DS2430AX#U [MAXIM]

EEPROM;
DS2430AX#U
型号: DS2430AX#U
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

EEPROM

存储 内存集成电路 静态存储器 可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总35页 (文件大小:1545K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DS2430A  
256 1-Wire EEPROM  
www.maxim-ic.com.cn  
TSOC 封装  
特性  
引脚排列  
1
2
3
6
5
4
ƒ 256 位电可擦除、可编程只读存储器  
(EEPROM) 64 位一次性可编程应用寄存  
TO-92  
DALLAS  
DS2430A  
顶视图  
ƒ 唯一的、工厂光刻并经过检测64 位注册  
(8 位家族+ 48 位序列+ 8 CRC  
校验码),保证绝对、唯一的识别  
ƒ 内置多点控制器可保证器件兼容于其它  
MicroLAN 总线产品  
3.7mm x 4.0mm x 1.5mm  
侧视图  
参见机械尺寸部分  
ƒ EEPROM 按页组织,每32 个字节,可随  
机存取  
4
3
ƒ 将控制、寻址、数据和电源集于一个数据  
引脚  
2430A  
rrd#xx  
1
2
ƒ 可直接与微控制器的一个端口连接,通信  
速度16.3kbps  
1
2
倒装芯片,顶视图及  
光刻标记,触点不可  
见。  
“rrd” = 版本/日期  
#xx = 批号  
封装图请参56-  
G7016-001 。  
ƒ 8 位家族码表明需要读取的DS2430A  
ƒ 当读取探头首次作用一个电压时,将发出  
在线检测应答  
1 2 3  
底视图  
ƒ 采用低成TO-92 6 TSOC 表面贴  
封装  
ƒ -40°C +85°C 温度范围、2.8V 6.0V  
电压范围内可进行读、写操作  
参见机械尺寸部分  
注:TO-92 封装的引脚在卷带内的排列间隔大  
100mil (2.54mm) ,详细信息请参考图56-  
G0006-003。  
定购信息  
DS2430A  
TO-92 封装  
DS2430AP  
6 TSOC 封装  
DS2430A/T&R  
DS2430AP/T&
DS2430A+  
DS2430AP
DS2430T&R  
DS240AP+T&R  
DS2430AX  
TO-92 封装,卷带包装  
TSOC 封装,卷带包装  
TO-92 封装  
引脚说明  
TO-92  
1 地  
2 数据  
3 浮空  
TSOC  
倒装片  
6 TSOC 封装  
数据  
浮空  
浮空  
浮空  
浮空  
数据  
浮空  
浮空  
––––  
––––  
TO-92 封装,卷带包装  
TSOC 封装,卷带包装  
倒装芯片, 10k 卷带包装  
倒装芯片, 2.5k 卷带包装  
4  
5  
6  
––––  
––––  
––––  
DS2430AX-S  
+表示无铅封装。  
1 of 16  
080807  
DS2430A  
说明  
DS2430A 256 1-Wire EEPROM用于识别和保存产品的相关信息,识别码和这些相关信息可以通  
过最少的接口(例如,微控制器的一个端口)进行访问。DS2430A内部包含由工厂激光刻制的 64  
位注册码、256 位用户可编程EEPROM64 位一次性可编程应用寄存器。其中 64 位注册码由唯  
一的 48 位序列号、8 CRC校验码和 8 位家族码 (14h)组成。DS2430A读写操作所需要的电源可  
1-Wire®传输线获取。数据传输按照 1-Wire总线协议进行,只需要一根数据线和一根地线。激  
光刻制在每个DS2430A中的 48 位序列号是绝对唯一的,可作为器件的ID。采用紧凑的TO2 和  
TSOC封装,能够采用标准的器件装配设备安装到印制电路板上或进行引线。典型应用包括:储  
存校准系数、板卡识别以及产品升级的状态信息等。  
概述  
1 中的框图说明了 DS2430A 的主控部分和存储单元之间的关系。DS2430A 有四个主要的数据  
部件:164 位光刻 ROM2256 位数据 EEPROM 和暂存器,364 位一次性编成应用寄存器  
和暂存器,48 位状态存储器。1-Wire 协议分层结构见图 2。总线主机必须首先提供四个 ROM  
操作命令中的一个:1Read ROM, 2Match ROM, 3Search ROM, 4Skip ROM8 说明了  
协议对这ROM 操作命令的要求。成功地执行ROM 操作命令后,就可以进行存储器操作,主  
机可以发出四条存储器操作命令中的任何一个。图 6 说明有关这些存储器操作命令的协议。所  
有数据读写都是最低有效位在前。  
激光刻制64 ROM  
每个DS2430A都有一个 64 位的唯一ROM代码。前 8 位是 1-Wire家族代码 (14h),然后是 48 位的  
唯一序列号,最8 位是56 位的CRC检验码(3)。1-Wire CRC校验码由一个包含移位寄存  
器和异或门的多项式发生器产生,如4 所示。生成多项式为X8 + X5 + X4 + 1。关于Dallas 1-Wire  
循环冗余校验的更多信息请参见应用笔记 27。移位寄存器初值为零。然后,从家族代码的最低有  
效位开始,每次移入一位。当家族代码第 8 位移入后,再移入序列号。当序列号第 48 位也移入  
后,留在移位寄存器中的就是CRC值。移入八位CRC校验码后,移位寄存器应该全部归零。  
1-Wire iButton Dallas Semiconductor的注册商标。  
2 of 16  
DS2430A  
DS2430A 的内部框图 1  
3 of 16  
DS2430A  
1-Wire 协议的层次结构 2  
64 位光ROM 3  
8-Bit CRC Code  
48-Bit Serial Number  
8-Bit Family Code (14h)  
LSB MSB LSB  
MSB  
LSB MSB  
1-Wire CRC 产生器 4  
Polynomial = X8 + X5 + X4 + 1  
4 of 16  
DS2430A  
存储器  
DS2430A 的存储器由三个独立部分组成,分别为数据存储器、应用寄存器和状态寄存器(见图  
5)。每个数据存储器和应用寄存器都有其对应的暂存单元,称为暂存器,当向该器件写入数据  
时,暂存器可作为缓冲器使用。数据存储器可在需要时反复读写,而应用寄存器只能编程一次。  
一旦对应用寄存器进行编程,它将自动进入写保护状态。状态寄存器用于指示应用寄存器是否已  
被锁定或是否可用于存储数据。在应用寄存器被编程之前,读出的状态寄存器值是 FFh。当把暂  
存器的数据写入到应用寄存器时,状态寄存器的两个最低有效位将被清零,此后读出的状态寄存  
器结果FCh 。  
DS2430A 的存储器映射图 5  
存储器功能命令  
6 所示的存储器功能流程图描述了访DS2430A 的不同存储器时需要遵循的协议。本文将在后  
面举例说明。  
Write Scratchpad [0Fh]  
Write Scratchpd 命令后,主机必须紧接着发出一个字节的地址,随后将需要送入数据存储器  
的数据写入暂器。DS2430A 每收到一个字节后地址会自动加 1。当地址为 1Fh 的暂存器也收到  
了数据字节以后,地址计数器将返回00h,可继续写入下一个字节,直到主机发出复位脉冲。  
Read cratchpad [AAh]  
令用于在将暂存器数据拷贝到 EEPROM 存储器之前对数据进行验证。主机发出 Read  
Scratchpad 命令后,要紧接着发出一个字节的地址,表明读取数据的起始地址。主机每读取一个  
字节,DS2430A 地址将自动加 1。读取地址为 1Fh 的数据后,地址计数器将返回到 00h,可继续  
读取下一个字节,直到主机发出复位脉冲。  
5 of 16  
DS2430A  
存储器功能流程图 6  
Copy Scratchpad [55h]  
存入暂存器的数据经过确认后,主机便可发Copy Scratchpad 命令和确认字A5h,把数据从暂  
存器写入 EEPROM 存储器。该命令总是把暂存器的全部数据拷贝到 EEPROM。如果只想改变  
EEPROM 中几个字节的数据,在发出 Write Scratchpad Copy Scratchpad 命令之前,暂存器中应  
该包含了最新EEPROM 数据。发出该命令后,数据线要保持逻辑高电平状态至10ms。  
Read Memory [F0h]  
Read Memory 命令于读EEPROM 数据存储器中的部分或全部数据,或把数据存储器中的全部  
内容拷贝到暂器为仅改变 EEPROM 部分字节做准备。当把数据从数据存储器拷贝到暂存器并  
进行读取时,主机必须发Read Memory 命令和一个字节的数据读取起始地址。主机每读取一个  
字节的数据,DS2430A 的地址自动加 1。读取地址 1Fh 的数据后,地址计数器将返回到 00h,以  
便继续读取下一个字节,直到主机发出复位脉冲。如果只希望将数据存储器中的全部数据拷贝到  
暂存器中,而不必读取数据,主机可以在发出命令字节后,立即发送复位脉冲。  
6 of 16  
DS2430A  
存储器功能流程图 6(续)  
Write Application Register [99h]  
该命令与 Write Scratchpad 命令基本相同,只是它是向 64 位应用寄存器的暂存器写入数据。在发  
出命令代码后,主机必须提供一个字节的地址,随后发送要写入的数据。DS2430A 每收到一个字  
节后地址会自动1。当地址07h 的暂存器收到数据后,地址计数器将返回00h,可继续写入  
下一个字节,直到主机发出复位脉冲。只要应用寄存器未被锁定,就可以使用 Write Application  
Register 命令。如果向已经锁定的应用寄存器发出该命令,写入寄存器暂存器的数据将会丢失。  
Read Status Register [66h]  
状态寄存器的主要作用是向主机指示应用寄存器是否已编程并锁定。在主机发出读状态寄存器命  
令后,在接收状态信息之前必须发出确认字00h。如果应用寄存器已被编程并锁定,8 位状态寄  
存器中2 个最有效位0,而其余各位全部1。主机可以在任何时候通过发出复位脉冲结束  
读状态命令。  
7 of 16  
DS2430A  
存储器功能流程图 6(续)  
Read Application Register [C3h]  
该命令用来读取应用寄存器或寄存器暂存器。只要应用寄存器未锁定,将接收来自寄存器暂存器  
的数据。当应用寄存器锁定时,DS2430A 将从应用寄存器传送数据,使得寄存器暂存器的内容无  
法读取。状态寄存器的容确定通过该命令接收到的数据来自何处。发出 Read Application  
Register 命令后,主机必须提供一个字节的数据读取起始地址。主机每读取一个字节,DS2430A  
地址将自动1取地07h 的数据后,地址计数器将返回00h,以便继续读取下一个字节,  
直到主机发送位脉冲。  
Copy & Lock Application Register [5Ah]  
当存储到寄存器暂存单元的数据确认后,主机便可发出 Copy & Lock Application Register 命令和  
确认字节 A5h,把数据从寄存器暂存器全部写入到应用寄存器并对应用寄存器进行写保护。主机  
也可以通过发送复位脉冲(而不是确认字节)取消该命令。在确认字节发出后,应用寄存器中将  
包含寄存器暂存器的数据。随后对应用寄存器进行的写访问将被拒绝。注意:Copy & Lock  
Application Register 命令只能执行一次。  
8 of 16  
DS2430A  
1-Wire 总线系统  
1-Wire 总线系统是由一个单总线主机和一个或多个从器件组成。在任何情况下,DS2430A 都是作  
为从器件。总线主机通常是一个微控制器。对 1-Wire 总线系统的讨论分为 3 个部分:硬件配置、  
处理流程和 1-Wire 信令 (信号类型和时序)1-Wire 协议根据特定时隙总线的状态工作,这些特定  
时隙始于总线主机发出的同步脉冲的下降沿。  
硬件配置  
1-Wire 总线系统只有一条数据线。因此,在适当时间驱动总线上的每个器件十分重要。为使上述  
操作易于实现,总线上的每个器件需要具有漏极开路或三态输出。7 所示DS2430A 内部开  
漏输出等效电路。多节点总线由一个 1-Wire 总线和多个从器件组成,DS2430A 的标准传输速率  
16.3kbps,需要图 7 所示的上拉电阻。1-Wire 总线的空闲状态为高电平。如果于某种原因需  
要暂停工作,稍后还要恢复工作的话,必须将总线置于空闲状态。否则,如总线置为低电平的  
时间超120µs,总线上的器件将被复位。  
硬件配置 7  
RPU  
RPU  
注意:根据不同1-Wire通信速率和总线特征,上拉电阻的阻值应1.5k5k范围内选择。  
只向一个器件进行写操作时,选择 2.2k的上拉电阻、VPUP不低于 4.0V就足够了;当对多个  
DS2430A进行写操作时或VPUP电压较低时,在器件将数据从暂存器拷贝到EEPROM时,需要一个  
低阻值的上拉电阻接到VPUP。  
9 of 16  
DS2430A  
ROM 功能流程图 8  
10 of 16  
DS2430A  
处理流程  
1-Wire 端口访DS2430A 的操作流程如下:  
ƒ 初始化  
ƒ ROM 功能命令  
ƒ 存储器功能命令  
ƒ 传输/数据  
初始化  
1-Wire 总线上的所有数据处理均从初始化开始。该初始化过程由主机发送的复位脉冲和从器件发  
送的在线应答脉冲组成。  
在线应答脉冲用于通知主DS2430A 已挂接在总线上,并已准备就绪。有关这方面的详细内容,  
请参阅“1-Wire 信令”部分。  
ROM 功能命令  
一旦主机检测到在线应答脉冲,就可以发出四ROM 功能命令中的一个。所ROM 功能命令的  
字长均8 位。下面是这ROM 命令的简要介(参考所示的流程图)。  
Read ROM [33h]  
主机用该命令来读DS2430A 8 位家族码、唯一48 位序列号8 CRC 码。该命令适用于  
总线上只有一个从器件的情况。如果总线上接有多个从器件,那么当所有从器件都试图在同一  
时刻传送数据时,就会发生数据冲突 (开漏输出将产生“线与”结果),将会导致主机读取的家族  
48 位序列号CRC 不匹配。  
Match ROM [55h]  
发出 Match ROM 命令后紧跟着要发出 64 ROM 码,总线主机利用该命令访问多点总线上某个  
特定的 DS2430A。只有内部 ROM 码与主机发出的 64 ROM 码匹配的 DS2430A 才会响应随后  
的存储器功能命令,而其64 ROM 码不匹配的所有从器件将等待复位脉冲。总线上有一个  
或多个从器件时都可使用该命令。  
Skip ROM [Ch]  
在单点总线系统中,主线主机可使用该命令在不提供从器件 64 ROM 码的情况下直接执行存储  
功能,而节省时间。如果总线上挂接有多个从器件,Skip ROM 命令后发出读命令将会导致总  
线冲,因为会有多个从器件同时发送数(开漏下拉将产生一个“线与”结果)。  
Search ROM [F0h]  
当一个系统初始化时,总线主机可能不知道1-Wire 总线上挂接有多少个器件,也不知道各个器  
件的 64 ROM 码。总线主机利用 Search ROM 命令通过采用排除法可以确认总线上所有从机器  
件的 64 ROM 码。Search ROM 是以下三个步骤的简单重复,这三个步骤是:读一位、读该位  
的补码、写入一位所希望的数值。总线主机对 ROM 的每一位都执行这三个步骤。经过一个完整  
循环后,总线主机就可得到某个器件的 ROM 码。继续进行类似的过程可获悉其他从器件的 ROM  
码。有Search ROM 的深入讨论,请参考应用笔187,其中还给出了一个实例。  
11 of 16  
DS2430A  
1-Wire 信令  
DS2406 需要严格的协议来保证数据的完整性。该协议包括通过一条总线传送的四种信令:复位脉  
冲和在线应答的复位过程、写 0 时隙、写 1 时隙、读数据时隙。除应答脉冲外,所有信号都由总  
线主机发出。通过DS2430A进行通信时所需要的初始化时序如图 9 所示。复位脉冲后的在线应答  
脉冲表明DS2430A已准备好接收ROM命令。总线主机发送 (TX) 一个复位脉冲 (tRSTL,最短时间为  
480µs),然后总线主机释放总线并进入接收 (RX)模式,这时 1-Wire总线通过上拉电阻被拉至高电  
平。当在数据引脚检测到上升沿后,DS2430A将在等待 (tPDH15µs60µs)后发送在线应答脉冲  
(tPDL60µs240µs)。  
复位和应答脉冲的初始化时序 9  
为了避1-Wire总线上的其它器件屏蔽中断信号,tRSTL + tR应始终小960µs。  
/写时隙  
读、写时隙的定义如10 所示。主机通过拉低数据线来启动所有时隙。数据线的下降沿通过触发  
内部延迟电路使 DS2430与主机同步。在写时隙中,延迟电路可确定什么时候 DS2430A 采样数  
据线。对读数据时隙来说,如果发送的是“0”,那么延迟电路将决定 DS2430A 数据线保持为低  
的时间。如果数据是“1”,DS2430A 将保持读时隙不变。  
12 of 16  
DS2430A  
/写时序图 10  
Write-1 Time Slot  
Write-0 Time Slot  
Read-data Time Slot  
13 of 16  
DS2430A  
存储器功能实例  
例:向数据存储器单0006 0007 2 个字节,然后读取数据存储器的全部数据。  
主机工作状态  
(LSB 在先)  
Reset  
说明  
复位脉(480µs 960µs)  
在线应答脉冲  
TX  
RX  
TX  
TX  
TX  
TX  
TX  
RX  
TX  
TX  
Presence  
CCh  
发送“Skip ROM”命令  
发送“Write Scratchpad”命令  
起始地= 06h  
向暂存器写2 个字节的数据  
复位脉冲  
0Fh  
06h  
<2 Data Bytes>  
Reset  
Presence  
CCh  
AAh  
在线应答脉冲  
发送“Skip ROM” 命令  
发送“Read Scratchpad”命令  
起始地= 06h  
读暂存器数据并进行校验  
复位脉冲  
TX  
RX  
TX  
RX  
TX  
TX  
TX  
06h  
<2 Data Bytes>  
Reset  
Presence  
CCh  
在线应答脉冲  
发送“Skip ROM”命令  
发送“opy Scratchpad”命令  
确认字节  
55h  
A5h  
线主机保持数据线为高电平 10ms,为从器件把数  
据从暂存器写EEPROM 提供能源。  
复位脉冲  
TX  
<Data Line High>  
TX  
RX  
TX  
TX  
TX  
RX  
TX  
RX  
Reset  
Presence  
CCh  
F0h  
00h  
<32 Bytes>  
Reset  
Presence  
在线应答脉冲  
发送“Skip ROM”命令  
发送“Read Memory”命令  
起始地= 00h  
EEPROM 数据页  
复位脉冲  
在线应答脉冲  
14 of 16  
DS2430A  
ABSOLUTE MAXIMUM RATINGS*  
Voltage on DATA to Ground  
Operating Temperature Range  
Storage Temperature Range  
-0.5V to +7.0V  
-40°C to +85°C  
-55°C to +125°C  
Soldering Temperature  
See J-STD-020A Specification  
* This is a stress rating only and functional operation of the device at these or any other conditions  
above those indicated in the operation sections of this specification is not implied. Exposure to  
absolute maximum rating conditions for extended periods of time may affect reliability.  
DC ELECTRICAL CHARACTERISTICS  
(-40°C to +85°C; VPUP = 2.8V to 0V)  
PARAMETER  
SYMBOL  
MIN  
2.2  
-0.3  
TYP  
MAX  
UNITS  
NOTES  
1, 6  
1, 9  
1
Logic 1  
Logic 0  
VIH  
VIL  
VOL  
VOH  
IL  
V
V
V
µA  
µA  
+0.8  
0.4  
6.0  
15  
Output Logic Low @ 4mA  
Output Logic High  
Input Load Current (DATA pin)  
Programming Current  
VPUP  
5
1, 2  
3
0.1  
IP  
50
10  
CAPACITANCE  
PARAMETER  
Capacitance  
(tA = +25°C)  
SYMBOL  
MIN  
TYP  
TYP  
MAX  
800  
UNITS  
NOTES  
CD  
pF  
7
EEPROM  
PARAMETER  
Write/Erase Cycles  
Data Retention(at 85°C)  
(VPUP = 5.0V; tA = +25°C)  
SYMBOL  
NCYCLE  
tDR  
MIN  
100k  
10  
MAX  
UNITS  
-
years  
NOTES  
10  
AC ELECTRICAL CHARACTERISTICS  
(-40°C to +85°C; VPUP=2.8V to 6.0V)  
PARAMETER  
Time Slot  
SYMBOL  
tSLOT  
tLOW1  
tLOW0  
tLOWR  
tRDV  
MIN  
60  
1
60  
1
TYP  
MAX  
120  
15  
UNITS  
µs  
NOTES  
Write 1 Low Time  
Write 0 Low Time  
Read Low Time  
Read Data Valid  
Release Time  
µs  
13  
120  
15  
µs  
µs  
13  
15  
15  
µs  
µs  
µs  
11, 12  
tRELEASE  
tSU  
0
45  
1
Read Data Setp  
Recovery ime  
5
tREC  
1
µs  
Reset Te High  
ResTime Low  
Presence Detect High  
Presence Detect Low  
Programming Time  
tRSTH  
tRSTL  
tPDH  
tPDL  
tPROG  
480  
480  
15  
µs  
µs  
µs  
µs  
4
8
960  
60  
240  
10  
60  
ms  
15 of 16  
DS2430A  
注释:  
1) 所有电压均以地为参考。  
2) VPUP = 外部上拉电压。  
3) 为输入负载到参考地的电流。  
4) 在复位脉冲的高电平结束之前,不能开始其它复位操作或通信过程。  
5) 读数据建立时间是指主机为读取数据而必须将 1-Wire 总线拉低的时间。在下降沿 1µs 内数据  
应保证有效。  
6) VIH 是外部上拉电阻VPUP 的函数。  
7) 首次加电时,数据引脚的电容可能会达800pF。如果采用一5k上拉电阻将数据线拉高至  
VPUP,则上5µs 之后该寄生电容就不会对正常通信产生影响了。  
8) 复位低电平时间(tRSTL)的最大值应被限制在 960µs 以内,这样中断信号可以工作;否则可能会  
掩盖或屏蔽中断脉冲。  
9) 在某些低电压情况下,VILMAX 可能必须降0.V,以保证有效的在线应答脉冲。  
10) Copy Scratchpad 命令最多需10ms,在此期1-Wire 总线电压不能低2.8V。  
11) 上拉电阻的阻值取决于 1-Wire 总线的通讯速度和总线负载的特性,最佳值范围为 1.5k到  
5k。  
12) 主机的读时隙最佳采样点应尽可能靠近 15µs tRDV,但不能超过 tRDV。执行读 1 时隙时,这  
样做会给上拉电阻留出足够的时间来使总线恢复为高电平;执行0 时隙时,这将确保在最快  
1-Wire 器件释放总线前执行读操作。  
13) 主机发出的低脉冲的持续时间最小值为 1µs,但应尽可能的窄。这样,1-Wire 器件无论写 1 还  
1,就都能保证上拉电阻在数据线被采样之前将数据线恢复到高电平状态。  
Maxim北京办事处  
北京8328信箱邮政编码100083  
免费电话:800 810 0310  
电话:010-6211 5199  
传真:010-6211 5299  
本文是Maxim正式英文资料的译文,Maxim不对翻译中存在的差异或由此产生的错误负责。请注意译文中可能存在文字组织或翻译错  
误,如需确认任何词语的准确性,请参考Maxim提供的英文版资料。  
索取免费样品和最新版的数据资料,请访问Maxim的主页:www.maxim-ic.com.cn。  
16 of 16  
19-5236; Rev 2/12  
DS2430A  
256-Bit 1-Wire EEPROM  
FEATURES  
PIN ASSIGNMENT  
. 256-bit Electrically Erasable Programmable  
Read Only Memory (EEPROM) plus 64-bit  
one-time programmable application register  
. Unique, factory-lasered and tested 64-bit  
registration number (8-bit family code + 48-bit  
serial number + 8-bit CRC tester) assures  
absolute identity because no two parts are alike  
. Built-in multidrop controller ensures  
compatibility with other MicroLAN products  
. EEPROM organized as one page of 32 bytes  
for random access  
TO-92  
TSOC PACKAGE  
DALLAS  
DS2430A  
1
3
5
4
OP VIEW  
.7mm x 4.0mm x 1.5mm  
SIDE VIEW  
. Reduces control, address, data, and power to a  
single data pin  
1
3  
. Directly connects to a single port pin of a  
microprocessor and communicates at up to  
15.3kbits per second  
. 8-bit family code specifies DS2430A  
communication requirements to reader  
. Presence detector acknowledges when reade
first applies voltage  
1 2 3  
BOTTOM VIEW  
. Low cost TO-92 or 6-pin TSOC and UCS
surface mount package  
. Reads and writes over a wide voage range of  
2.8V to 5.25V from -40°C to 85°C  
NOTE: The leads of TO-92 packages on tape and reel are formed  
to approximately 100-mil (2.54mm) spacing. For details see the  
Package Information.  
PIN DESCRIPTION  
ORDERING INFORMTION  
TO-92  
Ground  
Data  
TSOC  
Ground  
Data  
NC  
PART  
DS2430A+  
TERANGE PIN-PACKAGE  
-40+85°C 3 TO-92  
Pin 1  
Pin 2  
Pin 3  
Pin 4  
Pin 5  
Pin 6  
DS2430A+T&R  
DS2430AP+  
-40°C to +85°C 3 TO-92 (2k pcs)  
-40°C to +85°C 6 TSOC  
NC  
––––  
––––  
––––  
NC  
NC  
NC  
DS2430AP+TR  
-40°C to +85°C 6 TSOC (4k pcs)  
+Denotes a d(Pb)-free/RoHS-compliant package.  
T&R = Tape nd reel.  
1 of 19  
DS2430A  
DESCRIPTION  
The DS2430A 256-bit 1-Wire® EEPROM identifies and stores relevant information about the product to  
which it is associated. This lot or product specific information can be accessed with minimal interface, for  
example a single port pin of a microcontroller. The DS2430A consists of a factory-lasered registration  
number that includes a unique 48-bit serial number, an 8-bit CRC, and an 8-bit Family Code (14h) plus  
256 bits of user-programmable EEPROM and a 64-bit one-time programmable application register. The  
power to read and write the DS2430A is derived entirely from the 1-Wire communication line. Data is  
transferred serially via the 1-Wire protocol, which requires only a single data lead and a ground return.  
The 48-bit serial number that is factory-lasered into each DS2430A provides a guaranteed unique identity  
that allows for absolute traceability. The TO-92 and TSOC packages provide a compact enclosure that  
allows standard assembly equipment to handle the device easily for attachment to printed circuit boards  
or wiring. Typical applications include storage of calibration constants, board identificatio, and product  
revision status.  
OVERVIEW  
The block diagram in Figure 1 shows the relationships between the major control nd memory sections of  
the DS2430A. The DS2430A has four main data components: 1) 64-bt lasered ROM, 2) 256-bit  
EEPROM data memory with scratchpad, 3) 64-bit one-time programmble application register with  
scratchpad and 4) 8-bit status memory. The hierarchical structure of te 1-Wire protocol is shown in  
Figure 2. The bus master must first provide one of the four ROM Fnction Commands: 1) Read ROM, 2)  
Match ROM, 3) Search ROM, 4) Skip ROM. The protocol requirefor these ROM Function Commands  
is described in Figure 8. After a ROM Function Commas successfully executed, the memory  
functions become accessible and the master can provide ay one of the four memory function commands.  
The protocol for these memory function commands is descibed in Figure 6. All data is read and written  
least significant bit first.  
64-BIT LASERED ROM  
Each DS2430A contains a unique ROM codt is 64 bits long. The first 8 bits are a 1-Wire family code  
(14h). The next 48 bits are a unique serial number. The last 8 bits are a CRC of the first 56 bits. (Figure  
3). The 1-Wire CRC is generated using a polynomial generator consisting of a shift register and XOR  
gates as shown in Figure 4. The plynomial is X8 + X5 + X4 + 1. Additional information about the  
1-Wire CRC is available in Appliation Note 27. The shift register bits are initialized to 0. Then starting  
with the least significant bit of the family code, one bit at a time is shifted in. After the 8th bit of the  
family code has been enteredthen the serial number is entered. After the 48th bit of the serial number has  
been entered, the shift register contains the CRC value. Shifting in the 8 bits of CRC should return the  
shift register to all 0s.  
1-Wire is a registered trademark of Maxim Integrated Products, Inc.  
2 of 19  
DS2430A  
DS2430A BLOCK DIAGRAM Figure 1  
3 of 19  
DS2430A  
HIERARCHICAL STRUCTURE FOR 1-WIRE PROTOCOL Figure 2  
64-BIT LASERED ROM Figure 3  
8-Bit CRC Ce  
48-Bit Serial Number  
8-Bit Family Code (14H)  
LSB MSB LSB  
MSB  
LSB MSB  
1-WIRE RC GENERATOR Figure 4  
Polynomial = X8 + X5 + X4 + 1  
4 of 19  
DS2430A  
MEMORY  
The memory of the DS2430A consists of three separate sections, called data memory, application  
register, and status register (Figure 5). The data memory and the application register each have its own  
intermediate storage area called scratchpad that acts as a buffer when writing to the device. The data  
memory can be read and written as often as desired. The application register, however, is one-time  
programmable only. Once the application register is programmed, it is automatically write protected. The  
status register indicates whether the application register is already locked or whether it is still available  
for storing data. As long as the application register is unprogrammed, the status register reads FFh.  
Copying data from the register scratchpad to the application register clears the 2 least significant bits of  
the status register, yielding an FCh the next time one reads the status register.  
DS2430A MEMORY MAP Figure 5  
MEMORY FUNCTION COMMANDS  
The Memory Function Flow Char(Figure 6) describes the protocols necessary for accessing the different  
memory sections of the DS2430A. An example is shown later in this document.  
WRITE SCRATCHPAD [0Fh]  
After issuing the Writratchpad command, the master must first provide a 1-byte address, followed by  
the data to be wrien to the scratchpad for the data memory. The DS2430A automatically increments the  
address after every byte it receives. After having received a data byte for address 1Fh, the address counter  
wraps around t00h for the next byte and writing continues until the master sends a Reset Pulse.  
READ SCRATCHPAD [AAh]  
This command is used to verify data previously written to the scratchpad before it is copied into the final  
age EEPROM memory. After issuing the Read Scratchpad command, the master must provide the 1-  
be starting address from where data is to be read. The DS2430A automatically increments the address  
after every byte read by the master. After the data at address 1Fh has been read, the address counter wraps  
around to 00h for the next byte and reading continues until the master sends a Reset Pulse.  
5 of 19  
DS2430A  
MEMORY FUNCTION FLOW CHART Figure 6  
COPY SCRATCHPAD [55h]  
After the data stored in the scratchpad has been verified the master may send the Copy Scratchpad  
command followed by a validation key of A5h to transfer data from the scratchpad to the EEPROM  
memory. This command always opies the data of the entire scratchpad. Therefore, if one desires to  
change only a few bytes of te EEPROM data, the scratchpad should contain a copy of the latest  
EEPROM data before the Write Scratchpad and Copy Scratchpad commands are issued. After this  
command and the validation key are issued, the data line must be held above VPUPmin for at least tPROG  
.
READ MEMORY [F0h]  
The Read Memory command is used to read a portion or all of the EEPROM data memory and to copy  
the entire data memory into the scratchpad to prepare for changing a few bytes. To copy data from the  
data memy to the scratchpad and to read it, the master must issue the read memory command followed  
by the 1-byte starting address of the data to be read from the scratchpad. The DS2430A automatically  
increments the address after every byte read by the master. After the data of address 1Fh has been read,  
address counter wraps around to 00h for the next byte and reading continues until the master sends a  
Ret Pulse. If one intends to copy the entire data memory to the scratchpad without reading data, a  
starting address is not required; the master may send a Reset Pulse immediately following the command  
code.  
6 of 19  
DS2430A  
MEMORY FUNCTION FLOW CHART Figure 6 (continued)  
WRITE APPLICATION REGISTER [99h]  
This command is essentially the same as the Writcratchpad command, but it addresses the 64-bit  
register scratchpad. After issuing the command ode, the master must provide a 1-byte address, followed  
by the data to be written. The DS2430A autotically increments the address after every byte it receives.  
After receiving the data byte for address 07hhe address counter wraps around to 00h for the next byte  
and writing continues until the master snda Reset Pulse. The Write Application Register command can  
be used as long as the application register has not yet been locked. If issued for a device with the  
application register locked, the daa witten to the register scratchpad will be lost.  
READ STATUS REGITER [66h]  
The status register is a means for the master to find out whether the application register has been  
programmed and locAfter issuing the read status register command, the master must provide the  
validation key 00h before receiving status information. The two least significant bits of the 8-bit status  
register are 0 if te application register was programmed and locked; all other bits always read 1. The  
master may fiish the read status command by sending a Reset Pulse at any time.  
7 of 19  
DS2430A  
MEMORY FUNCTION FLOW CHART Figure 6 (continued)  
READ APPLICATION REGISTR [C3h]  
This command is used to read the application register or the register scratchpad. As long as the  
application register is not yet locked, the DS2430A transmits data from the register scratchpad. After the  
application register is locked the DS2430A transmits data from the application register, making the  
register scratchpad inaccessile for reading. The contents of the status register indicate where the data  
received with this command came from. After issuing the Read Application Register command, the  
master must provide 1-byte starting address from where data is to be read. The DS2430A  
automatically increments the address after every byte read by the master. After the data at address 07h  
has been read, the address counter wraps around to 00h for the next byte and reading continues until the  
master sends a eset Pulse.  
COPY & LOCK APPLICATION REGISTER [5Ah]  
After he data stored in the register scratchpad has been verified the master may send the Copy & Lock  
lication Register command followed by a validation key of A5h to transfer the contents of the entire  
rister scratchpad to the application register and to simultaneously write-protect it. The master may  
cancel this command by sending a Reset Pulse instead of the validation key. After the validation key is  
transmitted, the data line must be held above VPUPmin for at least tPROG. Once tPROG has expired, the  
application register will contain the data of the register scratchpad. Further write accesses to the  
application register will be denied. The Copy & Lock Application Register command can only be  
executed once.  
8 of 19  
DS2430A  
1-WIRE BUS SYSTEM  
The 1-Wire bus is a system that has a single bus master and one or more slaves. In all instances, the  
DS2430A is a slave device. The bus master is typically a microcontroller. The discussion of this bus  
system is broken down into three topics: hardware configuration, transaction sequence, and 1-Wire  
signaling (signal type and timing). The 1-Wire protocol defines bus transactions in terms of the bus state  
during specified time slots that are initiated on the falling edge of sync pulses from the bus master.  
Hardware Configuration  
The 1-Wire bus has only a single line by definition; it is important that each device on the bus be able to  
drive it at the appropriate time. To facilitate this, each device attached to the 1-Wire bus must have open  
drain connection or three-state outputs. The 1-Wire port of the DS2430A is open drain with an internal  
circuit equivalent to that shown in Figure 7. A multidrop bus consists of a 1-Wire bus ith multiple  
slaves attached. The DS2430A communicates at regular 1-Wire speed, 15.3kbits per se, and requires  
a pullup resistor as shown in Figure 7. The idle state for the 1-Wire bus is high. If for any reason a  
transaction needs to be suspended, the bus MUST be left in the idle state if the transction is to resume. If  
this does not occur and the bus is left low for more than 120µs, one or more of the evices on the bus may  
be reset.  
HARDWARE CONFIGURATION Figure 7  
RPU  
IL  
RPU  
Nte: Depending on the 1-Wire communication speed and the bus characteristics, the optimal pullup  
resistor value will be in the 0.3kto 2.2krange. To write to a single device, a RPUPmax resistor and  
VPUP of at least 4.0V is sufficient. For writing multiple DS2430As simultaneously or operation at low  
VPUP, the resistor should be bypassed by a low-impedance pullup to VPUP while the device copies the  
scratchpad to EEPROM.  
9 of 19  
DS2430A  
ROM FUNCTIONS FLOW CHART Figure 8  
10 of 19  
DS2430A  
Transaction Sequence  
The sequence for accessing the DS2430A via the 1-Wire port is as follows:  
. Initialization  
. ROM Function Command  
. Memory Function Command  
. Transaction/Data  
INITIALIZATION  
All transactions on the 1-Wire bus begin with an initialization sequence. The initializaion sequence  
consists of a Reset Pulse transmitted by the bus master followed by a Presence Pulse(s) tnsmitted by the  
slave(s).  
The Presence Pulse lets the bus master know that the DS2430A is on the bus and s ready to operate. For  
more details, see the 1-Wire Signaling section.  
ROM FUNCTION COMMANDS  
Once the bus master has detected a presence pulse, it can issue one f the four ROM function commands.  
All ROM function commands are 8 bits long. A list of these comands follows (refer to flowchart in  
Figure 8):  
Read ROM [33h]  
This command allows the bus master to read the DS0A’s 8-bit family code, 48-bit serial number, and  
8-bit CRC. This command can be used only if there a single DS2430A on the bus. If more than one  
slave is present on the bus, a data collision will occur when all slaves try to transmit at the same time  
(open drain produces a wired-AND result). resultant family code and 48-bit serial number usually  
result in a mismatch of the CRC.  
Match ROM [55h]  
The Match ROM command, follwed by a 64-bit ROM sequence, allows the bus master to address a  
specific DS2430A on a multidrop bus. Only the DS2430A that exactly matches the 64-bit ROM sequence  
will respond to the subsequet memory function command. All slaves that do not match the 64-bit ROM  
sequence will wait for a Reset Pulse. This command can be used with a single or multiple devices on the  
bus.  
Skip ROM [CCh]  
This command can save time in a single-drop bus system by allowing the bus master to access the  
memory fctions without providing the 64-bit ROM code. If more than one slave is present on the bus  
and a read command is issued following the Skip ROM command, data collision will occur on the bus as  
multiple slaves transmit simultaneously (open drain pulldowns produces a wired-AND result).  
Search ROM [F0h]  
When a system is initially brought up, the bus master might not know the number of devices on the 1-  
Wire bus or their 64-bit ROM codes. The Search ROM command allows the bus master to use a process  
of elimination to identify the 64-bit ROM codes of all slave devices on the bus. The Search ROM process  
is the repetition of a simple, three-step routine: read a bit, read the complement of the bit, then write the  
desired value of that bit. The bus master performs this simple, three-step routine on each bit of the ROM.  
11 of 19  
DS2430A  
After one complete pass, the bus master knows the contents of the ROM in one device. The remaining  
number of devices and their ROM codes may be identified by additional passes. See Application Note  
187 for a comprehensive discussion of a search ROM, including an actual example.  
1-Wire Signaling  
The DS2430A requires strict protocols to insure data integrity. The protocol consists of four types of  
signaling on one line: Reset Sequence with Reset Pulse and Presence Pulse, Write-0, Write-1 and Read
Data. All these signals (except Presence Pulse) are initiated by the bus master.  
To get from idle to active, the voltage on the 1-Wire line needs to fall from VPUP below the threshold VTL.  
To get from active to idle, the voltage needs to rise from VILMAX past the threshold VTH. The time t takes  
for the voltage to make this rise is seen in Figure 9 as ε, and its duration depends on the ullup resistor  
(RPUP) used and the capacitance of the 1-Wire network attached. The voltage VILMAX elevant for the  
DS2430A when determining a logical level, not triggering any events.  
Figure 9 shows the initialization sequence required to begin any communicatiowith the DS2430A. A  
Reset Pulse followed by a Presence Pulse indicates the DS2430A is ready to receive data, given the  
correct ROM and memory function command. If the bus master uses sew-rate control on the falling  
edge, it must pull down the line for tRSTL + tF to compensate for the edge.  
After the bus master has released the line it goes into Receive mde. Now the 1-Wire bus is pulled to  
VPUP through the pullup resistor. When the threshold VTH is cd, the DS2340A waits for tPDH and then  
transmits a Presence Pulse by pulling the line low for tP. To detect a Presence Pulse, the master must  
test the logical state of the 1-Wire line at tMSP. The tRSTH window must be at least the sum of tPDHMAX  
,
tPDLMAX, and tRECMIN. Immediately after tRSTH is expirthe DS2430A is ready for data communication.  
INITIALIZATION PROCEDURE “RESET AND PRESENCE PULSES” Figure 9  
MASTER TX “RESET PULSEMASTER RX “PRESENCE PULSE”  
tMSP  
ε
VPUP  
VIHMASTER  
VTH  
VTL  
VILMAX  
0V  
tF  
tRSTL  
tPDL  
tRSTH  
tPDH  
tREC  
RESISTOR  
MASTER  
DS2430A  
Read/Write Time Slots  
Data communication with the DS2430A takes place in time slots, which carry a single bit each. Write  
slots transport data from bus master to slave. Read time slots transfer data from slave to master.  
Figure 10 illustrates the definitions of the write and read time slots.  
All communication begins with the master pulling the data line low. As the voltage on the 1-Wire line  
falls below the threshold VTL, the DS2430A starts its internal timing generator that determines when the  
data line is sampled during a write time slot and how long data is valid during a read time slot.  
12 of 19  
DS2430A  
Master-to-Slave  
For a Write-1 time slot, the voltage on the data line must have crossed the VTH threshold before the  
Write-1 low time tW1LMAX is expired. For a Write-0 time slot, the voltage on the data line must stay below  
the VTH threshold until the Write-0 low time tW0LMIN is expired. For the most reliable communication, the  
voltage on the data line should not exceed VILMAX during the entire tW0L or tW1L window. After the VTH  
threshold has been crossed, the DS2430A needs a recovery time tREC before it is ready for the next time  
slot.  
READ/WRITE TIMING DIAGRAM Figure 10  
Write-1 Time Slot  
tW1L  
VPUP  
VIHMASTER  
VTH  
VTL  
VILMAX  
0V  
tF  
ε
tSLOT  
RESISTOR  
MASTER  
Write-0 Time Slot  
tW0L  
VPUP  
VIHMASTER  
VTH  
VTL  
VILMAX  
0V  
tF  
ε
tREC  
tSLOT  
RESISTOR  
MASTER  
Read-data Time Slot  
tMSR  
tRL  
VPUP  
VIHMASTER  
VTH  
Master  
Sampling  
Window  
V
VILMAX  
0V  
tF  
tREC  
δ
tSLOT  
RESISTOR  
MASTER  
DS2430A  
13 of 19  
DS2430A  
Slave-to-Master  
A Read-data time slot begins like a Write-1 time slot. The voltage on the data line must remain below  
VTL until the read low time tRL is expired. During the tRL window, when responding with a 0, the  
DS2430A starts pulling the data line low; its internal timing generator determines when this pulldown  
ends and the voltage starts rising again. When responding with a 1, the DS2430A does not hold the data  
line low at all, and the voltage starts rising as soon as tRL is over.  
The sum of tRL + δ (rise time) on one side and the internal timing generator of the DS2430A on the other  
side define the master sampling window (tMSRMIN to tMSRMAX) in which the master must perform a ead  
from the data line. For the most reliable communication, tRL should be as short as permissible, and the  
master should read close to but no later than tMSRMAX. After reading from the data line, the master must  
wait until tSLOT is expired. This guarantees sufficient recovery time tREC for the DS2430A tget ready for  
the next time slot. Note that tREC specified herein applies only to a single DS2430A atted to a 1-Wire  
line. For multidevice configurations, tREC must be extended to accommodate the addition1-Wire device  
input capacitance. Alternatively, an interface that performs active pullup during the -Wire recovery time  
such as the DS2482-x00 or DS2480B 1-Wire line drivers can be used.  
IMPROVED NETWORK BEHAVIOR (SWITCHPOINT HYSTERESIS)  
In a 1-Wire environment, line termination is possible only during transiets controlled by the bus master  
(1-Wire driver). 1-Wire networks, therefore, are susceptible to noisof various origins. Depending on the  
physical size and topology of the network, reflections from end pnts and branch points can add up, or  
cancel each other to some extent. Such reflections are visas glitches or ringing on the 1-Wire  
communication line. Noise coupled onto the 1-Wire line rom external sources can also result in signal  
glitching. A glitch during the rising edge of a time slot can cause a slave device to lose synchronization  
with the master and, consequently, result in a SearcOM command coming to a dead end or cause a  
device-specific function command to abort. For tter performance in network applications, the  
DS2430A uses a new 1-Wire front end, which maes it less sensitive to noise.  
The 1-Wire front end of the DS2430A differm traditional slave devices in three characteristics.  
1) There is additional low-pass filtering in the circuit that detects the falling edge at the beginning of a  
time slot. This reduces the sensitivity o high-frequency noise.  
2) There is a hysteresis at the low-o-high switching threshold VTH. If a negative glitch crosses VTH but  
does not go below VTH - VHY, t will not be recognized (Figure 11, Case A)..  
3) There is a time window spcified by the rising edge hold-off time tREH during which glitches are  
ignored, even if they extend below VTH - VHY threshold (Figure 11, Case B, tGL < tREH). Deep voltage  
droops or glitches that appear late after crossing the VTH threshold and extend beyond the tREH  
window cannot be red out and are taken as the beginning of a new time slot (Figure 11, Case C,  
tGL tREH).  
Devices that have the parameters VHY, and tREH specified in their electrical characteristics use the  
improved 1-We front end.  
NOISE SUPPRESSION SCHEME Figure 11  
tREH  
tREH  
VPUP  
VTH  
VHY  
Case A  
Case B  
Case C  
tGL  
0V  
tGL  
14 of 19  
DS2430A  
MEMORY FUNCTION EXAMPLE  
Example: Write 2 data bytes to data memory locations 0006h and 0007h. Read entire data memory.  
MASTER MODE DATA (LSB FIRST)  
COMMENTS  
Reset pulse (480µs to 960µs)  
Presence pulse  
Issue “Skip ROM” command  
Issue “Write Scratchpad” command  
Start address = 06h  
Write 2 bytes of data to scratchpad  
Reset pulse  
TX  
RX  
TX  
TX  
TX  
TX  
TX  
RX  
TX  
TX  
TX  
RX  
TX  
RX  
TX  
TX  
TX  
TX  
TX  
RX  
TX  
TX  
TX  
RX  
TX  
RX  
Reset  
Presence  
CCh  
0Fh  
06h  
<2 Data Bytes>  
Reset  
Presence  
CCh  
AAh  
Presence pulse  
Issue “Skip ROM” command  
Issue “Read Scratchpad” command  
Start address = 06h  
Read scratchpad data and vify  
Reset pulse  
06h  
<2 Data Bytes>  
Reset  
Presence  
CCh  
Presence pulse  
Issue “Skip ROMommand  
Issue “Copy Scratchpad” command  
Validation k
Data line must be above VPUPmin for tPROG  
Reset pulse  
55h  
A5h  
<Data Line High>  
Reset  
.
Presence  
CCh  
Pree pulse  
Issue “Skip ROM” command  
Isue “Read Memory” command  
Start address = 00h  
Read EEPROM data page  
Reset pulse  
F0h  
00h  
<32 Bytes
Rest  
Prsene  
Presence pulse  
15 of 19  
DS2430A  
-0.5V to +6.0V  
ABSOLUTE MAXIMUM RATINGS  
Voltage Range on DATA to Ground  
DATA Sink Current  
20mA  
Operating Temperature Range  
Junction Temperature  
-40°C to +85°C  
+150°C  
Storage Temperature Range  
Lead Temperature (soldering, 10s)  
Soldering Temperature (reflow)  
TSOC  
-55°C to +125°C  
+300°C  
+260°C  
+250°C  
TO-92  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and funtional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. xpoure to the  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(TA = -40°C to +85°C, unless otherwise noted.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYMAX UNITS  
DATA PIN GENERAL DATA  
1-Wire Pullup Voltage  
1-Wire Pullup Resistance  
Input Capacitance  
Input Load Current  
High-to-Low Switching  
Threshold  
Input Low Voltage  
Low-to-High Switching  
Threshold  
VPUP  
RPUP  
CIO  
IL  
(Notes 2)  
(Notes 2, 3)  
(Notes 4, 5)  
DATA pin at VPUP  
2.8  
0.
5.25  
2.2  
1000  
15  
V
k  
pF  
µA  
0.05  
0.46  
VPUP  
1.8V  
0.5  
-
VTL  
VIL  
(Notes 5, 6, 7)  
(Notes 2, 8)  
V
V
V
VPUP  
1.1V  
1.70  
0.4  
-
VTH  
(Notes 5, 6, 9)  
1.0  
Switching Hysteresis  
Output Low Voltage  
Recovery Time  
VHY  
VOL  
tREC  
(Notes 5, 6, 10)  
0.21  
V
V
µs  
At 4mA (Note 11)  
RPUP = 2.2kNotes 2,12)  
(Notes 5,
5
Rising-Edge Hold-off  
Time  
tREH  
0.5  
65  
5.0  
µs  
µs  
Timeslot Duration  
tSLOT  
(Notes 14)  
DATA PIN, 1-WIRE RESET, PRESENCE DETECT CYCLE  
Reset Low Time  
Presence Detect High  
Time  
tRSTL  
Noe 2)  
480  
15  
960  
60  
µs  
µs  
tPD
Presence Detect Low  
Time  
Presence Detect Sample  
Time  
DL  
tMSP  
60  
60  
240  
75  
µs  
µs  
(Notes 2, 15)  
DATA PIN, 1-Wire WRITE  
(Notes 2, 16)  
(Notes 2, 16)  
Write-0 Low Time  
tW0L  
60  
1
µs  
µs  
120 - ε  
15 - ε  
Write-1 Low Tie  
tW1L  
DATA P, 1-Wire READ  
(Notes 2, 17)  
(Notes 2, 17)  
1
Read Low Time  
tRL  
µs  
µs  
15 - δ  
15  
Read Sample Time  
tMSR  
tRL + δ  
EPROM  
gramming Current  
Programming Time  
Write/Erase Cycles  
(Endurance)  
(Notes 20, 21)  
Data Retention (Notes 22,  
23, 24)  
IPROG  
tPROG  
(Notes 5, 18)  
(Note 19)  
At 25°C  
0.5  
10  
mA  
ms  
200k  
50k  
NCY  
tDR  
At 85°C (worst case)  
At 85°C (worst case)  
40  
years  
16 of 19  
DS2430A  
ELECTRICAL CHARACTERISTICS (continued)  
(TA = -40°C to +85°C, unless otherwise noted.) (Note 1)  
Limits are 100% production tested at TA = +25°C and/or TA = +85°C. Limits over the operating temperature  
range and relevant supply voltage range are guaranteed by design and characterization. Typical values are not  
guaranteed.  
Note 1:  
System requirement.  
Note 2:  
Note 3:  
Maximum allowable pullup resistance is a function of the number of 1-Wire devices in the system and 1-Wire  
recovery times. The specified value here applies to systems with only one device and with the minimum tREC. For  
more heavily loaded systems, an active pullup such as that found in the DS2482-x00, DS2480B, or DS2490 my  
be required. If longer tREC is used, higher RPUP values may be able to be tolerated.  
Maximum value represents the internal parasite capacitance when VPUP is first applied. If a 2.2kresior used  
to pull up the data line, 2.5µs after VPUP has been applied the parasite capacitance will not affect normal  
communications.  
Note 4:  
Guaranteed by design, characterization and/or simulation only. Not production tested.  
VTL, VTH, and VHY are a function of the internal supply voltage which is itself a function of VPRPUP, 1-Wire  
timing, and capacitive loading on DATA. Lower VPUP, higher RPUP, shorter tREC, and heaier capacitive loading  
Note 5:  
Note 6:  
all lead to lower values of VTL, VTH, and VHY  
.
Voltage below which, during a falling edge on DATA, a logic 0 is detected.  
The voltage on DATA needs to be less or equal to VIL(MAX) at all times the mastr is driving DATA to a logic-0  
level.  
Note 7:  
Note 8:  
Voltage above which, during a rising edge on DATA, a logic 1 is detected.  
After VTH is crossed during a rising edge on DATA, the voltage on DATA has to drop by at least VHY to be  
detected as logic '0'.  
Note 9:  
Note 10:  
The I-V characteristic is linear for voltages less than 1V.  
Applies to a single device attached to a 1-Wire line.  
The earliest recognition of a negative edge is possible at tEH after VTH has been reached on the preceding rising  
edge.  
Note 11:  
Note 12:  
Note 13:  
Defines maximum possible bit rate. Equal to 1/(tW0L) + tREC(min)).  
Interval after tRSTL during which a bus master is gued to sample a logic-0 on DATA if there is a DS2430A  
Note 14:  
Note 15:  
present. Minimum limit is tPDH(max); maximum limit itPDH(min) + tPDL(min)  
.
Note 16:  
Note 17:  
ε in Figure 10 represents the time required for te pullup circuitry to pull the voltage on DATA up from VIL to  
VTH. The actual maximum duration for thster to pull the line low is tW1Lmax + tF and tW0Lmax + tF respectively.  
δ in Figure 10 represents the time requred r the pullup circuitry to pull the voltage on DATA up from VIL to the  
input high threshold of the bus mas. Te actual maximum duration for the master to pull the line low is  
tRLmax + tF.  
Current drawn from DATA durithe EEPROM programming interval. The pullup circuit on DATA during the  
programming interval shoulbe such that the voltage at DATA is greater than or equal to VPUPMIN. If VPUP in the  
system is close to VPUPMINa w-impedance bypass of RPUP, which can be activated during programming, may  
need to be added.  
Interval begins tREHax ter the trailing rising edge on DATA for the last timeslot of the validation key for a valid  
copy sequence. erval ends once the device's self-timed EEPROM programming cycle is complete and the  
current drawn e device has returned from IPROG to IL.  
Note 18:  
Note 19:  
Write-cye endurance is degraded as TA increases.  
Not 100% production-tested; guaranteed by reliability monitor sampling.  
Datretention is degraded as TA increases.  
araneed by 100% production test at elevated temperature for a shorter time; equivalence of this production  
t to data sheet limit at operating temperature range is established by reliability testing.  
EEPROM writes can become nonfunctional after the data-retention time is exceeded. Long-term storage at  
elevated temperatures is not recommended; the device can lose its write capability after 10 years at +125°C or 40  
years at +85°C.  
Note 20:  
Note 21:  
Note 22:  
Note 23:  
Note 24:  
17 of 19  
DS2430A  
PACKAGE INFORMATION  
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages.  
Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a  
different suffix character, but the drawing pertains to the package regardless of RoHS status.  
PACKAGE TYPE  
3 TO-92 (Bulk)  
3 TO-92 (T&R)  
6 TSOC  
PACKAGE CODE  
OUTLINE NO.  
21-0248  
LAND PATTERN NO.  
Q3+1  
Q3+4  
D6+1  
21-0250  
21-0382  
90-0321  
18 of 19  
DS2430A  
REVISION HISTORY  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
4/3/95  
8/26/96  
3/26/97  
Initial release  
Changed “C-lead” package to “TSOC” package. Deleted VIHmax specification  
value. Note “Under certain low voltage conditions VILMAX may have to be  
reduced to as much as 0.5V to always guarantee a presence pulse.” added to  
VIL specification, changed VCC to VPUP in Note 6.  
Various  
Variou
Changed “Touch Memory” to “iButton”.  
Programming time changed from 100ms to 10ms, change VDD to VPUP, revised  
note below Figure 7, programming current changed from 600µA to 500µA, QOP  
removed from EC table, deleted from Note 5 “and will remain valid for 14µs  
minimum (15µs total from falling edge on 1-wire bus).” Endurance added to EC  
table with note “The Copy Scratchpad takes 10 ms maximum, during which th
voltage on the 1-Wire bus must not fall below 2.8V.”  
12/8/98  
Various  
1/20/99  
5/20/99  
Chip scale package added to ordering information  
1
Deleted duplicate tPDL and contradicting tPROG spec from EC table  
15  
Template conversion, style changes (capitalization of command nmes, “Write-  
one” to “Write-1”, “Write-zero” to “Write-0”)  
10/21/99  
All  
Part number corrections, style corrections, note below figure revised explain-  
ing the appropriate RPUP range, corrections in the Memory Functions Example  
(removed Read Memory section at the beginning), chad solder spec from  
260°C to JEDEC reference, added notes 11, 12, 13 to Etable, changed  
tRSTLmax from 5000µs to 960µs, revised text of EC note 8.  
2/2/02  
Various  
11/1/05  
1/16/07  
NRFND watermark added  
All  
Lead free part numbers added; added flip chip gaphic with bump electrical  
assignment, orientation mark and markiAdded flip chip 56-level drawing  
number, changed "Chip Scale" name to p Chip"; replaced references to the  
Book of iButton Standards with the orresponding application notes.  
Note on formed leads for TO-92 RL nd URL to 56-G0006-003 added, ILmin  
and ILmax spec values added to able. Data retention added to EC table.  
Ordering information for stanard and flip chip versions deleted, pin assignment  
for flip chip version deleteddata rate changed from 16.3kbps to 15.3 kbps.  
Style corrections and inor text updates for clarification.  
Various  
8/8/07  
4/10  
1, 15  
1
Various  
12-14, 16-17  
18  
New 1-Wire front ed, iproved EEPROM and related EC table with notes.  
Package informiosection added.  
Reformatted e Ordering Information, deleted the reference to the UCSP  
package.  
Revised EC able notes 1 and 18; added the Land Pattern No. to the Package  
Informsection.  
1
2/12  
17, 18  
19 of 19  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim  
reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2012 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

DS2430AX-S

256-Bit 1-Wire EEPROM
DALLAS
MAXIM

DS2430A_07

256-Bit 1-Wire EEPROM
DALLAS

DS2430A_12

256-Bit 1-Wire EEPROM
MAXIM

DS2430E

NVRAM (EEPROM Based)
ETC

DS2430EN

NVRAM (EEPROM Based)
ETC

DS2430N

NVRAM (EEPROM Based)
ETC

DS2430Z

NVRAM (EEPROM Based)
ETC

DS2430ZN

NVRAM (EEPROM Based)
ETC

DS2431

1024-Bit 1-Wire EEPROM
DALLAS

DS2431

1024-Bit 1-Wire EEPROM
MAXIM

DS2431 R

1024-Bit, 1-Wire EEPROM
MAXIM