DS21448LN [MAXIM]

3.3V E1/T1/J1 Quad Line Interface;
DS21448LN
型号: DS21448LN
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

3.3V E1/T1/J1 Quad Line Interface

PC 电信 电信集成电路
文件: 总60页 (文件大小:837K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DS21448  
3.3V E1/T1/J1 Quad Line Interface  
www.maxim-ic.com  
GENERAL DESCRIPTION  
FEATURES  
The DS21448 is a quad-port E1 or T1 line interface  
unit (LIU) for short-haul and long-haul applications. It  
incorporates four independent transmitters and four  
independent receivers in a single 144-pin PBGA or  
128-pin LQFP package. The transmit drivers  
generate the necessary G.703 E1 waveshapes in  
75or 120applications and the DSX-1 or CSU line  
build-outs of 0dB, -7.5dB, -15dB, and -22.5dB for T1  
applications.  
Four Complete E1, T1, or J1 LIUs  
Supports Long- and Short-Haul Trunks  
Internal Software-Selectable Receive-Side  
Termination for 75/100/120Ω  
3.3V Power Supply  
32-Bit or 128-Bit Crystal-Less Jitter Attenuator  
Requires Only a 2.048MHz Master Clock for E1  
and T1, with the Option to Use 1.544MHz for T1  
Generates the Appropriate Line Build-Outs With  
and Without Return Loss for E1, and DSX-1 and  
CSU Line Build-Outs for T1  
APPLICATIONS  
Integrated Multiservice Access Platforms  
T1/E1 Cross-Connects, Multiplexers, and Channel  
Banks  
AMI, HDB3, and B8ZS Encoding/Decoding  
16.384MHz, 8.192MHz, 4.096MHz, or 2.048MHz  
Clock Output Synthesized to Recovered Clock  
Programmable Monitor Mode for Receiver  
Loopbacks and PRBS Pattern Generation/  
Detection with Output for Received Errors  
Generates/Detects In-Band Loop Codes, 1 to 16  
Bits, Including CSU Loop Codes  
Central-Office Switches and PBX Interfaces  
T1/E1 LAN/WAN Routers  
Wireless Base Stations  
ORDERING INFORMATION  
8-Bit Parallel or Serial Interface with Optional  
Hardware Mode  
PART*  
TEMP RANGE  
PIN-PACKAGE  
DS21448  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
144 TE-PBGA  
144 TE-PBGA  
144 TE-PBGA  
144 TE-PBGA  
128 LQFP  
Muxed and Nonmuxed Parallel Bus Supports  
Intel or Motorola  
DS21448+  
DS21448N  
DS21448N+  
DS21448L  
DS21448L+  
DS21448LN  
DS21448LN+  
Detects/Generates Blue (AIS) Alarms  
NRZ/Bipolar Interface for Tx/Rx Data I/O  
Transmit Open-Circuit Detection  
128 LQFP  
Receive Carrier Loss (RCL) Indication (G.775)  
High-Z State for TTIP and TRING  
128 LQFP  
128 LQFP  
50mARMS Transmit Current Limiter  
+ Denotes lead-free/RoHS-compliant package.  
JTAG Boundary Scan Test Port per IEEE 1149.1  
Meets Latest E1 and T1 Specifications Including  
ANSI.403-1999, ANSI T1.408, AT&T TR 62411,  
ITU G.703, G.704, G.706, G.736, G.775, G.823,  
I.431, O.151, O.161, ETSI ETS 300 166,  
JTG.703, JTI.431, TBR12, TBR13, and CTR4  
*All devices rated at 3.3V.  
Pin Configurations appear in Section 11.  
Note: Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of any device  
may be simultaneously available through various sales channels. For information about device errata, click here: www.maxim-ic.com/errata.  
1 of 60  
REV: 011206  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
TABLE OF CONTENTS  
1.  
2.  
3.  
BLOCK DIAGRAMS ........................................................................................................................5  
PIN DESCRIPTION ..........................................................................................................................7  
DETAILED DESCRIPTION ............................................................................................................13  
3.1 DS21448 AND DS21Q348 DIFFERENCES......................................................................................13  
PORT OPERATION .......................................................................................................................14  
4.1 HARDWARE MODE.........................................................................................................................14  
4.2 SERIAL PORT OPERATION..............................................................................................................15  
4.3 PARALLEL PORT OPERATION .........................................................................................................18  
4.  
4.3.1  
4.3.2  
4.3.3  
Device Power-Up and Reset................................................................................................................ 18  
Register Map........................................................................................................................................ 18  
Control Registers ................................................................................................................................. 19  
5.  
6.  
STATUS REGISTERS....................................................................................................................23  
DIAGNOSTICS ..............................................................................................................................28  
6.1 IN-BAND LOOP-CODE GENERATION AND DETECTION......................................................................28  
6.2 LOOPBACKS ..................................................................................................................................31  
6.2.1  
6.2.2  
6.2.3  
6.2.4  
Remote Loopback (RLB) ..................................................................................................................... 31  
Local Loopback (LLB).......................................................................................................................... 31  
Analog Loopback (LLB) ....................................................................................................................... 31  
Dual Loopback (DLB)........................................................................................................................... 31  
6.3 PRBS GENERATION AND DETECTION ............................................................................................31  
6.4 ERROR COUNTER..........................................................................................................................31  
6.5 ERROR COUNTER UPDATE ............................................................................................................32  
6.6 ERROR INSERTION ........................................................................................................................32  
ANALOG INTERFACE...................................................................................................................33  
7.1 RECEIVER .....................................................................................................................................33  
7.2 TRANSMITTER ...............................................................................................................................33  
7.3 JITTER ATTENUATOR .....................................................................................................................34  
7.4 G.703 SYNCHRONIZATION SIGNAL.................................................................................................34  
JTAG BOUNDARY SCAN ARCHITECTURE AND TEST ACCESS PORT..................................43  
8.1 JTAG TAP CONTROLLER STATE MACHINE ....................................................................................43  
8.2 INSTRUCTION REGISTER................................................................................................................45  
8.3 TEST REGISTERS ..........................................................................................................................46  
OPERATING PARAMETERS ........................................................................................................48  
7.  
8.  
9.  
10. AC TIMING PARAMETERS AND DIAGRAMS..............................................................................49  
11. PIN CONFIGURATIONS................................................................................................................56  
11.1  
11.2  
144-PIN BGA ............................................................................................................................56  
128-PIN LQFP...........................................................................................................................57  
12. PACKAGE INFORMATION ...........................................................................................................58  
12.1  
12.2  
144-BALL TE-PBGA (56-G6020-001) .......................................................................................58  
128-PIN LQFP (56-G4011-001)................................................................................................59  
13. THERMAL INFORMATION............................................................................................................60  
14. REVISION HISTORY......................................................................................................................60  
2 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
LIST OF FIGURES  
Figure 1-1. Block Diagram..........................................................................................................................5  
Figure 1-2. Receive Logic Detail ................................................................................................................6  
Figure 1-3. Transmit Logic Detail ...............................................................................................................6  
Figure 4-1. Serial Port Operation for Read Access (R = 1) Mode 1 .........................................................16  
Figure 4-2. Serial Port Operation for Read Access (R = 1) Mode 2 .........................................................16  
Figure 4-3. Serial Port Operation for Read Access (R = 1) Mode 3 .........................................................16  
Figure 4-4. Serial Port Operation for Read Access (R = 1) Mode 4 .........................................................17  
Figure 4-5. Serial Port Operation for Write Access (R = 0) Modes 1 and 2..............................................17  
Figure 4-6. Serial Port Operation for Write Access (R = 0) Modes 3 and 4..............................................17  
Figure 7-1. Basic Interface .......................................................................................................................36  
Figure 7-2. Protected Interface Using Internal Receive Termination........................................................37  
Figure 7-3. Protected Interface Using External Receive Termination.......................................................38  
Figure 7-4. Dual Connector-Protected Interface Using Receive Termination...........................................39  
Figure 7-5. E1 Transmit Pulse Template..................................................................................................40  
Figure 7-6. T1 Transmit Pulse Template..................................................................................................41  
Figure 7-7. Jitter Tolerance ......................................................................................................................42  
Figure 7-8. Jitter Attenuation ....................................................................................................................42  
Figure 8-1. JTAG Block Diagram..............................................................................................................43  
Figure 8-2. TAP Controller State Diagram................................................................................................44  
Figure 10-1. Intel Bus Read Timing (PBTS = 0, BIS0 = 0).......................................................................49  
Figure 10-2. Intel Bus Write Timing (PBTS = 0, BIS0 = 0) .......................................................................50  
Figure 10-3. Motorola Bus Timing (PBTS = 1, BIS0 = 0)..........................................................................50  
Figure 10-4. Intel Bus Read Timing (PBTS = 0, BIS0 = 1).......................................................................51  
Figure 10-5. Intel Bus Write Timing (PBTS = 0, BIS0 = 1) .......................................................................52  
Figure 10-6. Motorola Bus Read Timing (PBTS = 1, BIS0 = 1)................................................................52  
Figure 10-7. Motorola Bus Write Timing (PBTS = 1, BIS0 = 1) ................................................................52  
Figure 10-8. Serial Bus Timing (BIS1 = 1, BIS0 = 0)................................................................................53  
Figure 10-9. Receive-Side Timing............................................................................................................54  
Figure 10-10. Transmit-Side Timing.........................................................................................................55  
3 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
LIST OF TABLES  
Table 2-A. Bus Interface Selection.............................................................................................................7  
Table 2-B. Pin Assignments .......................................................................................................................7  
Table 2-C. Parallel Interface Mode Pin Description....................................................................................9  
Table 2-D. Serial Interface Mode Pin Description ....................................................................................10  
Table 2-E. Hardware Interface Mode Pin Description ..............................................................................11  
Table 3-A. DS21448 vs. DS21Q348 Pin Differences ...............................................................................13  
Table 4-A. Loopback Control in Hardware Mode .....................................................................................14  
Table 4-B. Transmit Data Control in Hardware Mode...............................................................................14  
Table 4-C. Receive Sensitivity Settings in Hardware Mode .....................................................................14  
Table 4-D. Monitor Gain Settings in Hardware Mode...............................................................................14  
Table 4-E. Internal Rx Termination Select in Hardware Mode .................................................................14  
Table 4-F. MCLK Selection in Hardware Mode ........................................................................................15  
Table 4-G. Parallel Port Mode Selection ..................................................................................................18  
Table 4-H. Register Map ..........................................................................................................................18  
Table 4-I. Receive Sensitivity Settings .....................................................................................................22  
Table 4-J. Backplane Clock Select...........................................................................................................22  
Table 4-K. Monitor Gain Settings .............................................................................................................22  
Table 4-L. Internal Rx Termination Select................................................................................................22  
Table 5-A. Received Alarm Criteria..........................................................................................................25  
Table 5-B. Receive Level Indication.........................................................................................................27  
Table 6-A. Transmit Code Length ............................................................................................................29  
Table 6-B. Receive Code Length .............................................................................................................29  
Table 6-C. Definition of Received Errors..................................................................................................32  
Table 6-D. Function of ECRS Bits and RNEG Pin....................................................................................32  
Table 7-A. Line Build-Out Select for E1 in Register CCR4 (ETS = 0) ......................................................34  
Table 7-B. Line Build-Out Select for T1 in Register CCR4 (ETS = 1) ......................................................34  
Table 7-C. Line Build-Out Select for E1 in Register CCR4 (ETS = 0) Using Alternate Transformer  
Configuration......................................................................................................................................35  
Table 7-D. Transformer Specifications (3.3V Operation)..........................................................................35  
Table 8-A. Instruction Codes for IEEE 1149.1 Architecture .....................................................................45  
Table 8-B. ID Code Structure ...................................................................................................................46  
Table 8-C. Device ID Codes.....................................................................................................................46  
Table 8-D. Boundary Scan Control Bits....................................................................................................47  
Table 10-A. AC Characteristics—Multiplexed Parallel Port (BIS0 = 0).....................................................49  
Table 10-B. AC Characteristics—Nonmultiplexed Parallel Port (BIS0 = 1)..............................................51  
Table 10-C. AC Characteristics—Serial Port (BIS1 = 1, BIS0 = 0)...........................................................53  
Table 10-D. AC Characteristics—Receive Side .......................................................................................54  
Table 10-E. AC Characteristics—Transmit Side ......................................................................................55  
Table 13-A. Thermal Characteristics—BGA.............................................................................................60  
Table 13-B. Theta-JA (θJA) vs. Airflow—BGA...........................................................................................60  
Table 13-C. Thermal Characteristics—LQFP...........................................................................................60  
Table 13-D. Theta-JA (θJA) vs. Airflow—LQFP.........................................................................................60  
4 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
1. BLOCK DIAGRAMS  
Figure 1-1. Block Diagram  
CHANNEL 4  
CHANNEL 3  
CHANNEL 2  
CHANNEL 1  
TYPICAL OF ALL FOUR CHANNELS  
2
2
JACLK  
POWER  
2.048MHz TO  
1.544MHz PLL  
16.384MHz OR  
8.192MHz OR  
4.096MHz OR  
2.048MHz  
CONNECTIONS  
VCO/PLL  
BPCLK  
SYNTHESIZER  
n
RPOS  
RCLK  
RNEG  
RRING  
RTIP  
See Figure 1-2  
PBEO  
UNFRAMED  
ALL-ONES  
INSERTION  
MUX  
RCL/LOTC  
TRING  
TTIP  
TPOS  
TCLK  
TNEG  
See Figure 1-3  
HRST  
CONTROL AND TEST  
PORT (ROUTED TO  
ALL BLOCKS)  
MUX (THE SERIAL, PARALLEL, AND HARDWARE INTERFACES  
SHARE DEVICE PINS)  
BIS0  
TXDIS/TEST  
CONTROL AND  
(ROUTED TO  
ALL BLOCKS)  
SERIAL  
PARALLEL INTERFACE  
5
JTAG PORT  
INTERFACE  
8
Dallas  
Semiconductor  
DS21448  
5 of 60  
 
DS21448 3.3V T1/E1/J1 Quad Line Interface  
Figure 1-2. Receive Logic Detail  
RCLK  
CLOCK  
INVERT  
FROM  
REMOTE  
LOOPBACK  
ROUTED TO  
ALL BLOCKS  
CCR2.0  
RPOS  
MUX  
NRZ DATA  
B8ZS/HDB3  
DECODER  
RNEG  
BPV/CV/EXZ  
CCR1.6  
ALL-ONES  
DETECTOR  
LOOP CODE  
DETECTOR  
PRBS  
PBEO  
DETECTOR  
CCR2.3  
4 OR 8 ZERO DETECT  
16 ZERO DETECT  
CCR6.2/ RIR1.5  
CCR6.0  
MUX  
CCR6.0/  
SR.4 RIR1.3  
SR.6 SR.7  
SR.0  
CCR6.1  
16-BIT ERROR  
COUNTER (ECR)  
CCR1.4  
RIR1.7  
RIR1.6  
Figure 1-3. Transmit Logic Detail  
CCR3.4  
CCR3.3  
CCR1.6  
CCR2.2  
PRBS  
GENERATOR  
CCR3.0  
OR  
GATE  
CCR3.1  
LOOP CODE  
GENERATOR  
MUX  
B8ZS/  
HDB3  
1
0
LOGIC  
ERROR  
INSERT  
TPOS  
CODER  
OR  
GATE  
BPV  
INSERT  
TNEG  
MUX  
TO REMOTE  
LOOPBACK  
0
1
0
1
CLOCK  
INVERT  
TCLK  
MUX  
RCLK  
MUX  
JACLK  
(FROM MCLK)  
CCR1.1  
CCR2.1  
ROUTED TO  
ALL BLOCKS  
OR  
AND  
LOSS-OF-TRANSMIT  
CLOCK DETECT  
GATE  
GATE  
SR.5  
TO LOTC OUTPUT PIN  
CCR1.2  
CCR1.0  
6 of 60  
 
 
DS21448 3.3V T1/E1/J1 Quad Line Interface  
2. PIN DESCRIPTION  
The DS21448 can be controlled in parallel port mode, serial port mode, or hardware mode. The bus interface select  
bits 0 and 1 (BIS0, BIS1) determine the device mode and pin assignments (Table 2-A).  
Table 2-A. Bus Interface Selection  
BIS1  
BIS0  
BUS INTERFACE TYPE  
Parallel Port Mode (multiplexed)  
Parallel Port Mode (nonmultiplexed)  
Serial Port Mode  
0
0
1
1
0
1
0
1
Hardware Mode  
Table 2-B. Pin Assignments  
PIN  
I/O  
PARALLEL PORT MODE  
SERIAL PORT MODE  
HARDWARE MODE  
BGA  
J3  
D3  
D10  
K10  
J2  
H1  
K2  
J1  
K3  
K1  
L1  
LQFP  
18  
I
I
EGL1  
EGL2  
EGL3  
EGL4  
ETS  
CS1  
CS2  
CS3  
CS1  
CS2  
CS3  
57  
84  
I
114  
91  
I
CS4  
CS4  
I
N/A  
RD (DS)  
WR (R/W)  
ALE (AS)  
N/A  
92  
I
N/A  
NRZE  
SCLKE  
L2  
95  
I
N/A  
35  
I
SCLK  
SDI  
36  
I
N/A  
L1  
62  
I/O  
I
A4  
SDO  
L0  
63  
A3  
ICES  
DJA  
H11  
H12  
G12  
J10  
H10  
G11  
J9  
64  
I
A2  
OCES  
N/A  
JAMUX  
JAS  
65  
I
A1  
66  
I
A0  
N/A  
HBE  
75  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
D7/AD7  
D6/AD6  
D5/AD5  
D4/AD4  
D3/AD3  
D2/AD2  
D1/AD1  
D0/AD0  
VSM  
N/A  
CES  
76  
N/A  
TPD  
77  
N/A  
TX0  
78  
N/A  
TX1  
E3  
D4  
F3  
79  
N/A  
LOOP0  
LOOP1  
MM0  
80  
N/A  
81  
N/A  
D5  
82  
N/A  
MM1  
VSM  
3
VSM  
L5  
115–117  
19–21  
49–51  
85–87  
118–120  
22–24  
52–54  
88–90  
97  
I/O  
O
O
O
O
O
O
O
O
I
VDD1  
VDD1  
VDD2  
VDD3  
VDD4  
VSS1  
VSS2  
VSS3  
VSS4  
INT  
VDD1  
VDD2  
VDD3  
VDD4  
VSS1  
VSS2  
VSS3  
VSS4  
RT1  
E4  
D8  
J8  
VDD2  
VDD3  
VDD4  
M4  
F4  
VSS1  
VSS2  
D9  
H9  
K9  
K5  
G3  
E10  
K8  
L6  
VSS3  
VSS4  
INT  
110  
111  
121  
123  
126  
128  
1
PBEO1  
PBEO2  
PBEO3  
PBEO4  
RCL1/LOTC1  
RCL2/LOTC2  
RCL3/LOTC3  
RCL4/LOTC4  
TXDIS/TEST  
RTIP1  
RTIP2  
RTIP3  
RTIP4  
RRING1  
RRING2  
PBEO1  
PBEO2  
PBEO3  
PBEO4  
RCL1/LOTC1  
RCL2/LOTC2  
RCL3/LOTC3  
RCL4/LOTC4  
TXDIS/TEST  
RTIP1  
RTIP2  
RTIP3  
RTIP4  
RRING1  
RRING2  
PBEO1  
PBEO2  
PBEO3  
PBEO4  
RCL1  
RCL2  
RCL3  
RCL4  
TXDIS/TEST  
RTIP1  
RTIP2  
RTIP3  
RTIP4  
RRING1  
RRING2  
D7  
F9  
J7  
2
K7  
A1  
98  
124  
28  
I
A4  
I
A7  
60  
I
A10  
B2  
B5  
93  
I
125  
29  
I
I
7 of 60  
 
 
 
DS21448 3.3V T1/E1/J1 Quad Line Interface  
PIN  
I/O  
PARALLEL PORT MODE  
SERIAL PORT MODE  
HARDWARE MODE  
BGA  
B8  
LQFP  
61  
94  
106  
109  
122  
47  
56  
112  
107  
68  
6
38  
71  
102  
7
39  
72  
103  
8
I
I
RRING3  
RRING4  
HRST  
RRING3  
RRING4  
HRST  
RRING3  
RRING4  
HRST  
B11  
L9  
I
J6  
I
MCLK  
MCLK  
MCLK  
H4  
O
O
O
O
I
BPCLK1  
BPCLK2  
BPCLK3  
BPCLK4  
BIS0  
BPCLK1  
BPCLK2  
BPCLK3  
BPCLK4  
BIS0  
BPCLK1  
BPCLK2  
BPCLK3  
BPCLK4  
BIS0  
D6  
F10  
L8  
L7  
M8  
A2  
I
BIS1  
BIS1  
BIS1  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
TTIP1  
TTIP1  
TTIP1  
A5  
TTIP2  
TTIP2  
TTIP2  
A8  
TTIP3  
TTIP3  
TTIP3  
A11  
J4  
TTIP4  
TTIP4  
TTIP4  
TVSS1  
TVSS2  
TVSS3  
TVSS4  
TVDD1  
TVDD2  
TVDD3  
TVDD4  
TRING1  
TRING2  
TRING3  
TRING4  
RPOS1  
RPOS2  
RPOS3  
RPOS4  
RNEG1  
RNEG2  
RNEG3  
RNEG4  
RCLK1  
RCLK2  
RCLK3  
RCLK4  
TPOS1  
TPOS2  
TPOS3  
TPOS4  
TNEG1  
TNEG2  
TNEG3  
TNEG4  
TCLK1  
TCLK2  
TCLK3  
TCLK4  
PBTS  
TVSS1  
TVSS2  
TVSS3  
TVSS4  
TVDD1  
TVDD2  
TVDD3  
TVDD4  
TRING1  
TRING2  
TRING3  
TRING4  
RPOS1  
RPOS2  
RPOS3  
RPOS4  
RNEG1  
RNEG2  
RNEG3  
RNEG4  
RCLK1  
RCLK2  
RCLK3  
RCLK4  
TPOS1  
TPOS2  
TPOS3  
TPOS4  
TNEG1  
TNEG2  
TNEG3  
TNEG4  
TCLK1  
TCLK2  
TCLK3  
TCLK4  
N/A  
TVSS1  
TVSS2  
TVSS3  
TVSS4  
TVDD1  
TVDD2  
TVDD3  
TVDD4  
TRING1  
TRING2  
TRING3  
TRING4  
RPOS1  
RPOS2  
RPOS3  
RPOS4  
RNEG1  
RNEG2  
RNEG3  
RNEG4  
RCLK1  
RCLK2  
RCLK3  
RCLK4  
TPOS1  
TPOS2  
TPOS3  
TPOS4  
TNEG1  
TNEG2  
TNEG3  
TNEG4  
TCLK1  
TCLK2  
TCLK3  
TCLK4  
RT0  
D1  
E9  
L10  
J5  
D2  
40  
73  
104  
9
G9  
M9  
B3  
B6  
41  
74  
105  
10  
12  
14  
16  
11  
13  
15  
25  
127  
31  
58  
96  
26  
30  
33  
55  
27  
32  
34  
59  
17  
43  
83  
113  
108  
42  
48  
44  
45  
46  
B9  
B12  
K4  
E1  
D11  
K11  
G2  
E2  
F11  
M10  
H3  
F1  
E11  
L11  
G1  
F2  
I
E12  
M11  
H2  
M1  
D12  
K12  
M2  
L2  
F12  
L12  
M12  
L3  
M3  
M5  
M6  
M7  
I
I
I
I
I
I
I
I
I
I
I
I
JTRST  
JTMS  
JTRST  
JTMS  
JTRST  
JTMS  
I
I
JTCLK  
JTDI  
JTCLK  
JTDI  
JTCLK  
JTDI  
I
O
JTDO  
JTDO  
JTDO  
Note 1: The VSM signal is not available with the BGA package option.  
Note 2: The LQFP no-connect pin numbers are 4, 5, 37, 67, 69, 70, and 99–101.  
Note 3: The BGA no-connect pin numbers are A3, A6, A9, A12, B1, B4, B7, B10, C1–C12, E5–E8, F5–F8, G4–G8, G10, H5–H8, J11, J12, K6,  
and L4.  
8 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
Table 2-C. Parallel Interface Mode Pin Description  
PIN  
I/O  
FUNCTION  
Read Input (Data Strobe). RD and DS are active-low signals. DS is active low when in  
I
RD (DS)  
nonmultiplexed, Motorola mode. See the bus timing diagrams in Section 10.  
WR (R/W)  
I
I
Write Input (Read/Write). WR is an active-low signal. See the bus timing diagrams in Section 10.  
Address Latch Enable (Address Strobe). When using multiplexed bus mode (BIS0 = 0), this pin  
serves to demultiplex the bus on a positive-going edge. In nonmultiplexed bus mode (BIS0 = 1),  
ALE should be wired low.  
ALE (AS)  
Address Bus. In nonmultiplexed bus operation (BIS0 = 1), these pins serve as the address bus.  
A4–A0  
I
In multiplexed bus operation (BIS0 = 0), these pins are not used and should be wired low.  
Data Bus/Address/Data Bus. In nonmultiplexed bus operation (BIS0 = 1), these pins serve as the  
data bus. In multiplexed bus operation (BIS0 = 0), these pins serve as an 8-bit multiplexed  
address/data bus.  
D7/AD7–D0/AD0  
INT  
I/O  
Interrupt (INT). The interrupt flags the host controller during conditions and change of conditions  
defined in the status register. It is an active-low, open-drain output.  
Tri-State Control, Multifunctional. Set this pin high, with all CS1CS4 inputs inactive, to tri-state  
TTIP1–TTIP4 and TRING1–TRING4. Set this pin high with any of the CS1CS4 inputs active to  
tri-state all outputs and I/O pins (including the parallel control port). Set low for normal operation.  
Hardware Reset. Bringing HRST low resets the DS21448, setting all control bits to the all-zeros  
default state.  
Master Clock. A 2.048MHz (±50ppm) clock source with TTL levels is applied at this pin. This  
clock is used internally for both clock/data recovery and for jitter attenuation. Use of a T1  
1.544MHz clock source is optional (Note 1).  
O
I
TXDIS/TEST  
HRST  
I
MCLK  
BIS0/BIS1  
PBTS  
I
I
I
Bus Interface Select Bit 0 and 1. Used to select bus interface option. See Table 2-A for details.  
Parallel Bus Type Select. When using the parallel port, set PBTS high to select Motorola bus  
timing; set low to select Intel bus timing. This pin controls the function of the RD (DS), ALE (AS),  
and WR (R/W) pins.  
Chip Select 1. Must be low to read or write to channel 1 of the device. CS1 is an active-low  
signal.  
Chip Select 2. Must be low to read or write to channel 2 of the device. CS2 is an active-low  
signal.  
I
CS1–CS4  
Chip Select 3. Must be low to read or write to channel 3 of the device. CS3 is an active-low  
signal.  
Chip Select 4. Must be low to read or write to channel 4 of the device. CS4 is an active-low  
signal.  
PRBS Bit-Error Output. The receiver constantly searches for a 215 - 1 (E1) or a QRSS (T1)  
PRBS, depending on the ETS bit setting (CCR1.7). It remains high if it is out of synchronization  
with the PRBS pattern. It goes low when synchronized to the PRBS pattern. Any errors in the  
received pattern after synchronization cause a positive-going pulse (with same period as E1 or  
T1 clock) synchronous with RCLK. PRBS bit errors can also be reported to the ECR1 and ECR2  
registers by setting CCR6.2 to logic 1.  
PBEO1–PBEO4  
O
O
Receive Carrier Loss/Loss-of-Transmit Clock. An output that toggles high during a receive carrier  
loss (CCR2.7 = 0) or toggles high if the TCLK pin has not been toggled for 5µs ± 2µs (CCR2.7 =  
1). CCR2.7 defaults to logic 0 when in hardware mode.  
RCL1/LOTC1–  
RCL4/LOTC4  
RTIP1–RTIP4  
RRING1–RRING4  
I
I
Receive Tip and Ring. Analog inputs for clock recovery circuitry. These pins connect through a  
1:1 transformer to the line. See Section 7 for details.  
Backplane Clock. A 16.384MHz, 8.192MHz, 4.096MHz, or 2.048MHz clock output that is  
referenced to RCLK selectable through CCR5.7 and CCR5.6.  
BPCLK1–BPCLK4  
O
TTIP1–TTIP4  
TRING1–TRING4  
O
O
Transmit Tip and Ring. Analog line-driver outputs. These pins connect through a step-up  
transformer to the line. See Section 7 for details.  
Receive Positive Data. These bits are updated on the rising edge (CCR2.0 = 0) or the falling  
edge (CCR2.0 = 1) of RCLK with bipolar data out of the line interface. Set NRZE (CCR1.6) to 1  
for NRZ applications. In NRZ mode, data is output on RPOS, and a received error (BPV, CV, or  
EXZ) causes a positive-going pulse synchronous with RCLK at RNEG.  
Receive Negative Data. Updated on the rising edge (CCR2.0 = 0) or the falling edge (CCR2.0 =  
1) of RCLK with the bipolar data out of the line interface. Set NRZE (CCR1.6) to 1 for NRZ  
applications. In NRZ mode, data is output on RPOS, and a received error (BPV, CV, or EXZ)  
causes a positive-going pulse synchronous with RCLK at RNEG.  
RPOS1–RPOS4  
RNEG1–RNEG4  
O
O
9 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
PIN  
I/O  
FUNCTION  
Receive Clock. Buffered recovered clock from the line. Synchronous to MCLK in absence of  
RCLK1–RCLK4  
O
signal at RTIP and RRING.  
Transmit Positive Data. Sampled on the falling edge (CCR2.1 = 0) or the rising edge  
TPOS1–TPOS4  
TNEG1–TNEG4  
I
I
(CCR2.1 = 1) of TCLK for data to be transmitted out onto the line.  
Transmit Negative Data. Sampled on the falling edge (CCR2.1 = 0) or the rising edge  
(CCR2.1 = 1) of TCLK for data to be transmitted out onto the line.  
Transmit Clock. A 2.048MHz or 1.544MHz primary clock. It is used to clock data through the  
TCLK1–TCLK4  
I
transmit-side formatter. It can be sourced internally by MCLK or RCLK. See Common Control  
Register 1 and Figure 1-3.  
JTRST  
JTMS  
I
I
JTAG Reset  
JTAG Mode Select  
JTCLK  
I
JTAG Clock  
JTDI  
I
JTAG Data In  
JTDO  
O
I
JTAG Data Out  
VSM  
Voltage Supply Mode (LQFP only). Should be wired low for correct operation.  
3.3V, ±5% Transmitter Positive Supply  
3.3V, ±5% Positive Supply  
TVDD1–TVDD4  
VDD1–VDD4  
TVSS1–TVSS4  
VSS1–VSS4  
Transmitter Signal Ground  
Signal Ground  
Table 2-D. Serial Interface Mode Pin Description  
PIN  
I/O  
FUNCTION  
Interrupt (INT). Flags host controller during conditions and change of conditions defined in the  
status register. Active-low, open-drain output.  
I/O  
INT  
Tri-State Control, Multifunctional. Set this pin high with all CS1CS4 inputs inactive to tri-state  
TTIP1–TTIP4 and TRING1–TRING4. Set this pin high with any of the CS1CS4 inputs active to  
tri-state all outputs and I/O pins (including the parallel control port). Set low for normal operation.  
Hardware Reset. Bringing HRST low resets the DS21448, setting all control bits to the all-zeros  
default state.  
Master Clock. A 2.048MHz (±50ppm) clock source with TTL levels is applied at this pin. This  
clock is used internally for both clock/data recovery and for jitter attenuation. A T1 1.544MHz  
clock source is optional (Note 1).  
TXDIS/TEST  
HRST  
I
I
I
MCLK  
BIS0/BIS1  
I
I
Bus Interface Select Bit 0 and 1. Used to select bus interface option. See Table 2-A for details.  
Chip Select 1. Must be low to read or write to channel 1 of the device. CS1 is an active-low  
CS1  
signal.  
Chip Select 2. Must be low to read or write to channel 2 of the device. CS2 is an active-low  
signal.  
I
I
I
I
I
CS2  
CS3  
Chip Select 3. Must be low to read or write to channel 3 of the device. CS3 is an active-low  
signal.  
Chip Select 4. Must be low to read or write to channel 4 of the device. CS4 is an active-low  
signal.  
CS4  
Input Clock-Edge Select. Selects whether the serial interface data input (SDI) is sampled on the  
rising (ICES = 0) or falling edge (ICES = 1) of SCLK.  
Output Clock-Edge Select. Selects whether the serial interface data output (SDO) changes on  
the rising (OCES = 1) or falling edge (OCES = 0) of SCLK.  
Serial Clock. Serial interface clock.  
ICES  
OCES  
SCLK  
SDI  
SDO  
I
I
O
Serial Data Input. Serial interface data input.  
Serial Data Output. Serial interface data output.  
PRBS Bit-Error Output. The receiver constantly searches for a 215 - 1 (E1) or a QRSS (T1)  
PRBS, depending on the ETS bit setting (CCR1.7). It remains high if it is out of synchronization  
with the PRBS pattern. It goes low when synchronized to the PRBS pattern. Any errors in the  
received pattern after synchronization cause a positive-going pulse (with same period as E1 or  
T1 clock) synchronous with RCLK. PRBS bit errors can also be reported to the ECR1 and ECR2  
registers by setting CCR6.2 to logic 1.  
PBEO1–PBEO4  
O
Receive Carrier Loss/Loss-of-Transmit Clock. An output that toggles high during a receive carrier  
loss (CCR2.7 = 0) or toggles high if the TCLK pin has not been toggled for 5µs ± 2µs  
(CCR2.7 = 1). CCR2.7 defaults to logic 0 when in hardware mode.  
Receive Tip and Ring. Analog inputs for clock recovery circuitry. These pins connect through a  
1:1 transformer to the line. See Section 7 for details.  
RCL1/LOTC1–  
RCL4/LOTC4  
O
I
RTIP1–RTIP4  
RRING1–RRING4  
10 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
PIN  
I/O  
FUNCTION  
Backplane Clock. A 16.384MHz, 8.192MHz, 4.096MHz, or 2.048MHz clock output that is  
referenced to RCLK selectable through CCR5.7 and CCR5.6.  
BPCLK1–BPCLK4  
O
TTIP1–TTIP4  
TRING–TRING4  
O
O
Transmit Tip and Ring. Analog line-driver outputs. These pins connect through a step-up  
transformer to the line. See Section 7 for details.  
Receive Positive Data. Updated on the rising edge (CCR2.0 = 0) or the falling edge (CCR2.0 = 1)  
of RCLK with bipolar data out of the line interface. Set NRZE (CCR1.6) to 1 for NRZ applications.  
In NRZ mode, data is output on RPOS, and a received error (BPV, CV, or EXZ) causes a  
positive-going pulse synchronous with RCLK at RNEG.  
RPOS1–RPOS4  
RNEG1–RNEG4  
O
Receive Negative Data. Updated on the rising edge (CCR2.0 = 0) or the falling edge (CCR2.0 =  
1) of RCLK with the bipolar data out of the line interface. Set NRZE (CCR1.6) to 1 for NRZ  
applications. In NRZ mode, data is output on RPOS, and a received error (BPV, CV, or EXZ)  
causes a positive-going pulse synchronous with RCLK at RNEG.  
O
Receive Clock. Buffered recovered clock from the line. Synchronous to MCLK in absence of  
signal at RTIP and RRING.  
RCLK1–RCLK4  
TPOS1–TPOS4  
TNEG1–TNEG4  
O
I
Transmit Positive Data. Sampled on the falling edge (CCR2.1 = 0) or the rising edge (CCR2.1 =  
1) of TCLK for data to be transmitted out onto the line.  
Transmit Negative Data. Sampled on the falling edge (CCR2.1 = 0) or the rising edge (CCR2.1 =  
I
1) of TCLK for data to be transmitted out onto the line.  
Transmit Clock. A 2.048MHz or 1.544MHz primary clock used to clock data through the transmit  
TCLK1–TCLK4  
I
side formatter. They can be sourced internally by MCLK or RCLK. See Common Control Register  
1 and Figure 1-3.  
JTRST  
JTMS  
I
I
JTAG Reset  
JTAG Mode Select  
JTCLK  
I
JTAG Clock  
JTDI  
I
JTAG Data In  
JTDO  
O
I
JTAG Data Out  
VSM  
Voltage Supply Mode (LQFP only). VSM should be wired low for correct operation.  
3.3V, ±5% Transmitter Positive Supply  
3.3V, ±5% Positive Supply  
TVDD1–TVDD4  
VDD1–VDD4  
TVSS1–TVSS4  
VSS1–VSS4  
Transmitter Signal Ground for Transmitter Outputs  
Signal Ground  
Table 2-E. Hardware Interface Mode Pin Description  
PIN  
I/O  
FUNCTION  
E1/T1 Select  
0 = E1  
ETS  
I
1 = T1  
NRZ Enable  
0 = bipolar data at RPOS/RNEG and TPOS/TNEG  
1 = NRZ data at RPOS and TPOS or TNEG; RNEG outputs a positive-going pulse when the  
device receives a BPV, CV, or EXZ.  
NRZE  
I
I
Receive and Transmit Synchronization Clock Enable. SCLKE combines RSCLKE (CCR5.3) and  
TSCLKE (CCR5.2).  
SCLKE  
0 = disable 2.048MHz synchronization transmit and receive mode  
1 = enable 2.048MHz synchronization transmit and receive mode  
Disable Jitter Attenuator  
DJA  
JAMUX  
JAS  
I
I
I
0 = jitter attenuator enabled  
1 = jitter attenuator disabled  
Jitter Attenuator Clock Mux. Controls the source for JACLK.  
0 = JACLK sourced from MCLK (2.048MHz or 1.544MHz at MCLK).  
1 = JACLK sourced from internal PLL (2.048 MHz at MCLK).  
Jitter Attenuator Path Select  
0 = place the jitter attenuator on the receive side  
1 = place the jitter attenuator on the transmit side  
Receive and Transmit HDB3/B8ZS Enable. HBE combines RHBE (CCR2.3) and THBE  
(CCR2.2).  
HBE  
I
I
0 = enable HDB3 (E1)/B8ZS (T1)  
1 = disable HDB3 (E1)/B8ZS (T1)  
Line Build-Out Select Bits 0,1, and 2. These pins set the transmitter build-out; see (Table 7-A  
(E1) and Table 7-B (T1).  
L0/L1/L2  
11 of 60  
 
DS21448 3.3V T1/E1/J1 Quad Line Interface  
PIN  
I/O  
FUNCTION  
Receive and Transmit Clock Select. Selects which RCLK edge to update RPOS and RNEG and  
which TCLK edge to sample TPOS and TNEG. CES combines TCES and RCES.  
0 = update RPOS/RNEG on rising edge of RCLK; sample TPOS/TNEG on falling edge of TCLK  
1 = update RPOS/RNEG on falling edge of RCLK; sample TPOS/TNEG on rising edge of TCLK  
Transmit Power-Down  
CES  
I
TPD  
I
0 = normal transmitter operation  
1 = powers down the transmitter and tri-states TTIP and TRING pins  
Transmit Data Source Select Bits 0 and 1. These inputs determine the source of the transmit  
data (Table 4-B).  
TX0/TX1  
LOOP0/LOOP1  
MM0/MM1  
I
I
I
Loopback Select Bits 0 and 1. These inputs determine the active loopback mode (Table 4-A).  
Monitor Mode Select Bits 0 and 1. These inputs determine if the receive equalizer is in a monitor  
mode (Table 4-D).  
Receive LIU Termination Select Bits 0 and 1. These inputs determine the receive termination  
(Table 4-E).  
RT1/RT0  
TEST  
I
I
I
Tri-State Control. Set high to tri-state all outputs and I/O pins (including the parallel control port).  
Set low for normal operation. Useful in board-level testing.  
Hardware Reset. Bringing HRST low resets the DS21448, setting all control bits to the all-zero  
default state.  
HRST  
Master Clock. A 2.048MHz (±50ppm) clock source with TTL levels is applied at this pin. This  
clock is used internally for both clock/data recovery and for jitter attenuation. A T1 1.544MHz  
clock source is optional (Note 1). See Table 4-F for details.  
MCLK  
I
BIS0/BIS1  
I
I
Bus Interface Select Bit 0 and 1. Used to select bus interface option (Table 2-A).  
Receive Equalizer Gain-Limit Select. These bits control the sensitivity of the receive equalizers  
(Table 4-C).  
EGL1–EGL4  
PRBS Bit-Error Output. The receiver constantly searches for a 215 - 1 PRBS (ETS = 0) or a  
QRSS PRBS (ETS = 1). The pattern is chosen automatically by the value of the ETS pin. It  
remains high if it is out of synchronization with the PRBS pattern. It goes low when synchronized  
to the PRBS pattern. Any errors in the received pattern after synchronization cause a positive-  
going pulse (with same period as E1 or T1 clock) synchronous with RCLK.  
PBEO1–PBEO4  
O
RCL1–RCL4  
RTIP1–RTIP4  
O
I
Receive Carrier Loss. An output that toggles high during a receive carrier loss.  
Receive Tip and Ring. Analog inputs for clock recovery circuitry. These pins connect through a  
1:1 transformer to the line. See Section 7 for details.  
RRING1–RRING4  
BPCLK1–BPCLK4  
TTIP1–TTIP4  
I
O
Backplane Clock. A 16.384MHz clock output that is referenced to RCLK.  
Transmit Tip and Ring. Analog line-driver outputs. These pins connect through a step-up  
transformer to the line. See Section 7 for details.  
O
TRING1–TRING4  
Receive Positive Data. Updated on the rising edge (CES = 0) or the falling edge (CES = 1) of  
RCLK with bipolar data out of the line interface. In NRZ mode (NRZE = 1), data is output on  
RPOS, and a received error (BPV, CV, or EXZ) causes a positive-going pulse synchronous with  
RCLK at RNEG.  
RPOS1–RPOS4  
O
Receive Negative Data. Updated on the rising edge (CES = 0) or the falling edge (CES = 1) of  
RCLK with bipolar data out of the line interface. In NRZ mode (NRZE = 1), data is output on  
RPOS, and a received error (BPV, CV, or EXZ) causes a positive-going pulse synchronous with  
RCLK at RNEG.  
RNEG1–RNEG4  
RCLK1–RCLK4  
O
O
Receive Clock. Buffered recovered clock from the line. Synchronous to MCLK in absence of  
signal at RTIP and RRING.  
Transmit Positive Data. Sampled on the falling edge (CES = 0) or the rising edge (CES = 1) of  
TCLK for data to be transmitted out onto the line.  
TPOS1–TPOS4  
TNEG1–TNEG4  
I
I
Transmit Negative Data. Sampled on the falling edge (CES = 0) or the rising edge (CES = 1) of  
TCLK for data to be transmitted out onto the line.  
Transmit Clock. A 2.048MHz or 1.544MHz primary clock used to clock data through the transmit  
TCLK1–TCLK4  
I
side formatter. It can be sourced internally by MCLK or RCLK. See Common Control Register 1  
and Figure 1-3.  
JTRST  
JTMS  
I
I
JTAG Reset  
JTAG Mode Select  
JTCLK  
I
JTAG Clock  
JTDI  
I
JTAG Data In  
JTDO  
O
I
JTAG Data Out  
VSM  
Voltage Supply Mode (LQFP only). VSM should be wired low for correct operation.  
3.3V, ±5% Transmitter Positive Supply  
3.3V, ±5% Positive Supply  
TVDD1–TVDD4  
VDD1–VDD4  
12 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
PIN  
I/O  
FUNCTION  
Transmitter Signal Ground for Transmitter Outputs  
Signal Ground  
TVSS1–TVSS4  
VSS1–VSS4  
Note 1: G.703 requires an accuracy of ±50ppm for T1 and E1. TR62411 and ANSI specs require ±32ppm accuracy for T1 interfaces.  
3. DETAILED DESCRIPTION  
The DS21448 has a usable receiver sensitivity of 0 to -43dB for E1 applications and 0 to -36dB for T1 that allows it  
to operate on 0.63mm (22AWG) cables up to 2.5km (E1) and 6000ft (T1) in length. The user has the option to use  
internal receive termination, software selectable for 75, 100, and 120applications, or external termination.  
The on-board crystal-less jitter attenuator can be placed in either the transmit or the receive data path, and requires  
only a 2.048MHz MCLK for both E1 and T1 applications (with the option of using a 1.544MHz MCLK in T1  
applications).  
The DS21448 has diagnostic capabilities such as loopbacks and PRBS pattern generation and detection. 16-bit  
loop-up and loop-down codes can be generated and detected. A single input pin can power down all transmitters to  
allow the implementation of hitless protection switching (HPS) for 1+1 redundancy without the use of relays. The  
device can be controlled through an 8-bit parallel port (muxed or nonmuxed) or a serial port, and it can be used in  
hardware mode. A standard boundary scan interface supports board-level testing.  
The DS21448 contains four independent LIUs that share a common interface for configuration and status. The user  
can choose between three different means of accessing the device: a parallel microprocessor interface, a serial  
interface, and a hardwired mode, which configures the device by setting levels on the device’s pins. The  
DS21448’s four chip selects (CS1, CS2, CS3, and CS4) determine which LIU is accessed when using the parallel  
or serial interface modes. Four sets of identical register maps exist, one for each channel. Using the appropriate  
chip select accesses a channel’s register map.  
The analog AMI/HDB3 waveform off the E1 line or the AMI/B8ZS waveform off the T1 line is transformer-coupled  
into the RTIP and RRING pins of the DS21448. The user has the option to use internal termination, software  
selectable for 75/100/120applications, or external termination. The device recovers clock and data from the  
analog signal and passes it through the jitter attenuation mux, outputting the received line clock at RCLK and  
bipolar or NRZ data at RPOS and RNEG. The DS21448 contains an active filter that reconstructs the analog-  
received signal for the nonlinear losses that occur in transmission. The receive circuitry is also configurable for  
various monitor applications. The device has a usable receive sensitivity of 0 to -43dB for E1 and 0 to -36dB for T1  
that allows the device to operate on 0.63mm (22AWG) cables up to 2.5km (E1) and 6k feet (T1) in length. Data  
input at TPOS and TNEG is sent through the jitter attenuation mux to the waveshaping circuitry and line driver. The  
DS21448 drives the E1 or T1 line from the TTIP and TRING pins through a coupling transformer. The line driver  
can handle both CEPT 30/ISDN-PRI lines for E1 and long-haul (CSU) or short-haul (DSX-1) lines for T1.  
3.1 DS21448 and DS21Q348 Differences  
The DS21448 BGA is a monolithic quad-port LIU that is a replacement for the DS21Q348. The additional features  
of JTAG, transmit driver disable, and the serial interface in the DS21448 have changed the function of several pins,  
as shown in Table 3-A.  
Table 3-A. DS21448 vs. DS21Q348 Pin Differences  
PIN  
G4  
J1  
DS21Q348  
VSM  
VSS  
DS21448  
N.C.  
SCLK  
K1  
K3  
K7  
L3  
A4  
A4/SDO  
SDI  
VSS  
TEST  
N.C.  
TXDIS/TEST  
JTRST*  
JTMS*  
JTCLK  
JTDI*  
M3  
M5  
M6  
M7  
N.C.  
N.C.  
N.C.  
N.C.  
JTDO  
*DS21448 pin is internally pulled up.  
13 of 60  
 
DS21448 3.3V T1/E1/J1 Quad Line Interface  
4. PORT OPERATION  
4.1 Hardware Mode  
The DS21448 supports a hardware configuration mode that allows the user to configure the device by setting levels  
on the device’s pins. This mode allows the DS21448 configuration without the use of a microprocessor, simplifying  
designs. Not all of the device features are supported in the hardware mode.  
In hardware mode (BIS0 = 1, BIS1 = 1) several pins have been redefined so they can be used for initializing the  
DS21448. Refer to Table 2-B and Table 2-E for pin assignment and definition. Because of limited pin count, several  
functions have been combined and affect all four channels in the device and/or treat the receive and transmit paths  
as one block. Restrictions when using the hardware mode include the following:  
BPCLK pins only output a 16.384MHz signal.  
The RCL/LOTC pins are designated to RCL.  
The RHBE and THBE control bits are combined and controlled by HBE.  
RSCLKE and TSCLKE bits are combined and controlled by SCLKE.  
TCES and RCES are combined and controlled by CES.  
The transmitter functions are combined and controlled by TX1 and TX0.  
Loopback functions are controlled by LOOP1 and LOOP0.  
JABDS defaults to 128-bit buffer depth.  
All other control bits default to logic 0.  
Table 4-A. Loopback Control in Hardware Mode  
LOOPBACK  
Remote Loopback  
Local Loopback  
Analog Loopback  
No Loopback  
SYMBOL  
RLB  
LOOP1  
LOOP0  
1
1
0
0
1
0
1
0
LLB  
ALB  
Table 4-B. Transmit Data Control in Hardware Mode  
TRANSMIT DATA  
Unframed All Ones  
Alternating Ones and Zeros  
PRBS  
SYMBOL  
TUA1  
TAOZ  
TPRBSE  
TX1  
1
TX0  
1
1
0
0
0
1
0
TPOS and TNEG  
Table 4-C. Receive Sensitivity Settings in Hardware Mode  
EGL  
ETS  
RECEIVE SENSITIVITY (dB)  
-12 (short haul)  
0
1
1
0
0 (E1)  
0 (E1)  
1 (T1)  
1 (T1)  
-43 (long haul)  
-30 (limited long haul)  
-36 (long haul)  
Table 4-D. Monitor Gain Settings in Hardware Mode  
MM1  
MM0  
INTERNAL LINEAR GAIN BOOST (dB)  
0
0
1
1
0
1
0
1
Normal operation (no boost)  
20  
26  
32  
Table 4-E. Internal Rx Termination Select in Hardware Mode  
INTERNAL RECEIVE  
RT1  
RT0  
TERMINATION CONFIGURATION  
Internal receive-side termination disabled  
Internal receive-side 120enabled  
Internal receive-side 100enabled  
Internal receive-side 75enabled  
0
0
1
1
0
1
0
1
14 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
Table 4-F. MCLK Selection in Hardware Mode  
MCLK (MHz)  
2.048  
JAMUX  
ETS  
0
1
0
0
1
1
2.048  
1.544  
4.2 Serial Port Operation  
Setting BIS1 = 1 and BIS0 = 0 enables the serial bus interface on the DS21448 (Table 2-A). Serial port read/write  
timing is unrelated to the system transmit and receive timing, allowing asynchronous reads or writes by the host.  
See Section 10 for the AC timing of the serial port. All serial port accesses are LSB first. See Figure 4-1,  
Figure 4-2, Figure 4-3, Figure 4-4, Figure 4-5, and Figure 4-6 for additional details.  
A serial bus access requires the use of four signals: serial clock (SCLK), one of the four chip selects (CS), serial  
data input (SDI), and serial data output (SDO). The DS21448 uses SCLK to sample data that is present on SDI and  
output data onto SDO. Input clock-edge select (ICES) allows the user to choose which SCLK edge input data is  
sampled on. Output clock-edge select (OCES) allows the user to choose which SCLK edge output data changes  
on. When ICES is low, input data is latched on the rising edge of SCLK, and when ICES is high, input data is  
latched on the falling edge of SCLK. When OCES is low, data is output on the falling edge of SCLK, and when  
OCES is high, data is output on the rising edge of SCLK. Data is held until the next falling or rising edge of SCLK.  
All data transfers are initiated by driving the appropriate port’s CS input low and ends with CS going inactive. CS  
must go inactive between data transfers. See the serial bus timing information in Section 10 for details. All data  
transfers are terminated if the port’s CS input transitions high. Port control logic is disabled, and SDO is tri-stated  
when all CS pins are inactive.  
Reading from or writing to the internal registers requires writing one address/command byte prior to the transferring  
register data. Two types of serial bus transfers exist, standard and burst. The standard serial bus access always  
consists of two bytes, an address/command byte that is always supplied by the user on SDI, and a data byte that  
can either be written to the DS21448 using SDI (write operation) or output by the DS21448 on SDO (read  
operation). The burst serial bus access consists of a single address/command byte followed either by 22 read or 22  
write data bytes.  
The first bit written (LSB) of the address/command byte specifies whether the access is to be a read (1) or a write  
(0). The next 5 bits identify the register address. Valid register addresses are 00h through 15h. Bit 7 is reserved  
and must be set to 0 for proper operation. Bit 8, the last bit (MSB) of the address/command byte, is the burst mode-  
enable bit. When the burst bit is enabled (set to 0) and a READ operation is performed, the DS21448 automatically  
outputs the contents of registers 00h through 15h sequentially, starting with register address 00h. When the burst  
bit is enabled and a WRITE operation is performed, data supplied on SDI is sequentially written into the DS21448’s  
register space starting at address 00h. Burst operation is stopped once address 15h is read or CS goes inactive.  
For both burst read and burst write transfers, the address/command byte’s register address bits must be set to 0.  
The user can broadcast register write accesses to multiple ports simultaneously by enabling the desired channels’  
chip selects at the same time. However, only one port can be read at a time. Any attempt to read multiple ports  
simultaneously results in invalid data being returned on SDO.  
15 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
Figure 4-1. Serial Port Operation for Read Access (R = 1) Mode 1  
ICES = 1 (SAMPLE SDI ON THE FALLING EDGE OF SCLK)  
OCES = 1 (UPDATE SDO ON RISING EDGE OF SCLK)  
SCLK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
CS  
SDI  
A1  
A2  
A3  
A4  
A5  
0
B
1
(MSB)  
(LSB)  
READ ACCESS ENABLED  
SDO  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
(MSB)  
(LSB)  
Figure 4-2. Serial Port Operation for Read Access (R = 1) Mode 2  
ICES = 1 (SAMPLE SDI ON THE FALLING EDGE OF SCLK)  
OCES = 0 (UPDATE SDO ON FALLING EDGE OF SCLK)  
SCLK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
CS  
SDI  
A1  
A2  
A3  
A4  
A5  
0
B
1
(MSB)  
(LSB)  
SDO  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
(MSB)  
(LSB)  
Figure 4-3. Serial Port Operation for Read Access (R = 1) Mode 3  
ICES = 0 (SAMPLE SDI ON THE RISING EDGE OF SCLK)  
OCES = 0 (UPDATE SDO ON FALLING EDGE OF SCLK)  
SCLK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
CS  
SDI  
A1  
A2  
A3  
A4  
A5  
0
B
1
(MSB)  
(LSB)  
SDO  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
(MSB)  
(LSB)  
16 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
Figure 4-4. Serial Port Operation for Read Access (R = 1) Mode 4  
ICES = 0 (SAMPLE SDI ON THE RISING EDGE OF SCLK)  
OCES = 1 (UPDATE SDO ON RISING EDGE OF SCLK)  
SCLK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
CS  
SDI  
A1  
A2  
A3  
A4  
A5  
B
0
1
(LSB)  
(MSB)  
SDO  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
(MSB)  
(LSB)  
Figure 4-5. Serial Port Operation for Write Access (R = 0) Modes 1 and 2  
ICES = 1 (SAMPLE SDI ON THE FALLING EDGE OF SCLK)  
SCLK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
CS  
SDI  
DO  
D6  
A1  
A2  
A3  
A4  
A5  
0
B
D1  
D2  
D3  
D4  
D5  
D7  
0
(LSB)  
(MSB)  
(MSB)  
(LSB)  
WRITE ACCESS ENABLED  
SDO  
Figure 4-6. Serial Port Operation for Write Access (R = 0) Modes 3 and 4  
ICES = 0 (SAMPLE SDI ON THE RISING EDGE OF SCLK)  
SCLK  
CS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
SDI  
DO  
D6  
A1  
A2  
A3  
A4  
A5  
0
B
D1  
D2  
D3  
D4  
D5  
D7  
(MSB)  
0
(LSB)  
(MSB)  
(LSB)  
WRITE ACCESS ENABLED  
SDO  
17 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
4.3 Parallel Port Operation  
The option for either multiplexed bus operation (BIS0 = 0) or nonmultiplexed bus operation (BIS0 = 1) is available  
when using the parallel interface. The DS21448 can operate with either Intel or Motorola bus timing configurations.  
If the PBTS pin is wired low, Intel timing is selected; if wired high, Motorola timing is selected. All Motorola bus  
signals are listed in parentheses (). Four sets of identical register maps exist, one for each channel. See Table 4-H  
for register names and addresses. Use the appropriate chip select (CS1, CS2, CS3, or CS4) to access a channel’s  
register map. See the timing diagrams in Section 10 for more details. Hardware and serial port modes are not  
supported when using parallel port operation.  
4.3.1 Device Power-Up and Reset  
The DS21448 resets itself upon power-up, setting all writeable registers to 00h and clearing the status and  
information registers. CCR3.7 (TUA1) = 0 results in the LIU transmitting unframed all ones. After the power  
supplies have settled, initialize all control registers to the desired settings, then toggle the LIRST bit (CCR3.2). The  
DS21448 can at any time be reset to the default settings by bringing HRST low (level triggered) or by powering  
down and powering up again.  
Table 4-G. Parallel Port Mode Selection  
PBTS  
BIS0  
PROCESSOR  
Intel  
BUS INTERFACE TYPE  
Parallel Port Mode (Multiplexed)  
Parallel Port Mode (Nonmultiplexed)  
Parallel Port Mode (Multiplexed)  
Parallel Port Mode (Nonmultiplexed)  
0
0
1
1
0
1
0
1
Intel  
Motorola  
Motorola  
4.3.2 Register Map  
Table 4-H shows the typical register map for all four ports. Use the appropriate chip select (CS1, CS2, CS3, or CS4)  
to access a channel’s register map.  
Table 4-H. Register Map  
NAME  
CCR1  
CCR2  
CCR3  
CCR4  
CCR5  
CCR6  
SR  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
ADDRESS  
00h  
FUNCTION  
Common Control Register 1  
Common Control Register 2  
Common Control Register 3  
Common Control Register 4  
Common Control Register 5  
Common Control Register 6  
Status Register  
01h  
02h  
03h  
04h  
05h  
06h  
IMR  
R/W  
R
07h  
Interrupt Mask Register  
RIR1  
08h  
Receive Information Register 1  
Receive Information Register 2  
In-Band Code Control Register  
Transmit Code Definition Register 1  
Transmit Code Definition Register 2  
Receive-Up Code Definition Register 1  
Receive-Up Code Definition Register 2  
Receive-Down Code Definition Register 1  
Receive-Down Code Definition Register 2  
Error Count Register 1  
RIR2  
R
09h  
IBCC  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
TCD1  
TCD2  
RUPCD1  
RUPCD2  
RDNCD1  
RDNCD2  
ECR1  
ECR2  
TEST1  
TEST2  
TEST2  
10h  
11h  
R
12h  
Error Count Register 2  
R/W  
R/W  
R/W  
13h  
Test 1  
14h  
Test 2  
15h  
(Note 1)  
Test 3  
Note 1: Register addresses 16h–1Fh do not exist.  
18 of 60  
 
DS21448 3.3V T1/E1/J1 Quad Line Interface  
4.3.3 Control Registers  
CCR1 (00H): Common Control Register 1  
(MSB)  
(LSB)  
ETS  
NAME  
ETS  
NRZE  
POSITION  
CCR1.7  
RCLA  
ECUE  
JAMUX  
FUNCTION  
TTOJ  
TTOR  
LOTCMC  
E1/T1 Select  
0 = E1  
1 = T1  
NRZ Enable  
0 = bipolar data at RPOS/RNEG and TPOS/TNEG  
NRZE  
RCLA  
ECUE  
CCR1.6  
CCR1.5  
CCR1.4  
1 = NRZ data at RPOS and TPOS or TNEG; RNEG outputs a positive-going pulse when the  
device receives a BPV, CV, or EXZ  
Receive-Carrier-Loss Alternate Criteria  
0 = RCL declared upon 255 (E1) or 192 (T1) consecutive zeros  
1 = RCL declared upon 2048 (E1) or 1544 (T1) consecutive zeros  
Error Counter Update Enable. A 0-to-1 transition forces the next receive clock cycle to load the  
error counter registers with the latest counts and reset the counters. The user must wait a  
minimum of two clock cycles (976ns for E1 and 1296ns for T1) before reading the error count  
registers to allow for a proper update. See Section 6 for details.  
Jitter Attenuator Clock Mux. Controls the source for JACLK (Figure 1-1).  
0 = JACLK sourced from MCLK (2.048MHz or 1.544MHz at MCLK)  
1 = JACLK sourced from internal PLL (2.048MHz at MCLK)  
TCLK to JACLK. Internally connects TCLK to JACLK (Figure 1-3).  
0 = disabled  
JAMUX  
TTOJ  
CCR1.3  
CCR1.2  
CCR1.1  
1 = enabled  
TCLK to RCLK. Internally connects TCLK to RCLK (Figure 1-3).  
0 = disabled  
TTOR  
1 = enabled  
Loss-of-Transmit Clock Mux Control. Determines whether the transmit logic should switch to  
JACLK if the TCLK input should fail to transition (Figure 1-3).  
0 = do not switch to JACLK if TCLK stops  
LOTCMC  
CCR1.0  
1 = switch to JACLK if TCLK stops  
19 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
CCR2 (01H): Common Control Register 2  
(MSB)  
(LSB)  
RLPIN  
NAME  
RLPIN  
SCLD  
CLDS  
RHBE  
THBE  
TCES  
RCES  
POSITION  
CCR2.7  
FUNCTION  
RCL/LOTC Pin Function Select. Forced to logic 0 in hardware mode.  
0 = toggles high during a receive-carrier loss condition  
1 = toggles high if TCLK does not transition for at least 5µs  
CCR2.6  
CCR2.5  
Not Assigned. Should be set to 0 when written to.  
Short Circuit-Limit Disable (ETS = 0). Controls the 50mA (RMS) current limiter.  
SCLD  
0 = enable 50mA current limiter  
1 = disable 50mA current limiter  
Custom Line-Driver Select. Setting this bit to 1 redefines the operation of the transmit line  
driver. When this bit is set to 1 and CCR4.5 = CCR4.6 = CCR4.7 = 0, the device generates a  
square wave at the TTIP and TRING outputs instead of a normal waveform. When this bit is  
set to 1 and CCR4.5 = CCR4.6 = CCR4.7 0, the device forces TTIP and TRING outputs to  
become open-drain drivers instead of their normal push-pull operation. This bit should be set  
to 0 for normal operation of the device. Contact the factory for more details about how to use  
this bit.  
CLDS  
CCR2.4  
Receive HDB3/B8ZS Enable  
RHBE  
THBE  
TCES  
RCES  
CCR2.3  
CCR2.2  
CCR2.1  
CCR2.0  
0 = enable HDB3 (E1)/B8ZS (T1)  
1 = disable HDB3 (E1)/B8ZS (T1)  
Transmit HDB3/B8ZS Enable  
0 = enable HDB3 (E1)/B8ZS (T1)  
1 = disable HDB3 (E1)/B8ZS (T1)  
Transmit Clock-Edge Select. Selects which TCLK edge to sample TPOS and TNEG.  
0 = sample TPOS and TNEG on falling edge of TCLK  
1 = sample TPOS and TNEG on rising edge of TCLK  
Receive Clock-Edge Select. Selects which RCLK edge to update RPOS and RNEG.  
0 = update RPOS and RNEG on rising edge of RCLK  
1 = update RPOS and RNEG on falling edge of RCLK  
20 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
CCR3 (02H): Common Control Register 3  
(MSB)  
(LSB)  
TUA1  
ATUA1  
TAOZ  
TPRBSE  
TLCE  
FUNCTION  
LIRST  
IBPV  
IBE  
NAME  
POSITION  
Transmit Unframed All Ones. The polarity of this bit is set such that the device transmits an all-  
ones pattern on power-up or device reset. This bit must be set to 1 to allow the device to transmit  
TUA1  
CCR3.7  
CCR3.6  
data. The transmission of this data pattern is always timed off JACLK (Figure 1-1).  
0 = transmit all ones at TTIP and TRING  
1 = transmit data normally  
Automatic Transmit Unframed All Ones. Automatically transmit an unframed all-ones pattern at  
TTIP and TRING during an RCL condition.  
ATUA1  
0 = disabled  
1 = enabled  
Transmit Alternate Ones and Zeros. Transmit a …101010… pattern at TTIP and TRING. The  
transmission of this data pattern is always timed off TCLK.  
TAOZ  
CCR3.5  
CCR3.4  
0 = disabled  
1 = enabled  
Transmit PRBS Enable. Transmit a 215 - 1 (E1) or a QRSS (T1) PRBS at TTIP and TRING.  
TPRBSE  
0 = disabled  
1 = enabled  
Transmit Loop-Code Enable. Enables the transmit side to transmit the loop-up code in the transmit  
code definition registers (TCD1 and TCD2). See Section 6 for details.  
0 = disabled  
TLCE  
LIRST  
IBPV  
IBE  
CCR3.3  
CCR3.2  
CCR3.1  
CCR3.0  
1 = enabled  
Line Interface Reset. Setting this bit from 0 to 1 initiates an internal reset that resets the clock  
recovery state machine and recenters the jitter attenuator. Normally this bit is only toggled on  
power-up. It must be cleared and set again for a subsequent reset.  
Insert Bipolar Violation (BPV). A 0-to-1 transition on this bit causes a single bipolar violation to be  
inserted into the transmit data stream. Once this bit has been toggled from 0 to 1, the device waits  
for the next occurrence of three consecutive 1s to insert the BPV. This bit must be cleared and set  
again for a subsequent error to be inserted (Figure 1-3).  
Insert Bit Error. A 0-to-1 transition on this bit causes a single logic error to be inserted into the  
transmit data stream. This bit must be cleared and set again for a subsequent error to be inserted  
(Figure 1-3).  
CCR4 (03H): Common Control Register 4  
(MSB)  
(LSB)  
L2  
L1  
L0  
EGL  
JAS  
JABDS  
DJA  
TPD  
NAME  
L2  
POSITION  
CCR4.7  
CCR4.6  
CCR4.5  
FUNCTION  
Line Build-Out Select Bit 2. Sets the transmitter build-out (Table 7-A for E1, Table 7-B for T1).  
Line Build Out Select Bit 1. Sets the transmitter build-out (Table 7-A for E1, Table 7-B for T1).  
Line Build Out Select Bit 0. Sets the transmitter build-out (Table 7-A for E1, Table 7-B for T1).  
L1  
L0  
EGL  
CCR4.4  
Receive Equalizer Gain Limit. This bit controls the sensitivity of the receive equalizer (Table 4-I).  
Jitter Attenuator Path Select  
JAS  
CCR4.3  
0 = place the jitter attenuator on the receive side  
1 = place the jitter attenuator on the transmit side  
Jitter Attenuator Buffer Depth Select  
0 = 128 bits  
JABDS  
DJA  
CCR4.2  
CCR4.1  
CCR4.0  
1 = 32 bits (use for delay-sensitive applications)  
Disable Jitter Attenuator  
0 = jitter attenuator enabled  
1 = jitter attenuator disabled  
Transmit Power-Down  
TPD  
0 = normal transmitter operation  
1 = powers down the transmitter and tri-states the TTIP and TRING pins  
21 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
Table 4-I. Receive Sensitivity Settings  
EGL  
ETS  
(CCR1.7)  
0 (E1)  
RECEIVE SENSITIVITY  
(dB)  
(CCR4.4)  
0
1
1
0
-12 (short haul)  
-43 (long haul)  
-30 (limited long haul)  
-36 (long haul)  
0 (E1)  
1 (T1)  
1 (T1)  
CCR5 (04H): Common Control Register 5  
(MSB)  
(LSB)  
BPCS1  
BPCS0  
MM1  
MM0  
RSCLKE  
TSCLKE  
RT1  
RT0  
NAME  
BPCS1  
BPCS0  
MM1  
POSITION  
CCR5.7  
CCR5.6  
CCR5.5  
CCR5.4  
FUNCTION  
Backplane Clock Frequency Select 1. See Table 4-J for details.  
Backplane Clock Frequency Select 0. See Table 4-J for details.  
Monitor Mode Gain Select 1 (Table 4-K. )  
MM0  
Monitor Mode Gain Select 0. See (Table 4-K.  
Receive Synchronization Clock Enable  
RSCLKE  
CCR5.3  
0 = disable 2.048MHz synchronization receive mode  
1 = enable 2.048MHz synchronization receive mode  
Transmit Synchronization Clock Enable  
TSCLKE  
CCR5.2  
0 = disable 2.048MHz transmit synchronization clock  
1 = enable 2.048MHz transmit synchronization clock  
Receive Termination Select 1. See Table 4-L for details.  
RT1  
RT0  
CCR5.1  
CCR5.0  
Receive Termination Select 0. See Table 4-L for details.  
Table 4-J. Backplane Clock Select  
BPCS1  
BPCS0  
BPCLK FREQUENCY (MHz)  
(CCR5.7)  
(CCR5.6)  
0
0
1
1
0
1
0
1
16.384  
8.192  
4.096  
2.048  
Table 4-K. Monitor Gain Settings  
MM1  
MM0  
INTERNAL LINEAR GAIN  
(CCR5.5)  
(CCR5.4)  
BOOST (dB)  
0
0
1
1
0
1
0
1
Normal operation (no boost)  
20  
26  
32  
Table 4-L. Internal Rx Termination Select  
RT1  
RT0  
INTERNAL RECEIVE  
(CCR5.1)  
(CCR5.0)  
TERMINATION CONFIGURATION  
Internal receive-side termination disabled  
0
0
1
1
0
1
0
1
Internal receive-side 120enabled  
Internal receive-side 100enabled  
Internal receive-side 75enabled  
22 of 60  
 
 
 
DS21448 3.3V T1/E1/J1 Quad Line Interface  
CCR6 (05H): Common Control Register 6  
(MSB)  
(LSB)  
LLB  
RLB  
ARLBE  
ALB  
RJAB  
ECRS2  
FUNCTION  
ECRS1  
ECRS0  
NAME  
POSITION  
Local Loopback. In local loopback, transmit data is looped back to the receive path, passing  
through the jitter attenuator if it is enabled. Data in the transmit path acts as normal. See  
Section 6.2 for details.  
LLB  
RLB  
CCR6.7  
CCR6.6  
0 = loopback disabled  
1 = loopback enabled  
Remote Loopback. In remote loopback, data output from the clock/data recovery circuitry is  
looped back to the transmit path, passing through the jitter attenuator if it is enabled. Data in  
the receive path acts as normal, while data presented at TPOS and TNEG is ignored. See  
Section 6.2 for details.  
0 = loopback disabled  
1 = loopback enabled  
Automatic Remote Loopback Enable and Reset. When this bit is set high, the device  
automatically goes into remote loopback when it detects loop-up code programmed into the  
receive loop-up code definition registers (RUPCD1 and RUPCD2) for a minimum of 5  
seconds; it also sets the RIR2.1 status bit. Once it is in an RLB state, the bit remains in this  
state until it has detected the loop code programmed into the receive loop-down code  
definition registers (RDNCD1 and RDNCD2) for a minimum of 5 seconds, at which point it  
forces the device out of RLB and clears RIR2.1. Toggling this bit from 1 to 0 resets the  
automatic RLB circuitry. The action of the automatic remote loopback circuitry is logically  
ORed with the RLB (CCR6.6) control bit (i.e., either one can cause a RLB to occur).  
Analog Loopback. In analog loopback, signals at TTIP and TRING are internally connected to  
RTIP and RRING. The incoming line signals at RTIP and RRING are ignored. The signals at  
TTIP and TRING are transmitted as normal. See Section 6.2 for more details.  
0 = loopback disabled  
ARLBE  
CCR6.5  
ALB  
CCR6.4  
CCR6.3  
1 = loopback enabled  
RCLK Jitter Attenuator Bypass. This control bit allows the receive-recovered clock and data to  
bypass the jitter attenuation, while still allowing the BPCLK output to use the jitter attenuator.  
See Section 7.3 for details.  
RJAB  
0 = disabled  
1 = enabled  
ECRS2  
ECRS1  
ECRS0  
CCR6.2  
CCR6.1  
CCR6.0  
Error Count Register Select 2. See Section 6.4 for details.  
Error Count Register Select 1. See Section 6.4 for details.  
Error Count Register Select 0. See Section 6.4 for details.  
5. STATUS REGISTERS  
The three registers that contain information about the device’s real-time status are the status register (SR) and  
receive information registers 1 and 2 (RIR1/RIR2). When a particular event has occurred (or is occurring), the  
appropriate bit in one of these registers is set to 1. Some bits in SR, RIR1, and RIR2 are latched bits and some are  
real-time bits (denoted in the following register descriptions). For latched status bits, when an event or an alarm  
occurs, the bit is set to 1 and remains set until the user reads that bit. The bit is cleared when it is read, and it is not  
set until the event has occurred again. Two of the latched status bits (RUA1 and RCL) remain set after reading if  
the alarm is still present.  
The user always precedes a read of any of the three status registers with a write. The byte written to the register  
informs the DS21448 which bits the user wishes to read and have cleared. The user writes a byte to one of these  
registers with a 1 in the bit positions to be read and a 0 in the other bit positions. When a 1 is written to a bit  
location, that location is updated with the latest information. When a 0 is written to a bit position, that bit position is  
not updated, and the previous value is held. A write to the status and information registers is immediately followed  
by a read of the same register. The read result should be logically ANDed with the mask byte that was just written,  
and this value should be written back into the same register to ensure that bit does indeed clear. This second write  
step is necessary because the alarms and events in the status registers occur asynchronously with respect to their  
access through the parallel port. This write-read-write scheme allows an external microcontroller or microprocessor  
to individually poll certain bits without disturbing the other bits in the register. This operation is key in controlling the  
DS21448 with higher-order software languages.  
23 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
The bits in the SR register have the unique ability to initiate a hardware interrupt through the INT output pin. Each  
of the alarms and events in the SR can be either masked or unmasked from the interrupt pin through the interrupt  
mask register (IMR). The interrupts caused by the RCL, RUA1, and LOTC bits in the SR act differently than the  
interrupts caused by the other status bits in the SR. The RCL, RUA1, and LOTC bits forces the INT pin low  
whenever they change state (i.e., go active or inactive). The INT pin is allowed to return high (if no other interrupts  
are present) when the user reads the alarm bit that caused the interrupt to occur, even if the alarm is still present.  
The other status bits in the SR can force the INT pin low when they are set. The INT pin is allowed to return high (if  
no other interrupts are present) when the user reads the event bit that caused the interrupt to occur.  
The host can quickly determine which of the four LIU channels is generating an interrupt by reading one of the  
unused addresses in the 16h–1Fh range in any LIU channel. See the following LIU channel interrupt status  
description for additional information.  
LIU Channel Interrupt Status  
(MSB)  
(LSB)  
LIU4  
FUNCTION  
LIU3  
LIU2  
LIU1  
NAME  
N/A  
POSITION  
7
6
5
4
Not Assigned. Could be any value when read.  
Not Assigned. Could be any value when read.  
Not Assigned. Could be any value when read.  
Not Assigned. Could be any value when read.  
N/A  
N/A  
N/A  
LIU4 Status Register. A 1 in this bit position indicates that the status register (SR) in channel 4 is  
asserting an interrupt.  
LIU4  
LIU3  
LIU2  
LIU1  
3
2
1
0
LIU3 Status Register. A 1 in this bit position indicates that the status register (SR) in channel 3 is  
asserting an interrupt.  
LIU2 Status Register. A 1 in this bit position indicates that the status register (SR) in channel 2 is  
asserting an interrupt.  
LIU1 Status Register. A 1 in this bit position indicates that the status register (SR) in channel 1 is  
asserting an interrupt.  
SR (06H): Status Register  
(MSB)  
(LSB)  
LUP  
LDN  
LOTC  
RUA1  
RCL  
FUNCTION  
TCLE  
TOCD  
PRBSD  
NAME  
LUP  
POSITION  
Loop-Up Code Detected. This bit is set when the loop-up code defined in registers RUPCD1 and  
RUPCD2 is being received. See Section 6.1 for details.  
SR.7  
(Latched)  
LDN  
Loop-Down Code Detected. This bit is set when the loop-down code defined in registers  
RDNCD1 and RDNCD2 is being received. See Section 6.1 for details.  
Loss-of-Transmit Clock. This bit is set when the TCLK pin has not transitioned for 5µs (±2µs),  
forcing the LOTC pin high.  
SR.6  
SR.5  
SR.4  
SR.3  
SR.2  
SR.1  
(Latched)  
LOTC  
(Real Time)  
RUA1  
Receive Unframed All Ones. This bit is set when an unframed all-ones code is received at RRING  
and RTIP (Table 5-A).  
(Latched)  
RCL  
Receive Carrier Loss. This bit is set when an RCL condition exists at RRING and RTIP. See  
(Table 5-A) for details.  
(Latched)  
TCLE  
Transmit Current-Limit Exceeded. This bit is set when the 50mA (RMS) current limiter is activated  
whether or not the current limiter is enabled.  
(Real Time)  
TOCD  
Transmit Open-Circuit Detect. This bit is set when the device detects that the TTIP and TRING  
outputs are open circuited.  
(Real Time)  
PRBSD  
PRBS Detect. This bit is set when the receive side detects a 215 - 1 (E1) or a QRSS (T1)  
pseudorandom bit sequence (PRBS).  
SR.0  
(Real Time)  
24 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
Table 5-A. Received Alarm Criteria  
ALARM  
E1/T1  
SET CRITERIA  
CLEAR CRITERIA  
RUA1  
E1  
Fewer than two 0s in two frames (512 bits)  
Over a 3ms window, five or fewer 0s are  
received.  
255 (or 2048) consecutive 0s received  
(G.775) (Note 2)  
More than two 0s in two frames (512 bits)  
Over a 3ms window, six or more 0s are  
received.  
RUA1  
T1  
RCL  
In 255-bit times, at least 32 1s are  
received.  
E1  
(Note 1)  
14 or more 1s out of 112 possible bit  
positions are received, starting with the  
first 1 received.  
RCL  
192 (or 1544) consecutive 0s are received  
(Note 2)  
T1  
(Note 1)  
Note 1: RCL is also known as a loss of signal (LOS) or Red Alarm in T1.  
Note 2: See CCR1.5 for details.  
IMR (07H): Interrupt Mask Register  
(MSB)  
(LSB)  
LUP  
NAME  
LUP  
LDN  
POSITION  
IMR.7  
LOTC  
RUA1  
RCL  
TCLE  
FUNCTION  
TOCD  
PRBSD  
Loop-Up Code Detected  
0 = interrupt masked  
1 = interrupt enabled  
Loop-Down Code Detected  
0 = interrupt masked  
1 = interrupt enabled  
Loss-of-Transmit Clock  
0 = interrupt masked  
1 = interrupt enabled  
Receive Unframed All Ones  
0 = interrupt masked  
1 = interrupt enabled  
Receive Carrier Loss  
0 = interrupt masked  
1 = interrupt enabled  
Transmit Current-Limiter Exceeded  
0 = interrupt masked  
1 = interrupt enabled  
Transmit Open-Circuit Detect  
0 = interrupt masked  
1 = interrupt enabled  
PRBS Detection  
LDN  
LOTC  
RUA1  
RCL  
IMR.6  
IMR.5  
IMR.4  
IMR.3  
IMR.2  
IMR.1  
IMR.0  
TCLE  
TOCD  
PRBSD  
0 = interrupt masked  
1 = interrupt enabled  
25 of 60  
 
DS21448 3.3V T1/E1/J1 Quad Line Interface  
RIR1 (08H): Receive Information Register 1  
(MSB)  
(LSB)  
ZD  
16ZD  
HBD  
RCLC  
RUA1C  
JALT  
NAME  
POSITION  
RIR1.7  
FUNCTION  
Zero Detect. This bit is set when a string of at least four (ETS = 0) or eight (ETS = 1)  
ZD  
consecutive 0s (regardless of the length of the string) have been received. This bit is cleared  
when read.  
16 Zero Detect. This is set when at least 16 consecutive 0s (regardless of the length of the  
string) have been received. This bit is cleared when read.  
(Latched)  
16ZD  
RIR1.6  
RIR1.5  
(latched)  
HDB3/B8ZS Word Detect. This is set when an HDB3 (ETS = 0) or B8ZS (ETS = 1) codeword  
is detected independently of the receive HDB3/B8ZS mode (CCR4.6) being enabled. This bit  
is cleared when read. It is useful for automatically setting the line coding.  
RCL Clear. Set when the RCL alarm has met the clear criteria defined in Table 5-A. This bit  
is cleared when read.  
HBD  
(Latched)  
RCLC  
RIR1.4  
RIR1.3  
(Latched)  
RUA1C  
Receive Unframed All-Ones Clear. This bit is set when the unframed all-ones signal is no  
longer detected. This bit is cleared when read (Table 5-A).  
(Latched)  
Jitter Attenuator Limit Trip. This bit is set when the jitter attenuator FIFO reaches within 4 bits  
of its useful limit. This bit is cleared when read and is useful for debugging jitter attenuation  
operation.  
JALT  
RIR1.2  
(Latched)  
N/A  
N/A  
RIR1.1  
RIR1.0  
Not Assigned. Could be any value when read.  
Not Assigned. Could be any value when read.  
RIR2 (09H): Receive Information Register 2  
(MSB)  
(LSB)  
RL3  
RL2  
RL1  
RL0  
ARLB  
SEC  
NAME  
POSITION  
FUNCTION  
RL3  
(Real Time)  
RL2  
RIR2.7  
Receive Level Bit 3 (Table 5-B)  
Receive Level Bit 2 (Table 5-B)  
Receive Level Bit 1 (Table 5-B)  
Receive Level Bit 0 (Table 5-B)  
RIR2.6  
RIR2.5  
RIR2.4  
(Real Time)  
RL1  
(Real Time)  
RL0  
(Real Time)  
N/A  
RIR2.3  
RIR2.2  
Not Assigned. Could be any value when read.  
Not Assigned. Could be any value when read.  
N/A  
Automatic Remote Loopback Detected. This bit is set to 1 when the automatic remote  
loopback circuitry has detected the presence of a loop-up code for 5 seconds. It remains set  
until the automatic RLB circuitry has detected the loop-down code for 5 seconds. See  
Section 11 for more details. This bit is forced low when the automatic RLB circuitry is  
disabled (CCR6.5 = 0).  
One-Second Timer. This bit is set to 1 on one-second boundaries as timed by the device,  
based on the RCLK. It is cleared when read.  
ARLB  
RIR2.1  
RIR2.0  
(Real Time)  
SEC  
(Latched)  
26 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
Table 5-B. Receive Level Indication  
RL3  
0
RL2  
0
RL1  
0
RL0  
0
RECEIVE LEVEL (dB)  
Greater than -2.5  
-2.5 to -5.0  
0
0
0
1
0
0
1
0
-5.0 to -7.5  
0
0
1
1
-7.5 to -10.0  
0
1
0
0
-10.0 to -12.5  
-12.5 to -15.0  
-15.0 to -17.5  
-17.5 to -20.0  
-20.0 to -22.5  
-22.5 to -25.0  
-25.0 to -27.5  
-27.5 to -30.0  
-30.0 to -32.5  
-32.5 to -35.0  
-35.0 to -37.5  
-37.5 to -40.0  
0
1
0
1
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
27 of 60  
 
DS21448 3.3V T1/E1/J1 Quad Line Interface  
6. DIAGNOSTICS  
6.1 In-Band Loop-Code Generation and Detection  
The DS21448 can generate and detect a repeating bit pattern from 1 to 8 or 16 bits in length. To transmit a pattern,  
the user loads the pattern into the transmit code definition (TCD1 and TCD2) registers and selects the proper  
length of the pattern by setting the TC0 and TC1 bits in the in-band code control (IBCC) register. When generating  
a 1-, 2-, 4-, 8-, or 16-bit pattern, the transmit code registers (TCD1 and TCD2) must be filled with the proper code.  
Generation of a 1-, 3-, 5-, or 7-bit pattern only requires TCD1 to be filled. Once this is accomplished, the pattern is  
transmitted, as long as the TLCE control bit (CCR3.3) is enabled. For example, if the user wished to transmit the  
standard loop-up code for CSUs, which is a repeating pattern of ...10000100001..., then 80h would be loaded into  
TCD1, and the length would set using TC1 and TC0 in the IBCC register to 5 bits.  
The DS21448 can detect two separate repeating patterns to allow for a loop-up code and a loop-down code to be  
detected. The user programs the codes in the receive-up code definition (RUPCD1 and RUPCD2) registers and the  
receive-down code definition (RDNCD1 and RDNCD2) registers; the length of each pattern is selected through the  
IBCC register. The DS21448 detects repeating pattern codes with bit-error rates as high as 1 x 10-2. The code  
detector has a nominal integration period of 48ms, so after approximately 48ms of receiving either code, the proper  
status bit (LUP at SR.7 and LDN at SR.6) is set to 1. Normally codes are sent for a period of 5 seconds. It is  
recommended that the software poll the DS21448 every 100ms to 1000ms until 5 seconds has elapsed to ensure  
the code is continuously present.  
IBCC (0AH): In-Band Code Control Register  
(MSB)  
(LSB)  
TC1  
TC0  
RUP2  
RUP1  
RUP0  
RDN2  
RDN1  
RDN0  
NAME  
POSITION  
FUNCTION  
TC1  
IBCC.7  
IBCC.6  
IBCC.5  
IBCC.4  
IBCC.3  
IBCC.2  
IBCC.1  
IBCC.0  
Transmit Code Length Definition Bit 1 (Table 6-A)  
Transmit Code Length Definition Bit 0. (Table 6-A)  
TC0  
RUP2  
RUP1  
RUP0  
RDN2  
RDN1  
RDN0  
Receive Up Code Length Definition Bit 2 (Table 6-B)  
D0  
Receive-Up Code Length Definition Bit 1 (Table 6-B)  
Receive-Up Code Length Definition Bit 0 (Table 6-B)  
Receive-Down Code Length Definition Bit 2 (Table 6-B)  
Receive-Down Code Length Definition Bit 1 (Table 6-B)  
Receive-Down Code Length Definition Bit 0 (Table 6-B)  
28 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
Table 6-A. Transmit Code Length  
LENGTH SELECTED  
TC1  
TC0  
(BITS)  
0
0
1
1
0
1
0
1
5
6/3  
7
16/8/4/2/1  
Table 6-B. Receive Code Length  
LENGTH SELECTED  
RUP2/RDN2  
RUP1/RDN1  
RUP0/RDN0  
(BITS)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
3
4
5
6
7
16/8  
TCD1 (0BH): Transmit Code Definition Register 1  
(MSB)  
(LSB)  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
NAME  
C7  
POSITION  
TCD1.7  
TCD1.6  
TCD1.5  
TCD1.4  
TCD1.3  
TCD1.2  
TCD1.1  
TCD1.0  
FUNCTION  
Transmit Code Definition Bit 7. First bit of the repeating pattern.  
Transmit Code Definition Bit 6  
C6  
C5  
Transmit Code Definition Bit 5  
C4  
Transmit Code Definition Bit 4  
Transmit Code Definition Bit 3  
C3  
C2  
Transmit Code Definition Bit 2. A don’t care if a 5-bit length is selected.  
Transmit Code Definition Bit 1. A don’t care if a 5-bit or 6-bit length is selected.  
Transmit Code Definition Bit 0. A don’t care if a 5-, 6-, or 7-bit length is selected.  
C1  
C0  
TCD2 (0CH): Transmit Code Definition Register 2  
(MSB)  
(LSB)  
C15  
C14  
C13  
C12  
C11  
FUNCTION  
C10  
C9  
C8  
NAME  
C15  
C14  
C13  
C12  
C11  
C10  
C9  
POSITION  
TCD2.7  
TCD2.6  
TCD2.5  
TCD2.4  
TCD2.3  
TCD2.2  
TCD2.1  
TCD2.0  
Transmit Code Definition Bit 15  
Transmit Code Definition Bit 14  
Transmit Code Definition Bit 13  
Transmit Code Definition Bit 12  
Transmit Code Definition Bit 11  
Transmit Code Definition Bit 10  
Transmit Code Definition Bit 9  
Transmit Code Definition Bit 8  
C8  
29 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
RUPCD1 (0DH): Receive-Up Code Definition Register 1  
(MSB)  
(LSB)  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
NAME  
C7  
POSITION  
RUPCD1.7  
RUPCD1.6  
RUPCD1.5  
RUPCD1.4  
RUPCD1.3  
RUPCD1.2  
RUPCD1.1  
RUPCD1.0  
FUNCTION  
Receive-Up Code Definition Bit 7. First bit of the repeating pattern.  
C6  
Receive-Up Code Definition Bit 6. A don’t care if a 1-bit length is selected.  
Receive-Up Code Definition Bit 5. A don’t care if a 1-bit or 2-bit length is selected.  
Receive-Up Code Definition Bit 4. A don’t care if a 1-bit to 3-bit length is selected.  
Receive-Up Code Definition Bit 3. A don’t care if a 1-bit to 4-bit length is selected.  
Receive-Up Code Definition Bit 2. A don’t care if a 1-bit to 5-bit length is selected.  
Receive-Up Code Definition Bit 1. A don’t care if a 1-bit to 6-bit length is selected.  
Receive-Up Code Definition Bit 0. A don’t care if a 1-bit to 7-bit length is selected.  
C5  
C4  
C3  
C2  
C1  
C0  
RUPCD2 (0EH): Receive-Up Code Definition Register 2  
(MSB)  
(LSB)  
C15  
C14  
C13  
C12  
C11  
FUNCTION  
C10  
C9  
C8  
NAME  
C15  
C14  
C13  
C12  
C11  
C10  
C9  
POSITION  
RUPCD2.7  
RUPCD2.6  
RUPCD2.5  
RUPCD2.4  
RUPCD2.3  
RUPCD2.2  
RUPCD2.1  
RUPCD2.0  
Receive-Up Code Definition Bit 15  
Receive-Up Code Definition Bit 14  
Receive-Up Code Definition Bit 13  
Receive-Up Code Definition Bit 12  
Receive-Up Code Definition Bit 11  
Receive-Up Code Definition Bit 10  
Receive-Up Code Definition Bit 9  
Receive-Up Code Definition Bit 8  
C8  
RDNCD1 (0FH): Receive-Down Code Definition Register 1  
(MSB)  
(LSB)  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
NAME  
C7  
POSITION  
RDNCD1.7  
RDNCD1.6  
RDNCD1.5  
RDNCD1.4  
RDNCD1.3  
RDNCD1.2  
RDNCD1.1  
RDNCD1.0  
FUNCTION  
Receive-Down Code Definition Bit 7. First bit of the repeating pattern.  
C6  
Receive-Down Code Definition Bit 6. A don’t care if a 1-bit length is selected.  
Receive-Down Code Definition Bit 5. A don’t care if a 1-bit or 2-bit length is selected.  
Receive-Down Code Definition Bit 4. A don’t care if a 1-bit to 3-bit length is selected.  
Receive-Down Code Definition Bit 3. A don’t care if a 1-bit to 4-bit length is selected.  
Receive-Down Code Definition Bit 2. A don’t care if a 1-bit to 5-bit length is selected.  
Receive-Down Code Definition Bit 1. A don’t care if a 1-bit to 6-bit length is selected.  
Receive-Down Code Definition Bit 0. A don’t care if a 1-bit to 7-bit length is selected.  
C5  
C4  
C3  
C2  
C1  
C0  
RDNCD2 (10H): Receive-Down Code Definition Register 2  
(MSB)  
(LSB)  
C15  
C14  
C13  
C12  
C11  
FUNCTION  
C10  
C9  
C8  
NAME  
C15  
C14  
C13  
C12  
C11  
C10  
C9  
POSITION  
RDNCD2.7  
RDNCD2.6  
RDNCD2.5  
RDNCD2.4  
RDNCD2.3  
RDNCD2.2  
RDNCD2.1  
RDNCD2.0  
Receive-Down Code Definition Bit 15  
Receive-Down Code Definition Bit 14  
Receive-Down Code Definition Bit 13  
Receive-Down Code Definition Bit 12  
Receive-Down Code Definition Bit 11  
Receive-Down Code Definition Bit 10  
Receive-Down Code Definition Bit 9  
Receive-Down Code Definition Bit 8  
C8  
30 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
6.2 Loopbacks  
6.2.1 Remote Loopback (RLB)  
When RLB (CCR6.6) is enabled, the DS21448 is placed into remote loopback. In this loopback, data from the  
clock/data recovery state machine is looped back to the transmit path, passing through the jitter attenuator if it is  
enabled. The data at the RPOS and RNEG pins is valid, while data presented at TPOS and TNEG is ignored. See  
Figure 1-1 for more details.  
If the automatic RLB enable (CCR6.5) is set to 1, the DS21448 automatically goes into remote loopback when it  
detects the loop-up code programmed in the receive-up code definition registers (RUPCD1 and RUPCD2) for a  
minimum of 5 seconds. When the DS21448 detects the loop-down code programmed in the receive loop-down  
code definition registers (RDNCD1 and RDNCD2) for a minimum of 5 seconds, the DS21448 comes out of remote  
loopback. Setting ARLBE to 0 can also disable the ARLB.  
6.2.2 Local Loopback (LLB)  
When LLB (CCR6.7) is set to 1, the DS21448 is placed into local loopback. In this loopback, data on the transmit  
side is transmitted as normal. TCLK and TPOS/TNEG pass through the jitter attenuator (if enabled) and are output  
at RCLK and RPOS/RNEG. Incoming data from the line at RTIP and RRING is ignored. If transmit unframed all  
ones (CCR3.7) is set to 1 while in LLB, TTIP and TRING transmit all ones while TCLK and TPOS/TNEG are looped  
back to RCLK and RPOS/RNEG. See Figure 1-1 for more details.  
6.2.3 Analog Loopback (LLB)  
Setting ALB (CCR6.4) to 1 puts the DS21448 in analog loopback. Signals at TTIP and TRING are internally  
connected to RTIP and RRING. The incoming signals at RTIP and RRING are ignored. The signals at TTIP and  
TRING are transmitted as normal. See Figure 1-1 for more details.  
6.2.4 Dual Loopback (DLB)  
Setting CCR6.7 and CCR6.6 (LLB and RLB, respectively) to 1 puts the DS21448 into dual loopback operation. The  
TCLK and TPOS/TNEG signals are looped back through the jitter attenuator (if enabled) and output at RCLK and  
RPOS/RNEG. Clock and data recovered from RTIP and RRING are looped back to the transmit side and output at  
TTIP and TRING. This mode of operation is not available when implementing hardware operation. See Figure 1-1  
more details.  
6.3 PRBS Generation and Detection  
Setting TPRBSE (CCR3.4) = 1 enables the DS21448 to transmit a 215 - 1 (E1) or a QRSS (T1) PRBS, depending  
on the ETS bit setting in CCR1.7. The DS21448’s receive side always searches for these PRBS patterns  
independently of CCR3.4. The PRBS bit-error output (PBEO) remains high until the receiver has synchronized to  
one of the two patterns (64 bits received without an error), at which time PBEO goes low, and the PRBSD bit in the  
SR is set. Once synchronized, any bit errors received cause a positive-going pulse at PBEO, synchronous with  
RCLK. This output can be used with external circuitry track bit-error rates during the PRBS testing. Setting CCR6.2  
(ECRS2) = 1 allows the PRBS errors to be accumulated in the 16-bit counter in registers ECR1 and ECR2. The  
PRBS synchronizer remains in sync until it experiences six bit errors or more within a 64-bit span. Both PRBS  
patterns comply with the ITU-T O.151 specifications.  
6.4 Error Counter  
Error count register 1 (ECR1) is the most significant word and ECR2 is the least significant word of a user-  
selectable 16-bit counter that records incoming errors, including BPVs, code violations (CVs), excessive zero  
violations (EXZs), and/or PRBS errors. See Table 6-C, Table 6-D, and Figure 1-2 for details.  
31 of 60  
 
DS21448 3.3V T1/E1/J1 Quad Line Interface  
Table 6-C. Definition of Received Errors  
ERROR  
E1 OR T1  
DEFINITION OF RECEIVED ERRORS  
Two consecutive marks with the same polarity. Ignores BPVs because of HDB3 and B8ZS zero  
suppression when CCR2.3 = 0. Typically used with AMI coding (CCR2.3 = 1). ITU-T O.161.  
When HDB3 is enabled (CCR2.3 = 0) and the receiver detects two consecutive BPVs with the same  
polarity. ITU-T O.161.  
BPV  
E1/T1  
CV  
E1  
E1  
EXZ  
When four or more consecutive zeros are detected.  
When receiving AMI-coded signals (CCR2.3 = 1), detection of 16 or more 0s or a BPV. ANSI T1.403  
1999.  
EXZ  
T1  
When receiving B8ZS-coded signals (CCR2.3 = 0), detection of eight or more 0s or a BPV. ANSI  
T1.403 1999.  
PRBS  
E1/T1  
A bit error in a received PRBS pattern. See Section 6.3 for details. ITU-T O.151.  
Table 6-D. Function of ECRS Bits and RNEG Pin  
E1 or T1  
ECRS2  
ECRS1  
ECRS0  
RHBE  
FUNCTION OF ECR COUNTERS/RNEG  
(CCR1.7)  
(CCR6.2)  
(CCR6.1)  
(CCR6.0)  
(CCR2.3)  
(Note 1)  
CVs  
0
0
0
0
1
1
1
1
X
0
0
0
0
0
0
0
0
1
0
0
0
1
0
1
0
1
0
1
X
X
X
X
X
0
BPVs (HDB3 codewords not counted)  
CVs + EXZs  
1
1
BPVs + EXZs  
X
X
X
X
X
BPVs (B8ZS codewords not counted)  
BPVs + 8 EXZs  
0
1
BPVs  
1
BPVs + 16 EXZs  
X
PRBS Errors (Note 2)  
Note 1: RNEG outputs error data only when in NRZ mode (CCR1.6 = 1).  
Note 2: PRBS errors are always output at PBEO, independent of ECR control bits and NRZ mode, and are not present at RNEG.  
6.5 Error Counter Update  
A 0-to-1 transition of the ECUE (CCR1.4) control bit updates the ECR registers with the current values and resets  
the counters. ECUE must be set back to 0 and another 0-to-1 transition must occur for subsequent reads/resets of  
the ECR registers. Note that the DS21448 can report errors at RNEG when in NRZ mode (CCR1.6 = 1) by  
outputting a pulse for each error occurrence. The counter saturates at 65,535 and does not roll over.  
ECR1 (11H): Upper Error Count Register 1/ECR2 (12H): Lower Error Count Register 2  
(MSB)  
E15  
(LSB)  
E8  
E0  
E14  
E6  
E13  
E5  
E12  
E4  
E11  
E3  
E10  
E2  
E9  
E1  
ECR1  
ECR2  
E7  
NAME  
E15  
E0  
POSITION  
ECR1.7  
ECR2.0  
FUNCTION  
MSB of the 16-bit error count.  
LSB of the 16-bit error count.  
6.6 Error Insertion  
When IBPV (CCR3.1) is transitioned from 0 to 1, the device waits for the next occurrence of three consecutive 1s  
to insert a BPV. IBPV must be cleared and set again for another BPV error insertion. See Figure 1-3 for details on  
the insertion of the BPV into the data stream.  
When IBE (CCR3.0) is transitioned from 0 to 1, the device inserts a logic error. IBE must be cleared and set again  
for another logic error insertion. See Figure 1-2 and Figure 1-3 for details about the logic error insertion into the  
data steam.  
32 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
7. ANALOG INTERFACE  
7.1 Receiver  
The DS21448 contains a digital clock recovery system. The DS21448 couples to the receive E1 or T1 twisted pair  
(or coaxial cable in 75E1 applications) through a 1:1 transformer. See Table 7-C for transformer details.  
Figure 7-1, Figure 7-2, Figure 7-3, and Table 4-L show the receive termination requirements. The DS21448 has the  
option of using internal termination resistors.  
The DS21448 is designed to be fully software selectable for E1 and T1 without the need to change any external  
resistors for the receive side. The receive side allows user configuration for 75, 100, or 120receive  
termination by setting the RT1 (CCR5.1) and RT0 (CCR5.0) bits. When using the internal termination feature, the  
Rr resistors should be 60each. See Figure 7-1 for details. If external termination is required, RT1 and RT0 should  
be set to 0, and both Rr resistors (Figure 7-1) should be 37.5, 50, or 60each, depending on the line  
impedance.  
The resultant E1 or T1 clock derived from the 2.048/1.544 PLL (JACLK in Figure 1-1) is internally multiplied by 16  
through another internal PLL and fed to the clock recovery system. The clock recovery system uses the clock from  
the PLL circuit to form a 16-times oversampler used to recover the clock and data. This oversampling technique  
offers outstanding performance to meet jitter tolerance specifications, as shown in Figure 7-7.  
Normally, the clock that is output at the RCLK pin is the recovered clock from the E1 AMI/HDB3 or T1 AMI/B8ZS  
waveform presented at the RTIP and RRING inputs. When no signal is present at RTIP and RRING, an RCL  
condition occurs, and the RCLK is derived from the JACLK source. See Figure 1-1 for more details. If the jitter  
attenuator is placed in the receive path (as is the case in most applications), the jitter attenuator restores the RCLK  
to an approximate 50% duty cycle. If the jitter attenuator is either placed in the transmit path or is disabled, the  
RCLK output can exhibit slightly shorter high cycles of the clock. This is because of the highly oversampled digital  
clock recovery circuitry. See the receive-side AC timing characteristics in Section 10 for more details.  
The receive-side circuitry also contains a clock synthesizer that outputs a user-configurable clock (up to  
16.384MHz) synthesized from RCLK at BPCLK (pin 31). See Table 4-J for details about output clock frequencies at  
BPCLK. In hardware mode, BPCLK defaults to a 16.384MHz output.  
The DS21448 has a bypass mode for the receive-side clock and data. This allows the BPCLK to be derived from  
RCLK after the jitter attenuator, while the clock and data presented at RCLK, RPOS, and RNEG go unaltered. This  
is intended for applications where the receive-side jitter attenuation is done after the LIU. Setting RJAB (CCR6.3) to  
logic 1 enables the bypass. Ensure the jitter attenuator is in the receive path (CCR4.3 = 0). See Figure 1-1 for more  
details.  
The DS21448 reports the signal strength at RTIP and RRING in 2.5dB increments through RL3–RL0 located in the  
receive information register 2. This feature is helpful when troubleshooting line performance problems (Table 5-B).  
E1 and T1 monitor applications require various flat-gain settings for the receive-side circuitry. The DS21448 can be  
programmed to support these applications through the monitor mode control bits MM1 and MM0. When the monitor  
modes are enabled, the receiver tolerates normal line loss up to -6dB (Table 4-K).  
7.2 Transmitter  
The DS21448 uses a set of laser-trimmed delay lines with a precision digital-to-analog converter (DAC) to create  
the waveforms that are transmitted onto the E1 or T1 line. The waveforms meet the latest ETSI, ITU, ANSI, and  
AT&T specifications. The user selects which waveform to generate by setting the ETS bit (CCR1.7) for E1 or T1  
operation, then programming the L2/L1/L0 bits in common control register 4 for the appropriate application. See  
Table 7-A and Table 7-B for the proper L2/L1/L0 settings.  
A 2.048MHz or 1.544MHz TTL clock is required at TCLK for transmitting data at TPOS and TNEG. ITU  
specification G.703 requires ±50ppm accuracy for T1 and E1. TR62411 and ANSI specs require ±32ppm accuracy  
for T1 interfaces. The clock can be sourced internally by RCLK or JACLK. See CCR1.2, CCR1.1, CCR1.0, and  
Figure 1-3 for details. Because of the transmitter’s design, very little jitter (less than 0.005UIP-P broadband from  
33 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
10Hz to 100kHz) is added to the jitter present on TCLK. Also, the waveforms created are independent of the duty  
cycle of TCLK. The transmitter couples to the E1 or T1 transmit-twisted pair (or coaxial cable in some E1  
applications) through a 1:2 step-up transformer. For the device to create the proper waveforms, the transformer  
used must meet the specifications listed in Table 7-C.  
The DS21448 has an automatic short-circuit limiter that limits the source current to 50mA (RMS) into a 1load.  
This feature can be disabled by setting the SCLD bit (CCR2.5) = 1. When the current limiter is activated, TCLE  
(SR.2) is set even if the short-circuit limiter is disabled. The TPD bit (CCR4.0) powers down the transmit-line driver  
and tri-states the TTIP and TRING pins. The DS21448 can also detect when the TTIP or TRING outputs are open  
circuited. When an open circuit is detected, TOCD (SR.1) is set.  
7.3 Jitter Attenuator  
The DS21448 contains an on-board jitter attenuator that can be set to a depth of either 32 or 128 bits through the  
JABDS bit (CCR4.2). The 128-bit mode is used in applications where large excursions of wander are expected.  
The 32-bit mode is used in delay-sensitive applications. Figure 7-8 shows the attenuation characteristics. The jitter  
attenuator can be placed in either the receive path or the transmit path by appropriately setting or clearing the JAS  
bit (CCR4.3). Also, setting the DJA bit (CCR4.1) can disable the jitter attenuator (in effect, remove it). For the jitter  
attenuator to operate properly, a 2.048MHz or 1.544MHz clock must be applied at MCLK. ITU specification G.703  
requires ±50ppm accuracy for T1 and E1. TR62411 and ANSI specs require ±32ppm accuracy for T1 interfaces.  
An on-board PLL for the jitter attenuator converts the 2.048MHz clock to a 1.544MHz rate for T1 applications.  
Setting JAMUX (CCR1.3) to logic 0 bypasses this PLL. On-board circuitry adjusts either the recovered clock from  
the clock/data recovery block or the clock applied at the TCLK pin to create a smooth jitter-free clock, which is used  
to clock data out of the jitter attenuator FIFO. It is acceptable to provide a gapped/bursty clock at the TCLK pin if  
the jitter attenuator is placed on the transmit side. If the incoming jitter exceeds either 120UIP-P (buffer depth is 128  
bits) or 28UIP-P (buffer depth is 32 bits), the DS21448 divides the internal nominal 32.768MHz (E1) or 24.704MHz  
(T1) clock by either 15 or 17 instead of the normal 16 to keep the buffer from overflowing. When the device divides  
by either 15 or 17, it also sets the JALT bit in the receive information register 1 (RIR1).  
7.4 G.703 Synchronization Signal  
The DS21448 can receive a 2.048MHz square-wave synchronization clock, as specified in Section 10 of ITU  
G.703. To use the DS21448 in this mode, set the receive-synchronization-clock enable (CCR5.3) = 1. The  
DS21448 can also transmit the 2.048MHz square-wave synchronization clock, as specified in Section 10 of G.703.  
To transmit the 2.048MHz clock, set the transmit-synchronization-clock enable (CCR5.2) = 1.  
Table 7-A. Line Build-Out Select for E1 in Register CCR4 (ETS = 0)  
L2  
0
L1  
0
L0  
0
APPLICATION  
75normal  
N
RETURN LOSS  
N.M.  
Rt ()  
0
1:2  
1:2  
1:2  
1:2  
0
0
1
N.M.  
0
120normal  
1
1
0
0
0
1
21dB  
21dB  
6.2  
11.6  
75with high return loss  
120with high return loss  
Table 7-B. Line Build-Out Select for T1 in Register CCR4 (ETS = 1)  
L2  
0
L1  
0
L0  
0
APPLICATION  
DSX-1 (0 to 133ft)/0dB CSU  
DSX-1 (133 to 266f)  
DSX-1 (266 to 399ft)  
DSX-1 (399 to 533ft)  
DSX-1 (533 to 655ft)  
-7.5dB CSU  
N
RETURN LOSS  
N.M.  
Rt ()  
1:2  
1:2  
1:2  
1:2  
1:2  
1:2  
1:2  
1:2  
0
0
0
0
0
0
0
0
0
0
1
N.M.  
0
1
0
N.M.  
0
1
1
N.M.  
1
0
0
N.M.  
1
0
1
N.M.  
1
1
0
-15dB CSU  
N.M.  
1
1
1
-22.5dB CSU  
N.M.  
Note: See Figure 7-1, Figure 7-2, and Figure 7-3.  
N.M. = Not meaningful.  
34 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
Table 7-C. Line Build-Out Select for E1 in Register CCR4 (ETS = 0) Using Alternate  
Transformer Configuration  
L2  
0
L1  
0
L0  
0
APPLICATION  
75normal  
N
RETURN LOSS  
N.M.  
Rt ()  
0
0.8:1:1CT  
0.8:1:1CT  
0.8:1:1CT  
0.8:1:1CT  
0
0
1
N.M.  
0
120normal  
1
1
0
0
0
1
21dB  
21dB  
11.6  
11.6  
75with high return loss  
120with high return loss  
Note: See Figure 7-4.  
Table 7-D. Transformer Specifications (3.3V Operation)  
SPECIFICATION  
RECOMMENDED VALUE  
1:1 (receive) and 1:2 (transmit) ±2%  
600µH (min)  
Turns Ratio  
Primary Inductance  
Leakage Inductance  
1.0µH (max)  
Interwinding Capacitance  
40pF (max)  
TRANSMIT TRANSFORMER DC RESISTANCE  
1.0(max)  
1.5(max)  
Primary (Device Side)  
Secondary  
RECEIVE TRANSFORMER DC RESISTANCE  
Primary (Device Side)  
Secondary  
1.2(max)  
1.2(max)  
35 of 60  
 
DS21448 3.3V T1/E1/J1 Quad Line Interface  
Figure 7-1. Basic Interface  
VDD  
R
0.1µF  
t
TTIP  
VDD  
TRANSMIT LINE  
1.0µF  
(NONPOLARIZED)  
+
TRING  
VSS  
68µF  
0.01µF  
0.01µF  
R
2:1  
(LARGER WINDING  
TOWARD THE NETWORK)  
t
Dallas  
Semiconductor  
DS21448  
VDD  
VSS  
0.1µF  
10µF  
RTIP  
RECEIVE LINE  
RRING  
1:1  
R
R
r
r
2.048MHz  
(THIS CAN ALSO BE 1.544MHz  
FOR T1 ONLY OPERATION)  
MCLK  
0.1µF  
NOTE 1: ALL RESISTOR VALUES ARE ±1%.  
NOTE 2: IN E1 APPLICATIONS, THE RT RESISTORS ARE USED TO INCREASE THE TRANSMITTER RETURN LOSS  
(Table 7-A). NO RETURN LOSS IS REQUIRED FOR T1 APPLICATIONS.  
NOTE 3: THE RR RESISTORS SHOULD EACH BE SET TO 60IF THE INTERNAL RECEIVE-SIDE TERMINATION FEATURE IS ENABLED. WHEN THIS  
FEATURE IS DISABLED, RR = 37.5FOR 75OR 60FOR 120E1 SYSTEMS, OR 50FOR 100T1 LINES.  
NOTE 4: SEE Table 7-A AND Table 7-B FOR THE APPROPRIATE TRANSMIT TRANSFORMER TURNS RATIO (N).  
36 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
Figure 7-2. Protected Interface Using Internal Receive Termination  
VDD  
R
FUSE  
FUSE  
0.1µF  
t
TTIP  
VDD  
VSS  
S
S
TRANSMIT  
LINE  
1.0µF  
S
S
(NONPOLARIZED)  
+
TRING  
68µF  
0.01µF  
0.01µF  
R
2:1  
t
Dallas  
Semiconductor  
(LARGER WINDING TOWARD  
THE NETWORK)  
DS21448  
VDD  
0.1µF  
10µF  
VSS  
FUSE  
FUSE  
RTIP  
S
S
S
RECEIVE  
LINE  
S
RRING  
1:1  
60  
60  
2.048MHz  
MCLK  
(THIS CAN ALSO BE 1.544MHz  
FOR T1 ONLY OPERATION)  
0.1µF  
NOTE 1: ALL RESISTOR VALUES ARE ±1%.  
NOTE 2: S IS A SIDACTOR.  
NOTE 3: THE FUSES ARE OPTIONAL TO PREVENT AC POWER LINE CROSSES FROM COMPROMISING THE TRANSFORMERS.  
NOTE 4: THE RT RESISTORS ARE USED TO INCREASE THE TRANSMITTER RETURN LOSS (Table 7-A). NO RETURN LOSS IS REQUIRED  
FOR T1 APPLICATIONS.  
NOTE 5: THE 68µF IS USED TO KEEP THE LOCAL POWER PLANE POTENTIAL WITHIN TOLERANCE DURING A SURGE.  
NOTE 6: REFER TO APPLICATION NOTE 324 FOR SIDACTOR AND FUSE DETAILS.  
37 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
Figure 7-3. Protected Interface Using External Receive Termination  
VDD  
R
0.1µF  
FUSE  
t
TTIP  
VDD  
VSS  
S
S
TRANSMIT  
LINE  
1.0µF  
S
S
(NONPOLARIZED)  
+
TRING  
68µF  
0.01µF  
0.01µF  
FUSE  
R
2:1  
t
Dallas  
(LARGER WINDING TOWARD  
THE NETWORK)  
Semiconductor  
DS21448  
VDD  
0.1µF  
10µF  
470  
470  
VSS  
FUSE  
FUSE  
RTIP  
S
S
S
RECEIVE  
LINE  
S
RRING  
1:1  
R
R
r
r
2.048MHz  
MCLK  
(THIS CAN ALSO BE 1.544MHz  
FOR T1 ONLY OPERATION)  
0.1µF  
NOTE 1: ALL RESISTOR VALUES ARE ±1%.  
NOTE 2: S IS A SIDACTOR.  
NOTE 3: THE FUSES ARE OPTIONAL TO PREVENT AC POWER LINE CROSSES FROM COMPROMISING THE TRANSFORMERS.  
NOTE 4: Rr = 37.5FOR 75OR 60FOR 120E1 SYSTEMS, OR 50FOR 100T1 LINES.  
NOTE 5: THE RT RESISTORS ARE USED TO INCREASE THE TRANSMITTER RETURN LOSS (Table 7-A). NO RETURN LOSS IS REQUIRED FOR  
T1 APPLICATIONS.  
NOTE 6: THE 68µF IS USED TO KEEP THE LOCAL POWER PLANE POTENTIAL WITHIN TOLERANCE DURING A SURGE.  
NOTE 7: REFER TO APPLICATION NOTE 324 FOR SIDACTOR AND FUSE DETAILS.  
38 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
Figure 7-4. Dual Connector-Protected Interface Using Receive Termination  
0.8:1:1CT  
0.22µF  
FUSE  
UNBALANCED  
LINE (75  
1.6:1  
S
)
VDD  
TTIP  
0.1  
µ
F
R
t
1.0  
F
µ
L1  
VDD  
0.22  
F
µ
FUSE  
S
S
S
2:1  
S
VSS  
BALANCED LINE  
(100 /120  
+
TRING  
RTIP  
)
0.01µF  
0.01µF  
68  
F
µ
FUSE  
FUSE  
R
t
0.1  
F
10 F  
µ
µ
VDD  
0.8:1:1CT  
0.22  
F
µ
UNBALANCED  
LINE (75  
VSS  
0.8:1  
S
)
Dallas  
Semiconductor  
51.1  
DS21448  
S
L1  
0.22  
F
µ
FUSE  
2.048MHz (THIS CAN ALSO  
BE 1.544MHz FOR T1 ONLY  
OPERATION)  
MCLK  
S
S
BALANCED LINE  
(100 /120  
S
1:1  
)
RRING  
FUSE  
60  
60  
0.1  
F
µ
NOTE 1: REFER TO APPLICATION NOTE 384 FOR A COMPLETE DISCUSSION OF THIS CIRCUIT.  
NOTE 2: ALL RESISTOR VALUES ARE ±1%.  
NOTE 3: THE FUSES ARE OPTIONAL TO PREVENT AC POWER LINE CROSSES FROM COMPROMISING THE TRANSFORMERS.  
NOTE 4: S IS A SIDACTOR.  
NOTE 5: THE RT RESISTORS ARE USED TO INCREASE THE TRANSMITTER RETURN LOSS (Table 7-C). NO RETURN LOSS IS REQUIRED  
FOR T1 APPLICATIONS.  
NOTE 6: THE 68µF IS USED TO KEEP THE LOCAL POWER PLANE POTENTIAL WITHIN TOLERANCE DURING A SURGE.  
39 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
Figure 7-5. E1 Transmit Pulse Template  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
269ns  
G.703  
TEMPLATE  
194ns  
219ns  
-0.1  
-0.2  
-250  
-200  
-150  
-100  
-50  
0
50  
100  
150  
200  
250  
TIME (ns)  
40 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
Figure 7-6. T1 Transmit Pulse Template  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
MAXIMUM CURVE  
UI Time Amp.  
MINIMUM CURVE  
UI Time Amp.  
-0.77 -500 0.05  
-0.39 -255 0.05  
-0.27 -175 0.80  
-0.27 -175 1.15  
-0.77 -500 -0.05  
-0.23 -150 -0.05  
-0.23 -150 0.50  
-0.15 -100 0.95  
-0.12 -75  
1.15  
1.05  
1.05  
-0.07  
0.05  
0.05  
0.00  
0
0.95  
0.00  
0
0.15 100  
0.23 150  
0.23 150  
0.46 300  
0.66 430  
0.93 600  
1.16 750  
0.90  
0.27 175  
0.35 225  
0.93 600  
1.16 750  
0.50  
-0.45  
-0.45  
-0.20  
-0.05  
-0.05  
-0.1  
T1.102/87, T1.403,  
CB 119 (OCT ‘79), AND  
I.431 TEMPLATE  
-0.2  
-0.3  
-0.4  
-0.5  
-500 -400 -300 -200 -100  
0
100 200 300 400 500 600 700  
TIME (ns)  
41 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
Figure 7-7. Jitter Tolerance  
1k  
100  
TR 62411 (DEC ‘90)  
ITU-T G.823  
DS21448 TOLERANCE  
10  
1
0.1  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 7-8. Jitter Attenuation  
0
ITU G.7XX  
PROHIBITED AREA  
TBR12  
PROHIBITED  
AREA  
-20  
-40  
CURVE A  
E1  
T1  
TR 62411 (DEC 90)  
PROHIBITED AREA  
CURVE B  
-60  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
42 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
8. JTAG BOUNDARY SCAN ARCHITECTURE AND TEST ACCESS PORT  
The DS21448 IEEE 1149.1 design supports the standard instruction codes SAMPLE/PRELOAD, BYPASS, and  
EXTEST. Optional public instructions included are HIGHZ, CLAMP, and IDCODE (Table 8-A). The DS21448  
contains the following items, which meet the requirements set by the IEEE 1149.1 Standard Test Access Port  
(TAP) and Boundary Scan Architecture:  
Test Access Port  
TAP Controller  
Bypass Register  
Boundary Scan Register  
Device Identification Register  
Instruction Register  
The TAP has the necessary interface pins JTRST, JTCLK, JTMS, JTDI, and JTDO. See the pin descriptions in  
Section 1 for details. Details on Boundary Scan Architecture and the Test Access Port can be found in IEEE  
1149.1-1990, IEEE 1149.1a-1993, and IEEE 1149.1b-1994.  
Figure 8-1. JTAG Block Diagram  
BOUNDRY SCAN  
REGISTER  
IDENTIFICATION  
REGISTER  
MUX  
BYPASS  
REGISTER  
INSTRUCTION  
REGISTER  
TEST ACCESS PORT  
SELECT  
CONTROLLER  
OUTPUT ENABLE  
VDD  
VDD  
VDD  
10kΩ  
10kΩ  
10kΩ  
JTDI  
JTMS  
JTCLK  
JTRST  
JTDO  
8.1 JTAG TAP Controller State Machine  
This section covers the operation of the TAP controller state machine. See Figure 8-2 for details on each of the  
states described below. The TAP controller is a finite state machine that responds to the logic level at JTMS on the  
rising edge of JTCLK (Table 8-B).  
Test-Logic-Reset. Upon power-up, the TAP controller is in test-logic-reset state. The instruction register contains  
the IDCODE instruction. All system logic of the device operates normally.  
Run-Test-Idle. The run-test-idle is used between scan operations or during specific tests. The instruction register  
and test registers remain idle.  
Select-DR-Scan. All test registers retain their previous state. With JTMS LOW, a rising edge of JTCLK moves the  
controller into the capture-DR state and initiates a scan sequence. JTMS HIGH during a rising edge on JTCLK  
moves the controller to the select-IR-scan state.  
43 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
Figure 8-2. TAP Controller State Diagram  
Test Logic  
1
Reset  
0
1
1
1
Run Test/  
Select  
Select  
0
Idle  
DR-Scan  
0
IR-Scan  
0
1
1
Capture DR  
Capture IR  
0
0
Shift DR  
Shift IR  
0
1
0
1
1
1
Exit DR  
Exit IR  
0
0
Pause DR  
Pause IR  
0
0
1
1
0
0
Exit2 DR  
Exit2 IR  
1
1
Update DR  
Update IR  
1
0
1
0
Capture-DR. Data can be parallel-loaded into the test data registers selected by the current instruction. If the  
instruction does not call for a parallel load or the selected register does not allow parallel loads, the test register  
remains at its current value. On the rising edge of JTCLK, the controller goes to the shift-DR state if JTMS is LOW,  
or it goes to the exit1-DR state if JTMS is HIGH.  
Shift-DR. The test data register selected by the current instruction is connected between JTDI and JTDO, and  
shifts data one stage toward its serial output on each rising edge of JTCLK. If a test register selected by the current  
instruction is not placed in the serial path, it maintains its previous state.  
Exit1-DR. While in this state, a rising edge on JTCLK puts the controller in the update-DR state, which terminates  
the scanning process, if JTMS is HIGH. A rising edge on JTCLK with JTMS LOW puts the controller in the pause-  
DR state.  
Pause-DR. Shifting of the test registers is halted while in this state. All test registers selected by the current  
instruction retain their previous state. The controller remains in this state while JTMS is LOW. A rising edge on  
JTCLK with JTMS HIGH puts the controller in the exit2-DR state.  
Exit2-DR. A rising edge on JTCLK with JTMS HIGH while in this state puts the controller in the update-DR state  
and terminates the scanning process. A rising edge on JTCLK with JTMS LOW enters the shift-DR state.  
Update-DR. A falling edge on JTCLK while in the update-DR state latches the data from the shift register path of  
the test registers into the data output latches. This prevents changes at the parallel output due to changes in the  
shift register.  
44 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
Select-IR-Scan. All test registers retain their previous state. The instruction register remains unchanged during this  
state. With JTMS LOW, a rising edge on JTCLK moves the controller into the capture-IR state and initiates a scan  
sequence for the instruction register. JTMS HIGH during a rising edge on JTCLK puts the controller back into the  
test-logic-reset state.  
Capture-IR. The capture-IR state is used to load the shift register in the instruction register with a fixed value. This  
value is loaded on the rising edge of JTCLK. If JTMS is HIGH on the rising edge of JTCLK, the controller enters the  
exit1-IR state. If JTMS is LOW on the rising edge of JTCLK, the controller enters the shift-IR state.  
Shift-IR. In this state, the shift register in the instruction register is connected between JTDI and JTDO and shifts  
data one stage for every rising edge of JTCLK toward the serial output. The parallel register and all test registers  
remain at their previous states. A rising edge on JTCLK with JTMS HIGH moves the controller to the exit1-IR state.  
A rising edge on JTCLK with JTMS LOW keeps the controller in the shift-IR state while moving data one stage  
through the instruction shift register.  
Exit1-IR. A rising edge on JTCLK with JTMS LOW puts the controller in the pause-IR state. If JTMS is HIGH on the  
rising edge of JTCLK, the controller enters the update-IR state and terminates the scanning process.  
Pause-IR. Shifting of the instruction shift register is halted temporarily. With JTMS HIGH, a rising edge on JTCLK  
puts the controller in the exit2-IR state. The controller remains in the pause-IR state if JTMS is LOW during a rising  
edge on JTCLK.  
Exit2-IR. A rising edge on JTCLK with JTMS HIGH puts the controller in the update-IR state. The controller loops  
back to shift-IR if JTMS is LOW during a rising edge of JTCLK in this state.  
Update-IR. The instruction code shifted into the instruction shift register is latched into the parallel output on the  
falling edge of JTCLK as the controller enters this state. Once latched, this instruction becomes the current  
instruction. A rising edge on JTCLK with JTMS LOW puts the controller in the run-test-idle state. With JTMS HIGH,  
the controller enters the select-DR-scan state.  
8.2 Instruction Register  
The instruction register contains a shift register, as well as a latched parallel output, and is 3 bits in length. When  
the TAP controller enters the shift-IR state, the instruction shift register is connected between JTDI and JTDO.  
While in the shift-IR state, a rising edge on JTCLK with JTMS LOW shifts the data one stage toward the serial  
output at JTDO. A rising edge on JTCLK in the exit1-IR state or the exit2-IR state with JTMS HIGH moves the  
controller to the update-IR state. The falling edge of that same JTCLK latches the data in the instruction shift  
register to the instruction parallel output. Table 8-A shows the instructions supported by the DS21448 and its  
respective operational binary codes.  
Table 8-A. Instruction Codes for IEEE 1149.1 Architecture  
INSTRUCTION  
SAMPLE/PRELOAD  
BYPASS  
SELECTED REGISTER  
Boundary Scan  
Bypass  
INSTRUCTION CODES  
010  
111  
000  
011  
100  
001  
EXTEST  
Boundary Scan  
Bypass  
CLAMP  
HIGHZ  
Bypass  
Device Identification  
IDCODE  
SAMPLE/PRELOAD. This is a mandatory instruction for the IEEE 1149.1 specification that supports two functions.  
The digital I/Os of the device can be sampled at the boundary scan register without interfering with the normal  
operation of the device by using the capture-DR state. SAMPLE/PRELOAD also allows the device to shift data into  
the boundary scan register through JTDI using the shift-DR state.  
BYPASS. When the BYPASS instruction is latched into the parallel instruction register, JTDI connects to JTDO  
through the 1-bit bypass test register. This allows data to pass from JTDI to JTDO without affecting the device’s  
normal operation.  
45 of 60  
 
DS21448 3.3V T1/E1/J1 Quad Line Interface  
EXTEST. This allows testing of all interconnections to the device. When the EXTEST instruction is latched in the  
instruction register, the following actions occur. Once enabled through the update-IR state, the parallel outputs of  
all digital output pins are driven. The boundary scan register is connected between JTDI and JTDO. The capture-  
DR samples all digital inputs into the boundary scan register.  
CLAMP. All digital outputs of the device are output data from the boundary scan parallel output while connecting  
the bypass register between JTDI and JTDO. The outputs do not change during the CLAMP instruction.  
HIGHZ. All digital outputs of the device are placed in a high-impedance state. The BYPASS register is connected  
between JTDI and JTDO.  
IDCODE. When the IDCODE instruction is latched into the parallel instruction register, the identification test  
register is selected. The device identification code is loaded into the identification register on the rising edge of  
JTCLK following entry into the capture-DR state. Shift-DR can be used to shift the identification code out serially  
through JTDO. During test-logic-reset, the identification code is forced into the instruction register’s parallel output.  
The ID code always has a 1 in the LSB position. The next 11 bits identify the manufacturer’s JEDEC number and  
number of continuation bytes followed by 16 bits for the device and 4 bits for the version Table 8-B. Table 8-C lists  
the device ID code for the SCT devices.  
Table 8-B. ID Code Structure  
MSB  
LSB  
Version  
Device ID  
16 bits  
JEDEC  
1
1
(Contact Factory)  
4 bits  
00010100001  
Table 8-C. Device ID Codes  
DEVICE  
16-BIT ID  
DS21448  
0018  
8.3 Test Registers  
IEEE 1149.1 requires a minimum of two test registers—the bypass register and the boundary scan register. An  
optional test register, the identification register, has been included with the DS21448 design. It is used with the  
IDCODE instruction and the test-logic-reset state of the TAP controller.  
Bypass Register  
The bypass register is a single 1-bit shift register used with the BYPASS, CLAMP, and HIGHZ instructions that  
provides a short path between JTDI and JTDO.  
Identification Register  
The identification register contains a 32-bit shift register and a 32-bit latched parallel output. This register is  
selected during the IDCODE instruction and when the TAP controller is in the test-logic-reset state. See Table 8-B  
and Table 8-C for more information about bit usage.  
Boundary Scan Register  
The boundary scan register contains a shift register path and a latched parallel output for all control cells and digital  
I/O cells, and is n bits in length. See Table 8-D for all cell bit locations and definitions.  
46 of 60  
 
 
DS21448 3.3V T1/E1/J1 Quad Line Interface  
Table 8-D. Boundary Scan Control Bits  
PIN  
BIT  
PIN  
NAME  
I/O  
BIT  
NAME  
I/O  
BGA  
LQFP  
BGA  
LQFP  
54  
64  
48  
46  
67  
22  
44  
15  
3
A1  
124  
RTIP1  
TTIP1  
RTIP2  
TTIP2  
RTIP3  
TTIP3  
RTIP4  
TTIP4  
RRING1  
TRING1  
RRING2  
TRING2  
RRING3  
TRING3  
RRING4  
TRING4  
TVSS2  
TVDD2  
CS2  
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
O
I
BUScntl  
(Note 1)  
A2  
A4  
A5  
A7  
A8  
A10  
A11  
B2  
B3  
B5  
B6  
B8  
B9  
B11  
B12  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
E1  
E2  
E3  
E4  
E9  
E10  
E11  
E12  
F1  
F2  
F3  
6
28  
38  
60  
71  
56  
42  
8
23  
26  
52  
58  
57  
2
43  
11  
33  
20  
50  
53  
60  
41  
1
G12  
H1  
H2  
H3  
H4  
H9  
H10  
H11  
H12  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
J10  
K1  
K2  
K3  
K4  
K5  
K7  
K8  
66  
92  
27  
127  
122  
88–90  
76  
64  
65  
35  
91  
18  
7
8
109  
2
85–87  
78  
75  
62  
95  
A0  
WR (R/W)  
TNEG1  
RCLK1  
BPCLK1  
VSS4  
D6/AD6  
A2  
A1  
I
I
I
O
O
I/O  
I
I
I
I
I
I
O
I/O  
I/O  
I
I
I
O
O
I
93  
102  
125  
9
29  
41  
61  
74  
94  
105  
39  
SCLK  
RD (DS)  
CS1  
TVSS1  
TVDD1  
MCLK  
RCL/LOTC4  
VDD4  
D4/AD4  
D7/AD7  
A4  
ALE (AS)  
SDI  
40  
57  
80  
82  
D2/AD2  
D0/AD0  
BPCLK2  
RCL/LOTC2  
VDD3  
I/O  
I/O  
O
O
I
47  
128  
49–51  
52–54  
84  
14  
34  
12  
13  
79  
19–21  
72  
121  
58  
33  
31  
30  
81  
22–24  
1
56  
15  
36  
10  
110  
98  
123  
19  
32  
37  
25  
RPOS1  
PBEO1  
TXDIS/TEST  
PBEO4  
VSS3  
CS3  
RPOS3  
TNEG3  
RPOS2  
RNEG2  
D3/AD3  
VDD2  
TVSS3  
PBEO3  
RCLK3  
TPOS3  
RCLK2  
TPOS2  
D1/AD1  
VSS2  
RCL/LOTC3  
BPCLK3  
RNEG3  
TCLK3  
TPOS1  
RNEG1  
PBEO2  
TVDD3  
D5/AD5  
O
I
O
39  
INTcntl  
17  
16  
49  
27  
63  
4
O
O
I/O  
O
O
I
(Note 2)  
38  
28  
13  
62  
59  
0
24  
35  
30  
36  
40  
29  
5
K9  
K10  
K11  
K12  
L1  
L2  
L3  
L5  
L6  
97  
114  
16  
59  
63  
I/O  
I
O
I
I
I
INT  
CS4  
RPOS4  
TNEG4  
A3  
TCLK2  
JTRST  
VDD1  
RCL/LOTC1  
BIS0  
BPCLK4  
HRST  
43  
42  
I
115–117  
126  
107  
112  
106  
103  
96  
O
I
O
I
O
I
I
I
I
I
6
7
O
I
L7  
L8  
L9  
47  
21  
65  
14  
45  
9
I/O  
O
O
O
I
F4  
F9  
L10  
L11  
L12  
M1  
M2  
M3  
M4  
M5  
TVSS4  
RCLK4  
TCLK4  
TNEG2  
TCLK1  
JTMS  
F10  
F11  
F12  
G1  
G2  
G3  
G9  
G11  
113  
32  
17  
83  
26  
I
12  
18  
31  
51  
11  
111  
73  
O
O
I/O  
48  
118–120  
44  
VSS1  
JTCLK  
77  
47 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
PIN  
BIT  
PIN  
NAME  
I/O  
BIT  
NAME  
I/O  
BGA  
LQFP  
BGA  
LQFP  
55  
M6  
45  
JTDI  
JTDO  
BIS1  
I
O
I
10  
61  
66  
34  
M10  
25  
RNEG4  
ADRScntl  
TPOS4  
PBTS  
O
I
M7  
M8  
M9  
46  
68  
104  
M11  
M12  
55  
108  
TVDD4  
I
Note 1: 0 = Dn/ADn are inputs; 1 = Dn/ADn are outputs.  
Note 2: 0 = INT is an input; 1 = INT is an output.  
9. OPERATING PARAMETERS  
ABSOLUTE MAXIMUM RATINGS  
Voltage Range on Any Pin Relative to Ground  
Operating Temperature Range for DS21448TN  
Storage Temperature Range  
-1.0V to +6.0V  
-40°C to +85°C  
-55°C to +125°C  
Soldering Temperature  
See IPC/JEDEC J-STD-020 Specification  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only,  
and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is  
not implied. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.  
RECOMMENDED DC OPERATING CONDITIONS  
(TA = -40°C to +85°C)  
PARAMETER  
SYMBOL  
VIH  
CONDITIONS  
MIN  
2.2  
TYP  
MAX  
5.5  
UNITS  
Logic 1  
V
V
V
Logic 0  
VIL  
-0.3  
+0.8  
3.465  
Supply for 3.3V Operation  
VDD  
(Note 1)  
3.135  
3.3  
CAPACITANCE  
(TA = +25°C)  
PARAMETER  
Input Capacitance  
Output Capacitance  
SYMBOL  
CIN  
CONDITIONS  
CONDITIONS  
MIN  
TYP  
5
MAX  
UNITS  
pF  
COUT  
7
pF  
DC CHARACTERISTICS  
(VDD = 3.3V ±5%, TA = -40°C to +85°C.)  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
+1.0  
+1.0  
UNITS  
µA  
Input Leakage  
IIL  
ILO  
(Note 2)  
-1.0  
Output Leakage  
(Note 3)  
µA  
Output Current (2.4V)  
Output Current (0.4V)  
Supply Current at 3.3V  
Power Dissipation at 3.3V  
IOH  
IOL  
-1.0  
mA  
mA  
mA  
W
+4.0  
IDD  
PDD  
(Notes 4, 5)  
(Notes 4, 5)  
320  
400  
1.06  
1.32  
Note 1: Applies to VDD  
.
Note 2: 0.0V < VIN < VDD  
.
Note 3: Applied to INT when tri-stated.  
Note 4: TCLK = MCLK = 2.048MHz.  
Note 5: Power dissipation with all ports active, TTIP and TRING driving a 30load, for an all-ones data density.  
48 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
10. AC TIMING PARAMETERS AND DIAGRAMS  
Table 10-A. AC Characteristics—Multiplexed Parallel Port (BIS0 = 0)  
(VDD = 3.3V ±5%, TA = -40°C to +85°C.) (Figure 10-1, Figure 10-2, and Figure 10-3)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
200  
100  
100  
TYP  
MAX UNITS  
Cycle Time  
tCYC  
ns  
ns  
ns  
PWEL  
PWEH  
tR, tF  
tRWH  
tRWS  
tCS  
Pulse Width, DS Low or RD High  
Pulse Width, DS High or RD Low  
Input Rise/Fall Times  
20  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
10  
50  
20  
0
R/W Hold Time  
R/W Setup Time Before DS High  
CS Setup Time Before DS, WR, or RD Active  
CS Hold Time  
tCH  
Read Data Hold Time  
tDHR  
10  
5
Write Data Hold Time  
tDHW  
Muxed Address Valid to AS or ALE Fall  
Muxed Address Hold Time  
tASL  
15  
10  
20  
30  
10  
20  
50  
tAHL  
tASD  
Delay Time DS, WR, or RD to AS or ALE Rise  
Pulse Width AS or ALE High  
Delay Time, AS or ALE to DS, WR, or RD  
Output Data Delay Time from DS or RD  
Data Setup Time  
PWASH  
tASED  
tDDR  
80  
tDSW  
Figure 10-1. Intel Bus Read Timing (PBTS = 0, BIS0 = 0)  
t
CYC  
ALE  
PW  
ASH  
t
ASD  
WR  
RD  
t
ASED  
t
ASD  
PW  
EH  
t
t
CH  
PW  
CS  
EL  
CS  
t
t
ASL  
t
DHR  
DDR  
AD0–AD7  
t
AHL  
49 of 60  
 
DS21448 3.3V T1/E1/J1 Quad Line Interface  
Figure 10-2. Intel Bus Write Timing (PBTS = 0, BIS0 = 0)  
t
CYC  
ALE  
PW  
ASH  
t
ASD  
RD  
WR  
t
t
ASED  
ASD  
PW  
EH  
t
t
CH  
PW  
EL  
CS  
CS  
t
t
ASL  
DHW  
AD0–AD7  
t
t
AHL  
DSW  
Figure 10-3. Motorola Bus Timing (PBTS = 1, BIS0 = 0)  
PW  
ASH  
AS  
PW  
EH  
t
t
ASED  
ASD  
DS  
PW  
EL  
t
CYC  
t
t
RWS  
RWH  
R/W  
t
t
DDR  
t
ASL  
DHR  
AD0–AD7  
(READ)  
t
t
AHL  
t
CH  
CS  
CS  
t
DSW  
t
ASL  
t
AD0–AD7  
(WRITE)  
t
DHW  
AHL  
50 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
Table 10-B. AC Characteristics—Nonmultiplexed Parallel Port (BIS0 = 1)  
(VDD = 3.3V ±5%, TA = -40°C to +85°C.) (Figure 10-4, Figure 10-5, Figure 10-6, and Figure 10-7)  
PARAMETER  
Setup Time for A0 to A4, Valid to CS  
Active  
SYMBOL  
CONDITIONS  
MIN  
0
TYP  
MAX UNITS  
t1  
ns  
Setup Time for CS Active to Either RD,  
WR, or DS Active  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
0
ns  
Delay Time from Either RD or DS Active  
to Data Valid  
75  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Hold Time from Either RD, WR, or DS  
Inactive to CS Inactive  
0
Hold Time from CS Inactive to Data Bus  
Tri-State  
5.0  
75  
10  
10  
10  
Wait Time from Either WR or DS Active to  
Latch Data  
Data Setup Time to Either WR or DS  
Inactive  
Data Hold Time from Either WR or DS  
Inactive  
Address Hold from Either WR or DS  
Inactive  
Figure 10-4. Intel Bus Read Timing (PBTS = 0, BIS0 = 1)  
ADDRESS VALID  
A0–A4  
DATA VALID  
D0–D7  
t5  
5ns (MIN) / 20ns (MAX)  
WR  
CS  
RD  
t1  
0ns (MIN)  
0ns (MIN)  
t2  
t3  
t4  
0ns (MIN)  
75ns (MAX)  
51 of 60  
 
DS21448 3.3V T1/E1/J1 Quad Line Interface  
Figure 10-5. Intel Bus Write Timing (PBTS = 0, BIS0 = 1)  
ADDRESS VALID  
A0–A4  
D0–D7  
RD  
t7  
t8  
10ns  
(MIN)  
10ns  
(MIN)  
t1  
0ns (MIN)  
t2  
CS  
t6  
t4  
0ns (MIN)  
0ns (MIN)  
75ns (MIN)  
WR  
Figure 10-6. Motorola Bus Read Timing (PBTS = 1, BIS0 = 1)  
ADDRESS VALID  
A0–A4  
D0–D7  
R/W  
DATA VALID  
5ns (MIN) / 20ns (MAX)  
t5  
t1  
0ns (MIN)  
t2  
CS  
t3  
t4  
0ns (MIN)  
0ns (MIN)  
75ns (MAX)  
DS  
Figure 10-7. Motorola Bus Write Timing (PBTS = 1, BIS0 = 1)  
ADDRESS VALID  
A0–A4  
D0–D7  
R/W  
10ns  
(MIN)  
10ns  
(MIN)  
t8  
t7  
t1  
0ns (MIN)  
t2  
CS  
t6  
t4  
0ns (MIN)  
0ns (MIN)  
75ns (MIN)  
DS  
52 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
Table 10-C. AC Characteristics—Serial Port (BIS1 = 1, BIS0 = 0)  
(VDD = 3.3V ±5%, TA = -40°C to +85°C.) (Figure 10-8)  
PARAMETER  
Setup Time CS to SCLK  
Setup Time SDI to SCLK  
Hold Time SCLK to SDI  
SCLK High/Low Time  
SCLK Rise/Fall Time  
SCLK to CS Inactive  
SYMBOL  
CONDITIONS  
MIN  
50  
TYP  
MAX  
UNITS  
ns  
tCSS  
tSSS  
50  
ns  
tSSH  
50  
ns  
tSLH  
200  
ns  
tSRF  
50  
50  
ns  
tLSC  
50  
250  
ns  
tCM  
ns  
CS Inactive Time  
SCLK to SDO Valid  
tSSV  
ns  
SCLK to SDO Tri-State  
CS Inactive to SDO Tri-State  
tSST  
100  
100  
ns  
tCSH  
ns  
Figure 10-8. Serial Bus Timing (BIS1 = 1, BIS0 = 0)  
tCM  
CS  
tLSC  
tSRF  
tSLH  
tCSS  
SCLK  
(Note 1)  
SCLK  
tSSS  
LSB  
tSSH  
(Note 2)  
tCSH  
MSB  
LSB  
LSB  
MSB  
tSST  
SDI  
tSSV  
HIGH-Z  
MSB  
HIGH-Z  
SDO  
NOTE 1: OCES =1 AND ICES = 0.  
NOTE 2: OCES = 0 AND ICES = 1.  
53 of 60  
 
DS21448 3.3V T1/E1/J1 Quad Line Interface  
Table 10-D. AC Characteristics—Receive Side  
(VDD = 3.3V ± 5%, TA =-40°C to +85°C.) (Figure 10-9)  
PARAMETER  
SYMBOL  
CONDITIONS  
(Note 1)  
(Note 2)  
MIN  
TYP  
488  
648  
MAX  
UNITS  
RCLK Period  
tCP  
ns  
tCH  
tCL  
tCH  
tCL  
RCLK Pulse Width  
RCLK Pulse Width  
(Note 3)  
200  
150  
ns  
ns  
ns  
(Note 4)  
Delay RCLK to RPOS, RNEG,  
PBEO, RBPV Valid  
tDD  
50.0  
Note 1: E1 mode.  
Note 2: T1 or J1 mode.  
Note 3: Jitter attenuator enabled in the receive path.  
Note 4: Jitter attenuator disabled or enabled in the transmit path.  
Figure 10-9. Receive-Side Timing  
RCLK  
(Note 1)  
t
t
CL  
CH  
RCLK  
(Note 2)  
t
CP  
t
DD  
RPOS, RNEG  
PBEO  
BIT  
ERROR  
PRBS DETECTOR OUT OF SYNC  
t
DD  
BPV/  
EXZ/  
CV  
BPV/  
EXZ/  
CV  
RNEG  
(Note 3)  
NOTE 1: RCES = 1 (CCR2.0) OR CES = 1.  
NOTE 2: RCES = 0 (CCR2.0) OR CES = 0.  
NOTE 3: RNEG IS IN NRZ MODE (CCR1.6 = 1).  
54 of 60  
 
DS21448 3.3V T1/E1/J1 Quad Line Interface  
Table 10-E. AC Characteristics—Transmit Side  
(VDD = 3.3V ±5%, TA = -40°C to +85°C.) (Figure 10-10)  
PARAMETER  
SYMBOL  
CONDITIONS  
(Note 5)  
(Note 6)  
MIN  
TYP  
488  
648  
MAX  
UNITS  
TCLK Period  
tCP  
ns  
tCH  
tCL  
75  
75  
TCLK Pulse Width  
ns  
ns  
TPOS/TNEG Setup to TCLK  
Falling or Rising  
tSU  
20  
20  
TPOS/TNEG Hold from TCLK  
tHD  
ns  
ns  
Falling or Rising  
TCLK Rise and Fall Times  
tR, tF  
25  
Note 5: E1 mode.  
Note 6: T1 or J1 mode.  
Figure 10-10. Transmit-Side Timing  
t
CP  
t
t
CL  
CH  
t
t
R
F
TCLK  
(Note 1)  
TCLK  
(Note 2)  
t
SU  
t
TPOS, TNEG  
HD  
NOTE 1: TCES = 0 (CCR2.1) OR CES = 0.  
NOTE 2: TCES = 1 (CCR2.1) OR CES = 1.  
55 of 60  
 
DS21448 3.3V T1/E1/J1 Quad Line Interface  
11. PIN CONFIGURATIONS  
11.1 144-Pin TE-PBGA  
1
2
3
4
5
6
7
8
9
10  
11  
12  
A
B
C
D
E
F
RTIP1  
TTIP1  
N.C.  
RTIP2  
TTIP2  
N.C.  
RTIP3  
TTIP3  
N.C.  
RTIP4  
TTIP4  
N.C.  
N.C. RRING1 TRING1  
N.C. RRING2 TRING2  
N.C. RRING3 TRING3  
N.C. RRING4 TRING4  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
BPCLK2  
N.C.  
N.C.  
N.C.  
VDD3  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
D2/  
D0/  
RCL/  
TVSS2 TVDD2  
RPOS2 RNEG2  
RCLK2 TPOS2  
VSS3  
RPOS3 TNEG3  
CS2  
CS3  
AD2  
AD0  
LOTC2  
D3/  
VDD2  
VSS2  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
TVSS3 PEBO3 RCLK3 TPOS3  
AD3  
D1/  
RCL/  
N.C.  
N.C.  
BPCLK3 RNEG3 TCLK3  
LOTC3  
AD1  
D5/  
G
H
J
TPOS1 RNEG1 PEBO2  
N.C.  
N.C.  
TVDD3  
VSS4  
N.C.  
A0  
A1  
AD5  
WR  
(R/W)  
D6/  
A2/  
TNEG1 RCLK1 BPCLK1 N.C.  
N.C.  
N.C.  
AD6  
OCES  
RD  
(DS)  
RCL/  
D4/  
D7/  
SCLK  
TVSS1 TVDD1 MCLK  
VDD4  
PEBO4  
N.C.  
N.C.  
CS1  
LOTC4  
AD4  
AD7  
A4/  
ALE  
(AS)  
TXDIS/  
TEST  
K
L
SDI  
RPOS1 PEBO1  
N.C.  
RPOS4 TNEG4  
INT  
CS4  
SDO  
A3/  
RCL/  
TCLK2 JTRST  
N.C.  
VDD1  
BIS0 BPCLK4  
TVSS4 RCLK4 TCLK4  
HRST  
ICES  
LOTC1  
M
TNEG2 TCLK1 JTMS  
VSS1  
JTCLK  
JTDI  
JTDO  
BIS1  
TVDD4 RNEG4 TPOS4 PBTS  
56 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
11.2 128-Pin LQFP  
(
TVSS4  
TVDD4  
TRING4  
HRST  
BIS0  
PBTS/RT0  
MCLK  
100  
90  
80  
70  
A2/OCES/JAMUX  
A3/ICES/DJA  
A4/SD0/L0  
RRING3  
60  
50  
40  
RTIP3  
TNEG4  
RCLK3  
PBEO1  
PBEO2  
BPCLK4  
TCLK4  
/EGL2  
CS2  
110  
BPCLK3  
TPOS4  
VSS3  
/EGL4  
CS4  
VSS3  
Dallas Semiconductor  
VDD1  
VDD1  
VSS3  
DS21448  
VDD3  
VDD1  
VDD3  
VSS1  
VDD3  
VSS1  
JTMS  
VSS1  
BPCLK2  
JTDO  
120  
PBEO3  
BPCLK1  
PBEO4  
JTDI  
JTCLK  
TCLK2  
JTRST  
TRING2  
TVDD2  
TVSS2  
RTIP1  
RRING1  
RCL1/LOTC1  
RCLK1  
RCL2/LOTC2  
1
10  
20  
30  
57 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
12. PACKAGE INFORMATION  
(The package drawing(s) in this data sheet may not reflect the most current specifications. The package number provided for  
each package is a link to the latest package outline information.)  
12.1 144-Ball TE-PBGA (56-G6020-001)  
58 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
12.2 128-Pin LQFP (56-G4011-001)  
59 of 60  
DS21448 3.3V T1/E1/J1 Quad Line Interface  
13. THERMAL INFORMATION  
Table 13-A. Thermal Characteristics—BGA  
PARAMETER  
MIN  
TYP  
MAX  
+85  
UNITS  
°C  
Ambient Temperature (Note 1)  
Junction Temperature  
-40  
+125  
°C  
°C/W  
+24  
Theta-JA (θJA) in Still Air (Note 2)  
Table 13-B. Theta-JA (θ ) vs. Airflow—BGA  
JA  
FORCED AIR (m/s)  
THETA-JA (θJA)  
24°C/W  
0
1
21°C/W  
2.5  
19°C/W  
Table 13-C. Thermal Characteristics—LQFP  
PARAMETER  
MIN  
TYP  
MAX  
+85  
UNITS  
°C  
Ambient Temperature (Note 1)  
Junction Temperature  
-40  
+125  
°C  
°C/W  
°C/W  
+27.8  
+0.1  
Theta-JA (θJA) in Still Air (Note 2)  
Theta-JC (θJC) in Still Air (Note 3)  
Table 13-D. Theta-JA (θ ) vs. Airflow—LQFP  
JA  
FORCED AIR (m/s)  
THETA-JA (θJA)  
27.8°C/W  
0
1
23.5°C/W  
2.5  
21.6°C/W  
Note 1: The package is mounted on a four-layer JEDEC-standard test board.  
Note 2: Theta-JA (θJA) is the junction-to-ambient thermal resistance, when the package is mounted on a four-layer JEDEC-standard test board.  
Note 3: While Theta-JC (θJC) is commonly used as the thermal parameter that provides a correlation between the junction temperature (Tj) and  
the average temperature on top center of the LQFP package (TC), the proper term is Psi-JT. It is defined by: (Tj - TC) / overall package  
power.  
Note 4: The method of measurement for the thermal parameters is defined in the EIA/JEDEC-standard document EIA-JESD51-2.  
14. REVISION HISTORY  
REVISION  
DESCRIPTION  
042303  
New product release.  
Table 5-B. Receive Level Indication: Changed “-12.5 to -5.0” to “-12.5 to -15.0”. Adjusted steps  
after -17.5 dB to be in -2.5dB decrements.  
Section 9, Operating Parameters: Updated supply current and power dissipation values in the DC  
Characteristics table to reflect latest characterization data. Updated Note 5 to show that values are for all ports  
active.  
012104  
In the Absolute Maximum Ratings section, added range for storage temperature and changed  
113004  
011206  
soldering temperature from IPC JEDEC J-STD-020A to J-STD-020.  
Added lead-free packages to Ordering Information table.  
60 of 60  
Maxim/Dallas Semiconductor cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim/Dallas Semiconductor product.  
No circuit patent licenses are implied. Maxim/Dallas Semiconductor reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2006 Maxim Integrated Products Printed USA  
The Maxim logo is a registered trademark of Maxim Integrated Products, Inc. The Dallas logo is a registered trademark of Dallas Semiconductor.  

相关型号:

DS21448LN+

PCM Transceiver, 1-Func, PQFP128, 14 X 20 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, LQFP-128
MAXIM

DS21448N

3.3V E1/T1/J1 Quad Line Interface
DALLAS

DS21448N

3.3V E1/T1/J1 Quad Line Interface
MAXIM

DS21448N+

PCM Transceiver, 1-Func, PBGA144, 17 X 17 MM, 1.27 MM PITCH, ROHS COMPLIANT, PLASTIC, BGA-144
MAXIM

DS2145

Telecommunication IC
ETC

DS21455

Quad T1/E1/J1 Transceivers
DALLAS

DS21455N

Quad T1/E1/J1 Transceivers
DALLAS

DS21458

Quad T1/E1/J1 Transceivers
DALLAS
MAXIM

DS21458N

Quad T1/E1/J1 Transceivers
DALLAS

DS2145N

Telecommunication IC
ETC

DS2145Q

Telecommunication IC
ETC