supplies input synchronization. See Section 12 for  
the TCLK and MCLK timing requirements.  
5.2 Transmit Monitoring  
In software mode, the DFMO bit in the status register is set when an open circuit in the transmitter path is  
detected. A transition on this bit can provide an interrupt, and a transition sets the DFMO bit in the  
transition status register. Setting CDFMO in the interrupt mask register, leaving a 1 in that bit location  
masks the interrupt.  
5.3 Transmit Idle Mode  
Transmit idle mode allows multiple transceivers to be connected to a single line for redundant  
applications. When TCLK is not present, transmit idle mode becomes active, and TTIP and TRING  
change to high-impedance state. Remote loopback, dual loopback, TAIS, or detection of network loop-up  
code in the receive direction temporarily disable the high-impedance state.  
5.4 Transmit Pulse Shape  
As shown in Table 4-E, line build-out control inputs (L0 through L3) determine the transmit pulse shape.  
In software mode, these control inputs are located in control register 1; in hardware mode, these control  
inputs are the L0 through L3 pins.  
Shaped pulses meeting the various T1, DS1, and DSX-1 specifications are applied to the AMI line driver  
for transmission onto the line at TTIP and TRING. The transceiver produces DSX-1 pulses for short-haul  
T1 applications (settings from 0dB to 6dB of cable) and DS1 pulses for long-haul T1 applications  
(settings from 0dB to -22.5dB). Refer to Table 4-E for pulse mask specifications.  
6. RECEIVER  
A 1:1 transformer provides the interface between the twisted pair and receiver inputs RTIP and RRING.  
Recovered data is output at RPOS and RNEG (or RDATA in NRZ mode), and the recovered clock is  
output at RCLK. See Section 12 for receiver timing specifications.  
6.1 Receive Equalizer  
The receiver can apply up to 36dB of gain. Control of the equalizer is accomplished by the L0 through L3  
control inputs. These control signals are detailed in Table 4-E and determine the maximum gain that is  
applied. In software mode, these control signals are in Control Register 1; in hardware mode, these  
control inputs are the L0 through L3 pins. With L0 low, up to 36dB of gain can be applied; when L0 is  
high, 26dB can be applied in the gain limit to provide better noise immunity in shorter loop operations.  
6.2 Receive Data Recovery  
The clock and data recovery engine provides input jitter tolerance that exceeds the requirements of AT&T  
62411. Inbound signal is filtered, equalized, and over-sampled 16 times. Then it is applied to the B8ZS  
decoder if enabled.  
15 of 32  
DS21349  
6.3 Receive Digital-Data Interface  
Recovered data is routed to the RCL monitor. In software mode, data also goes through the alarm  
indication signal (AIS) monitor. The jitter attenuator can be enabled or disabled in the receive path or  
transmit path. Received data can be routed to the B8ZS decoder or bypassed. Finally, the device can send  
the digital data to the framer as either bipolar or NRZ data.  
6.4 Receive Monitor Mode  
The receive equalizer can be used in monitor-mode applications. Monitor-mode applications require  
20dB of resistive attenuation of the signal, plus an allowance for cable attenuation (less than 20dB). In  
software mode, setting CR3.4 (EQZMON20) enables the device to operate in monitor-mode applications  
that require 20dB of resistive attenuation of the signal. Setting CR3.3 (EQZMON26) enables the device  
to operate in monitor-mode applications that require 26dB of resistve attenuation. Setting both CR3.3 and  
CR3.4 enables the device to operate in monitor-mode applications that require 32dB of resistive  
attenuation. The monitor mode feature is not available in hardware mode.  
7. JITTER ATTENUATION  
The jitter attenuator only requires a jitter-free clock at 1.544MHz applied to the MCLK input. In  
hardware mode, the jitter attenuator is a 32-bit FIFO buffer. Pulling the JASEL pin high places the jitter  
attenuator in the receive path. Pulling the JASEL pin low places the jitter attenuator in the transmit path,  
floating the JASEL pin disables the jitter attenuator. In software mode, clearing CR1.6 (JASEL0) disables  
the jitter attenuator, setting CR1.6 enables the jitter attenuator. If enabled, clearing CR1.7 (JASEL1)  
places the jitter attenuator in the transmit path, setting CR1.7 places the jitter attenuator in the receive  
path. The jitter attenuator FIFO is 32 bits in length if CR3.2 (JA128) is cleared, 128 bits if set. The device  
clocks data in the jitter attenuator using TCLK if placed in the transmit path, and RCLK if placed in the  
receive path. Data is clocked out of the jitter attenuator using the dejittered clock produced by the internal  
PLL. When the jitter attenuator is within two bits of overflowing or underflowing, the jitter attenuator  
will adjust the output clock by one-eighth of a clock cycle. The jitter attenuator adds an average delay of  
16 bits if the buffer depth is 32 bits in length, 64 bits if the buffer depth is 128 bits in length. In the event  
of an RCL condition, if the jitter attenuator is in the receive path then RCLK is derived from MCLK.  
Transition Status register bit TSR.6 (JALT) indicates that the jitter attenuator has adjusted the output  
clock. This bit is latched, when set it remains set until the software reads the bit. The JALT can also  
produce a hardware interrupt.  
8. HARDWARE MODE  
The DS21349 operates in hardware mode when the MODE1 pin is pulled low or floated. In hardware  
mode, configuration of the device is under control of various input pins. RPOS, RNEG, and RDATA are  
valid on the rising edge of RCLK only. Some functions such as INT, clock edge select, and some  
diagnostic modes are not available.  
16 of 32  
DS21349  
9. SOFTWARE MODE  
The DS21349 operates in software mode when the MODE1 pin is pulled high. In software mode, a  
microprocessor controls the device and reads its status through the serial port, which provides access to  
the internal registers. The host processor can completely configure the device as well as get diagnostics  
and status reports through the serial port. In NRZ mode, bipolar violation insertions and logic error  
insertions are controlled by the BPV and INSLER pins. Similarly, the recovered clock, data, and BPV  
detection are available only at output pins. All other mode settings and diagnostic information are  
available through the serial port. Figure 9-1 and Figure 9-2 show the serial port data structure. The  
registers are accessible through a 16-bit word composed of an 8-bit command and address byte and a  
subsequent 8-bit data byte. Software mode allows control of the output timing. The CLKE pin determines  
when SDO is valid relative to SCLK and when receive data is valid relative to RCLK.  
9.1 Interrupt Handling  
In software mode, the DS21349 provides a latched interrupt output pin. When enabled, a change in any of  
the status register bits generates an interrupt. When an interrupt occurs, the INT output pin is driven low.  
The INT output pin structure is an open-drain only. Each device that shares the INT line requires an  
external pullup resistor. The interrupt is cleared when the interrupt condition no longer exists, and a 1 is  
written to the appropriate bit in the interrupt mask register. Leaving a 1 in any of the bits in the interrupt  
mask register masks that interrupt. Clearing that bit re-enables the interrupt.  
Table 9-A. CLKE Pin Selection  
CLKE PIN  
OUTPUT  
OUTPUT UPDATED ON  
RPOS  
RNEG  
Falling RCLK  
LOW  
RDATA  
SDO  
RPOS  
RNEG  
RDATA  
SDO  
Rising SCLK  
Rising RCLK  
Falling SCLK  
HIGH  
17 of 32  
DS21349  
Figure 9-1. Serial Data Port Operation for Read Access  
Read Access CLKE = 0  
SCLK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
CS  
SDI  
A1  
A2  
A3  
A4  
A5  
B
0
1
(lsb)  
(msb)  
SDO  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
(lsb)  
(msb)  
Read Access CLKE = 1  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
SCLK  
CS  
SDI  
A1  
A2  
A3  
A4  
A5  
0
B
1
(lsb)  
(msb)  
SDO  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
(msb)  
(lsb)  
Figure 9-2. Serial Data Port Operation for Write Access  
SCLK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
CS  
SDI  
DO  
D6  
A1  
A2  
A3  
A4  
A5  
0
B
D1  
D2  
D3  
D4  
D5  
D7  
(msb)  
0
(lsb)  
(msb)  
(lsb)  
WRITE ACCESS ENABLED  
SDO  
18 of 32  
DS21349  
Table 9-B. Control and Operation Mode Selection  
MODE1 MODE0 HARDWARE SOFTWARE NRZ BIPOLAR AMI B8ZS  
OUTPUTS  
DISABLED  
Low  
Low  
Low  
High  
Open  
Low  
On  
On  
On  
Off  
Off  
Off  
On  
On  
On  
Off  
Off  
Off  
On  
On  
On  
Off  
Off  
Off  
Off  
Off  
On  
X
On  
On  
Off  
X
Off  
Off  
On  
X
Off  
Off  
Off  
X
No  
Yes  
No  
Low  
High  
High  
High  
Open  
Open  
Open  
No  
High  
Open  
Low  
X
X
X
X
Yes  
No  
X
X
X
X
On  
On  
On  
Off  
Off  
Off  
Off  
Off  
Off  
On  
On  
On  
No  
High  
Open  
Yes  
No  
10. DIAGNOSTIC MODE OPERATION  
The DS21349 offers several diagnostic modes as listed in Table 10-A. Various diagnostic modes are only  
available in software mode. In hardware mode, the diagnostic modes are selected by a combination of pin  
settings. In software mode, the diagnostic modes are selected by setting appropriate bits in the diagnostic  
control register.  
Table 10-A. Diagnostic Modes  
AVAILABILITY  
SOFTWARE MODE  
DIAGNOSTIC MODE  
HARDWARE SOFTWARE  
MASKABLE  
Local Loopback (LLB)  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
Yes  
No  
Analog Loopback (ALB)  
Remote Loopback (RLB)  
In-Band Network Loopback (NLB)  
Dual Loopback (DLOOP)  
Internal Data Pattern Generation and Detection  
Transmit AIS (TAIS)  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
No  
Quasirandom Signal Source (QRSS)  
In-Band Loop-Up/Down Code Generator  
Yes  
No  
Error Insertion and Detection  
Bipolar Violation Insertion (INSBPV)  
Logic Error Insertion (INSLER)  
Bipolar Violation Detection (BPV)  
Logic Error Detection, QRSS (QPD)  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Alarm Condition Monitoring  
Yes  
Receive Carrier Loss (RCL) Monitoring  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Receive Alarm Indication Signal (AIS) Monitoring  
Transmit Driver Failure Monitoring (DFMO)  
Jitter Attenuator Limit Trip (JALT)  
No  
No  
No  
Other Diagnostic Reports  
Receive Line Attenuation Indicator (LATN)  
No  
Yes  
No  
19 of 32  
 
DS21349  
10.1Loopback Modes  
10.1.1 Local Loopback (LLB)  
When local loopback is enabled (set LLB in CR2, or pull the LLB pin high), inbound data at the receiver  
inputs are ignored. TCLK and TPOS/TNEG pass through the jitter attenuator if enabled and are output at  
RCLK and RPOS/RNEG. The transmit path is unaffected by LLB, and will continue to transmit data  
normally (or AIS if TAIS is enabled).  
10.1.2 Analog Loopback (ALB)  
When analog loopback (ALB) is enabled (set ALB in CR2, or float the LLB pin), the receiver input pins  
are disconnected from the clock and data recovery circuit and replaced by TTIP and TRING. This tests  
the entire device including the jitter attenuator, transmitter, and receiver circuits.  
10.1.3 Remote Loopback (RLB)  
When remote loopback (RLB) is enabled (set RLB in CR2, or pull RLB pin high), inbound data at the  
receiver inputs is looped back to the transmitter path. Data passes through the jitter attenuator if enabled.  
The B8ZS encoder and decoder are not included in the loopback path. The receive path continues to  
operate normally.  
10.1.4 Network Loopback  
When ENLOOP is enabled (set ENLOOP in CR2, or float the ENLOOP pin), the in-band loop code  
detector is enabled. The receiver detects the in-band loop code patterns (00001 = loop up and  
001 = loop down) present in the inbound data. The detectors detect both framed and unframed loop codes.  
When the loop-up pattern is detected and present for 5 seconds, the device invokes remote loopback.  
ENLOOP is dropped when:  
1) The in-band loop-down pattern is present for 5 seconds.  
2) RLB is activated.  
3) ALB is activated.  
10.1.5 Dual Loopback  
Dual loopback is the simultaneous enabling of RLB and LLB. If the jitter attenuator is enabled and, when  
both loopback paths are enabled, the jitter attenuator is placed in the local loopback path.  
20 of 32  
DS21349  
Figure 10-1. Loopbacks in the DS21349 Block Diagram  
VCO/PLL  
NLOOP  
RCL/QPD  
RRING  
RTIP  
RCLK  
RPOS  
RNEG  
TRING  
TTIP  
TCLK  
TPOS  
TNEG  
10.2Internal Pattern Generation and Detection  
10.2.1 Transmit Alarm-Indication Signal (TAIS)  
When TAIS is enabled (set TAIS in CR2, or pulling the TAIS pin high), the transmitter inputs  
TPOS/TNEG and TDATA are ignored and the devices transmits unframed all ones at the transmitter  
outputs at the TCLK frequency. If TCLK is not present, then the device uses MCLK to transmit. Both  
TAIS and LLB can be enabled at the same time. The transmitter input data is looped back to the receiver  
outputs through the jitter attenuator if enabled and the unframed all ones pattern is transmitted at TTIP  
and TRING.  
10.2.2 Quasirandom Signal Source (QRSS)  
The QRSS data pattern is described in AT&T 62411. The pattern is represented by the polynomial 220- 1  
with the additional requirement that no more than 14 consecutive 0s be present in the pattern. When  
QRSS is enabled (PAT0 = 0 and PAT1 = 1 in CR2 or float the QRSS pin), the data at the transmitter  
inputs TPOS/TNEG or TDATA is ignored and replaced by the output of the QRSS pattern generator. In  
addition, logic errors can be inserted into the data pattern with a rising edge on the INSLER input pin. If  
no logic errors are to be inserted, then the INSLER pin must remain low. If the logic error occurs on the  
same clock cycle as a 1 that has been inserted to suppress 15 0s, then the logic error is delayed until the  
next clock cycle. The logic error insertion is available in both NRZ and bipolar data modes. Enabling the  
QRSS pattern also enables the QRSS detector in the receiver. Pattern synchronization occurs when there  
are no errors in 64 bits. When synchronized, the QPD output pin goes low. Once synchronized, an error  
in the pattern causes the QPD output to go high for one-half RCLK cycle. In software mode, the level on  
the CLKE pin determines the relationship between QPD and RCLK. When CLKE is low, QPD is high  
when RCLK is high. When CLKE is high, QPD is high when RCLK is low. The QPD output can be used  
to trigger an external bit error counter. When RCL is active or the receiver is not synchronized to the  
QRSS pattern, then QPD maintains an output high.  
21 of 32  
DS21349  
In software mode, the device can generate an interrupt to indicate that the QRSS pattern synchronization  
has been declared or lost. Clearing the QRSS bit in the interrupt mask register enables the interrupt. Use  
the QPD output to increment an external bit error counter and use the interrupt to reset the counter. The  
QRSS bit in the status register is set when the QRSS pattern is detected and cleared when pattern is lost  
(more than 6 bit errors in a window of 64 bits). The QRSS bit in the transition status register indicates  
that the QRSS status has changed since the last QRSS interrupt clear command.  
10.2.3 In-Band Network Loop-Up or Loop-Down Code Generator  
In-band network loop-up or loop-down transmission is available in software mode only. The loop-up  
code is transmitted when PAT0 = 1 and PAT1 = 0 in CR2. Logic errors and bipolar violations can still be  
inserted when loop codes are being transmitted.  
10.3Error Insertion and Detection  
10.3.1 Bipolar Violation Insertion (INSBPV)  
INSBPV is available in NRZ mode. Sampling occurs on the falling edge of TCLK. A rising edge on the  
NSBPV pin inserts a BPV on the next available mark, except in the following conditions:  
1) If the BPV would violate a B8ZS codeword.  
2) When LLB and TAIS are both active. In this case, the BPV is looped back to the BPV pin and the line  
driver transmits all ones with no violation.  
3) When RLB is active.  
4) When NLOOP is active.  
BPVs can be inserted in both NRZ and bipolar data modes when the DS21349 is configured to transmit  
internally generated data patterns (QRSS or in-band loop codes).  
10.3.2 Logic Error Insertion (INSLE)  
When transmitting QRSS or in-band loop codes, a logic error is inserted into the outbound data pattern on  
a rising edge of the INSLER pin. Remember, when transmitting the QRSS pattern, logic error insertion is  
inhibited if the error would replace a 1 with a 0 and result in a string of 15 or more consecutive 0s.  
10.3.3 Logic Error Detection (QPD)  
After QRSS pattern synchronization, logic errors are reported at the QPD output pin. If a logic error  
occurs, the QPD pin goes high for one-half RCLK cycle. In software mode, the CLKE pin determines the  
phase relationship between QPD and RCLK. When CLKE is low, QPD is high when RCLK is high.  
When CLKE is high, QPD is high when RCLK is low. To count logic errors, use the QPD output to  
increment an external error counter. A continuous output high indicates loss of synchronization to the  
QRSS pattern or receive-carrier loss.  
10.3.4 Bipolar Violation Detection (BPV)  
When the B8ZS encoders and decoders are disabled or when configured for NRZ mode, bipolar  
violations are reported at the BPV output pin. BPV goes high for a full clock cycle to indicate a bipolar  
violation. When the B8ZS encoders and decoders are enabled, BPVs that are not part of codewords are  
not reported.  
22 of 32  
DS21349  
10.4Alarm Monitoring  
10.4.1 Receive-Carrier Loss (RCL)  
The receiver counts inbound 0s and declares RCL when the counter reaches 192. This applies to hardware  
mode and software mode if the RCL2048 bit is cleared in CR4. In software mode, setting the RCL2048  
bit changes the RCL counter to declare receive-carrier loss after 2048 consecutive 0s. Once set, the RCL  
bit will remain set until the receiver detects a 12.5% density of 1s in a sliding window of 112 bits,  
provided that there are no more than 98 consecutive 0s in that 112-bit window. When RCL is active,  
RCLK is replaced by MCLK. RCL is indicated by an output high on the RCL pin and with a 1 in SR.0.  
10.4.2 Alarm-Indication-Signal Detection (AIS)  
AIS detection is only available in software mode. The receiver declares receipt of AIS when fewer than  
six 0s are detected in 4632 bits (3ms). AIS is cleared when three or more 0s are received in 4632 bits. The  
AIS bit in the status register (SR.2) indicates the presence of AIS. When the AIS status bit changes, the  
AIS bit in the transition status register (TSR.2) is set. A change in the AIS status will generate an  
interrupt if the AIS interrupt mask bit (IMR.2) bit is cleared.  
10.4.3 Driver-Fail Monitor-Open (DFMO)  
The DFMO bit is set in the status register when the transmitter outputs detect an open circuit. DFMO can  
generate an interrupt if the DFMO interrupt mask bit (IMR.5) is cleared. This is not supported in  
hardware mode.  
10.4.4 Jitter Attenuator Limit Trip (JALT)  
If the incoming jitter exceeds either 120 UIp-p (buffer depth is 128 bits) or 28 UIp-p (buffer depth is 32  
bits), then the DS21349 will divide the internal nominal 24.704MHz (T1) clock by either 15 or 17 instead  
of the normal 16 to keep the buffer from overflowing. When the device divides by either 15 or 17, it also  
sets the jitter attenuator limit trip (JALT) bit in information register 1 (IR1).  
10.5Other Diagnostic Reports  
10.5.1 Receive Line-Attenuation Indication  
The device reports the approximate inbound signal strength in the status register (IR). The four most  
significant bits indicate the signal strength in approximately 2.5dB increments.  
23 of 32  
DS21349  
11. NETWORK INTERFACE  
Transformer specifications are listed in Table 11-A and Table 11-B. Table 11-C illustrates the series  
resistance necessary for the basic interface and is associated with different transformer turns ratios.  
Smaller turns ratios result in lower power-supply requirements. However, series resistance provides  
added protection from potentially damaging voltages that can occur during lightning strikes. A basic  
network interface is illustrated in Figure 11-1. For a complete discussion of network interface design,  
refer to Application Note 324: T1/E1 Network Interface Design.  
Table 11-A. Specifications for Receive Transformer  
SPECIFICATION  
RECOMMENDED VALUE  
Turns Ratio (all applications)  
Primary Inductance  
1:1 ±2%  
600H minimum  
1.0H maximum  
40pF maximum  
Leakage Inductance  
Interwinding Capacitance  
Receive Transformer DC Resistance  
Primary (Device Side)  
Secondary  
2maximum  
2maximum  
Table 11-B. Specifications for Transmit Transformer  
SPECIFICATION  
Turns Ratio, 3.3V  
Primary Inductance  
Leakage Inductance  
Interwinding Capacitance  
Transmit Transformer DC Resistance  
Primary (Device Side)  
Secondary  
RECOMMENDED VALUE  
1:3 ±2%  
600H minimum  
1.0H maximum  
40pF maximum  
1.0maximum  
2.0maximum  
Table 11-C. Transformer Turns Ratio vs. Series Resistance  
OPERATING  
XFMR1  
XFMR2  
VOLTAGE  
(V)  
APPLICATION  
N
Rt ()  
(CR4.0)  
(CR4.1)  
Long/Short  
D4  
0
0
1
1
0
1
0
1
3.3  
3.3  
3.3  
3.3  
1:3  
0
1:2  
1:3  
0
3
0
1
0
3
Long/Short  
Long/Short  
Long/Short  
1:2.5  
1:3  
1:2  
1:3  
24 of 32  
 
 
 
DS21349  
Figure 11-1. Basic Network Interface  
+VDD  
C
Rt  
0.1µF  
TTIP  
VDD (21)  
VSS (22)  
TRANSMIT  
LINE  
10µF  
0.01µF  
0.1µF  
TRING  
Rt  
N:1  
VDD (15)  
(larger winding  
toward the network)  
VSS (14)  
10µF  
DS21349  
MCLK  
1.544MHz  
RTIP  
RRING  
RECEIVE  
LINE  
1:1  
Rr  
Rr  
0.1µF  
Note 1: All resistor values are ±1%.  
Note 2: The R resistors should be 50each for T1 lines.  
r
Note 3: C = 1F if using a 1:2 transformer; C = 2F if using a 1:3 transformer.  
25 of 32  
DS21349  
Figure 11-2. T1 Transmit Pulse Template  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
MAXIMUM CURVE  
UI Time Amp.  
MINIMUM CURVE  
UI Time Amp.  
-0.77 -500 0.05  
-0.39 -255 0.05  
-0.27 -175 0.80  
-0.27 -175 1.15  
-0.77 -500 -0.05  
-0.23 -150 -0.05  
-0.23 -150 0.50  
-0.15 -100 0.95  
-0.12 -75  
1.15  
1.05  
1.05  
-0.07  
0.05  
0.05  
0.00  
0
0.95  
0.00  
0
0.15 100  
0.23 150  
0.23 150  
0.46 300  
0.66 430  
0.93 600  
1.16 750  
0.90  
0.27 175  
0.35 225  
0.93 600  
1.16 750  
0.50  
-0.45  
-0.45  
-0.20  
-0.05  
-0.05  
-0.1  
T1.102/87, T1.403,  
-0.2  
-0.3  
-0.4  
-0.5  
CB 119 (Oct. 79), &  
I.431 Template  
-500 -400 -300 -200 -100  
0
100 200 300 400 500 600 700  
TIME (ns)  
26 of 32  
DS21349  
Figure 11-3. Jitter Tolerance  
1k  
100  
DS21349  
TOLERANCE  
TR 62411 (DEC. 90)  
10  
1
0.1  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 11-4. Jitter Attenuation  
0dB  
-20dB  
-40dB  
-60dB  
T1  
TR 62411 (Dec. 90)  
Prohibited Area  
1
10  
100  
1K  
10K  
100K  
FREQUENCY (Hz)  
27 of 32  
DS21349  
12. DC CHARACTERISTICS  
ABSOLUTE MAXIMUM RATINGS  
Voltage Range on Any Pin Relative to Ground  
Operating Temperature Range for DS21349QN  
Storage Temperature Range  
-1.0V to +6.0V  
-40°C to +85°C  
-55°C to +125°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only,  
and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is  
not implied. Exposure to the absolute maximum rating conditions for extended periods may affect device.  
RECOMMENDED DC OPERATING CONDITIONS  
(TA = -40LC to +85LC)  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
Logic 1  
Logic 0  
VIH  
VIL  
2.0  
-0.3  
5.5  
V
V
V
+0.8  
3.465  
Supply for 3.3V Operation (Note 1)  
VDD  
3.135  
3.3  
CAPACITANCE  
(TA = +25°C)  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
Input Capacitance  
Output Capacitance  
CIN  
5
7
pF  
pF  
COUT  
DC CHARACTERISTICS  
(VDD = 3.3V M5%, TA = -40LC to +85LC.)  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
Input Leakage (Note 2)  
IIL  
-1.0  
+1.0  
1.0  
A  
A  
Output Leakage (Note 3)  
Output Current (2.4V)  
ILO  
IOH  
IOL  
-1.0  
mA  
mA  
mW  
Output Current (0.4V)  
+4.0  
Power Dissipation at 3.3V (Notes 4, 5)  
PDD  
300  
Note 1: Applies to VDD  
.
Note 2: 0V < VIN < VDD.  
Note 3: Applied to INT when tri-stated  
Note 4: TCLK = MCLK = 1.544MHz.  
Note 5: Power dissipation for an all-ones data density.  
28 of 32  
DS21349  
AC CHARACTERISTICS: SERIAL PORT (MODE1 = 1)  
(VDD = 3.3V M5%, TA = -40LC to +85LC.) (Figure 12-1 and Figure 12-2)  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
tCSS  
tSSS  
tSSH  
tSLH  
tSRF  
tLSC  
tCM  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Setup Time CS to SCLK  
Setup Time SDI to SCLK  
Hold Time SCLK to SDI  
SCLK High/Low Time  
SCLK Rise/Fall Time  
50  
50  
200  
50  
75  
50  
SCLK to CS Inactive  
250  
CS Inactive Time  
SCLK to SDO Valid  
tSSV  
tSSH  
tCSH  
SCLK to SDO Tri-State  
CS Inactive or SCLK to SDO Tri-State  
100  
100  
Figure 12-1. Serial Bus Read Timing (MODE1 = 1)  
CS  
tLSC  
SCLK  
tCSH  
tSSV  
HIGH-Z  
HIGH-Z  
SDO  
LSB  
MSB  
CS  
tLSC  
SCLK  
SDO  
tCSH  
tSSV  
HIGH-Z  
HIGH-Z  
MSB  
LSB  
Figure 12-2. Serial Bus Write Timing (MODE1 = 1)  
tCM  
CS  
tLSC  
tSRF  
tSLH  
tCSS  
SCLK  
SDI  
tSSS  
LSB  
tSSH  
LSB  
MSB  
MSB  
Control Byte  
Data Byte  
29 of 32  
 
 
DS21349  
AC CHARACTERISTICS: RECEIVE SIDE  
(VDD = 3.3V ±5%, TA = -40°C to +85°C.) (Figure 12-3)  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
RCLK Period  
tCP  
648  
ns  
ns  
tCH  
tCL  
tCH  
tCL  
RCLK Pulse Width (Note 6)  
RCLK Pulse Width (Note 7)  
Delay RCLK to RPOS, RNEG Valid  
200  
150  
ns  
ns  
tDD  
50  
Note 6: Jitter attenuator enabled in the receive path.  
Note 7: Jitter attenuator disabled or enabled in the transmit path.  
Figure 12-3. AC Characteristics for Receive Side  
tDD  
tDD  
tCL  
tCH  
RCLK  
tCP  
RPOS  
RNEG  
IN SOFTWARE MODE:  
CLKE = 1  
RPOS  
RNEG  
IN SOFTWARE AND  
HARDWARE MODE:  
CLKE = 0  
30 of 32  
 
DS21349  
AC CHARACTERISTICS: TRANSMIT SIDE  
(VDD = 3.3V M5%, TA = -40LC to +85LC.) (Figure 12-4)  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
ns  
TCLK Period  
tCP  
648  
tCH  
TCLK Pulse Width  
75  
ns  
tCL  
TPOS/TNEG Setup to TCLK Falling or Rising  
TPOS/TNEG Hold from TCLK Falling or Rising  
TCLK Rise and Fall Times  
tSU  
tHD  
20  
20  
ns  
ns  
ns  
tR, tF  
25  
Figure 12-4. AC Characteristics for Transmit Side  
tCP  
tCH  
tCL  
tR  
tF  
TCLK  
tSU  
TPOS  
TNEG  
tHD  
31 of 32  
 
DS21349  
13. PACKAGE INFORMATION  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/DallasPackInfo.)  
32 of 32  

相关型号:

DS21349Q+

PCM Transceiver, 1-Func, PQCC28, ROHS COMPLIANT, PLASTIC, LCC-28
MAXIM

DS21349Q+T&R

PCM Transceiver, 1-Func, PQCC28, PLASTIC, LCC-28
MAXIM

DS21349Q/T&R

PCM Transceiver, 1-Func, PQCC28, PLASTIC, LCC-28
MAXIM

DS21349Q/T&R+

PCM Transceiver, 1-Func, PQCC28, PLASTIC, LCC-28
MAXIM

DS21349QN

3.3V T1/J1 Line Interface Unit
MAXIM

DS21349QN+

暂无描述
MAXIM

DS21349QN/T&R

PCM Transceiver, 1-Func, PQCC28, PLASTIC, LCC-28
MAXIM

DS21349_V01

3.3V T1/J1 Line Interface Unit
MAXIM

DS21352

3.3V DS21352 and 5V DS21552 T1 Single-Chip Transceivers
DALLAS

DS21352

T1/E1/J1 Single-Chip Transceiver
MAXIM

DS21352DK

T1 Single-Chip Transceiver Design Kit Daughter Card
ETC

DS21352G

PCM Transceiver, 1-Func, CMOS, PQFP100, 14 X 14 MM, LQFP-100
MAXIM