DS26303L-XXX [MAXIM]

3.3V, E1/T1/J1, Short-Haul, Octal Line Interface Unit;
DS26303L-XXX
型号: DS26303L-XXX
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

3.3V, E1/T1/J1, Short-Haul, Octal Line Interface Unit

PC 电信 电信集成电路
文件: 总101页 (文件大小:1197K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DS26303  
3.3V, E1/T1/J1, Short-Haul,  
Octal Line Interface Unit  
www.maxim-ic.com  
GENERAL DESCRIPTION  
FEATURES  
8 Complete E1, T1, or J1 Short-Haul Line  
Interface Units  
The DS26303 is an 8-channel short-haul line  
interface unit (LIU) that supports E1/T1/J1 from a  
single 3.3V power supply. A wide variety of  
applications are supported through internal  
termination or external termination. A single bill of  
material can support E1/T1/J1 with minimum external  
components. Redundancy is supported through  
nonintrusive monitoring, optimal high-impedance  
modes, and configurable 1:1 or 1+1 backup  
enhancements. An on-chip synthesizer generates the  
E1/T1/J1 clock rates by a single master clock input of  
various frequencies. Two clock output references are  
also offered.  
Independent E1, T1, or J1 Selections  
Internal Software-Selectable Transmit and  
Receive-Side Termination  
Crystal-Less Jitter Attenuator  
Selectable Single-Rail and Dual-Rail Mode  
and AMI or HDB3/B8ZS Line Encoding and  
Decoding  
Detection and Generation of AIS  
Digital/Analog Loss-of-Signal Detection as  
per T1.231, G.775, and ETS 300 233  
External Master Clock can be Multiple of  
2.048MHz or 1.544MHz for T1/J1 or E1  
Operation; This Clock will be Internally  
Adapted for T1 or E1 Use  
APPLICATIONS  
T1 Digital Cross-Connects  
ATM and Frame Relay Equipment  
Wireless Base Stations  
ISDN Primary Rate Interface  
E1/T1/J1 Multiplexer and Channel Banks  
E1/T1/J1 LAN/WAN Routers  
Built-In BERT Tester for Diagnostics  
8-Bit Parallel Interface Support for Intel or  
Motorola Mode or a 4-Wire Serial Interface  
Hardware Mode Interface Support  
Transmit Short-Circuit Protection  
G.772 Nonintrusive Monitoring  
FUNCTIONAL DIAGRAM  
Software Control,  
Hardware Control  
Jtag  
MODESEL  
Specification Compliance to the Latest T1  
and E1 Standards—ANSI T1.102, AT&T Pub  
62411, T1.231, T1.403, ITU-T G.703, G.742,  
G.775, G.823, ETS 300 166, and ETS 300 233  
and JTAG  
RLOS  
RTIP  
RPOS  
RNEG  
RCLK  
Single 3.3V Supply with 5V Tolerant I/O  
JTAG Boundary Scan as per IEEE 1149.1  
144-Pin eLQFP Package  
Receiver  
RRING  
TPOS  
TNEG  
TCLK  
TTTIP  
Transmitter  
TRING  
ORDERING INFORMATION  
1
TEMP RANGE  
PIN-PACKAGE  
PART  
8
DS26303L-XXX  
0°C to +70°C  
144 eLQFP  
DS26303L-XXX+  
DS26303LN-XXX  
DS26303LN-XXX+  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
144 eLQFP  
144 eLQFP  
144 eLQFP  
DS26303  
Note: When XXX is 075, the part defaults to 75Ω impedance in E1  
mode; when XXX is 120, the part defaults to 120Ω impedance.  
+ Denotes a lead-free/RoHS-compliant package.  
e = Exposed Pad.  
Note: Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of any device  
may be simultaneously available through various sales channels. For information about device errata, click here: www.maxim-ic.com/errata.  
1 of 101  
REV: 053107  
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
TABLE OF CONTENTS  
1
2
3
4
DETAILED DESCRIPTION ...............................................................................................................6  
TELECOM SPECIFICATIONS COMPLIANCE.................................................................................7  
BLOCK DIAGRAMS .........................................................................................................................9  
PIN DESCRIPTION .........................................................................................................................11  
4.1 HARDWARE AND HOST PORT OPERATION ......................................................................................20  
4.1.1 Hardware Mode................................................................................................................................... 20  
4.1.2 Serial Port Operation .......................................................................................................................... 21  
4.1.3 Parallel Port Operation........................................................................................................................ 22  
4.1.4 Interrupt Handling ............................................................................................................................... 22  
5
6
REGISTERS....................................................................................................................................24  
5.1 REGISTER DESCRIPTION ...............................................................................................................29  
5.1.1 Primary Registers................................................................................................................................ 29  
5.1.2 Secondary Registers........................................................................................................................... 38  
5.1.3 Individual LIU Registers...................................................................................................................... 40  
5.1.4 BERT Registers .................................................................................................................................. 47  
FUNCTIONAL DESCRIPTION........................................................................................................54  
6.1 POWER-UP AND RESET.................................................................................................................54  
6.2 MASTER CLOCK ............................................................................................................................54  
6.3 TRANSMITTER ...............................................................................................................................55  
6.3.1 Transmit Line Templates .................................................................................................................... 56  
6.3.2 LIU Transmit Front-End ...................................................................................................................... 58  
6.3.3 Dual-Rail Mode ................................................................................................................................... 59  
6.3.4 Single-Rail Mode................................................................................................................................. 59  
6.3.5 Zero Suppression—B8ZS or HDB3.................................................................................................... 59  
6.3.6 Transmit Power-Down ........................................................................................................................ 59  
6.3.7 Transmit All Ones................................................................................................................................ 59  
6.3.8 Driver Fail Monitor............................................................................................................................... 59  
6.4 RECEIVER.....................................................................................................................................59  
6.4.1 Peak Detector and Slicer .................................................................................................................... 59  
6.4.2 Clock and Data Recovery ................................................................................................................... 59  
6.4.3 Loss of Signal...................................................................................................................................... 60  
6.4.4 AIS ...................................................................................................................................................... 60  
6.4.5 Bipolar Violation and Excessive Zero Detector................................................................................... 62  
6.4.6 LIU Receiver Front-End ...................................................................................................................... 62  
6.5 HITLESS-PROTECTION SWITCHING (HPS)......................................................................................62  
6.6 JITTER ATTENUATOR.....................................................................................................................64  
6.7 G.772 MONITOR ...........................................................................................................................65  
6.8 LOOPBACKS..................................................................................................................................65  
6.8.1 Analog Loopback ................................................................................................................................ 65  
6.8.2 Digital Loopback.................................................................................................................................. 65  
6.8.3 Remote Loopback............................................................................................................................... 66  
6.8.4 Dual Loopback .................................................................................................................................... 67  
6.9 BERT...........................................................................................................................................68  
6.9.1 Configuration and Monitoring.............................................................................................................. 68  
6.9.2 BERT Interrupt Handling..................................................................................................................... 69  
6.9.3 Receive Pattern Detection .................................................................................................................. 69  
6.9.4 Transmit Pattern Generation............................................................................................................... 71  
7
JTAG BOUNDARY SCAN ARCHITECTURE AND TEST ACCESS PORT...................................72  
7.1 TAP CONTROLLER STATE MACHINE ..............................................................................................73  
7.1.1 Test-Logic-Reset................................................................................................................................. 73  
7.1.2 Run-Test-Idle ...................................................................................................................................... 73  
7.1.3 Select-DR-Scan .................................................................................................................................. 73  
7.1.4 Capture-DR......................................................................................................................................... 73  
2 of 101  
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
7.1.5 Shift-DR............................................................................................................................................... 73  
7.1.6 Exit1-DR.............................................................................................................................................. 73  
7.1.7 Pause-DR............................................................................................................................................ 73  
7.1.8 Exit2-DR.............................................................................................................................................. 73  
7.1.9 Update-DR .......................................................................................................................................... 73  
7.1.10 Select-IR-Scan.................................................................................................................................... 74  
7.1.11 Capture-IR........................................................................................................................................... 74  
7.1.12 Shift-IR ................................................................................................................................................ 74  
7.1.13 Exit1-IR ............................................................................................................................................... 74  
7.1.14 Pause-IR ............................................................................................................................................. 74  
7.1.15 Exit2-IR ............................................................................................................................................... 74  
7.1.16 Update-IR............................................................................................................................................ 74  
7.2 INSTRUCTION REGISTER................................................................................................................76  
7.2.1 EXTEST .............................................................................................................................................. 76  
7.2.2 HIGHZ................................................................................................................................................. 76  
7.2.3 CLAMP................................................................................................................................................ 76  
7.2.4 SAMPLE/PRELOAD ........................................................................................................................... 76  
7.2.5 IDCODE .............................................................................................................................................. 76  
7.2.6 BYPASS.............................................................................................................................................. 76  
7.3 TEST REGISTERS ..........................................................................................................................77  
7.3.1 Boundary Scan Register..................................................................................................................... 77  
7.3.2 Bypass Register.................................................................................................................................. 77  
7.3.3 Identification Register ......................................................................................................................... 77  
8
9
OPERATING PARAMETERS .........................................................................................................78  
THERMAL CHARACTERISTICS....................................................................................................79  
10 AC CHARACTERISTICS ................................................................................................................80  
10.1 LINE INTERFACE CHARACTERISTICS...............................................................................................80  
10.2 PARALLEL HOST INTERFACE TIMING CHARACTERISTICS .................................................................81  
10.3 SERIAL PORT ................................................................................................................................93  
10.4 SYSTEM TIMING ............................................................................................................................94  
10.5 JTAG TIMING................................................................................................................................96  
11 PIN CONFIGURATION ...................................................................................................................97  
11.1 144-PIN LQFP WITH EXPOSED PAD ..............................................................................................97  
12 PACKAGE INFORMATION ............................................................................................................98  
12.1 144-PIN LQFP WITH EXPOSED PAD PACKAGE OUTLINE (56-G6037-002) (SHEET 1 OF 2)..............98  
12.2 144-PIN LQFP WITH EXPOSED PAD PACKAGE OUTLINE (SHEET 2 OF 2).........................................99  
13 DOCUMENT REVISION HISTORY...............................................................................................100  
3 of 101  
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
LIST OF FIGURES  
Figure 3-1. Block Diagram........................................................................................................................................... 9  
Figure 3-2. Receive Logic Detail................................................................................................................................ 10  
Figure 3-3. Transmit Logic Detail............................................................................................................................... 10  
Figure 4-1. 144-Pin eLQFP Pin Assignment ............................................................................................................. 19  
Figure 4-2. Serial Port Operation for Write Access ................................................................................................... 21  
Figure 4-3. Serial Port Operation for Read Access with CLKE = 0........................................................................... 21  
Figure 4-4. Serial Port Operation for Read Access with CLKE = 1........................................................................... 22  
Figure 4-5. Interrupt Handling Flow Diagram ............................................................................................................ 23  
Figure 6-1. Prescaler PLL and Clock Generator ....................................................................................................... 54  
Figure 6-2. T1 Transmit Pulse Templates ................................................................................................................. 56  
Figure 6-3. E1 Transmit Pulse Templates................................................................................................................. 57  
Figure 6-4. LIU Front-End.......................................................................................................................................... 58  
Figure 6-5. HPS Logic ............................................................................................................................................... 63  
Figure 6-6. HPS Block Diagram................................................................................................................................. 63  
Figure 6-7. Jitter Attenuation ..................................................................................................................................... 64  
Figure 6-8. Analog Loopback..................................................................................................................................... 65  
Figure 6-9. Digital Loopback...................................................................................................................................... 66  
Figure 6-10. Remote Loopback ................................................................................................................................. 66  
Figure 6-11. Dual Loopback ...................................................................................................................................... 67  
Figure 6-12. PRBS Synchronization State Diagram.................................................................................................. 70  
Figure 6-13. Repetitive Pattern Synchronization State Diagram............................................................................... 71  
Figure 7-1. JTAG Functional Block Diagram............................................................................................................. 72  
Figure 7-2. TAP Controller State Diagram................................................................................................................. 75  
Figure 10-1. Intel Nonmuxed Read Cycle ................................................................................................................. 82  
Figure 10-2. Intel Mux Read Cycle ............................................................................................................................ 83  
Figure 10-3. Intel Nonmux Write Cycle...................................................................................................................... 85  
Figure 10-4. Intel Mux Write Cycle ............................................................................................................................ 86  
Figure 10-5. Motorola Nonmux Read Cycle .............................................................................................................. 88  
Figure 10-6. Motorola Mux Read Cycle..................................................................................................................... 89  
Figure 10-7. Motorola Nonmux Write Cycle .............................................................................................................. 91  
Figure 10-8. Motorola Mux Write Cycle..................................................................................................................... 92  
Figure 10-9. Serial Bus Timing Write Operation........................................................................................................ 93  
Figure 10-10. Serial Bus Timing Read Operation with CLKE = 0.............................................................................. 93  
Figure 10-11. Serial Bus Timing Read Operation with CLKE = 1.............................................................................. 93  
Figure 10-12. Transmitter Systems Timing ............................................................................................................... 94  
Figure 10-13. Receiver Systems Timing ................................................................................................................... 95  
Figure 10-14. JTAG Timing ....................................................................................................................................... 96  
4 of 101  
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
LIST OF TABLES  
Table 2-1. T1-Related Telecommunications Specifications ........................................................................................ 7  
Table 2-2. E1-Related Telecommunications Specifications........................................................................................ 8  
Table 4-1. Pin Descriptions........................................................................................................................................ 11  
Table 4-2. Hardware Mode Configuration Examples................................................................................................. 20  
Table 4-3. Parallel Port Mode Selection and Pin Functions...................................................................................... 22  
Table 5-1. Primary Register Set ................................................................................................................................ 24  
Table 5-2. Secondary Register Set............................................................................................................................ 25  
Table 5-3. Individual LIU Register Set....................................................................................................................... 25  
Table 5-4. BERT Register Set ................................................................................................................................... 26  
Table 5-5. Primary Register Set Bit Map................................................................................................................... 27  
Table 5-6. Secondary Register Set Bit Map .............................................................................................................. 27  
Table 5-7. Individual LIU Register Set Bit Map.......................................................................................................... 28  
Table 5-8. BERT Register Bit Map ............................................................................................................................ 28  
Table 5-9. G.772 Monitoring Control ......................................................................................................................... 32  
Table 5-10. TST Template Select Transceiver Register ........................................................................................... 35  
Table 5-11. Template Selection................................................................................................................................. 35  
Table 5-12. Address Pointer for Bank Selection........................................................................................................ 37  
Table 5-13. MCLK Selections.................................................................................................................................... 42  
Table 5-14. Jitter Attenuator Bandwidth Selections................................................................................................... 43  
Table 5-15. PLL Clock Select .................................................................................................................................... 45  
Table 5-16. Clock A Select ........................................................................................................................................ 45  
Table 6-1. Telecommunications Specification Compliance for DS26303 Transmitters ............................................ 55  
Table 6-2. Registers Related to Control of DS26303 Transmitters........................................................................... 55  
Table 6-3. DS26303 Template Selections................................................................................................................. 56  
Table 6-4. LIU Front-End Values............................................................................................................................... 58  
Table 6-5. Loss Criteria T1.231, G.775, and ETS 300 233 Specifications................................................................ 60  
Table 6-6. AIS Criteria T1.231, G.775, and ETS 300 233 Specifications.................................................................. 61  
Table 6-7. AIS Detection and Reset Criteria ............................................................................................................. 61  
Table 6-8. Registers Related to AIS Detection.......................................................................................................... 61  
Table 6-9. BPV, Code Violation, and Excessive Zero Error Reporting ..................................................................... 62  
Table 6-10. Pseudorandom Pattern Generation........................................................................................................ 68  
Table 6-11. Repetitive Pattern Generation................................................................................................................ 68  
Table 7-1. Instruction Codes for IEEE 1149.1 Architecture....................................................................................... 76  
Table 7-2. ID Code Structure..................................................................................................................................... 77  
Table 7-3 Device ID Codes........................................................................................................................................ 77  
Table 8-1. Recommended DC Operating Conditions................................................................................................ 78  
Table 8-2. Capacitance.............................................................................................................................................. 78  
Table 8-3. DC Characteristics.................................................................................................................................... 78  
Table 9-1. Thermal Characteristics............................................................................................................................ 79  
Table 10-1. Transmitter Characteristics..................................................................................................................... 80  
Table 10-2. Receiver Characteristics......................................................................................................................... 80  
Table 10-3. Intel Read Mode Characteristics ............................................................................................................ 81  
Table 10-4. Intel Write Cycle Characteristics ............................................................................................................ 84  
Table 10-5. Motorola Read Cycle Characteristics..................................................................................................... 87  
Table 10-6. Motorola Write Cycle Characteristics ..................................................................................................... 90  
Table 10-7. Serial Port Timing Characteristics.......................................................................................................... 93  
Table 10-8. Transmitter System Timing .................................................................................................................... 94  
Table 10-9. Receiver System Timing......................................................................................................................... 95  
Table 10-10. JTAG Timing Characteristics................................................................................................................ 96  
5 of 101  
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
1 DETAILED DESCRIPTION  
The DS26303 is a single-chip, 8-channel, short-haul line interface unit (LIU) for T1 (1.544Mbps) and E1  
(2.048Mbps) applications. Eight independent receivers and transmitters are provided in an eLQFP package. The  
LIUs can be individually selected for T1, J1, or E1 operation. The LIU requires a single reference clock called  
MCLK. MCLK can be either 1.544MHz or 2.048MHz or a multiple thereof, and either frequency can be internally  
adapted for T1, J1, or E1 mode. Internal impedance match provided for both transmit and receive paths reduces  
external component count. The transmit waveforms are compliant to G.703 and T1.102 specifications. The  
DS26303 provides software-selectable internal transmit termination for 100Ω T1 twisted pair, 110Ω J1 twisted pair,  
120Ω E1 twisted pair, and 75Ω E1 coaxial applications. The transmitters have fast high-impedance capability and  
can be individually powered down.  
The receivers can function with up to 15dB of receive signal attenuation for T1 mode and E1 mode. The DS26303  
can be configured as a 7-channel LIU with channel 1 used for nonintrusive monitoring in accordance with G.772.  
The receivers and transmitters can be programmed into single-rail or dual-rail mode. AMI or HDB/B8ZS encoding  
and decoding is selectable in single-rail mode. A 128-bit crystal-less on-board jitter attenuator for each LIU can be  
placed in the receive or transmit directions. The jitter attenuator meets the ETS CTR12/13 ITU-T G.736, G.742,  
G.823, and AT&T Pub 62411 specifications.  
The DS26303 detects and generates AIS in accordance with T1.231, G.775, and ETS 300 233. Loss of signal is  
detected in accordance with T1.231, G.775, and ETS 300 233. The DS26303 can perform digital, analog, remote,  
and dual loopbacks on individual LIUs. JTAG boundary scan is provided for the digital pins.  
The DS26303 can be configured using an 8-bit multiplexed or nonmultiplexed Intel or Motorola port, a 4-pin serial  
port, or in limited modes of operation using hardware mode.  
The analog AMI/HDB3 waveform of the E1 line or the AMI/B8ZS waveform of the T1 line is transformer coupled  
into the RTIP and RRING pins of the DS26303. The user has the option to select internal termination of 75Ω,  
100Ω, 110Ω, or 120Ω applications. The device recovers clock and data from the analog signal and passes it  
through a selectable jitter attenuator, outputting the received line clock at RCLK and data at RPOS and RNEG.  
The DS26303 receivers can recover data and clock for up to 15dB of attenuation of the transmitted signals in T1  
and E1 mode. Receiver 1 can monitor the performance of receivers 2 to 8 or transmitters 2 to 8.  
The DS26303 contains eight identical transmitters. Digital transmit data is input at TPOS/TNEG with reference to  
TCLK. The data at these pins can be single-rail or dual-rail. This data is processed by waveshaping circuitry and  
line drivers to output a pulse at TTIP and TRING in accordance with ANSI T1.102 for T1/J1 or G.703 for E1 mask.  
The DS26303 drives the E1 or T1 line from the TTIP and TRING pins through a coupling transformer. The  
DS26303 requires a 1:2 transformer for the transmit path and a 2:1 transformer for the receive path.  
6 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
2 TELECOM SPECIFICATIONS COMPLIANCE  
The DS26303 LIU meets all the relevant latest telecommunications specifications. Table 2-1 provides the T1  
specifications and Table 2-2 provides the E1 specifications for the relevant sections applicable to the DS26303.  
Table 2-1. T1-Related Telecommunications Specifications  
ANSI T1.102–Digital Hierarchy Electrical Interface  
AMI Coding  
B8ZS Substitution Definition  
DS1 Electrical Interface. Line rate ±32ppm; Pulse Amplitude between 2.4V to 3.6 V peak; Power level between  
12.6dBm to 17.9dBm. The T1 pulse mask is provided that we comply. DSX-1 for cross connects the return loss is  
greater than 26dB. The DSX-1 cable is restricted up to 655 feet.  
This specification also provides cable characteristics of DSX-Cross Connect cable—22 AVG cable of 1000 feet.  
ANSI T1.231–Digital Hierarchy–Layer 1 in Service Performance Monitoring  
BPV Error Definition, Excessive Zero Definition, LOS description, AIS definition  
ANSI T1.403–Network and Customer Installation Interface–DS1 Electrical Interface  
Description of the Measurement of the T1 Characteristics—100Ω, pulse shape and template according to T1.102;  
power level 12.4dBm to 19.7dBm when all ones are transmitted.  
LBO for the Customer Interface (CI) is specified as 0dB, 7.5dB, and 15dB. Line rate is ±32ppm.  
Pulse Amplitude is 2.4V to 3.6V.  
AIS generation as unframed all ones is defined.  
The total cable attenuation is defined as 22dB. The DS26303 functions up to 36dB cable loss.  
Note that the pulse mask defined by T1.403 and T1.102 are different—specifically at Times 0.61, -0.27, -34,  
and 0.77. The DS26303 is compliant to both templates.  
Pub 62411  
This specification has tighter jitter tolerance and transfer characteristics than other specifications. The jitter transfer  
characteristics are tighter than G.736 and jitter tolerance is tighter the G.823.  
7 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Table 2-2. E1-Related Telecommunications Specifications  
ITU-T G.703 Physical/Electrical Characteristics of G.703 Hierarchical Digital Interfaces  
Defines the 2048kbps bit rate: 2048 ±50ppm. The transmission media are 75Ω coax or 120Ω twisted pair; peak-to-  
peak space voltage is ±0.237V; nominal pulse width is 244ns.  
Return loss: 51Hz to 102Hz is 6dB, 102Hz to 3072Hz is 8dB, 2048Hz to 3072Hz is 14dB  
Nominal peak voltage is 2.37V for coax and 3V for twisted pair.  
The pulse mask for E1 is defined in G.703.  
Defines the 2048 kHz synchronization interface (Chapter 13). Contact factory for usage details.  
ITU-T G.736 Characteristics of Synchronous Digital Multiplex Equipment Operating at 2048kbps  
The peak-to-peak jitter at 2048kbps must be less than 0.05UI at 20Hz to 100Hz.  
Jitter transfer between 2.048 synchronization signal and 2.048 transmission signal is provided.  
ITU-T G.742 Second-Order Digital Multiplex Equipment Operating at 8448kbps  
The DS26303 jitter attenuator is compliant with jitter transfer curve for sinusoidal jitter input.  
ITU-T G.772  
This specification provides the method for using receiver for transceiver 0 as a monitor for the rest of the seven  
transmitter/receiver combinations.  
ITU-T G.775  
An LOS detection criterion is defined.  
ITU-T G.823–The control of jitter and wander within digital networks that are based on 2.048kbps Hierarchy  
G.823 provides the jitter amplitude tolerance at different frequencies, specifically 20Hz, 2.4kHz, 18kHz, and  
100kHz.  
ETS 300 166  
This specification provides transmit return loss of 6dB for a range of 0.25fb to 0.05fb, and 8dB for a range of 0.05fb  
to 1.5fb where fb equals 2.048kHz for 2.048kbps interface.  
ETS 300 233  
This specification provides LOS and AIS signal criteria for E1 mode.  
Pub 62411  
This specification has tighter jitter tolerance and transfer characteristics than other specifications. The jitter transfer  
characteristics are tighter than G.736 and jitter tolerance is tighter than G.823.  
8 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
3 BLOCK DIAGRAMS  
Figure 3-1. Block Diagram  
T1CLK E1CLK  
TYPICAL OF ALL 8 CHANNELS  
MUX  
Jitter Attenuator  
MUX  
2.048MHz to  
1.544MHz PLL  
VCO/PLL  
RLOS  
RPOS/RDAT  
RRING  
RTIP  
Receive Logic  
RCLK  
RNEG/CV  
DS26303  
Unframed All  
Ones Insertion  
TPOS/TDAT  
TCLK  
TRING  
Transmit Logic  
TTIP  
OE  
TNEG  
Reset  
T1CLK  
8
E1CLK  
8
Control  
and  
Interrupt  
Master Clock  
Adapter  
Reset  
Port Interface  
JTAG PORT  
5
8
9 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Figure 3-2. Receive Logic Detail  
RCLK  
RCLK  
Excessive  
Zero  
Detect  
T1.231  
IAISEL  
AISEL  
POS  
NEG  
EN  
RPOS  
All Ones  
Insert  
(AIS)  
MUX  
NRZ Data  
B8ZS/HDB3/AMI  
RNEG/CV  
Decoder (G.703, T1.102)  
BPVs, Code Violatiions  
(T1.231, O.161)  
BPV/CV/EXZ  
AIS  
Detector  
G.775, ETSI 300233,  
T1.231  
Figure 3-3. Transmit Logic Detail  
B8ZS/HDB3/AMI  
Coder (G.703,  
T1.102)  
To Remote  
Loopback  
BPV  
Insert  
MUX  
TPOS/  
TDATA  
TNEG/  
BPV  
TCLK  
10 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
4 PIN DESCRIPTION  
Table 4-1. Pin Descriptions  
NAME  
PIN  
TYPE  
ANALOG TRANSMIT AND RECEIVE  
Transmit Bipolar Tip for Channel 1 to 8. These pins are  
FUNCTION  
TTIP1  
TTIP2  
45  
52  
differential line-driver tip outputs. These pins will be high  
impedance if pin OE is low or the corresponding OEB.OEBn bit is  
high. If the corresponding clock TCLKn is low for 64 MCLKs, the  
corresponding transmitter is put in power-down mode. The  
differential outputs of TTIPn and TRINGn can provide internal  
matched impedance for E1 75Ω, E1 120Ω, T1 100Ω, or J1 110Ω.  
TTIP3  
TTIP4  
TTIP5  
TTIP6  
TTIP7  
TTIP8  
TRING1  
TRING2  
TRING3  
TRING4  
TRING5  
TRING6  
TRING7  
TRING8  
RTIP1  
57  
64  
Analog  
Output  
117  
124  
129  
136  
46  
51  
58  
63  
118  
123  
130  
135  
48  
Transmit Bipolar Ring for Channel 1 to 8. These pins are  
differential line-driver ring outputs. These pins will be high  
impedance if pin OE is low or the corresponding OEB.OEBn bit is  
high. If the corresponding clock TCLKn is low for 64 MCLKs, the  
corresponding transmitter is put in power-down mode. The  
differential outputs of TTIPn and TRINGn can provide internal  
matched impedance for E1 75Ω, E1 120Ω, T1 100Ω, or J1 110Ω.  
Analog  
Output  
RTIP2  
RTIP3  
RTIP4  
RTIP5  
RTIP6  
RTIP7  
RTIP8  
RRING1  
RRING2  
RRING3  
RRING4  
RRING5  
RRING6  
RRING7  
RRING8  
55  
60  
67  
120  
127  
132  
139  
49  
54  
61  
66  
121  
126  
133  
138  
Receive Bipolar Tip for Channel 1 to 8. Receive analog input for  
differential receiver. Data and clock are recovered and output at  
RPOSn/RNEGn and RCLKn pins, respectively. The differential  
inputs of RTIPn and RRINGn can provide internal matched  
impedance for E1 75Ω, E1 120Ω, T1 100Ω, or J1 110Ω.  
Analog  
Input  
Receive Bipolar Ring for Channel 1 to 8. Receive analog input  
for differential receiver. Data and clock are recovered and output  
at RPOSn/RNEGn and RCLKn pins, respectively. The differential  
inputs of RTIPn and RRINGn can provide internal matched  
impedance for E1 75Ω, E1 120Ω, T1 100Ω, or J1 110Ω.  
Analog  
Input  
11 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
NAME  
PIN  
TYPE  
FUNCTION  
DIGITAL Tx/Rx  
Transmit Positive-Data Input for Channel 1 to 8/Transmit Data  
Input for Channel 1 to 8  
TPOS1/TDATA1  
TPOS2/TDATA2  
TPOS3/TDATA3  
TPOS4/TDATA4  
TPOS5/TDATA5  
TPOS6/TDATA6  
TPOS7/TDATA7  
TPOS8/TDATA8  
37  
30  
80  
73  
108  
101  
8
TPOS[1:8]: When the DS26303 is configured in dual-rail mode, the  
data input to TPOSn is output as a positive pulse on the line  
(TTIPn and TRINGn) as follows:  
TPOSn TNEGn  
Output Pulse  
Space  
Negative Pulse  
Positive Pulse  
Space  
I
0
0
1
1
0
1
0
1
TDATA[1:8]: When the device is configured in single-rail mode,  
NRZ data is input to TDATAn. The data is HDB3, B8ZS or AMI  
encoded before being output to the line.  
1
TNEG1  
TNEG2  
TNEG3  
TNEG4  
TNEG5  
TNEG6  
TNEG7  
TNEG8  
TCLK1  
38  
31  
Transmit Negative Data for Channel 1 to 8. When the DS26303  
is configured in dual-rail mode, the data input to TNEGn is output  
as a negative pulse on the line (TTIPn and TRINGn) as follows:  
79  
72  
I
TPOSn TNEGn  
Output Pulse  
Space  
Negative Pulse  
Positive Pulse  
Space  
109  
102  
7
0
0
1
1
0
1
0
1
144  
36  
Transmit Clock for Channel 1 to 8. The transmit clock must be  
1.544MHz for T1 or 2.048MHz for E1 mode. TCLKn is the clock  
used to sample the data on TPOSn/TNEGn or TDATn on the  
falling edge. TCLKn can be inverted.  
TCLK2  
TCLK3  
TCLK4  
TCLK5  
TCLK6  
TCLK7  
29  
81  
If TCLKn is high for 16 or more MCLKs, then an all-ones signal is  
transmitted on the corresponding line (TTIPn and TRINGn). When  
TCLKn starts clocking again, normal operation will resume on the  
corresponding line.  
74  
I
107  
100  
9
If TCLKn is low for 64 or more MCLKs, the corresponding  
transmitter channel will power down and the line will be put into  
high impedance. When TCLKn starts clocking again the  
corresponding transmitter will power up, resume normal operation,  
and the line will come out of high impedance.  
TCLK8  
2
Receive Positive-Data Output for Channel 1 to 8/Receive Data  
Output for Channel 1 to 8  
RPOS1/RDATA1  
RPOS2/RDATA2  
RPOS3/RDATA3  
RPOS4/RDATA4  
RPOS5/RDATA5  
RPOS6/RDATA6  
RPOS7/RDATA7  
RPOS8/RDATA8  
40  
33  
77  
RPOS[1:8]: In dual-rail mode, this output indicates a positive pulse  
on RTIPn/RRINGn. If a given receiver is in power-down mode, the  
corresponding RPOSn pin is high impedance.  
70  
O,  
tri-state  
111  
104  
5
RDATA[1:8]: In single-rail mode, NRZ data is output to this pin.  
Note: During an RLOS condition, the RPOSn/RDATAn output  
remainactive.  
142  
12 of 101  
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
NAME  
PIN  
TYPE  
FUNCTION  
Receive Negative-Data Output for Channel 1 to 8/Code  
Violation for Channel 1 to 8  
RNEG1/CV1  
RNEG2/CV2  
RNEG3/CV3  
RNEG4/CV4  
RNEG5/CV5  
RNEG6/CV6  
RNEG7/CV7  
RNEG8/CV8  
41  
34  
RNEG[1:8]: In dual-rail mode, this output indicates a negative  
pulse on RTIPn/RRINGn. If a given receiver is in power-down  
mode, the corresponding RNEGn pin is high impedance.  
76  
69  
O,  
tri-state  
CV[1:8]: In single-rail mode, bipolar violation, code violation, and  
excessive zeros are reported by driving CVn high for one clock  
cycle. If HDB3 or B8ZS encoding is not selected, this pin indicates  
only BPVs.  
112  
105  
4
Note: During an RLOS condition, the RNEGn/CVn output remains  
active.  
141  
RCLK1  
RCLK2  
RCLK3  
RCLK4  
RCLK5  
RCLK6  
RCLK7  
RCLK8  
39  
32  
78  
Receive Clock for Channel 1 to 8. The receive data  
RPOSn/RNEGn or RDATn is clocked out on the rising edge of  
tri-state RCLKn. RCLKn can be inverted. If a given receiver is in power-  
down mode, RCLKn is high impedance.  
71  
O,  
110  
103  
6
143  
Master Clock. This is an independent free-running clock that can  
be a multiple of 2.048MHz ±50ppm for E1 mode or 1.544MHz  
±50ppm for T1 mode. The clock selection is available by MC bits  
MPS0, MPS1, FREQS, and PLLE. A multiple of 2.048MHz can be  
internally adapted to 1.544MHz and a multiple of 1.544MHz can  
MCLK  
10  
I
be internally adapted to 2.048MHz. In hardware mode, internal  
adaptation is not available so the user must provide 2.048MHz  
±50ppm for E1 mode or 1.544MHz ±50ppm for T1 mode.  
Loss-of-Signal Output/T1-E1 Clock  
RLOS1: This output goes high when there are no transitions on  
the receiveline over a specified interval. The output goes low when  
there is sufficient ones density on the receiveline. The RLOS  
assertion and desertion criteria are described in the Functional  
Description section. The RLOS outputs can be configured to  
comply with T1.231, ITU-T G.775, or ETS 300 233. In hardware  
RLOS1/TECLK  
42  
O
mode, ETS 300 233 “RLOS Criteria” is not available.  
TECLK: When enabled (MC.TECLKE is set), this output becomes  
a T1- or E1-programmable clock output. For T1 or E1 frequency  
selection, see the CCR register. This option is not available in  
hardware mode.  
RLOS2  
RLOS3  
RLOS4  
RLOS5  
RLOS6  
RLOS7  
RLOS8  
35  
75  
Loss-of-Signal Output  
RLOS[2:8]: RLOS2: This output goes high when there are no  
transitions on the receiveline over a specified interval. The output  
68  
goes low when there is sufficient ones density on the receiveline.  
The RLOS assertion and desertion criteria are described in the  
Functional Description (Section 6). The RLOS outputs can be  
configured to comply with T1.231, ITU-T G.775, or ETS 300 233.  
In hardware mode, ETS 300 233 “RLOS Criteria” is not available.  
O
113  
106  
3
140  
13 of 101  
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
NAME  
PIN  
TYPE  
FUNCTION  
Clock A. This output becomes a programmable clock output when  
O,  
enabled (MC.CLKAE is set). For frequency options, see the CCR  
tri-state register. This option is not available in hardware mode. If this  
option is not used, the pin should be left unconnected.  
CLKA  
93  
I
N.C.  
94  
11  
(pulled No Connection. Pin should be left unconnected or grounded.  
to VSS)  
HARDWARE AND PORT OPERATION  
Mode Selection. This pin is used to select the control mode of the  
DS26303.  
I
Low Hardware Mode  
(pulled VDDIO/2 Serial Host Mode  
MODESEL  
to  
High Parallel Host Mode  
VDDIO/2)  
Note: When left unconnected, do not route signals with fast  
transitions near MODESEL. This practice minimizes capacitive  
coupling.  
Multiplexed/Nonmultiplexed Select Pin/  
Transmit Impedance/Receive Impedance Match  
MUX: In host mode with a parallel port, this pin is used to select  
multiplexed address and data operation or separate address and  
data. When mux is a high, multiplexed address and data is used.  
TIMPRM: In hardware mode, this pin selects the internal transmit  
termination impedance and receive impedance match for E1 mode  
and T1/J1 mode.  
MUX/  
TIMPRM  
43  
I
0 75Ω for E1 mode or 100Ω for T1 mode  
1 120Ω for E1 mode or 110Ω for J1 mode  
Note: If the part number ends with 120, the default is 120Ω when  
low and 75Ω when high for El mode only.  
Motorola Intel Select/Code  
MOTEL: When in parallel host mode, this pin selects Motorola  
MOTEL/  
CODE  
mode when low and Intel mode when high.  
88  
I
I
CODE: In hardware mode, AMI encoding/decoding for all the LIUs  
is selected when the pin is high. When the pin is low, B8ZS is  
selected for T1 mode and HDB3 for E1 mode for all the LIUs.  
Chip Select Bar/Jitter Attenuator Select  
CSB: This signal must be low during all accesses to the registers.  
JAS: In hardware mode, this pin is used as a jitter attenuator  
(In HW select.  
mode,  
CSB/  
JAS  
87  
Low Jitter attenuator is in the transmit path.  
pulled  
to  
VDDIO/2 Jitter attenuator is not used.  
High Jitter attenuator is in the receive path.  
VDDIO/2)  
Note: When left unconnected in hardware mode, do not route  
signals with fast transitions near JAS, in order to minimize  
capacitive coupling.  
14 of 101  
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
NAME  
PIN  
TYPE  
FUNCTION  
Serial Clock/Address Latch Enable/Address Strobe  
Bar/Template Selection 2  
SCLK: In the serial host mode, this pin is the serial clock. Data on  
SDI is clocked on the rising edge of SCLK. The data is clocked on  
SDO on the rising edge of SCLK if CLKE is high. If CLKE is low  
the data on SDO is clocked on the falling edge of SCLK.  
SCLK/ALE/  
ASB/TS2  
ALE: In parallel Intel multiplexed mode, the address lines are  
latched on the falling edge of ALE. Tie ALE pin high if using  
nonmultiplexed mode.  
86  
I
ASB: In parallel Motorola multiplexed mode, the address is  
sampled on the falling edge of ASB. Tie ASB pin high if using  
nonmultiplexed mode.  
TS2: In hardware mode, this pin signal is one of the template  
selection bits. See Table 5-11.  
Read Bar/Read Write Bar/Template Selection 1  
RDB: In Intel host mode, this pin must be low for read operation.  
RWB: In Motorola mode, this pin is low for write operation and  
high for read operation.  
RDB/RWB/TS1  
85  
I
TS1: In hardware mode, this pin signal is one of the template  
selection bits. See Table 5-11.  
Serial Data Input/Write Bar/Data Strobe Bar/Template  
Selection 0  
SDI: In the serial host mode, this pin is the serial input SDI. It is  
sampled on the rising edge of SCLK. Data is input LSB first.  
WRB: In Intel host mode, this pin is active low during write  
operation. The data is sampled on the rising edge of WRB.  
SDI/WRB/DSB/TS0  
84  
I
DSB: In the parallel Motorola mode, this pin is active low. During a  
write operation the data is sampled on the rising edge of DSB.  
During a read operation the data (D[7:0] or AD[7:0]) is driven on  
the falling edge of DSB. In the nonmultiplexed Motorola mode, the  
address bus (A[5:0]) is latched on the falling edge of DSB.  
TS0: In hardware mode, this pin signal is one of the template  
select bits. See Table 5-11.  
15 of 101  
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
NAME  
PIN  
TYPE  
FUNCTION  
Serial Data Out/Ready Output/Acknowledge Bar/Receive  
Impedance Off  
SDO: In serial host mode, the SDO data is output on this pin. If a  
serial write is in progress this pin is in high impedance. During a  
read SDO is high impedance when SDI is in command/  
address mode. If CLKE is low, SDO is output on the rising edge of  
SCLK, if CLKE is high, SDO is output on the falling edge. Data is  
output LSB first.  
SDO/RDY/ACKB/  
RIMPOFF  
83  
I/O  
RDY: A low on this pin reports to the host that the cycle is not  
complete and wait states must be inserted. A high means the  
cycle is complete.  
ACKB: In Motorola parallel mode, a low on this pin indicates that  
the read data is available for the host or that the written data cycle  
is complete.  
RIMPOFF: In hardware mode when this input pin is high, all the  
RTIP and RING pins have internal impedance switched off.  
Active-Low Interrupt Bar. This interrupt signal is driven low when  
an event is detected on any of the enabled interrupt sources in any  
of the register banks. When there are no active and enabled  
interrupt sources, the pin can be programmed to either drive high  
or not drive high (see Section 4.1.4). The reset default is to not  
drive high when there are no active enabled interrupt sources. All  
interrupt sources are disabled after a software reset and they must  
be programmed to be enabled.  
O,  
open  
drain  
82  
INTB  
Data Bus 7–0/Address/Data Bus 7–0/Loopback Select 8–1  
D7/AD7/LP8  
D6/AD6/LP7  
D5/AD5/LP6  
D4/AD4/LP5  
D3/AD3/LP4  
D2/AD2/LP3  
D1/AD1/LP2  
D0/AD0/LP1  
28  
27  
26  
25  
24  
23  
22  
21  
D[7:0]: In nonmultiplexed host mode, these pins are the  
bidirectional data bus.  
AD[7:0]: In multiplexed host mode, these pins are the bidirectional  
address/data bus. Note that AD7 and AD6 do not carry address  
information, and in serial host mode AD6–AD0 should be  
grounded.  
I/O (In  
HW  
mode,  
pulled  
to  
In serial host mode, this pin should be tied low.  
LP[8:1] In hardware mode, these pins set the loopback modes for  
the corresponding LIU as follows:  
VDDIO/2)  
Low Remote Loopback  
VDDIO/2 No Loopback  
High Analog Loopback  
Note: When left unconnected in hardware mode, do not route  
signals with fast transitions near LP1–LP8. This practice minimizes  
capacitive coupling.  
16 of 101  
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
NAME  
PIN  
TYPE  
FUNCTION  
Address Bus 4–0/G.772 Monitoring Control/Rx Impedance  
Mode Select  
A4/RIMPMSB  
12  
A[4:0]: These five pins are address pins in parallel host mode. In  
serial host mode and multiplexed host mode, these pins should be  
grounded.  
A3/GMC3  
A2/GMC2  
A1/GMC1  
A0/GMC0  
13  
14  
15  
16  
RIMPMSB: In hardware mode when this pin is low, the internal  
impedance mode is selected, so all RTIP and RING pins require  
no external resistance component. When high, external  
impedance mode is selected so all RTIP and RING pins require  
external resistance.  
I
GMC[3:0]: In hardware mode, these signal pins are used to select  
a transmit line (TTIPn/TRINGn) or receive line (RTIPn/RRINGn)  
for nonintrusive monitoring. Receiver 1 is used to monitor  
channels 2 to 8 See Table 5-9.  
Output Enable. If this pin is pulled low, all the transmitter outputs  
(TTIPn and TRINGn) are high impedance. Additionally, the user  
may use this same pin to turn off all the impedance matching for  
the receivers at the same time if register bit GMR.RHPMC is set.  
OE  
114  
115  
I
I
Clock Edge. When CLKE is high, SDO is valid on the falling edge  
of SCLK. When CLKE is low SDO is valid on the rising edge of  
SCLK. When CLKE is high, the RCLKn for all the channels is  
inverted. This aligns RPOSn/RNEGn on the falling edge of RCLKn  
and overrides the settings in register RCLKI. When low,  
RPOSn/RNEGn is aligned according to the settings in register  
RCLKI.  
CLKE  
JTAG  
JTAG Test Port Reset. This pin if low resets the JTAG port. If not  
used it can be left floating.  
JTRSTB  
JTMS  
JTCLK  
JTDO  
JTDI  
95  
96  
97  
98  
99  
I, pullup  
JTAG Test Mode Select. This pin is clocked on the rising edge of  
I, pullup JTCLK and is used to control the JTAG selection between scan  
and test machine control.  
JTAG Test Clock. The data JTDI and JTMS are clocked on rising  
edge of JTCLK and JTDO is clocked out on the falling edge of  
JTCLK.  
I
O,  
high-Z  
JTAG Test Data Out. This is the serial output of the JTAG port.  
The data is clocked out on the falling edge of JTCLK.  
Test Data Input. This pin input is the serial data of the JTAG test.  
I, pullup The data on JTDI is clocked on the rising edge of JTCLK. This pin  
can be left unconnected.  
17 of 101  
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
NAME  
PIN  
TYPE  
FUNCTION  
POWER SUPPLIES  
3.3V Digital Power Supply  
Digital Ground  
DVDD  
DVSS  
VDDIO  
VSSIO  
19  
20  
17, 92  
18, 91  
3.3V I/O Power Supply  
I/O Ground  
TVDD1  
TVDD2  
TVDD3  
TVDD4  
TVDD5  
TVDD6  
TVDD7  
TVDD8  
TVSS1  
TVSS2  
TVSS3  
TVSS4  
TVSS5  
TVSS6  
TVSS7  
TVSS8  
44  
53  
56  
65  
3.3V Power Supply for the Transmitter  
116  
125  
128  
137  
47  
50  
59  
62  
Analog Ground for Transmitters  
119  
122  
131  
134  
AVDD  
AVSS  
90  
89  
3.3V Analog Core Power Supply  
Analog Core Ground  
18 of 101  
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Figure 4-1. 144-Pin eLQFP Pin Assignment  
NAME  
TPOS8/TDATA8  
TCLK8  
PIN  
1
NAME  
TPOS1/TDATA1  
TNEG1  
PIN  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
NAME  
TPOS4/TDATA4  
TCLK4  
PIN  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
NAME  
TNEG5  
PIN  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
2
RCLK5  
RLOS7  
3
RCLK1  
RLOS3  
RPOS5/RDATA5  
RNEG5/CV5  
RLOS5  
RNEG7/CV7  
RPOS7/RDATA7  
RCLK7  
4
RPOS1/RDATA1  
RNEG1/CV1  
RLOS1/TECLK  
MUX/TIMPRM  
TVDD1  
RNEG3/CV3  
RPOS3/RDATA3  
RCLK3  
5
6
OE  
TNEG7  
7
TNEG3  
CLKE  
TPOS7/TDATA7  
TCLK7  
8
TPOS3/TDATA3  
TCLK3  
TVDD5  
9
TTIP1  
TTIP5  
MCLK  
10  
TRING1  
INTB  
TRING5  
SDO/RDY/ACKB/  
RIMPOFF  
MODESEL  
11  
TVSS1  
47  
83  
TVSS5  
119  
A4/RIMPMSB  
A3/GMC3  
A2/GMC2  
A1/GMC1  
A0/GMC0  
VDDIO  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
RTIP1  
RRING1  
TVSS2  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
SDI/WRB/DSB/TS0  
RDB/RWB/TS1  
SCLK/ALE/ASB/TS2  
CSB/JAS  
MOTEL/CODE  
AVSS  
84  
85  
RTIP5  
RRING5  
TVSS6  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
86  
TRING2  
TTIP2  
87  
TRING6  
TTIP6  
88  
TVDD2  
89  
TVDD6  
VSSIO  
RRING2  
RTIP2  
AVDD  
90  
RRING6  
RTIP6  
DVDD  
VSSIO  
91  
DVSS  
TVDD3  
VDDIO  
92  
TVDD7  
D0/AD0/LP1  
D1/AD1/LP2  
D2/AD2/LP3  
D3/AD3/LP4  
D4/AD4/LP5  
D5/AD5/LP6  
D6/AD6/LP7  
D7/AD7/LP8  
TCLK2  
TTIP3  
CLKA  
93  
TTIP7  
TRING3  
TVSS3  
N.C.  
94  
TRING7  
TVSS7  
JTRSTB  
95  
RTIP3  
JTMS  
96  
RTIP7  
RRING3  
TVSS4  
JTCLK  
97  
RRING7  
TVSS8  
JTDO  
98  
TRING4  
TTIP4  
JTDI  
99  
TRING8  
TTIP8  
TCLK6  
100  
101  
102  
103  
104  
105  
106  
107  
108  
TVDD4  
TPOS6/TDATA6  
TNEG6  
TVDD8  
TPOS2/TDATA2  
TNEG2  
RRING4  
RTIP4  
RRING8  
RTIP8  
RCLK6  
RCLK2  
RLOS4  
RPOS6/RDATA6  
RNEG6/CV6  
RLOS6  
RLOS8  
RPOS2/RDATA2  
RNEG2/CV2  
RLOS2  
RNEG4/CV4  
RPOS4/RDATA4  
RCLK4  
RNEG8/CV8  
RPOS8/RDATA8  
RCLK8  
TCLK5  
TCLK1  
TNEG4  
TPOS5/TDATA5  
TNEG8  
19 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
4.1 Hardware and Host Port Operation  
4.1.1 Hardware Mode  
The DS26303 supports a hardware configuration mode that allows the user to configure the device through setting  
levels on the device’s pins. This mode allows the configuration of the DS26303 without the use of a  
microprocessor. Not all of the device features are supported in the hardware mode. To see all available options for  
this hardware mode, see the pin descriptions in Table 4-1.  
Table 4-2 provides two basic examples of configurations available in hardware mode by setting pins.  
Table 4-2. Hardware Mode Configuration Examples  
PIN NAME,  
HARDWARE  
MODE  
STANDARD MODE CONFIGURATION  
NOTES  
T1  
E1  
TTIP[8:1]  
Output  
Output  
Input  
Input  
Input  
Output  
Output  
Input  
Input  
TRING[8:1]  
RTIP[8:1]  
RRING[8:1]  
TPOS[8:1]  
TNEG[8:1]  
TCLK[8:1]  
RPOS[8:1]  
RNEG[8:1]  
RCLK[8:1]  
MCLK  
Input  
Input  
Input: 2.048MHz  
Output  
Output  
Output: 2.048MHz  
Input: 2.048MHz  
Input  
Input: 1.544MHz  
Output  
Output  
Output: 1.544MHz  
Input: 1.544MHz  
Output  
Used as recovery clock.  
Meets T1.231 and ITU-T G.775.  
Low for hardware mode.  
RLOS[8:1]  
MODESEL  
Output  
0
0
0
TIMPRM  
0
100Ω for T1 mode/75Ω E1 mode.  
(Part number ends in -75)  
CODE  
JAS  
TS[2:0]  
1
N.C.: Pulled to VDDIO/2  
111  
1
N.C.: Pulled to VDDIO/2  
000  
AMI encoding/decoding.  
Jitter attenuator is not used.  
Set template T1 (655ft)-100Ω/E1-75Ω.  
Receive impedance should default to  
on.  
RIMPOFF  
0
0
N.C.  
N.C.  
Not used in hardware mode.  
INTB  
LP[8:1]  
N.C.: Pulled to VDDIO/2  
N.C.: Pulled to VDDIO/2  
Internally pulled to VDDIO/2.  
RIMPMS  
GMC[3:0]  
0
0000  
0
0000  
Internal impedance mode selected.  
No monitoring enabled.  
All TTIPn and TRINGn outputs are  
enabled.  
RPOSn/RNEGn are clocked on rising  
edge.  
OE  
1
0
1
0
CLKE  
JTRSTB  
JTMS  
JTCLK  
JTDO  
JTDI  
RSTB  
CLKA  
PIN 94  
Input, Pulled Up  
Input  
Input, Pulled Up  
Input  
JTAG.  
Reset.  
Input  
Input  
Output, High-Z  
Input, Pulled Up  
Input, Pullup  
N.C.  
Output, High-Z  
Input, Pulled Up  
Input, Pullup  
N.C.  
Not available in hardware node.  
N.C.  
N.C.  
20 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
4.1.2 Serial Port Operation  
Setting MODESEL = VDDIO/2 enables the serial bus interface on the DS26303. Port read/write timing is unrelated  
to the system transmit and receive timing, allowing asynchronous reads or writes by the host. See Section 10.3 for  
the AC timing of the serial port. All serial port accesses are LSB first. See Figure 4-2 to Figure 4-4.  
This port is compatible with the SPI interface defined for Motorola processors. An example of this is Motorola’s  
MMC2107.  
Reading or writing to the internal registers requires writing one address/command byte prior to transferring register  
data. The first bit written (LSB) of the address/command byte specifies whether the access is a read (1) or a write  
(0). The next 5 bits identify the register address (A1 to A5; A6 and A7 are ignored).  
All data transfers are initiated by driving the CSB input low. When CLKE is low, SDO data is output on the rising  
edge of SCLK and when CLKE is high, data is output on the falling edge of SCLK. Data is held until the next falling  
or rising edge. All data transfers are terminated if CSB input transitions high. Port control logic is disabled and SDO  
is tri-stated when CSB is high. SDI is always sampled on the rising edge of SCLK.  
Figure 4-2. Serial Port Operation for Write Access  
SCLK  
CSB  
SDI  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
DO  
D6  
A1  
A2  
A3  
A4  
A5  
A6  
X
D1  
D2  
D3  
D4  
D5  
D7  
0
(lsb)  
(msb)  
(lsb)  
(msb)  
WRITE ACCESS ENABLED  
SDO  
Figure 4-3. Serial Port Operation for Read Access with CLKE = 0  
SCLK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
CSB  
SDI  
A1  
A2  
A3  
A4  
A5  
X
A6  
0
(msb)  
(lsb)  
SDO  
D0  
(lsb)  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
(msb)  
Read  
Access  
Enabled  
21 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Figure 4-4. Serial Port Operation for Read Access with CLKE = 1  
SCLK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
CSB  
SDI  
X
A1  
A2  
A3  
A4  
A5  
0
A6  
(lsb)  
(msb)  
SDO  
D0  
D1  
D3  
D4  
D5  
D7  
D2  
D6  
(lsb)  
(msb)  
4.1.3 Parallel Port Operation  
When using the parallel interface on the DS26303 the user has the option for either multiplexed bus operation or  
non-multiplexed bus operation. The ALE pin is pulled high in non-multiplexed bus operation. The DS26303 can  
operate with either Intel or Motorola bus-timing configurations selected by MOTEL pin. This pin being high selects  
the Intel mode. The parallel port is only operational if the MODESEL pin is pulled high. The following table lists all  
the pins and their functions in the parallel port mode. See the timing diagrams in Section 10 for more details.  
Table 4-3. Parallel Port Mode Selection and Pin Functions  
MODESEL, MOTEL,  
MUX  
PARALLEL HOST  
INTERFACE  
ADDRESS, DATA, AND CONTROL  
100  
110  
101  
111  
Non-multiplexed Motorola  
Non-multiplexed Intel  
Multiplexed Motorola  
Multiplexed Intel  
CSB, ACKB, DSB, RWB, ASB, A[4:0], D[7:0], INTB  
CSB, RDY, WRB, RDB, ALE, A[4:0], D[7:0], INTB  
CSB, ACKB, DSB, RWB, ASB, AD[7:0], INTB  
CSB, RDY, WRB, RDB, ALE, AD[7:0], INTB  
4.1.4 Interrupt Handling  
INTB must be pulled high externally with a 10kΩ resistor for wired-OR operation. If a wired-OR operation is not  
required, the INTB pin can be configured to be high when not active by setting register GISC.INTM.  
There are three events that can potentially trigger an interrupt: a loss of signal (LOS), driver fault monitor (DFM), or  
an alarm indication signal (AIS). The interrupt functions as follows:  
When a status bit (AIS:AISn, DFMS:DFMSn, or LOSS:LOSn) changes on an interruptible event, the  
corresponding interrupt status bit (AISIS:AISIn, DFMIS:DFMISn, or LOSIS:LOSISn) is set. The INTB pin will go  
low if the event is enabled through the corresponding interrupt-enable bit (AISIE:AISIEn, DFMIE:DFMIEn, or  
LOSIE:LOSIEn).  
When an interrupt occurs, the host processor must read the three interrupt status registers (AISIS, DFMIS, and  
LOSIS) to determine the source of the interrupt. If the interrupt status registers are set for clear-on-read  
(GISC.CWE reset), the read also clears the interrupt status register, which clears the output INTB pin. If the  
interrupt status registers are set for clear-on-write (GISC.CWE set), a 1 must be written to the interrupt status  
bit (AISIS:AISIn, DFMIS:DFMISn, or LOSIS:LOSISn) in order to clear it, which clears the output INTB pin.  
Subsequently, the host processor can read the corresponding status register (AIS, DFMS, or LOSS) to check  
the real-time status of the event.  
Note: The BERT can also generate an interrupt. The BERT interrupt handling is described in Section 6.9.2.  
22 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Figure 4-5. Interrupt Handling Flow Diagram  
Interrupt Allowed  
No  
Interrupt Conditon  
Exist?  
Yes  
Read Interrupt Status  
Register  
Read Corresponding Status  
Register (Optional)  
Service the Interrupt  
23 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
5 REGISTERS  
Five address bits are used to control the settings of the registers. AD[4:0] are used in both the parallel  
nonmultiplexed mode and in multiplexed mode. In serial mode, the address is input serially on SDI. The register  
space contains control for channels 1 to 8 from address 00 hex to 1F hex. The ADDP (1F) register is used as a  
pointer to access the different banks of registers. This register must be set to AA hex for access of the secondary  
bank of registers, 01 hex for access to the individual LIU bank of registers, and 02 hex for access of the BERT  
bank of registers. The primary bank of registers is accessed upon reset of this register to 00 hex.  
Table 5-1. Primary Register Set  
ADDRESS  
PARALLEL  
INTERFACE  
A[7:0] (HEX)  
xxx00000  
xxx00001  
xxx00010  
xxx00011  
xxx00100  
xxx00101  
xxx00110  
xxx00111  
xxx01000  
xxx01001  
xxx01010  
xxx01011  
xxx01100  
xxx01101  
xxx01110  
xxx01111  
xxx10000  
xxx10001  
xxx10010  
xxx10011  
xxx10100  
xxx10101  
xxx10110–  
xxx11110  
xxx11111  
SERIAL  
INTERFACE  
A[7:1] (HEX)  
xx00000  
xx00001  
xx00010  
xx00011  
xx00100  
xx00101  
xx00110  
xx00111  
xx01000  
xx01001  
xx01010  
xx01011  
xx01100  
xx01101  
xx01110  
xx01111  
xx10000  
xx10001  
xx10010  
xx10011  
xx10100  
xx10101  
xx10110–  
xx11110  
xx11111  
REGISTER  
NAME  
RW  
HEX  
Identification  
ID  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
R
Analog Loopback Configuration  
Remote Loopback Configuration  
Transmit All-Ones Enable  
Loss-of-Signal Status  
Driver Fault Monitor Status  
Loss-of-Signal Interrupt Enable  
Driver Fault Monitor Interrupt Enable  
Loss-of-Signal Interrupt Status  
Driver Fault Monitor Interrupt Status  
Software Reset  
ALBC  
RLBC  
TAOE  
LOSS  
DFMS  
LOSIE  
DFMIE  
LOSIS  
DFMIS  
SWR  
GMC  
DLBC  
LASCS  
ATAOS  
GC  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
R
W
G.772 Monitor Control  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
Digital Loopback Configuration  
LOS/AIS Criteria Selection  
Automatic Transmit All-Ones Select  
Global Configuration  
Template Select Transceiver  
Template Select  
Output-Enable Bar  
Alarm Indication Signal Status  
AIS Interrupt Enable  
TST  
TS  
OEB  
AIS  
AISIE  
AISIS  
RW  
R
AIS Interrupt Status  
Reserved  
16–1E  
1F  
Address Pointer for Bank Selection  
ADDP  
RW  
24 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Table 5-2. Secondary Register Set  
ADDRESS  
PARALLEL  
INTERFACE  
A[7:0] (HEX)  
xxx00000  
xxx00001  
xxx00010  
xxx00011  
xxx00100  
xxx00101  
xxx00110  
xxx00111–  
xxx11110  
xxx11111  
SERIAL  
INTERFACE  
A[7:1] (HEX)  
xx00000  
xx00001  
xx00010  
xx00011  
xx00100  
xx00101  
xx00110  
xx00111–  
xx11110  
xx11111  
REGISTER  
NAME  
RW  
HEX  
Single-Rail Mode Select  
Line Code Selection  
SRMS  
LCS  
RPDE  
TPDE  
EZDE  
CVDEB  
00  
01  
02  
03  
04  
05  
06  
RW  
RW  
RW  
RW  
RW  
RW  
Reserved  
Receive Power-Down Enable  
Transmit Power-Down Enable  
Excessive Zero Detect Enable  
Code Violation Detect Enable Bar  
Reserved  
07–1E  
1F  
Address Pointer for Bank Selection  
ADDP  
RW  
Table 5-3. Individual LIU Register Set  
ADDRESS  
PARALLEL  
INTERFACE  
A[7:0] (HEX)  
xxx00000  
xxx00001  
xxx00010  
xxx00011  
xxx00100  
xxx00101  
xxx00110  
xxx00111  
xxx01000–  
xxx01011  
xxx01100–  
xxx01111  
xxx10000  
Xxx10001  
xxx10010  
xxx10011  
xxx10100  
xxx10101  
xxx10110  
xxx11110  
xxx11111  
SERIAL  
INTERFACE  
A[7:1] (HEX)  
xx00000  
xx00001  
xx00010  
xx00011  
xx00100  
xx00101  
xx00110  
xx00111  
xx01000–  
xx01011  
xx01100–  
xx01111  
xx10000  
xxx10001  
xx10010  
xx10011  
xx10100  
xx10101  
xx10110  
xx11110  
xx11111  
REGISTER  
NAME  
RW  
HEX  
Individual Jitter Attenuator Enable  
Individual Jitter Attenuator Position Select  
Individual Jitter Attenuator FIFO Depth Select  
Individual Jitter Attenuator FIFO Limit Trip  
Individual Short Circuit Protection Disabled  
Individual AIS Select  
IJAE  
IJAPS  
IJAFDS  
IJAFLT  
ISCPD  
IAISEL  
MC  
00  
01  
02  
03  
04  
05  
06  
07  
RW  
RW  
RW  
R
RW  
RW  
RW  
RW  
Master Clock Select  
Global Management Register  
GMR  
Reserved  
Reserved  
08–0B  
0C–0F  
RW  
R
Bit Error Rate Tester Control  
BPV Error Insertion  
Line Violation Detect Status  
Receive Clock Invert  
BTCR  
BEIR  
LVDS  
RCLKI  
TCLKI  
CCR  
RDULR  
GISC  
ADDP  
10  
11  
12  
13  
14  
15  
16  
1E  
1F  
RW  
RW  
R
RW  
RW  
RW  
RW  
RW  
RW  
Transmit Clock Invert  
Clock Control  
RCLK Disable Upon LOS  
Global Interrupt Status Control  
Address Pointer for Bank Selection  
25 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Table 5-4. BERT Register Set  
ADDRESS  
PARALLEL  
INTERFACE  
A7–A0 (HEX)  
SERIAL  
INTERFACE  
A7–A1 (HEX)  
REGISTER  
NAME  
RW  
HEX  
BERT Control  
BCR  
00  
xxx00000  
xx00000  
RW  
Reserved  
01  
02  
03  
04  
05  
06  
07  
08  
xxx00001  
xxx00010  
xxx00011  
xxx00100  
xxx00101  
xxx00110  
xxx00111  
xxx01000  
xxx01001–  
xxx01010  
xxx01100  
xxx01101  
xxx01110  
xxx01111  
xxx10000  
xxx10001–  
xxx10011  
xxx10100  
xxx10101  
xxx10110  
xxx10111  
xxx11000  
xxx11001  
xxx11010  
xxx11011  
xxx11100–  
xxx11110  
xxx11111  
xx00001  
xx00010  
xx00011  
xx00100  
xx00101  
xx00110  
xx00111  
xx01000  
xx01001–  
xx01010—  
xx01100  
xx01101  
xx01110  
xx01111  
xx10000  
xx10001–  
xx10011  
xx10100  
xx10101  
xx10110  
xx10111  
xx11000  
xx11001  
xx11010  
xx11011  
xx11100–  
xx11110  
xx11111  
BERT Pattern Configuration 1  
BERT Pattern Configuration 2  
BERT Seed/Pattern 1  
BERT Seed/Pattern 2  
BERT Seed/Pattern 3  
BERT Seed/Pattern 4  
Transmit Error-Insertion Control  
BPCR1  
BPCR2  
BSPR1  
BSPR2  
BSPR3  
BSPR4  
TEICR  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Reserved  
09–0B  
BERT Status  
Reserved  
BERT Status Register Latched  
Reserved  
BERT Status Register Interrupt Enable  
BSR  
BSRL  
0C  
0D  
0E  
0F  
10  
R
RW  
BSRIE  
RW  
Reserved  
11–13  
Receive Bit-Error Count Register 1  
Receive Bit-Error Count Register 2  
Receive Bit-Error Count Register 3  
Reserved  
Receive Bit Count Register 1  
Receive Bit Count Register 2  
Receive Bit Count Register 3  
Receive Bit Count Register 4  
RBECR1  
RBECR2  
RBECR3  
RBCR1  
RBCR2  
RBCR3  
RBCR4  
14  
15  
16  
17  
18  
19  
1A  
1B  
R
R
R
R
R
R
R
Reserved  
1C–1E  
1F  
Address Pointer for Bank Selection  
ADDP  
RW  
26 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Table 5-5. Primary Register Set Bit Map  
REGISTER  
ID  
ADDRESS  
00  
TYPE  
R
BIT 7  
ID7  
BIT 6  
ID6  
BIT 5  
ID5  
BIT 4  
ID4  
BIT 3  
ID3  
BIT 2  
ID2  
BIT 1  
ID1  
BIT 0  
ID0  
ALBC  
RLBC  
TAOE  
LOSS  
DFMS  
LOSIE  
DFMIE  
LOSIS  
DFMIS  
SWR  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
ALBC8  
RLBC8  
TAOE8  
LOSS8  
DFMS8  
LOSIE8  
DFMIE8  
LOSIS8  
DFMIS8  
SWR8  
BERTDIR  
DLBC8  
LASCS8  
ATAOS8  
RIMPMS  
ALBC7  
RLBC7  
TAOE7  
LOSS7  
DFMS7  
LOSIE7  
DFMIE7  
LOSIS7  
DFMIS7  
SWR7  
BMCKS  
DLBC7  
LASCS7  
ATAOS7  
AISEL  
ALBC6  
RLBC6  
TAOE6  
LOSS6  
DFMS6  
LOSIE6  
DFMIE6  
LOSIS6  
DFMIS6  
SWR6  
BTCKS  
DLBC6  
LASCS6  
ATAOS6  
SCPD  
ALBC5  
RLBC5  
TAOE5  
LOSS5  
DFMS5  
LOSIE5  
DFMIE5  
LOSIS5  
DFMIS5  
SWR5  
DLBC5  
LASCS5  
ATAOS5  
CODE  
ALBC4  
RLBC4  
TAOE4  
LOSS4  
DFMS4  
LOSIE4  
DFMIE4  
LOSIS4  
DFMIS4  
SWR4  
GMC3  
DLBC4  
LASCS4  
ATAOS4  
JADS  
ALBC3  
RLBC3  
TAOE3  
LOSS3  
DFMS3  
LOSIE3  
DFMIE3  
LOSIS3  
DFMIS3  
SWR3  
GMC2  
DLBC3  
LASCS3  
ATAOS3  
ALBC2  
RLBC2  
TAOE2  
LOSS2  
DFMS2  
LOSIE2  
DFMIE2  
LOSIS2  
DFMIS2  
SWR2  
GMC1  
DLBC2  
LASCS2  
ATAOS2  
JAPS  
ALBC1  
RLBC1  
TAOE1  
LOSS1  
DFMS1  
LOSIE1  
DFMIE1  
LOSIS1  
DFMIS1  
SWR1  
GMC0  
DLBC1  
LASCS1  
ATAOS1  
JAE  
R
W
GMC  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
DLBC  
LASCS  
ATAOS  
GC  
TST  
TS  
TIMPRM  
OEB4  
TST2  
TS2  
OEB3  
AIS3  
TST1  
TS1  
OEB2  
AIS2  
TST0  
TS0  
OEB1  
AIS1  
11  
12  
13  
RIMPOFF TIMPOFF  
OEB8  
AIS8  
OEB6  
AIS6  
OEB5  
AIS5  
OEB  
AIS  
OEB7  
AIS7  
AIS4  
AISIE  
AISIS  
Reserved  
ADDP  
14  
15  
16-1E  
1F  
RW  
R
AISIE8  
AISI8  
AISIE7  
AISI7  
AISIE6  
AISI6  
AISIE5  
AISI5  
AISIE4  
AISI4  
AISIE3  
AISI3  
AISIE2  
AISI2  
AISIE1  
AISI1  
RW  
ADDP7  
ADDP6  
ADDP5  
ADDP4  
ADDP3  
ADDP2  
ADDP1  
ADDP0  
Note: Underlined bits are read-only.  
Table 5-6. Secondary Register Set Bit Map  
REGISTER  
SRMS  
LCS  
Reserved  
RPDE  
TPDE  
EZDE  
CVDEB  
ADDRESS  
TYPE  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
BIT 7  
SRMS8  
LCS8  
BIT 6  
SRMS7  
LCS7  
BIT 5  
SRMS6  
LCS6  
BIT 4  
SRMS5  
LCS5  
BIT 3  
SRMS4  
LSC4  
BIT 2  
SRMS3  
LCS3  
BIT 1  
SRMS2  
LSC2  
BIT 0  
SRMS1  
LSC1  
00  
01  
02  
03  
04  
05  
06  
RPDE8  
TPDE8  
EZDE8  
CVDEB8  
RPDE7  
TDPE7  
EZDE7  
CVDEB7  
RPDE6  
TPDE6  
EZDE6  
CVDEB6  
RPDE5  
TPDE5  
EZDE5  
CVDEB5  
RPDE4  
TPDE4  
EZDE4  
CVDEB4  
RPDE3  
TPDE3  
EZDE3  
CVDEB3  
RPDE2  
TPDE2  
EZDE2  
CVDEB2  
RPDE1  
TPDE1  
EZDE1  
CVDEB1  
Reserved  
ADDP  
07-1E  
1F  
RW  
ADDP7  
ADDP6  
ADDP5  
ADDP4  
ADDP3  
ADDP2  
ADDP1  
ADDP0  
27 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Table 5-7. Individual LIU Register Set Bit Map  
REGISTER  
IJAE  
IJAPS  
IJAFDS  
IJAFLT  
ISCPD  
IAISEL  
MC  
ADDRESS  
00  
TYPE  
RW  
RW  
RW  
R
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
BIT 7  
IJAE8  
IJAPS8  
IJAFDS8  
IJAFLT8  
ISCPD8  
IAISEL8  
BIT 6  
IJAE7  
IJAPS7  
IJAFDS7  
IJAFLT7  
ISCPD7  
IAISEL7  
PCLKI  
BIT 5  
IJAE6  
IJAPS6  
IJAFDS6  
IJAFLT6  
ISCPD6  
IAISEL6  
TECLKE  
BIT 4  
IJAE5  
IJAPS5  
IJAFDS5  
IJAFLT5  
ISCPD5  
IAISEL5  
CLKAE  
BIT 3  
IJAE4  
IJAPS4  
IJAFDS4  
IJAFLT4  
ISCPD4  
IAISEL4  
MPS1  
BIT 2  
IJAE3  
IJAPS3  
IJAFDS3  
IJAFLT3  
ISCPD3  
IAISEL3  
MPS0  
JABWS1  
BIT 1  
IJAE2  
IJAPS2  
IJAFDS2  
IJAFLT2  
ISCPD2  
IAISEL2  
FREQS  
JABWS0  
BIT 0  
IJAE1  
IJAPS1  
IJAFDS1  
IJAFLT1  
ISCPD1  
IAISEL1  
PLLE  
RHPMC  
01  
02  
03  
04  
05  
06  
07  
08  
GMR  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
BTCR  
BEIR  
LVDS  
RCLKI  
TCLKI  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
1E  
1F  
R
R
R
RW  
RW  
R
RW  
RW  
RW  
RW  
RW  
RW  
BTS2  
BEIR8  
LVDS8  
RCLKI8  
TCLKI8  
PCLKS2  
RDULR8  
BTS1  
BEIR7  
LVDS7  
RCLKI7  
TCLKI7  
PCLKS1  
RDULR7  
BTS0  
BEIR6  
LVDS6  
RCLKI6  
TCLKI6  
PCLKS0  
RDULR6  
BERTE  
BEIR1  
LVDS1  
RCLKI1  
TCLKI1  
CLKA0  
RDULR1  
CWE  
BEIR5  
LVDS5  
RCLKI5  
TCLKI5  
TECLKS  
RDULR5  
BEIR4  
LVDS4  
RCLKI4  
TCLKI4  
CLKA3  
RDULR4  
BEIR3  
LVDS3  
RCLKI3  
TCLKI3  
CLKA2  
RDULR3  
BEIR2  
LVDS2  
RCLKI2  
TCLKI2  
CLKA1  
RDULR2  
INTM  
ADDP1  
CCR  
RDULR  
GISC  
ADDP  
ADDP7  
ADDP6  
ADDP5  
ADDP4  
ADDP3  
ADDP2  
ADDP0  
Note: Underlined bits are read-only.  
Table 5-8. BERT Register Bit Map  
REGISTER  
BCR  
ADDRESS  
00  
TYPE  
RW  
BIT 7  
PMUM  
BIT 6  
LPMU  
BIT 5  
RNPL  
BIT 4  
RPIC  
BIT 3  
MPR  
BIT 2  
APRD  
BIT 1  
TNPL  
BIT 0  
TPIC  
Reserved  
BPCR1  
BPCR2  
BSPR1  
BSPR2  
BSPR3  
BSPR4  
TEICR  
01  
02  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
QRSS  
PTS  
PLF4  
PTF4  
BSP4  
BSP12  
BSP20  
BSP28  
TEIR1  
PLF3  
PTF3  
BSP3  
BSP11  
BSP19  
BSP27  
TEIR0  
PLF2  
PTF2  
BSP2  
BSP10  
BSP18  
BSP26  
BEI  
PLF1  
PTF1  
BSP1  
BSP9  
BSP17  
BSP25  
TSEI  
PLF0  
PTF0  
BSP0  
BSP8  
BSP16  
BSP24  
MEIMS  
03  
04  
BSP7  
BSP15  
BSP23  
BSP31  
BSP6  
BSP14  
BSP22  
BSP30  
BSP5  
BSP13  
BSP21  
BSP29  
TEIR2  
05  
06  
07  
08  
Reserved  
BSR  
09–0B  
0C  
R
PMS  
BEC  
OOS  
Reserved  
BSRL  
0D  
0E  
R
PMSL  
BEL  
BECL  
OOSL  
Reserved  
BSRIE  
0F  
10  
RW  
PMSIE  
BEIE  
BECIE  
OOSIE  
Reserved  
RBECR1  
RBECR2  
RBECR3  
Reserved  
RBCR1  
RBCR2  
RBCR3  
RBCR4  
Reserved  
ADDP  
11–13  
14  
R
BEC7  
BEC15  
BEC23  
BEC6  
BEC14  
BEC22  
BEC5  
BEC13  
BEC21  
BEC4  
BEC12  
BEC20  
BEC3  
BEC11  
BEC19  
BEC2  
BEC10  
BEC18  
BEC1  
BEC9  
BEC17  
BEC0  
BEC8  
BEC16  
15  
R
16  
R
17  
18  
R
BC7  
BC15  
BC23  
BC31  
BC6  
BC14  
BC22  
BC30  
BC5  
BC13  
BC21  
BC29  
BC4  
BC12  
BC20  
BC28  
BC3  
BC2  
BC1  
BC0  
19  
R
BC11  
BC19  
BC27  
BC10  
BC18  
BC26  
BC9  
BC8  
1A  
R
BC17  
BC25  
BC16  
BC24  
1B  
R
1C–1E  
1F  
RW  
ADDP7  
ADDP6  
ADDP5  
ADDP4  
ADDP3  
ADDP2  
ADDP1  
ADDP0  
Note: Underlined bits are read-only.  
28 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
5.1 Register Description  
This section details the register description of each bit. Whenever the variable “n” in italics is used in any of the  
register descriptions, it represents 1, 2, 3, 4, 5, 6, 7, and 8.  
5.1.1 Primary Registers  
Register Name:  
ID  
Register Description:  
Register Address:  
Identification Register  
00h  
Bit #  
7
6
5
4
3
2
1
0
Name  
ID7  
ID6  
ID5  
ID4  
ID3  
ID2  
ID1  
ID0  
Bit 7: Device CODE ID Bit 7 (ID7). This bit is zero for the 75Ω impedance part number and one for the 120Ω  
impedance part number.  
Bits 6 to 3: Device CODE ID Bits 6 to 3 (ID6 to ID3). These bits tell the user the number of ports the device  
contains.  
Bits 2 to 0: Device CODE ID Bits 2 to 0 (ID2 to ID0). These bits tell the user the revision of the part. Contact the  
factory for details.  
Register Name:  
ALBC  
Register Description:  
Register Address:  
Analog Loopback Configuration Register  
01h  
Bit #  
Name  
Default  
7
ALBC8  
0
6
ALBC7  
0
5
ALBC6  
0
4
ALBC5  
0
3
ALBC4  
0
2
ALBC3  
0
1
ALBC2  
0
0
ALBC1  
0
Bits 7 to 0: Analog Loopback Configuration Bits Channel n (ALBCn). When this bit is set, LIUn is placed in  
analog loopback. TTIPn and TRINGn are looped back to RTIPn and RRINGn. The data at RTIPn and RRINGn is  
ignored. The LOS detector is still in operation. The jitter attenuator is in use if enabled for the transmitter or  
receiver.  
Register Name:  
RLBC  
Register Description:  
Register Address:  
Remote Loopback Configuration Register  
02h  
Bit #  
Name  
Default  
7
RLBC8  
0
6
RLBC7  
0
5
RLBC6  
0
4
RLBC5  
0
3
RLBC4  
0
2
RLBC3  
0
1
RLBC2  
0
0
RLBC1  
0
Bits 7 to 0: Remote Loopback Configuration Bits Channel n (RLBCn). When this bit is set, remote loopback is  
enabled on LIUn. The analog-received signal goes through the receiver and is looped back to the transmitter. The  
data at TPOSn and TNEGn is ignored. The jitter attenuator is in use if enabled. Note: LIUn is placed in dual  
loopback if DLBC:DLBCn is also set.  
29 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Register Name:  
TAOE  
Register Description:  
Register Address:  
Transmit All-Ones Enable Register  
03h  
Bit #  
Name  
Default  
7
TAOE8  
0
6
TAOE7  
0
5
TAOE6  
0
4
TAOE5  
0
3
TAOE4  
0
2
TAOE3  
0
1
TAOE2  
0
0
TAOE1  
0
Bits 7 to 0: Transmit All-Ones Enable Channel n (TAOEn). When this bit is set, a continuous stream of all ones  
is sent on channel n (TTIPn and TRINGn). MCLK is used as a reference clock for the transmit all-ones signal. The  
data arriving at TPOSn and TNEGn is ignored.  
Register Name:  
LOSS  
Register Description:  
Register Address:  
Loss-of-Signal Status Register  
04h  
Bit #  
Name  
Default  
7
LOSS8  
0
6
LOSS7  
0
5
LOSS6  
0
4
LOSS5  
0
3
LOSS4  
0
2
LOSS3  
0
1
LOSS2  
0
0
LOSS1  
0
Bits 7 to 0: Loss-of-Signal Status Channel n (LOSSn). When this bit is set, an LOS condition has been detected  
on LIUn. The criteria and conditions of LOS are described in Section 6.4.3: Loss of Signal.  
Register Name:  
DFMS  
Register Description:  
Register Address:  
Driver Fault Monitor Status Register  
05h  
Bit #  
Name  
Default  
7
DFMS8  
0
6
DFMS7  
0
5
DFMS6  
0
4
DFMS5  
0
3
DFMS4  
0
2
DFMS3  
0
1
DFMS2  
0
0
DFMS1  
0
Bits 7 to 0: Driver Fault Monitor Status Channel n (DFMSn). When this bit is set, it indicates that there is a short  
or open circuit at the transmit driver for LIUn.  
Register Name:  
LOSIE  
Register Description:  
Register Address:  
Loss-of-Signal Interrupt Enable Register  
06h  
Bit #  
Name  
Default  
7
LOSIE8  
0
6
LOSIE7  
0
5
LOSIE6  
0
4
LOSIE5  
0
3
LOSIE4  
0
2
LOSIE3  
0
1
LOSIE2  
0
0
LOSIE1  
0
Bits 7 to 0: Loss-of-Signal Interrupt Enable Channel n (LOSIEn). When this bit is set, a change in the LOS  
status for LIUn can generate an interrupt.  
30 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Register Name:  
DFMIE  
Register Description:  
Register Address:  
Driver Fault Monitor Interrupt Enable Register  
07h  
Bit #  
Name  
Default  
7
DFMIE8  
0
6
DFMIE7  
0
5
DFMIE6  
0
4
DFMIE5  
0
3
DFMIE4  
0
2
DFMIE3  
0
1
DFMIE2  
0
0
DFMIE1  
0
Bits 7 to 0: Driver Fault Monitor Interrupt Enable Channel n (DFMIEn). When this bit is set, a change in DFM  
status can generate an interrupt in monitor n.  
Register Name:  
LOSIS  
Register Description:  
Register Address:  
Loss-of-Signal Interrupt Status Register  
08h  
Bit #  
Name  
Default  
7
LOSIS8  
0
6
LOSIS7  
0
5
LOSIS6  
0
4
LOSIS5  
0
3
LOSIS4  
0
2
LOSIS3  
0
1
LOSIS2  
0
0
LOSIS1  
0
Bits 7 to 0: Loss-of-Signal Interrupt Status Channel n (LOSISn). When this bit is set, it indicates an LOS status  
has transitioned from a 0 to 1 or 1 to 0 and was detected for LIUn. The interrupt for LIUn is enabled in LOSIS. This  
bit when latched is cleared by a read operation to the register if GISC.CWE is reset. This bit, when latched, is  
cleared by a write operation to the bit if GISC.CWE is set.  
Register Name:  
DFMIS  
Register Description:  
Register Address:  
Driver Fault Monitor Interrupt Status Register  
09h  
Bit #  
Name  
Default  
7
DFMIS8  
0
6
DFMIS7  
0
5
DFMIS6  
0
4
DFMIS5  
0
3
DFMIS4  
0
2
DFMIS3  
0
1
DFMIS2  
0
0
DFMIS1  
0
Bits 7 to 0: Driver Fault Status Register Channel n (DFMISn). When this bit is set, it indicates a DFM status has  
transitioned from 0 to 1 or 1 to 0 and was detected for LIUn. The interrupt for LIUn is enabled by in DFMIE. This bit  
when latched is cleared by a read operation to the register if GISC.CWE is reset. This bit, when latched, is cleared  
by a write operation to the bit if GISC.CWE is set.  
Register Name:  
SWR  
Register Description:  
Register Address:  
Software Reset Register  
0Ah  
Bit #  
Name  
Default  
7
SWR8  
0
6
SWR7  
0
5
SWR6  
0
4
SWR5  
0
3
SWR4  
0
2
SWR3  
0
1
SWR2  
0
0
SWR1  
0
Bits 7 to 0: Software Reset (SWR). Whenever any write is performed to this register, at least a 1μs reset will be  
generated that resets the DS26303. All the registers will be restored to their default values. A read operation will  
always read back all zeros.  
31 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Register Name:  
GMC  
Register Description:  
Register Address:  
G.772 Monitoring Control Register  
0Bh  
Bit #  
Name  
Default  
7
BERTDIR  
0
6
BMCKS  
0
5
BTCKS  
0
4
0
3
GMC3  
0
2
GMC2  
0
1
GMC1  
0
0
GMC0  
0
Bit 7: BERT Direction Select (BERTDIR). When set, the internal BERT will output its data on RPOS/RNEG rather  
than TTIP/TRING. The BERT will use the recovered clock unless BMCKS or BTCKS is set.  
Bit 6: BERT MCLK Select (BMCKS). When set, while BERTDIR is set and BTCKS is not set, the internal BERT  
will use MCLK rather than the recovered clock.  
Bit 5: BERT Direction Select (BTCKS). When set, while BERTDIR is set, the internal BERT will use TCLK rather  
than the recovered clock or MCLK.  
Bits 3 to 0: G.772 Monitoring Control (GMC). These bits are used to select a transmit line (TTIPn/TRINGn) or  
receive line (RTIPn/RRINGn) for nonintrusive monitoring. Receiver 1 is used to monitor channels 2 to 8. See Table  
5-9.  
Table 5-9. G.772 Monitoring Control  
GMC3  
GMC2  
GMC1  
GMC0  
SELECTION  
No Monitoring  
Receive Line 2  
Receive Line 3  
Receive Line 4  
Receive Line 5  
Receive Line 6  
Receive Line 7  
Receive Line 8  
No Monitoring  
Transmit Line 2  
Transmit Line 3  
Transmit Line 4  
Transmit Line 5  
Transmit Line 6  
Transmit Line 7  
Transmit Line 8  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
32 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Register Name:  
DLBC  
Register Description:  
Register Address:  
Digital Loopback Configuration Register  
0Ch  
Bit #  
Name  
Default  
7
DLBC8  
0
6
DLBC7  
0
5
DLBC6  
0
4
DLBC5  
0
3
DLBC4  
0
2
DLBC3  
0
1
DLBC2  
0
0
DLBC1  
0
Bits 7 to 0: Digital Loopback Configuration Channel n (DLBCn). When this bit is set, the LIUn is placed in  
digital loopback. The data at TPOSn/TNEGn is encoded and looped back to the decoder and output on  
RPOSn/RNEGn. The jitter attenuator can optionally be included in the transmit or receive paths. Note: LIUn is  
placed in dual loopback if RLBC:RLBCn is also set.  
Register Name:  
LASCS  
Register Description:  
Register Address:  
LOS/AIS Criteria Selection Register  
0Dh  
Bit #  
Name  
Default  
7
LASCS8  
0
6
LASCS7  
0
5
LASCS6  
0
4
LASCS5  
0
3
LASCS4  
0
2
LASCS3  
0
1
LASCS2  
0
0
LASCS1  
0
Bits 7 to 0: LOS/AIS Criteria Selection Channel n (LASCSn). This bit is used for LOS/AIS selection criteria for  
LIUn. In E1 mode if set, these bits use ETS 300 233 mode selections. If reset, these bits use G.775 criteria. In  
T1/J1 mode, T1.231 criteria is selected.  
33 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Register Name:  
ATAOS  
Register Description:  
Register Address:  
Automatic Transmit All-Ones Select Register  
0Eh  
Bit #  
Name  
Default  
7
ATAOS8  
0
6
ATAOS7  
0
5
ATAOS6  
0
4
ATAOS5  
0
3
ATAOS4  
0
2
ATAOS3  
0
1
ATAOS2  
0
0
ATAOS1  
0
Bit 7 to 0: Automatic Transmit All-Ones Select Channel n (ATAOSn). When this bit is set an all-ones signal is  
sent if a loss of signal is detected for LIUn. The all-ones signal uses MCLK as the reference clock.  
Register Name:  
GC  
Register Description:  
Register Address:  
Global Configuration Register  
0Fh  
Bit #  
Name  
Default  
7
RIMPMS  
0
6
AISEL  
0
5
SCPD  
0
4
CODE  
0
3
JADS  
0
2
0
1
JAPS  
0
0
JAE  
0
Bit 7: Receive Impedance Mode Select (RIMPMS). When this bit is set, the internal impedance mode is selected,  
so all receive lines (RTIPn and RINGn) require no external resistance component. When this mode is selected, the  
die-attach pad on the bottom of the package should be connected to ground for thermal dissipation. When reset,  
external impedance mode is selected so all receive lines (RTIPn and RINGn) require external resistance. Note that  
when in external impedance mode, if TS.RIMPOFF is reset, the resistance is still adjusted internally for the T1  
(100Ω), J1 (110Ω), and E1(75Ω) modes of operation by the template selected so that only one resistor value is  
required externally. In E1 (120Ω), external impedance mode has no need for any internal adjustment.  
Bit 6: AIS Enable During Loss (AISEL). When this bit is set, for all channels, an AIS is sent to the system side  
upon detecting an LOS on the corresponding channel. The individual settings in the IAISEL register are ignored  
when this bit is set. When reset, the IAISEL register has control.  
Bit 5: Short-Circuit-Protection Disable (SCPD). If this bit is set, the short-circuit protection is disabled for all the  
transmitters. The individual settings in ISCPD are ignored when this bit is set. When reset, the ISCPD register has  
control.  
Bit 4: Code (CODE). If this bit is set, AMI encoding/decoding is selected. The individual settings in register LCS  
are ignored when this bit is set. If reset, the LCS register has control.  
Bit 3: Jitter Attenuator Depth Select (JADS). If this bit is set the jitter attenuator FIFO depth is 128 bits. The  
individual settings in register IJAFDS are ignored if this bit is set. If reset, the IJAFDS register has control.  
Bit 1: Jitter Attenuator Position Select (JAPS). When the JAPS bit is set high, the jitter attenuator is in the  
receive path, and when it is set low, it is in the transmit path. The individual settings in register IJAPS are ignored if  
this bit is set. If reset, the IJAPS register has control.  
Bit 0: Jitter Attenuator Enable (JAE). When this bit is set the jitter attenuator is enabled. The individual settings in  
register IJAE are ignored if this bit is set. If reset, the IJAE register has control.  
34 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Register Name:  
TST  
Register Description:  
Register Address:  
Template Select Transceiver Register  
10h  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
0
2
TST2  
0
1
TST1  
0
0
TST0  
0
Bits 2 to 0: TST Template Select Transceiver [2:0] (TST [2:0]). TST[2:0] is used to select the transceiver that the  
transmit template select register (hex 11) applies to. See Table 5-10.  
Table 5-10. TST Template Select Transceiver Register  
TST[2:0]  
000  
CHANNEL  
TST[2:0]  
100  
CHANNEL  
1
2
3
4
5
6
7
8
001  
010  
011  
101  
110  
111  
Register Name:  
TS  
Register Description:  
Register Address:  
Template Select Register  
11h  
Bit #  
Name  
Default  
7
6
5
4
3
TIMPRM  
0
2
TS2  
0
1
TS1  
0
0
TS0  
0
RIMPOFF TIMPOFF  
0
0
Bit 7: Receive Impedance Match Off (RIMPOFF). If this bit is set, all the receive impedance match is turned off.  
Bit 6: Transmit Impedance Termination Off (TIMPOFF). If this bit is set, all the internal transmit terminating  
impedance is turned off.  
Bit 3: Transmit Impedance Receive Match (TIMPRM). This bit selects the internal transmit termination  
impedance and receive impedance match for E1 mode and T1/J1 mode. Note: If the part number ends with –120,  
then the default is 120Ω and 75Ω when set for El mode only.  
DEVICE  
BIT SETTING  
E1 MODE (Ω)  
T1 MODE (Ω)  
DS26303L-120  
DS26303L-120  
DS26303L-75  
DS26303L-75  
0
1
0
1
120  
75  
75  
120  
100  
110  
100  
110  
Bits 2 to 0: Template Selection [2:0] (TS[2:0]). Bits TS[2:0] are used to select E1 or T1/J1 mode, the template,  
and the settings for various cable lengths. The impedance termination for the transmitter and impedance match for  
the receiver are specified by bit TIMPRM. See Table 5-11 for bit selection of TS[2:0].  
Table 5-11. Template Selection  
CABLE LOSS  
IMPEDANCE (Ω)1  
TS[2:0]  
LINE LENGTH  
OPERATION MODE  
(dB)  
0.6  
1.2  
1.8  
2.4  
3.0  
011  
100  
101  
110  
111  
0–133ft. ABAM  
133–266ft. ABAM  
266–399ft. ABAM  
399–533ft. ABAM  
533–655ft. ABAM  
100/110  
100/110  
100/110  
100/110  
100/110  
75/120  
T1/J1  
T1  
T1  
T1  
T1  
000  
G.703 coaxial and twisted pair cable  
Reserved  
E1  
001 and 010  
1
See TIMPRM bit in SWM or TIMPRM pin in HWM for transmit impedance and receive match selection.  
35 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Register Name:  
OEB  
Register Description:  
Register Address:  
Output-Enable Bar Register  
12h  
Bit #  
Name  
Default  
7
OEB8  
0
6
OEB7  
0
5
OEB6  
0
4
OEB5  
0
3
OEB4  
0
2
OEB3  
0
1
OEB2  
0
0
OEB1  
0
Bits 7 to 0: Output-Enable Bar Channel n (OEBn). When this bit is set the transmitter output for LIUn is placed in  
high impedance. Note that when the OE pin is low, it overrides the setting of this register.  
Register Name:  
AIS  
Register Description:  
Register Address:  
Alarm Indication Signal Status Register  
13h  
Bit #  
Name  
Default  
7
AIS8  
0
6
AIS7  
0
5
AIS6  
0
4
AIS5  
0
3
AIS4  
0
2
AIS3  
0
1
AIS2  
0
0
AIS1  
0
Bits 7 to 0: Alarm Indication Signal Channel n (AISn). This bit is set when AIS is detected for LIUn. The criteria  
for AIS selection is detailed in Section 6.4.4: AIS. The selection of the AIS criteria is done by settings in LASCS.  
36 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Register Name:  
AISIE  
Register Description:  
Register Address:  
AIS Interrupt Enable Register  
14h  
Bit #  
Name  
Default  
7
AISIE8  
0
6
AISIE7  
0
5
AISIE6  
0
4
AISIE5  
0
3
AISIE4  
0
2
AISIE3  
0
1
AISIE2  
0
0
AISIE1  
0
Bits 7 to 0: AIS Interrupt Mask Channel n (AISIEn). When this bit is set, interrupts can be generated for LIUn if  
AIS status transitions.  
Register Name:  
AISIS  
Register Description:  
Register Address:  
AIS Interrupt Status Register  
15h  
Bit #  
Name  
Default  
7
AISIS8  
0
6
AISIS7  
0
5
AISIS6  
0
4
AISIS5  
0
3
AISIS4  
0
2
AISIS3  
0
1
AISIS2  
0
0
AISIS1  
0
Bits 7 to 0: AIS Interrupt Channel n (AISISn). This bit is set when AIS transitions from a 0 to 1 or 1 to 0. The  
interupt for LIUn is enabled in AISIE. This bit when latched is cleared by a read operation to the register if  
GISC.CWE is reset. This bit when latched is cleared by a write operation to the bit if GISC.CWE is set.  
Register Name:  
ADDP  
Register Description:  
Register Address:  
Address Pointer for Bank Selection Register  
1Fh  
Bit #  
Name  
Default  
7
ADDP7  
0
6
ADDP6  
0
5
ADDP5  
0
4
ADDP4  
0
3
ADDP3  
0
2
ADDP2  
0
1
ADDP1  
0
0
ADDP0  
0
Bits 7 to 0: Address Pointer (ADDP). This pointer is used to switch between pointing to the primary registers, the  
secondary registers, individual registers, and BERT registers. See Table 5-12 for bank selection.  
Table 5-12. Address Pointer for Bank Selection  
ADDP[7:0] (HEX)  
BANK NAME  
Primary Bank  
Secondary Bank  
Individual LIU Bank  
BERT Bank  
00  
AA  
01  
02  
37 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
5.1.2 Secondary Registers  
Register Name:  
SRMS  
Register Description:  
Register Address:  
Single-Rail Mode Select Register  
00h  
Bit #  
Name  
Default  
7
SRMS8  
0
6
SRMS7  
0
5
SRMS6  
0
4
SRMS5  
0
3
SRMS4  
0
2
SRMS3  
0
1
SRMS2  
0
0
SRMS1  
0
Bits 7 to 0: Single-Rail Mode Select Channel n (SRMSn). When this bit is set, single-rail mode is selected for the  
system transmit and receive n. If this bit is reset, dual-rail mode is selected.  
Register Name:  
LCS  
Register Description:  
Register Address:  
Line Code Selection Register  
01h  
Bit #  
Name  
Default  
7
LCS8  
0
6
LCS7  
0
5
LCS6  
0
4
LCS5  
0
3
LCS4  
0
2
LCS3  
0
1
LCS2  
0
0
LCS1  
0
Bits 7 to 0: Line Code Select Channel n (LCSn). When this bit is set, AMI encoding/decoding is selected for  
LIUn. If reset B8ZS or HDB3 encoding/decoding is selected for LIUn. Note that if the GC.CODE bit is set, this  
register is ignored.  
Register Name:  
RPDE  
Register Description:  
Register Address:  
Receive Power-Down Enable Register  
03h  
Bit #  
Name  
Default  
7
RPDE8  
0
6
RPDE7  
0
5
RPDE6  
0
4
RPDE5  
0
3
RPDE4  
0
2
RPDE3  
0
1
RPDE2  
0
0
RPDE1  
0
Bits 7 to 0: Receive Power-Down Enable Channel n (RPDEn). When this bit is set, the receiver for LIUn is  
powered down.  
Register Name:  
TPDE  
Register Description:  
Register Address:  
Transmit Power-Down Enable Register  
04h  
Bit #  
Name  
Default  
7
TPDE8  
0
6
TPDE7  
0
5
TPDE6  
0
4
TPDE5  
0
3
TPDE4  
0
2
TPDE3  
0
1
TPDE2  
0
0
TPDE1  
0
Bits 7 to 0: Transmit Power-Down Enable Channel n (TPDEn). When this bit is set, the transmitter for LIUn is  
powered down.  
38 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Register Name:  
EZDE  
Register Description:  
Register Address:  
Excessive Zero Detect Enable Register  
05h  
Bit #  
Name  
Default  
7
EZDE8  
0
6
EZDE7  
0
5
EZDE6  
0
4
EZDE5  
0
3
EZDE4  
0
2
EZDE3  
0
1
EZDE2  
0
0
EZDE1  
0
Bits 7 to 0: Excessive Zero Detect Enable Channel n (EZDEn). When this bit is reset, excessive zero detection  
is disabled for LIUn. When this bit is set, excessive zero detect is enabled. Excessive zero detection is only  
relevant in single-rail mode with HDB3 or B8ZS decoding.  
Register Name:  
CVDEB  
Register Description:  
Register Address:  
Code Violation Detect Enable Bar Register  
06h  
Bit #  
Name  
Default  
7
CVDEB8  
0
6
CVDEB7  
0
5
CVDEB6  
0
4
CVDEB5  
0
3
CVDEB4  
0
2
CVDEB3  
0
1
CVDEB2  
0
0
CVDEB1  
0
Bits 7 to 0: Code Violation Detect Enable Bar Channel n (CVDEBn). If this bit is set, code violation detection is  
disabled for the LIUn. If this bit is reset, code violation detection is enabled. Code violation detection is only  
relevant with HDB3 decoding. Note that if the GC.CODE bit is set, this register is ignored.  
39 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
5.1.3 Individual LIU Registers  
Register Name:  
Register Description:  
Register Address:  
IJAE  
Individual Jitter Attenuator Enable Register  
00h  
Bit #  
Name  
Default  
7
IJAE8  
0
6
IJAE7  
0
5
IJAE6  
0
4
IJAE5  
0
3
IJAE4  
0
2
IJAE3  
0
1
IJAE2  
0
0
IJAE1  
0
Bits 7 to 0: Individual Jitter Attenuator Enable Channel n (IJAEn). When this bit is set, the LIUn jitter attenuator  
is enabled. Note that if the GC.JAE bit is set, this register is ignored.  
Register Name:  
IJAPS  
Register Description:  
Register Address:  
Individual Jitter Attenuator Position Select Register  
01h  
Bit #  
Name  
Default  
7
IJAPS8  
0
6
IJAPS7  
0
5
IJAPS6  
0
4
IJAPS5  
0
3
IJAPS4  
0
2
IJAPS3  
0
1
IJAPS2  
0
0
IJAPS1  
0
Bits 7 to 0: Individual Jitter Attenuator Position Select Channel n (IJAPSn). When this bit is set , the jitter  
attenuator is in the receive path of LIUn, and when this bit is reset the jitter attenuator is in the transmit path of  
LIUn. Note that if the GC.JAE bit is set, this register is ignored.  
Register Name:  
IJAFDS  
Register Description:  
Register Address:  
Individual Jitter Attenuator FIFO Depth Select Register  
02h  
Bit #  
Name  
Default  
7
IJAFDS8  
0
6
IJAFDS7  
0
5
IJAFDS6  
0
4
IJAFDS5  
0
3
IJAFDS4  
0
2
IJAFDS3  
0
1
IJAFDS2  
0
0
IJAFDS1  
0
Bits 7 to 0: Individual Jitter Attenuator FIFO Depth Select n (IJAFDSn). When this bit is set for LIUn, the jitter  
attenuator FIFO depth is 128 bits. When reset, the jitter attenuator FIFO depth is 32 bits. Note that if the  
GC.IJAFDS bit is set, this register is ignored.  
Register Name:  
IJAFLT  
Register Description:  
Register Address:  
Individual Jitter Attenuator FIFO Limit Trip Register  
03h  
Bit #  
Name  
Default  
7
IJAFLT8  
0
6
IJAFLT7  
0
5
IJAFLT6  
0
4
IJAFLT5  
0
3
IJAFLT4  
0
2
IJAFLT3  
0
1
IJAFLT2  
0
0
IJAFLT1  
0
Bits 7 to 0: Individual Jitter Attenuator FIFO Limit Trip n (IJAFLTn). Set when the jitter attenuator FIFO  
reaches to within 4 bits of its useful limit for the transmitter of LIUn. This bit is cleared when read if GISC.CWE is  
reset. This bit is cleared by a write operation to the bit if GISC.CWE is set.  
40 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Register Name:  
ISCPD  
Register Description:  
Register Address:  
Individual Short-Circuit Protection Disabled Register  
04h  
Bit #  
Name  
Default  
7
ISCPD8  
0
6
ISCPD7  
0
5
ISCPD6  
0
4
ISCPD5  
0
3
ISCPD4  
0
2
ISCPD3  
0
1
ISCPD2  
0
0
ISCPD1  
0
Bits 7 to 0: Individual Short-Circuit Protection Disabled n (ISCPDn). When this bit is set, the short-circuit  
protection is disabled for the individual transmitter of LIUn. Note that if the GC.SCPD bit is set, this register is  
ignored.  
Register Name:  
IAISEL  
Register Description:  
Register Address:  
Individual AIS Select Register  
05h  
Bit #  
Name  
Default  
7
IAISEL8  
0
6
IAISEL7  
0
5
IAISEL6  
0
4
IAISEL5  
0
3
IAISEL4  
0
2
IAISEL3  
0
1
IAISEL2  
0
0
IAISEL1  
0
Bits 7 to 0: Individual AIS Enable During Loss n (IAISELn). When this bit is set, individual AIS enable during  
loss is enabled for the individual receiver of LIUn and AIS is sent to the system side upon detection of an LOS.  
Note that if the GC.AISEL bit is set, this register is ignored.  
41 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Register Name:  
MC  
Register Description:  
Register Address:  
Master Clock Select Register  
06h  
Bit #  
Name  
Default  
7
0
6
PCLKI  
0
5
TECLKE  
0
4
CLKAE  
0
3
MPS1  
0
2
MPS0  
0
1
FREQS  
0
0
PLLE  
0
Bit 6: PLL Clock Input (PCLKI). This bit selects the input into to the PLL.  
0 = MCLK is used.  
1 = RCLK[1:8] is used based on the selection in register CCR.  
Bit 5: T1/E1 Clock Enable (TECLKE). When this bit is set the TECLK output is enabled. If not set TECLK is  
disabled and the TECLK output is an RLOS output. TECLK requires PLLE to be set for correct functionality.  
Bit 4: Clock A Enable (CLKAE). When this bit is set the CLKA output is enabled. If not set, CLKA is disabled to tri-  
state. CLKA requires PLLE to be set for correct functionality.  
Bits 3 and 2: Master Period Select [1:0] (MPS[1:0]). These bits select the external MCLK frequency for the  
DS26303. See Table 5-13 for details.  
Bit 1: Frequency Select (FREQS). In conjunction with MPS[1:0], this bit selects the external MCLK frequency for  
the DS26303. If this bit is set, the external master clock can be 1.544MHz or a multiple thereof. If reset, the  
external master clock can be 2.048MHz or a multiple thereof. See Table 5-13 for details.  
Bit 0: Phase Lock Loop Enable (PLLE). When this bit is set the phase lock loop is enabled. If reset, MCLK is the  
applied input clock.  
Table 5-13. MCLK Selections  
MCLK  
(MHz/±50ppm)  
PLLE  
MPS1, MPS0  
FREQS  
MODE  
0
0
1
1
1
1
1
1
1
1
xx  
xx  
00  
01  
10  
11  
00  
01  
10  
11  
1.544  
2.048  
1.544  
3.088  
6.176  
12.352  
2.048  
4.096  
8.192  
x
x
1
1
1
1
0
0
0
0
T1  
E1  
T1/J1 or E1  
T1/J1 or E1  
T1/J1 or E1  
T1/J1 or E1  
T1/J1 or E1  
T1/J1 or E1  
T1/J1 or E1  
T1/J1 or E1  
16.384  
42 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Register Name:  
GMR  
Register Description:  
Register Address:  
Global Management Register  
07h  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
0
2
JABWS1  
0
1
JABWS0  
0
0
RHPMC  
0
Bits 2 to 1: Jitter Attenuator Bandwidth Select [1:0] (JABWS[1:0]). These bits JABWS[1:0] select the jitter  
attenuator bandwidth. See Table 5-14 for details.  
Table 5-14. Jitter Attenuator Bandwidth Selections  
JABWS[1:0]  
BANDWIDTH CORNER  
00  
01  
10  
11  
0.625Hz  
1.25Hz  
2.5Hz  
5.0Hz  
Bit 0: Receive Hitless-Protection Mode Control (RHPMC). This bit, when set while the OE pin is low, will force  
all the receivers to turn off any internal impedance matching on RTIPn and RRINGn. This is used for hitless-  
protection switching when the user would like a system requiring no external relays in the system.  
Register Name:  
BTCR  
Register Description:  
Register Address:  
Bit Error-Rate Tester Control Register  
10h  
Bit #  
Name  
Default  
7
BTS2  
0
6
BTS1  
0
5
BTS0  
0
4
0
3
0
2
0
1
0
0
BERTE  
0
Bits 7 to 5: Bit Error-Rate Transceiver Select [2:0] (BTS[2:0]). These bits select the LIU that the BERT applies  
to. This is only applicable if the BERTE bit is set.  
Bit 0: Bit Error-Rate Tester Enable (BERTE). When this bit is set, the BERT is enabled. The BERT is only active  
for one transceiver at a time selected by BTS[2:0].  
Register Name:  
BEIR  
Register Description:  
Register Address:  
BPV Error Insertion Register  
11h  
Bit #  
Name  
Default  
7
BEIR8  
0
6
BEIR7  
0
5
BEIR6  
0
4
BEIR5  
0
3
BEIR4  
0
2
BEIR3  
0
1
BEIR2  
0
0
BEIR1  
0
Bits 7 to 0: BPV Error Insertion Register n (BEIRn). A 0-to-1 transition on this bit causes a single bipolar  
violation (BPV) to be inserted into the transmit data stream channel n. This bit must be cleared and set again for a  
subsequent error to be inserted.  
43 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Register Name:  
LVDS  
Register Description:  
Register Address:  
Line Violation Detect Status Register  
12h  
Bit #  
Name  
Default  
7
LVDS8  
0
6
LVDS7  
0
5
LVDS6  
0
4
LVDS5  
0
3
LVDS4  
0
2
LVDS3  
0
1
LVDS2  
0
0
LVDS1  
0
Bits 7 to 0: Line Violation Detect Status n (LVDSn). A bipolar violation, code violation, or excessive zeros cause  
the associated LVDSn bit to latch. This bit is cleared on a read operationif GISC.CWE is reset. This bit is cleared  
by a write operation to the bit if GISC.CWE is set. The LVDS register captures the first violation within a three-  
clock-period window. If a second violation occurs after the first violation within the three-clock-period window, then  
the second violation will not be latched even if a read to the LVDS register was performed. Excessive zeros need to  
be enabled by the EZDE register for detection by this register. Code violations are only relative when in HDB3  
mode and can be disabled for detection by this register by setting the CVDEB register. In dual-rail mode only  
bipolar violations are relevant for this register.  
Register Name:  
RCLKI  
Register Description:  
Register Address:  
Receive Clock Invert Register  
13h  
Bit #  
Name  
Default  
7
RCLKI8  
0
6
RCLKI7  
0
5
RCLKI6  
0
4
RCLKI5  
0
3
RCLKI4  
0
2
RCLKI3  
0
1
RCLKI2  
0
0
RCLKI1  
0
Bits 7 to 0: Receive Clock Invert n (RCLKIn). When this bit is set the RCLKn is inverted. This aligns  
RPOSn/RNEGn on the falling edge of RCLKn. When reset, RPOSn/RNEGn is aligned on the rising edge of  
RCLKn. Note that if the CLKE pin is high, the RPOSn/RNEGn is set on the falling edge of RCLKn regardless of the  
settings in this register.  
Register Name:  
TCLKI  
Register Description:  
Register Address:  
Transmit Clock Invert Register  
14h  
Bit #  
Name  
Default  
7
TCLKI8  
0
6
TCLKI7  
0
5
TCLKI6  
0
4
TCLKI5  
0
3
TCLKI4  
0
2
TCLKI3  
0
1
TCLKI2  
0
0
TCLKI1  
0
Bits 7 to 0: Transmit Clock Invert n (TCLKIn). When this bit is set the TCLKn is inverted. TPOSn/TNEGn should  
be aligned on the rising edge of TCLKn. When reset, TPOSn/TNEGn should be aligned on the falling edge of  
TCLKn.  
44 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Register Name:  
CCR  
Register Description:  
Register Address:  
Clock Control Register  
15h  
Bit #  
Name  
Default  
7
PCLKS2  
0
6
PCLKS1  
0
5
PCLKS0  
0
4
TECLKS  
0
3
CLKA3  
0
2
CLKA2  
0
1
CLKA1  
0
0
CLKA0  
0
Bits 7 to 5: PLL Clock Select (PCLKS[2:0]). These bits determine the RCLK that is to be used as the input to the  
PLL. If an LOS is detected for the channel that RCLK is recovered from, the PLL switches to MCLK until the LOS is  
cleared. When the LOS is cleared, the selected RCLK is used again. See Table 5-15 for RCLK selection.  
Table 5-15. PLL Clock Select  
PLL CLOCK  
PCLKS[2:0]  
SELECTED  
MC.PCLKI = 1  
RCLK1  
000  
001  
010  
011  
100  
101  
110  
111  
RCLK2  
RCLK3  
RCLK4  
RCLK5  
RCLK6  
RCLK7  
RCLK8  
Bit 4: T1/E1 Clock Select (TECLKS). When this bit is set the T1/E1 clock output is 2.048MHz. When this bit is  
reset the T1/E1 clock rate is 1.544MHz.  
Bits 3 to 0: Clock A Select (CLKA[3:0]). These bits select the output frequency for CLKA pin. See Table 5-16 for  
available frequencies.  
Table 5-16. Clock A Select  
CLKA[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
MCLK (Hz)  
2.048M  
4.096M  
8.192M  
16.384M  
1.544M  
3.088M  
6.176M  
12.352M  
1.536M  
3.072M  
6.144M  
12.288M  
32k  
64k  
128k  
256k  
45 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Register Name:  
RDULR  
Register Description:  
Register Address:  
RCLK Disable Upon LOS Register  
16h  
Bit #  
Name  
Default  
7
RDULR8  
0
6
RDULR7  
0
5
RDULR6  
0
4
3
2
RDULR3  
0
1
RDULR2  
0
0
RDULR1  
0
RDULR5 RDULR4  
0
0
Bits 7 to 0: RCLK Disable Upon LOS Register n (RDULRn). When this bit is set the RCLKn is disabled upon a  
loss of signal and set as a low output. When reset, RCLKn switches to MCLK within 10ms of a loss of signal.  
Register Name:  
GISC  
Register Description:  
Register Address:  
Global Interrupt Status Control Register  
1Eh  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
0
2
0
1
INTM  
0
0
CWE  
0
Bit 1: INT Pin Mode (INTM). This bit determines the inactive mode of the INTB pin. The INTB pin always drives low  
when active.  
0 = Pin is high impedance when not active.  
1 = Pin drives high when not active.  
Bit 0: Clear-On-Write Enable (CWE). When this bit is set, clear-on-write is enabled for all the latched interrupt  
status registers. The host processor must write a 1 to the latched interrupt status register bit position before the  
particular bit is cleared.  
46 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
5.1.4 BERT Registers  
Register Name:  
BCR  
Register Description:  
Register Address:  
BERT Control Register  
00h  
Bit #  
Name  
Default  
7
PMUM  
0
6
LPMU  
0
5
RNPL  
0
4
RPIC  
0
3
MPR  
0
2
APRD  
0
1
TNPL  
0
0
TPIC  
0
Bit 7: Performance-Monitoring Update Mode (PMUM). When 0, a performance-monitoring update is initiated by  
the LPMU register bit. When 1, a performance-monitoring update is initiated by the receive performance-monitoring  
update signal (RPMU). Note: If RPMU or LPMU is 1, changing the state of this bit may cause a performance-  
monitoring update to occur.  
Bit 6: Local Performance-Monitoring Update (LPMU). This bit causes a performance-monitoring update to be  
initiated if the local performance-monitoring update is enabled (PMUM = 0). A 0-to-1 transition causes the  
performance-monitoring registers to be updated with the latest data, and the counters reset (0 or 1). For a second  
performance-monitoring update to be initiated, this bit must be set to 0, and back to 1. If LPMU goes low before the  
PMS bit goes high, an update might not be performed. This bit has no affect when PMUM = 1.  
Bit 5: Receive New Pattern Load (RNPL). A 0-to-1 transition of this bit causes the programmed test pattern  
(QRSS, PTS, PLF[4:0], PTF[4:0], and BSP[31:0]) to be loaded in to the receive pattern generator. This bit must be  
changed to 0 and back to 1 for another pattern to be loaded. Loading a new pattern forces the receive pattern  
generator out of the sync state, which causes a resynchronization to be initiated. Note: QRSS, PTS, PLF[4:0],  
PTF[4:0], and BSP[31:0] must not change from the time this bit transitions from 0 to 1 until four RXCK clock cycles  
after this bit transitions from 0 to 1.  
Bit 4: Receive Pattern Inversion Control (RPIC). When 0, the receive incoming data stream is not altered. When  
1, the receive incoming data stream is inverted.  
Bit 3: Manual Pattern Resynchronization (MPR). A 0-to-1 transition of this bit causes the receive pattern  
generator to resynchronize to the incoming pattern. This bit must be changed to 0 and back to 1 for another  
resynchronization to be initiated. Note: A manual resynchronization forces the receive pattern generator out of the  
sync state.  
Bit 2: Automatic Pattern Resynchronization Disable (APRD). When 0, the receive pattern generator  
automatically resynchronizes to the incoming pattern if six or more times during the current 64-bit window the  
incoming data stream bit and the receive pattern generator output bit did not match. When 1, the receive pattern  
generator does not automatically resynchronize to the incoming pattern. Note: Automatic synchronization is  
prevented by not allowing the receive pattern generator to automatically exit the sync state.  
Bit 1: Transmit New Pattern Load (TNPL). A 0-to-1 transition of this bit causes the programmed test pattern  
(QRSS, PTS, PLF[4:0], PTF[4:0], and BSP[31:0]) to be loaded in to the transmit pattern generator. This bit must be  
changed to zero and back to one for another pattern to be loaded. Note: QRSS, PTS, PLF[4:0], PTF[4:0], and  
BSP[31:0] must not change from the time this bit transitions from 0 to 1 until four TXCK clock cycles after this bit  
transitions from 0 to 1.  
Bit 0: Transmit Pattern Inversion Control (TPIC). When 0, the transmit outgoing data stream is not altered.  
When 1, the transmit outgoing data stream is inverted.  
47 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Register Name:  
BPCR1  
Register Description:  
Register Address:  
BERT Pattern Configuration Register 1  
02h  
Bit #  
Name  
Default  
7
0
6
QRSS  
0
5
PTS  
0
4
PLF4  
0
3
PLF3  
0
2
PLF2  
0
1
PLF1  
0
0
PLF0  
0
Bit 6: QRSS Enable (QRSS). When 0, the pattern generator configuration is controlled by PTS, PLF[4:0], and  
PTF[4:0], and BSP[31:0]. When 1, the pattern generator configuration is forced to a PRBS pattern with a  
generating polynomial of x20 + x17 + 1. The output of the pattern generator is forced to one if the next 14 output bits  
are all 0.  
Bit 5: Pattern Type Select (PTS). When 0, the pattern is a PRBS pattern. When 1, the pattern is a repetitive  
pattern.  
Bits 4 to 0: Pattern Length Feedback (PLF[4:0]). These bits control the “length” feedback of the pattern  
generator. The length feedback is from bit n of the pattern generator (n = PLF[4:0] +1). For a PRBS signal, the  
feedback is an XOR of bit n and bit y. For a repetitive pattern the feedback is bit n.  
Register Name:  
BPCR2  
Register Description:  
Register Address:  
BERT Pattern Configuration Register 2  
03h  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
PTF4  
0
3
PTF3  
0
2
PTF2  
0
1
PTF1  
0
0
PTF0  
0
Bits 4 to 0: Pattern Tap Feedback (PTF[4:0]). These bits control the PRBS “tap” feedback of the pattern  
generator. The tap feedback is from bit y of the pattern generator (y = PTF[4:0] +1). These bits are ignored when  
programmed for a repetitive pattern. For a PRBS signal, the feedback is an XOR of bit n and bit y.  
48 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Register Name:  
BSPR1  
Register Description:  
Register Address:  
BERT Seed/Pattern Register 1  
04h  
Bit #  
Name  
Default  
7
BSP7  
0
6
BSP6  
0
5
BSP5  
0
4
BSP4  
0
3
BSP3  
0
2
BSP2  
0
1
BSP1  
0
0
BSP0  
0
Register Name:  
BSPR2  
Register Description:  
Register Address:  
BERT Seed/Pattern Register 2  
05h  
Bit #  
Name  
Default  
7
BSP15  
0
6
BSP14  
0
5
BSP13  
0
4
BSP12  
0
3
BSP11  
0
2
BSP10  
0
1
BSP9  
0
0
BSP8  
0
Register Name:  
BSPR3  
Register Description:  
Register Address:  
BERT Seed/Pattern Register 3  
06h  
Bit #  
Name  
Default  
7
BSP23  
0
6
BSP22  
0
5
BSP21  
0
4
BSP20  
0
3
BSP19  
0
2
BSP18  
0
1
BSP17  
0
0
BSP16  
0
Register Name:  
BSPR4  
Register Description:  
Register Address:  
BERT Seed/Pattern Register 4  
07h  
Bit #  
Name  
Default  
7
BSP31  
0
6
BSP30  
0
5
BSP29  
0
4
BSP28  
0
3
BSP27  
0
2
BSP26  
0
1
BSP25  
0
0
BSP24  
0
Bits 31 to 0: BERT Seed/Pattern (BSP[31:0]). These 32 bits are the programmable seed for a transmit PRBS  
pattern, or the programmable pattern for a transmit or receive repetitive pattern. BSP(31) is the first bit output on  
the transmit side for a 32-bit repetitive pattern or 32-bit length PRBS. BSP(31) is the first bit input on the receive  
side for a 32-bit repetitive pattern.  
49 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Register Name:  
TEICR  
Register Description:  
Register Address:  
Transmit Error-Insertion Control Register  
08h  
Bit #  
Name  
Default  
7
0
6
0
5
TEIR2  
0
4
TEIR1  
0
3
TEIR0  
0
2
BEI  
0
1
TSEI  
0
0
MEIMS  
0
Bits 5 to 3: Transmit Error-Insertion Rate (TEIR[2:0]). These bits indicate the rate at which errors are inserted in  
the output data stream. One out of every 10n bits is inverted. TEIR[2:0] is the value n. A TEIR[2:0] value of 0  
disables error insertion at a specific rate. A TEIR[2:0] value of 1 result in every 10th bit being inverted. A TEIR[2:0]  
value of 2 result in every 100th bit being inverted. Error insertion starts when this register is written to with a  
TEIR[2:0] value that is non-zero. If this register is written to during the middle of an error insertion process, the new  
error rate will be started after the next error is inserted.  
Bit 2: Bit-Error-Insertion Enable (BEI). When 0, single bit-error insertion is disabled. When 1, single bit-error  
insertion is enabled.  
Bit 1: Transmit Single Error Insert (TSEI). This bit causes a bit error to be inserted in the transmit data stream if  
manual error insertion is disabled (MEIMS = 0) and single bit-error insertion is enabled. A 0-to-1 transition causes a  
single bit error to be inserted. For a second bit error to be inserted, this bit must be set to 0, and back to 1. Note: If  
MEIMS is low, and this bit transitions more than once between error insertion opportunities, only one error is  
inserted.  
Bit 0: Manual-Error Insert-Mode Select (MEIMS). When 0, error insertion is initiated by the TSEI register bit.  
When 1, error insertion is initiated by the transmit manual-error-insertion signal (TMEI). Note: If TMEI or TSEI is 1,  
changing the state of this bit may cause a bit error to be inserted.  
Register Name:  
BSR  
Register Description:  
Register Address:  
BERT Status Register  
0Ch  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
PMS  
0
2
0
1
BEC  
0
0
OOS  
0
Bit 3: Performance-Monitoring Update Status (PMS). This bit indicates the status of the receive performance-  
monitoring register (counters) update. This bit transitions from low to high when the update is completed. PMS is  
asynchronously forced low when the LPMU bit (PMUM = 0) or RPMU signal (PMUM = 1) goes low.  
Bit 1: Bit Error Count (BEC). When 0, the bit error count is 0. When 1, the bit error count is 1 or more.  
Bit 0: Out of Synchronization (OOS). When 0, the receive pattern generator is synchronized to the incoming  
pattern. When 1, the receive pattern generator is not synchronized to the incoming pattern.  
50 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Register Name:  
BSRL  
Register Description:  
Register Address:  
BERT Status Register Latched Register  
0Eh  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
PMSL  
0
2
BEL  
0
1
BECL  
0
0
OOSL  
0
Bit 3: Performance-Monitoring Update Status Latched (PMSL). This bit is set when the PMS bit transitions from  
0 to 1. A read operation clears this bit.  
Bit 2: Bit Error Latched (BEL). This bit is set when a bit error is detected. A read operation clears this bit.  
Bit 1: Bit-Error Count Latched (BECL). This bit is set when the BEC bit transitions from 0 to 1. A read operation  
clears this bit.  
Bit 0: Out-of-Synchronization Latched (OOSL). This bit is set when the OOS bit changes state. A read operation  
clears this bit.  
Register Name:  
BSRIE  
Register Description:  
Register Address:  
BERT Status Register Interrupt Enable Register  
10h  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
PMSIE  
0
2
BEIE  
0
1
BECIE  
0
0
OOSIE  
0
Bit 3: Performance-Monitoring Update Status-Interrupt Enable (PMSIE). This bit enables an interrupt if the  
PMSL bit is set.  
0 = interrupt disabled  
1 = interrupt enabled  
Bit 2: Bit-Error-Interrupt Enable (BEIE). This bit enables an interrupt if the BEL bit is set.  
0 = interrupt disabled  
1 = interrupt enabled  
Bit 1: Bit-Error-Count Interrupt Enable (BECIE). This bit enables an interrupt if the BECL bit is set.  
0 = interrupt disabled  
1 = interrupt enabled  
Bit 0: Out-of-Synchronization Interrupt Enable (OOSIE). This bit enables an interrupt if the OOSL bit is set.  
0 = interrupt disabled  
1 = interrupt enabled  
51 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Register Name:  
RBECR1  
Register Description:  
Register Address:  
Receive Bit Error Count Register 1  
14h  
Bit #  
Name  
Default  
7
BEC7  
0
6
BEC6  
0
5
BEC5  
0
4
BEC4  
0
3
BEC3  
0
2
BEC2  
0
1
BEC1  
0
0
BEC0  
0
Register Name:  
RBECR2  
Register Description:  
Register Address:  
Receive Bit Error Count Register 2  
15h  
Bit #  
Name  
Default  
7
BEC15  
0
6
BEC14  
0
5
BEC13  
0
4
BEC12  
0
3
BEC11  
0
2
BEC10  
0
1
BEC9  
0
0
BEC8  
0
Register Name:  
RBECR3  
Register Description:  
Register Address:  
Receive Bit Error Count Register 3  
16h  
Bit #  
Name  
Default  
7
BEC23  
0
6
BEC22  
0
5
BEC21  
0
4
BEC20  
0
3
BEC19  
0
2
BEC18  
0
1
BEC17  
0
0
BEC16  
0
Bits 23 to 0: Bit Error Count (BEC[23:0]). These 24 bits indicate the number of bit errors detected in the incoming  
data stream. This count stops incrementing when it reaches a count of FF FFFFh. The associated bit-error counter  
is not incremented when an OOS condition exists.  
52 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Register Name:  
RBCR1  
Register Description:  
Register Address:  
Receive Bit Count Register 1  
18h  
Bit #  
Name  
Default  
7
BC7  
0
6
BC6  
0
5
BC5  
0
4
BC4  
0
3
BC3  
0
2
BC2  
0
1
BC1  
0
0
BC0  
0
Register Name:  
RBCR2  
Register Description:  
Register Address:  
Receive Bit Count Register 2  
19h  
Bit #  
Name  
Default  
15  
BC15  
0
14  
BC14  
0
13  
BC13  
0
12  
BC12  
0
11  
BC11  
0
10  
BC10  
0
9
BC9  
0
8
BC8  
0
Register Name:  
RBCR3  
Register Description:  
Register Address:  
Receive Bit Count Register 3  
1Ah  
Bit #  
Name  
Default  
7
BC23  
0
6
BC22  
0
5
BC21  
0
4
BC20  
0
3
BC19  
0
2
BC18  
0
1
BC17  
0
0
BC16  
0
Register Name:  
RBCR4  
Register Description:  
Register Address:  
Receive Bit Count Register 4  
1Bh  
Bit #  
Name  
Default  
15  
BC31  
0
14  
BC30  
0
13  
BC29  
0
12  
BC28  
0
11  
BC27  
0
10  
BC26  
0
9
BC25  
0
8
BC24  
0
Bits 31 to 0: Bit Count (BC[31:0]). These 32 bits indicate the number of bits in the incoming data stream. This  
count stops incrementing when it reaches a count of FFFF FFFFh. The associated bit counter is not incremented  
when an OOS condition exists.  
53 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
6 FUNCTIONAL DESCRIPTION  
6.1 Power-Up and Reset  
Internal power-on-reset circuitry generates a reset during power-up. All registers are reset to the default values.  
Writing to the software-reset register generates at least a 1μs reset cycle, which has the same effect as the power-  
up reset.  
6.2 Master Clock  
The receiver uses the MCLK as a reference for clock recovery, jitter attenuation, and generating RCLKn during  
LOS. The DS26303 requires 2.048MHz ±50ppm or 1.544MHz ±50ppm or a multiple thereof. The AIS transmission  
uses MCLK for transmit all-ones condition. See register MC to set desired incoming frequency. If the PLLE bit is  
not set, MCLK is whatever the incoming frequency is.  
MCLK or RCLK can be used to output CLKA. Register CCR is used to select the clock generated for CLKA and the  
TECLK. Any RCLKn can be selected as an input to the clock generator using this same register. For a detailed  
description of selections available, see Figure 6-1.  
Figure 6-1. Prescaler PLL and Clock Generator  
PCLKS2..0  
RLCK1..8  
CLKA3..0  
PLLE  
RLOS16  
T1CLK  
PCLKI1..0  
CLKAE  
MPS1..0  
FREQS  
CLKA  
CLK  
CLKAI  
GEN  
Pre  
MCLK  
Scaler  
PLL  
E1CLK  
TECLKI  
TECLK  
PLLE  
TECLKS  
TECLKE  
RLOS1  
54 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
6.3 Transmitter  
NRZ data arrives on TPOSn and TNEGn on the transmit system side. The TPOSn and TNEGn data is sampled on  
the falling edge of TCLKn (Figure 10-12).  
The data is encoded with HDB3 or B8ZS or AMI encoding when single-rail mode is selected (only TDATn as the  
data source). When in single-rail mode only, BPV errors can be inserted for test purposes by register BEIR.  
Encoded data is expected when dual-rail mode is selected. The encoded data passes through a jitter attenuator if it  
is enabled for the transmit path. A digital sequencer and DAC generate transmit waveforms compliant with T1.102  
and G.703 pulse masks.  
A line driver drives an internal matched-impedance circuit for provision of 100Ω, 110Ω, 120Ω, and 75Ω termination.  
The DS26303 drivers have short-circuit driver-fail-monitor detection. There is an OE pin that can high-Z the  
transmitter outputs for protection switching. The individual transmitters can also be placed in high impedance by  
register OEB. The DS26303 also has functionality for powering down the transmitters individually. The registers  
that control the transmitter operation are shown in Table 6-3.  
Table 6-1. Telecommunications Specification Compliance for DS26303 Transmitters  
TRANSMITTER FUNCTION  
TELECOMMUNICATIONS COMPLIANCE  
AMI Coding, B8ZS Substitution, DS1 Electrical  
Interface  
ANSI T1.102  
T1 Telecom Pulse Mask Compliance  
T1 Telecom Pulse Mask Compliance  
Transmit Electrical Characteristics for E1  
Transmission and Return Loss Compliance  
ANSI T1.403  
ANSI T1.102  
ITU-T G.703  
Table 6-2. Registers Related to Control of DS26303 Transmitters  
REGISTER  
NAME  
FUNCTION  
Transmit All-Ones Enable.  
Transmit All-Ones Enable  
TAOE  
Driver Fault Monitor Status  
DFMS  
DFMIE  
DFMIS  
Driver Fault Status.  
Driver Fault Monitor Interrupt Enable  
Driver Fault Monitor Interrupt Status  
Driver Fault Status Interrupt Mask.  
Driver Fault Interrupt Status.  
Selection of the jitter attenuator in the transmit path, receive  
path, or not used and code for B8ZS or HDB3 substitution.  
Global Configuration  
Template Select Transmitter  
Template Select  
GC  
TST  
TS  
The transmitter that the template select applies to.  
The TS2 to TS0 bits for selection of the templates for  
transmitter and match impedance for the receiver.  
This register can be used to place the transmitter outputs in  
high-impedance mode.  
Selects the MCLK frequency used for transmit and receive.  
This register can be used to select between single-rail and  
dual-rail mode.  
Output Enable Configuration  
Master Clock Selection  
Single-Rail Mode Select  
OEB  
MC  
SRMS  
The individual LIU line codes can be selected to overwrite  
the global setting.  
Line Code Selection  
LCS  
TPDE  
ISCPD  
Transmit Power-Down  
Individual transmitters can be powered down.  
Individual Short-Circuit-Protection  
Disable  
This register allows the individual transmitters short-circuit  
protection disable.  
This register is used for sending different BERT patterns for  
the individual transmitters.  
BERT Control  
BTCR  
55 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
6.3.1 Transmit Line Templates  
The DS26303 the transmitters can be selected individually to meet the pulse masks for E1 and T1/J1 mode. The  
T1/J1 pulse mask is shown in the transmit pulse template and can be configured on an individual LIU basis. The  
TIMPRM pin/bit is used to select the internal transmit terminating impedance of 100Ω/110Ω for T1/J1 mode or  
75Ω/120Ω for E1 mode. The T1 pulse mask is shown in Figure 6-2 and the E1 pulse template is shown in  
Figure 6-3.  
Table 6-3. DS26303 Template Selections  
TS2, TS1, TS0  
APPLICATION  
000  
001  
010  
011  
100  
101  
110  
111  
E1  
Reserved  
DSX-1 (0-133 ft)  
DSX-1 (133-266 ft)  
DSX-1 (266-399 ft)  
DSX-1 (399-533 ft)  
DSX-1 (533-655 ft)  
Figure 6-2. T1 Transmit Pulse Templates  
1 .2  
1 .1  
1 .0  
0 .9  
0 .8  
0 .7  
0 .6  
0 .5  
0 .4  
0 .3  
0 .2  
0 .1  
0
-0 .1  
T 1 .1 0 2 /8 7 , T 1 .4 0 3 ,  
C B 1 1 9 (O ct. 7 9 ), &  
I.4 3 1 T e m p la te  
-0 .2  
-0 .3  
-0 .4  
-0 .5  
-5 0 0 -4 0 0  
-3 0 0  
-2 0 0  
-1 0 0  
0
1 0 0  
2 0 0  
3 0 0  
4 0 0  
5 0 0  
6 0 0  
7 0 0  
T IM E (n s )  
D S 1 T e m p la te (p e r A N S I T 1 .4 0 3 -1 9 9 5 )  
D S X - 1 T e m p la te (p e r A N S I T 1 .1 0 2 - 1 9 9 3 )  
M A X IM U M C U R V E  
M IN IM U M C U R V E  
M A X IM U M C U R V E  
M IN IM U M C U R V E  
U I  
T im e  
A m p .  
U I  
T im e  
A m p .  
U I  
T im e  
A m p .  
U I  
T im e  
A m p .  
-0 .7 7  
-0 .3 9  
-0 .2 7  
-0 .2 7  
-0 .1 2  
0 .0 0  
0 .2 7  
0 .3 5  
0 .9 3  
1 .1 6  
-5 0 0  
-2 5 5  
-1 7 5  
-1 7 5  
-7 5  
0 .0 5  
0 .0 5  
0 .8 0  
1 .1 5  
1 .1 5  
1 .0 5  
1 .0 5  
-0 .0 7  
0 .0 5  
0 .0 5  
-0 .7 7  
-0 .2 3  
-0 .2 3  
-0 .1 5  
0 .0 0  
0 .1 5  
0 .2 3  
0 .2 3  
0 .4 6  
0 .6 6  
0 .9 3  
1 .1 6  
-5 0 0  
-1 5 0  
-1 5 0  
-1 0 0  
0
1 0 0  
1 5 0  
1 5 0  
3 0 0  
4 3 0  
6 0 0  
7 5 0  
-0 .0 5  
-0 .0 5  
0 .5 0  
0 .9 5  
0 .9 5  
0 .9 0  
0 .5 0  
-0 .4 5  
-0 .4 5  
-0 .2 0  
-0 .0 5  
-0 .0 5  
-0 .7 7 -5 0 0  
-0 .3 9 -2 5 5  
-0 .2 7 -1 7 5  
-0 .2 7 -1 7 5  
-0 .1 2 -7 5  
0 .0 5  
0 .0 5  
0 .8 0  
1 .2 0  
1 .2 0  
1 .0 5  
1 .0 5  
-0 .0 5  
0 .0 5  
0 .0 5  
-0 .7 7  
-0 .2 3  
-0 .2 3  
-0 .1 5  
0 .0 0  
0 .1 5  
0 .2 3  
0 .2 3  
0 .4 6  
0 .6 1  
0 .9 3  
1 .1 6  
-5 0 0  
-1 5 0  
-1 5 0  
-1 0 0  
0
1 0 0  
1 5 0  
1 5 0  
3 0 0  
4 3 0  
6 0 0  
7 5 0  
-0 .0 5  
-0 .0 5  
0 .5 0  
0 .9 5  
0 .9 5  
0 .9 0  
0 .5 0  
-0 .4 5  
-0 .4 5  
-0 .2 6  
-0 .0 5  
-0 .0 5  
0
0 .0 0  
0 .2 7  
0 .3 4  
0 .7 7  
1 .1 6  
0
1 7 5  
2 2 5  
6 0 0  
7 5 0  
1 7 5  
2 2 5  
6 0 0  
7 5 0  
56 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Figure 6-3. E1 Transmit Pulse Templates  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
269ns  
G.703  
Template  
194ns  
219ns  
-0.1  
-0.2  
-250  
-200  
-150  
-100  
-50  
0
50  
100  
150  
200  
250  
TIME (ns)  
57 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
6.3.2 LIU Transmit Front-End  
It is recommended to configure the transmitter’s LIU as described in Figure 6-4 and in Table 6-4. No series  
resistors are required. The transmitter has internal termination for E1, J1, and T1 modes.  
Figure 6-4. LIU Front-End  
3.3V  
TFt  
Dt  
1:2  
TVDDn  
TTIP  
Dt  
Dt  
Dt  
C1  
C2  
Tx Line  
Ct  
TVSSn  
TRING  
DS26303  
(One Channel)  
3.3V  
TFr  
1:2  
RTIP  
AVDDn  
Rt  
Rt  
C3  
C4  
Rx Line  
C5  
A75 A100 A110 30  
AVSSn  
RRING  
3.3V  
TVS1  
Table 6-4. LIU Front-End Values  
120Ω TWISTED  
100Ω/110Ω  
TWISTED PAIR  
MODE  
COMPONENT  
75Ω COAX  
PAIR  
Tx Capacitance  
Tx Protection  
Ct  
Dt  
560pF typical. Adjust for board parasitics for optimal return loss.  
International Rectifier: 11DQ04 or 10BQ060  
Motorola: MBR0540T1  
Rx Transformer 1:2  
Tx Transformer 1:2  
Tx Decoupling (ATVDD)  
Tx Decoupling (ATVDD)  
Rx Decoupling (AVDDn)  
Rx Decoupling (AVDDn)  
TFr  
TFt  
C1  
C2  
C3  
C4  
Pulse: T1124 (0°C to +70°C)  
Pulse: T1114 (-40°C to +85°C)  
Common decoupling for all eight channels is 68μF.  
Recommended decoupling per channel is 0.1μF.  
Common decoupling for all eight channels is 68μF.  
Common decoupling for all eight channels is 0.1μF.  
When in external impedance mode, Rx capacitance for all eight  
channels is 0.1μF. Do not populate if using internal impedance  
mode.  
Rx Termination  
C5  
When in external impedance mode, the two resistors for all modes  
are 15.0Ω ±1%. Do not populate if using internal impedance mode.  
SGS-Thomson: SMLVT 3V3 (3.3V transient suppressor)  
Rx Termination  
Rt  
Voltage Protection  
TVS1  
58 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
6.3.3 Dual-Rail Mode  
Dual-rail mode consists of TPOSn, TNEGn, and TCLKn pins on the system side. data is sampled on the falling  
edge of TCLKn as shown in Figure 10-12. The data that appears on the TPOSn pin is output on TTIPn and data on  
the TNEGn is output on TRINGn after pulse shaping. The single-rail-select register (SRMS) is used for selection of  
dual-rail or single-rail mode. The data that arrives at the TPOSn and TNEGn can be overwritten in the maintenance  
mode by setting the BERT control register (BTCR).  
6.3.4 Single-Rail Mode  
Single-rail mode consists of TDATn and TCLKn pins on the system side. data is sampled on the falling edge of  
TCLKn as shown in Figure 10-12. B8ZS or HDB3 encoding is allowed. The TDATn data is encoded in AMI format  
on the TTIPn and TRINGn pins after pulse shaping. The single-rail-mode select (SRMS) is used for selection of  
dual-rail or single-rail mode. The data that arrives at the TDATn can be overwritten in the maintenance mode by  
setting in BERT control register (BTCR).  
6.3.5 Zero Suppression—B8ZS or HDB3  
B8ZS encoding is available when the device is in T1 mode selected by the TS2, TS1, and TS0 bits in the TS  
register. Setting the LCS bit in the LCS register enables B8ZS. If the LIU is configured in E1 mode, then HDB3  
code substitution can be selected. Bipolar violations can be inserted via the TNEGn/BPVIn pin or transmit  
maintenance register settings only if B8ZS or HDB3 encoding is turned off. B8ZS substitution is defined in ANSI  
T1.102 and HDB3 in ITU-T G.703 standards.  
6.3.6 Transmit Power-Down  
The transmitter is powered down if the relevant bits in the TPDE register are set.  
6.3.7 Transmit All Ones  
When transmit all ones is invoked, continuous 1s are transmitted using MCLK as the timing reference. Data input at  
TPOSn and TNEGn is ignored. Transmit all ones can be sent by setting bits in the TAOE register. Transmit all ones  
are enabled if bits in register ATAOS are set and the corresponding receiver goes into an LOS state in the status  
register LOSS.  
6.3.8 Driver Fail Monitor  
The driver fail monitor is connected to the TTIPn and TRINGn pins. It will detect a short circuit on the secondary  
side of the transmit transformer. The drive current will be limited to 50mA if a short circuit is detected. The DFMS  
status registers and the corresponding interrupt and enable registers can be used to monitor the driver failure.  
6.4 Receiver  
The DS26303 contains eight identical receivers. A 2:1 transformer steps down the input from the line. The  
DS26303 is designed to be fully software-selectable for E1 and T1/J1 without the need to change any external  
resistors for the receive side. The output of the internal termination circuitry is fed into a peak detector.  
6.4.1 Peak Detector and Slicer  
The slicer determines the polarity and presence of the received data. The output of the slicer is sent to the clock  
and data recovery circuitry for extraction of data and clock. The slicer has a built-in peak detector for determination  
of the slicing threshold.  
6.4.2 Clock and Data Recovery  
The resultant E1 or T1 clock derived from the 2.048 MHz/1.544 MHz PLL is internally multiplied by 16 by another  
internal PLL and fed to the clock recovery system. The clock recovery system uses the clock from the PLL circuit to  
form a 16-times oversampler, which is used to recover the clock and data. This oversampling technique offers  
outstanding performance to meet jitter tolerance specifications.  
59 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
6.4.3 Loss of Signal  
The DS26303 uses both the digital and analog loss-detection method in compliance with the latest ANSI T1.231 for  
T1/J1 and ITU-T G.775 (LASCS.LASCSn reset) or ETS 300 233 (LASCS.LASCSn set) for E1 mode of operation.  
LOS is detected if the receiver level falls bellow a threshold analog voltage for a certain duration. Alternatively, this  
can be termed as having received zeros for a certain duration. The signal level and timing duration are defined in  
accordance with the T1.231, G.775, or ETS 300 233 specifications.  
The loss-detection thresholds are based on cable loss of 15dB for both T1 and E1 mode. RCLKn is replaced by  
MCLK when the receiver detects a loss of signal. If the AISEL bit is set in the GC register, or if the IAISEL.ILAISE  
bit is set, the RPOSn/RNEGn data is replaced by an all-ones signal upon receiving an LOS to indicate AIS to the  
downstream device. The loss state is exited when the receiver detects a certain number of ones density at a higher  
signal level than the loss-detection level. The loss-detection-signal level and loss-reset-signal level are defined with  
a hysteresis to prevent the receiver from bouncing between LOS and no-LOS states.  
The following table outlines the specifications governing the loss function.  
Table 6-5. Loss Criteria T1.231, G.775, and ETS 300 233 Specifications  
STANDARD  
CRITERIA  
ANSI T1.231  
ITU-T G.775  
No pulses are detected for  
duration of 10 to 255 bit  
periods.  
ETS 300 233  
No pulses are detected for a  
duration of 2048 bit periods or  
1ms,  
Loss  
No pulses are detected for 175  
±75 bits.  
Detection  
Loss is terminated if a duration of  
12.5% ones are detected over  
duration of 175 ±75 bits. Loss is  
not terminated if eight consecutive  
0s are found if B8ZS encoding is  
used. If B8ZS is not used, loss is  
not terminated if 100 consecutive  
pulses are 0.  
The incoming signal has  
transitions for duration of 10  
to 255 bit periods.  
Loss reset criteria is not  
defined.  
Loss Reset  
6.4.3.1 ANSI T1.231 for T1 and J1 Modes  
Loss is detected if the received signal level is typically less than 200mV for duration of 192 bit periods. LOS is reset  
if the all of the following criteria are met:  
24 or more 1s are detected in a 192-bit period with a detection threshold of 300mV measured  
at RTIPn and RRINGn.  
During the 192 bits less than 100 consecutive zeros are detected.  
Eight consecutive 0s are not detected if B8ZS is set.  
6.4.3.2 ITU-T G.775 for E1 Modes  
LOS is detected if the received signal level is typically less than 200mV for a continuous duration of 192 bit periods.  
LOS is reset if the receive signal level is typically greater than 300mV for a duration of 192 bit periods.  
6.4.3.3 ETS 300 233 for E1 Modes  
LOS is detected if the received signal level is typically less than 200mV for a continuous duration of 2048 (1ms) bit  
periods. LOS is reset if the receive signal level is typically greater than 300mV for a duration of 192 bit periods.  
6.4.4 AIS  
Table 6-6 outlines the DS26303 AIS-related specifications. Table 6-7 states the AIS functionality in the DS26303.  
The registers related to the AIS detection are shown in Table 6-8.  
60 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Table 6-6. AIS Criteria T1.231, G.775, and ETS 300 233 Specifications  
STANDARD  
ETS 300 233 FOR E1  
CRITERIA  
ITU-T G.775 FOR E1  
ANSI T1.231 FOR T1  
Fewer than nine 0s detected  
in a 8192-bit period (a ones  
density of 99.9% over a period  
of 5.3ms) are received.  
Two or fewer 0s in each of two  
consecutive 512-bit streams  
received.  
AIS  
Detection  
Fewer than three 0s detected  
in 512-bit period.  
Three or more 0s in each of two  
consecutive 512-bit streams  
received.  
AIS  
Clearance  
Three or more 0s in a 512-bit  
period received.  
Nine or more 0s detected in a  
8192-bit period are received.  
Table 6-7. AIS Detection and Reset Criteria  
STANDARD  
ETS 300 233 FOR E1  
CRITERIA  
ITU-T G.775 FOR E1  
ANSI T1.231 FOR T1  
Two or fewer 0 in each of two  
consecutive 512-bit streams  
received.  
AIS  
Detection  
Fewer than three 0s detected  
in 512-bit period.  
Fewer than nine 0s contained  
in 8192 bits.  
Three or more 0s in each of two  
consecutive 512-bit streams  
received.  
AIS  
Clearance  
Three or more 0s in a 512-bit  
period received.  
Nine or more bits received in a  
8192-bit stream.  
Table 6-8. Registers Related to AIS Detection  
REGISTER  
NAME  
FUNCTIONALITY  
Section criteria for AIS. T1.231, G.775, ETSI 300 233 for  
E1.  
LOS/AIS Criteria Selection  
LASCS  
Alarm Indication Signal Status  
AIS Interrupt Enable  
AIS  
Set when AIS is detected.  
AISIE  
AISIS  
If reset interrupt due to AIS is not generated.  
Latched if there is a change in AIS and the interrupt is  
enabled.  
AIS Interrupt Status  
61 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
6.4.5 Bipolar Violation and Excessive Zero Detector  
The DS26303 detects code violations, BPV, and excessive zero errors. The reporting of the errors is done through  
the pin RNEGn/CVn.  
Excessive zeros are detected if eight consecutive 0s are detected with B8ZS enabled and four consecutive 0s are  
detected with HDB3 enabled. Excessive zero detection is selectable when single-rail mode and HDB3/B8ZS  
encoding/decoding is selected.  
The bits in the EZDE and CVDEB registers determine the combinations that are reported. Table 6-9 outlines the  
functionality:  
Table 6-9. BPV, Code Violation, and Excessive Zero Error Reporting  
CONDITIONS  
CVn PIN REPORTS  
BPV + code violation  
BPV + code violation + excessive zero  
BPV  
EZDE is reset, CVDEB is reset  
EZDE is set, CVDEB is reset  
EZDE is reset, CVDEB is set  
EZDE is set, CVDEB is set  
BPV + excessive zero  
6.4.6 LIU Receiver Front-End  
It is recommended that the receiver be configured as per Table 6-4 and Figure 6-4. Internal or external mode for  
the receiver front end can be selected by register GC.RIMPMS. When this bit is set to external mode the user is  
required to supply two 15Ω resistors (Rt) as shown in Figure 6-4. The internal adjust resistors A75, A100, and A110  
will still be set in external mode if 75Ω, 100Ω, or 110Ω impedance is selected during template selection. However,  
the internal 30Ω resistor will be disconnected. If the user would like all the adjust resistors to be disconnected or  
any internal impedance matching, then the user should set the TS.RIMPOFF bit for each LIU or the RIMPOFF pin  
when in hardware mode.  
6.5 Hitless-Protection Switching (HPS)  
Many current redundancy protection implementations use mechanical relays to switch between primary and  
backup boards. The switching time in relays is typically in the milliseconds, making T1/E1 HPS impossible. The  
switching event likely causes frame-synchronization loss in any equipment downstream, affecting the quality of  
service. The same is also true for tri-stating mechanisms that use software or inactive clocks for the triggering of  
HPS.  
The DS26303 LIU includes fast tri-statable outputs for TTIPn and TRINGn and fast turn-off impedance matching for  
the RTIPn and RRINGn within less than one bit cycle. The control logic is shown in Figure 6-5. In software mode,  
the user can set the RHPMC bit, which allows the OE pin to control both the transmitter outputs and the receive  
impedance matching. This is a very useful function in that control can be done through a hardware pin, allowing a  
quick switch to the backup system for both the receiver and the transmitter. Figure 6-6 shows a typical HPS  
application in software mode where the OE pin is used for control. In hardware mode, the receiver can have  
impedance matching turned off quickly by using the RIMPOFF pin, and the transmitter output can be turned off  
quickly by using the OE pin.  
62 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Figure 6-5. HPS Logic  
OEB  
SET  
CLR  
D
Q
int_oe_off  
Q
OE  
SET  
D
D
Q
Rint_imp_off  
RHPMC  
Q
CLR  
SET  
RIMPOFF  
Q
Q
CLR  
hw/sw  
mode  
RIMPOFF  
Figure 6-6. HPS Block Diagram  
RTIP  
RRING  
Primary  
Board  
OE  
TTIP  
TRING  
RX  
Line Interface  
Card  
Switching  
Control  
TX  
RTIP  
OE  
RRING  
Backup  
Board  
TTIP  
TRING  
63 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
6.6 Jitter Attenuator  
The DS26303 contains an on-board jitter attenuator that can be set to a depth of either 32 or 128 bits by the JADS  
bit in register GC. It can also be controlled on an individual LIU basis by settings in the IJAFDS register. The 128-  
bit mode is used in applications where large excursions of wander are expected. The 32-bit mode is used in delay-  
sensitive applications. The characteristics of the attenuation are shown in Figure 6-7. The jitter attenuator can be  
placed in either the receive path or the transmit path or none by appropriately setting the JAPS and the JAE bits in  
register GC. These selections can be changed on an individual LIU basis by settings in the IJAPS and IJAE.  
For the jitter attenuator to properly operate, a 2.048MHz or multiple thereof, or 1.544MHz clock or multiple thereof  
must be applied at MCLK. ITU-T specification G.703 requires an accuracy of ±50ppm for both T1 and E1  
applications. TR62411 and ANSI specs require an accuracy of ±32ppm for T1 interfaces. On-board circuitry adjusts  
either the recovered clock from the clock/data recovery block or the clock applied at the TCLKn pin to create a  
smooth jitter-free clock, which is used to clock data out of the jitter attenuator FIFO. It is acceptable to provide a  
gapped/bursty clock at the TCLKn pin if the jitter attenuator is placed on the transmit side. If the incoming jitter  
exceeds either 120UIP-P (buffer depth is 128 bits) or 28UIP-P (buffer depth is 32 bits), then the DS26303 divides the  
internal nominal 32.768MHz (E1) or 24.704MHz (T1) clock by either 15 or 17 instead of the normal 16 to keep the  
buffer from overflowing. When the device divides by either 15 or 17, it also sets the jitter attenuator limit trip  
(IJAFLTn) bits in the IJAFLT register described.  
Figure 6-7. Jitter Attenuation  
0dB  
ITU G.7XX  
TBR12  
Prohibited  
Area  
Prohibited Area  
-20dB  
-40dB  
-60dB  
E1  
T1  
TR 62411 (Dec. 90)  
Prohibited Area  
1
10  
100  
1K  
10K  
100K  
FREQUENCY (Hz)  
64 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
6.7 G.772 Monitor  
In this application, only seven LIUs are functional and one LIU is used for nonintrusive monitoring of input and  
output of the other seven channels. Channel 1 is used for monitoring channels 2 to 8. G.772 monitoring is  
configured by the GMC register (see Table 5-9). While monitoring with channel 1, the device can be configured in  
remote loopback and the monitored signal can be output on TTIP1 and TRING1.  
6.8 Loopbacks  
The DS26303 provides four loopbacks for diagnostic purposes: analog loopback (ALBC:ALBCn set), digital  
loopback (DLBC:DLBCn set), remote loopback (RLBC:RLBCn set), and dual loopback (DLBC:DLBCn set and  
(RLBC:RLBCn set).  
6.8.1 Analog Loopback  
The analog output of the transmitter TTIPn and TRINGn is looped back to RTIPn and RRINGn of the receiver. Data  
at RTIPn and RRINGn is ignored in analog loopback. See Figure 6-8.  
Figure 6-8. Analog Loopback  
TCLK  
TPOS  
TNEG  
H
B
E
D
8
n
B 3 /  
O
p t i o n a l  
J i t t e r  
t t e n u a t o r  
Z
S
T r a n s m i t  
A n a lo g  
T r a n s m it  
c o d e r  
Line  
A
D
ig i t a l  
Driver  
RCLK  
RPOS  
RNEG  
Rtip  
H
B
D
D
8 Z  
e c o d e r  
B 3 /  
S
R e c e iv e  
D ig i ta l  
R e c e iv e  
A n a lo g  
O
p
t i o  
J i t t e  
t t e n  
n
u
a
a
l
r
Rring  
A
t o r  
6.8.2 Digital Loopback  
The transmit system data TPOSn, TNEGn, and TCLKn are looped back to output on RCLKn, RPOSn, and RNEGn.  
The data input at TPOSn and TNEGn is encoded and output on TTIPn and TRINGn. Signals at RTIPn and  
RRINGn are ignored. This loopback is conceptually shown in Figure 6-9.  
65 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Figure 6-9. Digital Loopback  
TCLK  
TPOS  
TNEG  
TPOS  
H
B
E
D
8
n
B 3 /  
O
p t i o n a l  
J i t t e r  
t t e n u a t o r  
Z
S
T r a n s m i t  
A n a lo g  
T r a n s m it  
c o d e r  
Line  
A
D
ig i t a l  
Driver  
TNEG  
RCLK  
RPOS  
RNEG  
RTIP  
RRING  
H
B
D
D
8 Z  
e c o d e r  
B 3 /  
S
O
p
t i o  
J i t t e  
t t e n  
n
u
a
a
l
R e c e iv e  
D ig i ta l  
R e c e iv e  
A n a lo g  
r
A
t o r  
6.8.3 Remote Loopback  
The inputs at RTIPn and RRINGn are looped back to TTIPn and TRINGn. The inputs at TPOSn, and TNEGn are  
ignored during a remote loopback. While the TCLKn pin is ignored in remote loopback mode for the data path, the  
TCLKn pin must have an active signal applied in order to keep the transmitter operational. See the TCLKn pin  
description for details. This loopback is conceptually shown in Figure 6-10.  
Figure 6-10. Remote Loopback  
TCLK  
TPOS  
TNEG  
TPOS  
H
B
E
D
8
n
B 3 /  
O
p t i o n a l  
J i t t e r  
t t e n u a t o r  
Z
S
T r a n s m i t  
A n a lo g  
T r a n s m it  
c o d e r  
Line  
A
D
ig i t a l  
Driver  
TNEG  
RCLK  
RPOS  
RNEG  
RTIP  
H
B
D
D
8 Z  
e c o d e r  
B 3 /  
S
O
p
t i o  
J i t t e  
t t e n  
n
u
a
a
l
R e c e iv e  
D ig i ta l  
R e c e iv e  
A n a lo g  
r
A
t o r  
RRING  
66 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
6.8.4 Dual Loopback  
A dual loopback is created by enabling both a remote loopback and a digital loopback. The transmit system data  
TPOSn, TNEGn, and TCLKn are looped back to output on RCLKn, RPOSn, and RNEGn. The inputs at RTIPn and  
RRINGn are looped back to TTIPn and TRINGn. This loopback is conceptually shown in Figure 6-11.  
Figure 6-11. Dual Loopback  
TCLK  
TPOS  
TNEG  
TPOS  
HDB3/  
Optional  
Transmit  
Analog  
Transmit  
Digital  
B8ZS  
Jitter  
Encoder  
Line  
Attenuator  
Driver  
TNEG  
RCLK  
RPOS  
RNEG  
RTIP  
RRING  
HDB3/  
B8ZS  
Decoder  
Optional  
Jitter  
Attenuator  
Receive  
Digital  
Receive  
Analog  
67 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
6.9 BERT  
The BERT is a software-programmable test-pattern generator and monitor capable of meeting most error-  
performance requirements for digital transmission equipment. It generates and synchronizes to pseudorandom  
patterns with a generation polynomial of the form xn + xy + 1, where n and y can take on values from 1 to 32 and to  
repetitive patterns of any length up to 32 bits.  
The transmit direction generates the programmable test pattern, and inserts the test pattern payload into the data  
stream.  
The receive direction extracts the test pattern payload from the receive data stream, and monitors the test pattern  
payload for the programmable test pattern. The features include:  
Programmable PRBS pattern. The pseudorandom bit sequence (PRBS) polynomial (xn + xy + 1) and seed  
are programmable (length n = 1 to 32, tap y = 1 to n – 1, and seed = 0 to 2n – 1).  
Programmable repetitive pattern. The repetitive pattern length and pattern are programmable (the length n =  
1 to 32 and pattern = 0 to 2n – 1).  
24-bit error count and 32-bit bit count registers  
Programmable bit-error insertion. Errors can be inserted individually, on a pin transition, or at a specific rate.  
The rate 1/10n is programmable (n = 1 to 7).  
Pattern synchronization at a 10-3 BER. Pattern synchronization is achieved even in the presence of a  
random bit-error rate (BER) of 10-3.  
6.9.1 Configuration and Monitoring  
Set BTCR:BERTE = 1 to enable the BERT. The following tables show how to configure the on-board BERT to send  
and receive common patterns.  
Table 6-10. Pseudorandom Pattern Generation  
BPCR REGISTER  
BERT.CR  
BERT.  
PCR  
BERT.  
SPR2  
BERT.  
SPR1  
PATTERN TYPE  
PTF[4:0]  
(hex)  
PLF[4:0]  
PTS  
TPIC,  
RPIC  
QRSS  
(hex)  
29-1 O.153 (511 type)  
04  
08  
0A  
0
0
0
0
0x0408 0xFFFF 0xFFFF  
0x080A 0xFFFF 0xFFFF  
0
211-1 O.152 and O.153  
(2047 type)  
08  
0
215-1 O.151  
220-1 O.153  
0D  
10  
02  
11  
0E  
13  
13  
16  
0
0
0
0
0
0
1
0
0x0D0E 0xFFFF 0xFFFF  
0x1013 0xFFFF 0xFFFF  
0x0253 0xFFFF 0xFFFF  
0x1116 0xFFFF 0xFFFF  
1
0
0
1
220-1 O.151 QRSS  
223-1 O.151  
Table 6-11. Repetitive Pattern Generation  
BPCR REGISTER  
PTF[4:0] PLF[4:0]  
BERT.  
PCR  
BERT.  
SPR2  
BERT.  
SPR1  
PATTERN TYPE  
PTS QRSS  
(hex)  
(hex)  
All 1s  
All 0s  
NA  
00  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0x0020  
0x0020  
0x0021  
0x0023  
0x0037  
0x002F  
0x0027  
0x0023  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFF20  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFE  
0xFFFE  
0xFFFC  
0x0022  
0x0001  
0xFF01  
0xFFF1  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
00  
01  
03  
17  
0F  
07  
03  
Alternating 1s and 0s  
Double alternating and 0s  
3 in 24  
1 in 16  
1 in 8  
1 in 4  
68 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
After configuring these bits, the pattern must be loaded into the BERT. This is accomplished through a 0-to-1  
transition on BCR.TNPL and BCR.RNPL  
Monitoring the BERT requires reading the BSR register that contains the BEC bit and the OOS bit. The BEC bit is 1  
when the bit-error counter is 1 or more. The OOS is 1 when the receive pattern generator is not synchronized to  
the incoming pattern, which will occur when it receives a minimum 6 bit errors within a 64-bit window. The receive  
BERT bit-count register (RBCR) and the receive BERT bit-error count register (RBECR) are updated upon the  
reception of a performance-monitor update signal (e.g., BCR.LPMU). This signal updates the registers with the  
values of the counters since the last update and resets the counters.  
6.9.2 BERT Interrupt Handling  
There are four BERT events that can potentially trigger an interrupt. A performance monitoring update, a bit error, a  
non-zero bit error count, or an Out Of Synchronization (OOS). The interrupt functions as follows:  
When a status bit (BSR:PMS, BEC, or OOS) changes on an interruptible event, the corresponding interrupt  
status bit (BSRL.PMSL BEL, BECL, or OOSL) is set. The INTB pin will go low if the event is enabled through  
the corresponding interrupt-enable bit (BSRIE.PMSIE BEIE, BECIE, or OOSIE).  
When an interrupt occurs, the host processor must read the interrupt status register (BSRL) to determine the  
source of the interrupt. If the interrupt status registers are set for clear-on-read (GISC.CWE reset), the read  
also clears the Interrupt Status register which clears the output INTB pin. If the interrupt status registers are set  
for (GISC.CWE set), a 1 must be written to the interrupt status bit (BSRL.PMSL BEL, BECL, or OOSL) in order  
to clear it which clears the output INTB pin.  
Subsequently, the host processor can read the status register (BSR) to check the real-time status of the event.  
6.9.3 Receive Pattern Detection  
The receive BERT receives only the payload data and synchronizes the receive pattern generator to the incoming  
pattern. The receive pattern generator is a 32-bit shift register that shifts data from the least significant bit (LSB) or  
bit 1 to the most significant bit (MSB) or bit 32. The input to bit 1 is the feedback. For a PRBS pattern (generating  
polynomial xn + xy + 1), the feedback is an XOR of bit n and bit y. For a repetitive pattern (length n), the feedback is  
bit n. The values for n and y are individually programmable (1 to 32). The output of the receive pattern generator is  
the feedback. If QRSS is enabled, the feedback is an XOR of bits 17 and 20, and the output is forced to 1 if the  
next 14 bits are all 0s. QRSS is programmable (on or off). For PRBS and QRSS patterns, the feedback is forced to  
1 if bits 1 through 31 are all 0s. Depending on the type of pattern programmed, pattern detection performs either  
PRBS synchronization or repetitive pattern synchronization.  
6.9.3.1 Receive PRBS Synchronization  
PRBS synchronization synchronizes the receive pattern generator to the incoming PRBS or QRSS pattern. The  
receive pattern generator is synchronized by loading 32 data stream bits into the receive pattern generator, and  
then checking the next 32 data stream bits. Synchronization is achieved if all 32 bits match the incoming pattern. If  
at least six incoming bits in the current 64-bit window do not match the receive pattern generator, automatic pattern  
re-synchronization is initiated. Automatic pattern resynchronization can be disabled.  
See Figure 6-12 for the PRBS synchronization diagram.  
69 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Figure 6-12. PRBS Synchronization State Diagram  
Sync  
1 bit error  
Verify  
Load  
32 bits loaded  
6.9.3.2 Receive Repetitive Pattern Synchronization  
Repetitive pattern synchronization synchronizes the receive pattern generator to the incoming repetitive pattern.  
The receive pattern generator is synchronized by searching each incoming data stream bit position for the  
repetitive pattern, and then checking the next 32 data stream bits. Synchronization is achieved if all 32 bits match  
the incoming pattern. If at least six incoming bits in the current 64-bit window do not match the receive PRBS  
pattern generator, automatic pattern resynchronization is initiated. Automatic pattern resynchronization can be  
disabled.  
See Figure 6-13 for the repetitive pattern synchronization state diagram.  
70 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Figure 6-13. Repetitive Pattern Synchronization State Diagram  
Sync  
1 bit error  
Verify  
Match  
Pattern Matches  
6.9.3.3  
Receive Pattern Monitoring  
Receive pattern monitoring monitors the incoming data stream for both an OOS condition and bit errors and counts  
the incoming bits. An out-of-synchronization (OOS) condition is declared when the synchronization state machine  
is not in the sync state. An OOS condition is terminated when the synchronization state machine is in the sync  
state.  
Bit errors are determined by comparing the incoming data stream bit to the receive pattern generator output. If they  
do not match, a bit error is declared, and the bit error and bit counts are incremented. If they match, only the bit  
count is incremented. The bit count and bit-error count are not incremented when an OOS condition exists.  
6.9.4 Transmit Pattern Generation  
Pattern generation generates the outgoing test pattern and passes it onto error insertion. The transmit pattern  
generator is a 32-bit shift register that shifts data from the least significant bit (LSB) or bit 1 to the most significant  
bit (MSB) or bit 32. The input to bit 1 is the feedback. For a PRBS pattern (generating polynomial xn + xy + 1), the  
feedback is an XOR of bit n and bit y. For a repetitive pattern (length n), the feedback is bit n. The values for n and  
y are individually programmable (1 to 32). The output of the receive pattern generator is the feedback. If QRSS is  
enabled, the feedback is an XOR of bits 17 and 20, and the output will be forced to one if the next 14 bits are all 0s.  
QRSS is programmable (on or off). For PRBS and QRSS patterns, the feedback will be forced to 1 if bits 1 to 31  
are all 0s. When a new pattern is loaded, the pattern generator is loaded with a seed/pattern value before pattern  
generation starts. The seed/pattern value is programmable (0 – 2n – 1).  
6.9.4.1 Transmit Error Insertion  
Error insertion inserts errors into the outgoing pattern data stream. Errors are inserted one at a time or at a rate of  
one out of every 10n bits. The value of n is programmable (1 to 7 or off). Single bit-error insertion can be initiated  
from the microprocessor interface, or by the manual error-insertion input (TMEI). The method of single error  
insertion is programmable (register or input). If pattern inversion is enabled, the data stream is inverted before the  
overhead/stuff bits are inserted. Pattern inversion is programmable (on or off).  
71 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
7 JTAG BOUNDARY SCAN ARCHITECTURE AND TEST ACCESS PORT  
The DS26303 IEEE 1149.1 design supports the standard instruction codes SAMPLE/PRELOAD, BYPASS, and  
EXTEST. Optional public instructions included are HIGHZ, CLAMP, and IDCODE. The DS26303 contains the  
following as required by IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture:  
Test Access Port (TAP)  
TAP Controller  
Instruction Register  
Bypass Register  
Boundary Scan Register  
Device Identification Register  
Details on Boundary Scan Architecture and the Test Access Port can be found in IEEE 1149.1-1990, IEEE  
1149.1a-1993, and IEEE 1149.1b-1994. The Test Access Port has the necessary interface pins: JTRSTB, TCLK,  
JTMS, JTDI, and JTDO. See the pin descriptions for details. For the latest BSDL file go to  
www.maxim-ic.com/tools/bsdl/ and search for DS26303.  
Figure 7-1. JTAG Functional Block Diagram  
BOUNDARY SCAN  
REGISTER  
IDENTIFICATION  
REGISTER  
BYPASS REGISTER  
MUX  
INSTRUCTION  
REGISTER  
SELECT  
TEST ACCESS PORT  
OUTPUT ENABLE  
CONTROLLER  
+V  
+V  
+V  
10kΩ  
10kΩ  
10kΩ  
TCLK  
JTDO  
JTMS  
JTRSTB  
JTD1  
72 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
7.1 TAP Controller State Machine  
The TAP controller is a finite state machine that responds to the logic level at JTMS on the rising edge of TCLK.  
The state diagram is shown in Figure 7-2.  
7.1.1 Test-Logic-Reset  
Upon power-up, the TAP controller will be in the Test-Logic-Reset state. The instruction register will contain the  
IDCODE instruction. All system logic of the device will operate normally. This state is automatically entered during  
power-up. This state is entered from any state if the JTMS is held high for at least 5 clocks.  
7.1.2 Run-Test-Idle  
The Run-Test-Idle is used between scan operations or during specific tests. The instruction register and test  
registers will remain idle. The controller remains in this state when JTMS is held low. When the JTMS is high and  
rising edge of TCLK is applied the controller moves to the Select-DR-Scan state.  
7.1.3 Select-DR-Scan  
All test registers retain their previous state. With JTMS LOW, a rising edge of TCLK moves the controller into the  
Capture-DR state and will initiate a scan sequence. JTMS HIGH during a rising edge on TCLK moves the controller  
to the Select-IR-Scan state.  
7.1.4 Capture-DR  
Data can be parallel-loaded into the test-data registers if the current instruction is EXTEST or SAMPLE/PRELOAD.  
If the instruction does not call for a parallel load or the selected register does not allow parallel loads, the test  
register will remain at its current value. On the rising edge of TCLK, the controller will go to the Shift-DR state if  
JTMS is LOW or it will go to the Exit1-DR state if JTMS is HIGH.  
7.1.5 Shift-DR  
The test-data register selected by the current instruction will be connected between JTDI and JTDO and will shift  
data one stage towards its serial output on each rising edge of TCLK. If a test register selected by the current  
instruction is not placed in the serial path, it will maintain its previous state. When the TAP controller is in this state  
and a rising edge of TCLK is applied, the controller enters the Exit1-DR state if JTMS is high or remains in Shift-DR  
state if JTMS is low.  
7.1.6 Exit1-DR  
While in this state, a rising edge on TCLK will put the controller in the Update-DR state, which terminates the  
scanning process, if JTMS is HIGH. A rising edge on TCLK with JTMS LOW will put the controller in the Pause-DR  
state.  
7.1.7 Pause-DR  
Shifting of the test registers is halted while in this state. All test registers selected by the current instruction will  
retain their previous state. The controller will remain in this state while JTMS is LOW. A rising edge on TCLK with  
JTMS HIGH will put the controller in the Exit2-DR state.  
7.1.8 Exit2-DR  
A rising edge on TCLK with JTMS HIGH while in this state will put the controller in the Update-DR state and  
terminate the scanning process. A rising edge on TCLK with JTMS LOW will enter the Shift-DR state.  
7.1.9 Update-DR  
A falling edge on TCLK while in the Update-DR state will latch the data from the shift register path of the test  
registers into the data output latches. This prevents changes at the parallel output due to changes in the shift  
register.  
73 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
7.1.10 Select-IR-Scan  
All test registers retain their previous state. The instruction register will remain unchanged during this state. With  
JTMS LOW, a rising edge on TCLK moves the controller into the Capture-IR state and will initiate a scan sequence  
for the instruction register. JTMS HIGH during a rising edge on TCLK puts the controller back into the Test-Logic-  
Reset state.  
7.1.11 Capture-IR  
The Capture-IR state is used to load the shift register in the instruction register with a fixed value. This value is  
loaded on the rising edge of TCLK. If JTMS is HIGH on the rising edge of TCLK, the controller will enter the Exit1-  
IR state. If JTMS is LOW on the rising edge of TCLK, the controller will enter the Shift-IR state.  
7.1.12 Shift-IR  
In this state, the shift register in the instruction register is connected between JTDI and JTDO and shifts data one  
stage for every rising edge of TCLK towards the serial output. The parallel registers as well as all test registers  
remain at their previous states. A rising edge on TCLK with JTMS HIGH will move the controller to the Exit1-IR  
state. A rising edge on TCLK with JTMS LOW will keep the controller in the Shift-IR state while moving data one  
stage through the instruction shift register.  
7.1.13 Exit1-IR  
A rising edge on TCLK with JTMS LOW will put the controller in the Pause-IR state. If JTMS is HIGH on the rising  
edge of TCLK, the controller will enter the Update-IR state and terminate the scanning process.  
7.1.14 Pause-IR  
Shifting of the instruction shift register is halted temporarily. With JTMS HIGH, a rising edge on TCLK will put the  
controller in the Exit2-IR state. The controller will remain in the Pause-IR state if JTMS is LOW during a rising edge  
on TCLK.  
7.1.15 Exit2-IR  
A rising edge on TCLK with JTMS HIGH will put the controller in the Update-IR state. The controller will loop back  
to Shift-IR if JTMS is LOW during a rising edge of TCLK in this state.  
7.1.16 Update-IR  
The instruction code shifted into the instruction shift register is latched into the parallel output on the falling edge of  
TCLK as the controller enters this state. Once latched, this instruction becomes the current instruction. A rising  
edge on TCLK with JTMS LOW will put the controller in the Run-Test-Idle state. With JTMS HIGH, the controller  
will enter the Select-DR-Scan state.  
74 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Figure 7-2. TAP Controller State Diagram  
Test Logic  
Reset  
1
0
1
1
1
Run Test/  
Idle  
Select  
DR-Scan  
Select  
IR-Scan  
0
0
0
1
1
Capture DR  
Capture IR  
0
0
Shift DR  
Shift IR  
0
1
0
1
1
1
Exit DR  
Exit IR  
0
0
Pause DR  
Pause IR  
0
0
1
1
0
0
Exit2 DR  
Exit2 IR  
1
1
Update DR  
Update IR  
1
0
1
0
75 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
7.2 Instruction Register  
The instruction register contains a shift register as well as a latched parallel output and is 3 bits in length. When the  
TAP controller enters the Shift-IR state, the instruction shift register will be connected between JTDI and JTDO.  
While in the Shift-IR state, a rising edge on TCLK with JTMS LOW will shift the data one stage towards the serial  
output at JTDO. A rising edge on TCLK in the Exit1-IR state or the Exit2-IR state with JTMS HIGH will move the  
controller to the Update-IR state. The falling edge of that same TCLK will latch the data in the instruction shift  
register to the instruction parallel output. Instructions supported by the DS26303 and its respective operational  
binary codes are shown in Table 7-1.  
Table 7-1. Instruction Codes for IEEE 1149.1 Architecture  
INSTRUCTION  
SELECTED REGISTER  
INSTRUCTION CODES  
EXTEST  
HIGHZ  
CLAMP  
Boundary Scan  
Bypass  
000  
010  
011  
100  
110  
111  
Bypass  
SAMPLE/PRELOAD  
IDCODE  
Boundary Scan  
Device Identification  
Bypass  
BYPASS  
7.2.1 EXTEST  
This allows testing of all interconnections to the device. When the EXTEST instruction is latched in the instruction  
register, the following actions occur. Once enabled via the Update-IR state, the parallel outputs of all digital output  
pins will be driven. The Boundary Scan Register will be connected between JTDI and JTDO. The Capture-DR will  
sample all digital inputs into the Boundary Scan Register.  
7.2.2 HIGHZ  
All digital outputs of the device will be placed in a high-impedance state. The Bypass Register will be connected  
between JTDI and JTDO.  
7.2.3 CLAMP  
All digital outputs of the device will output data from the boundary scan parallel output while connecting the Bypass  
Register between JTDI and JTDO. The outputs will not change during the CLAMP instruction.  
7.2.4 SAMPLE/PRELOAD  
This is a mandatory instruction for the IEEE 1149.1 specification that supports two functions. The digital I/Os of the  
device can be sampled at the Boundary Scan Register without interfering with the normal operation of the device  
by using the Capture-DR state. SAMPLE/PRELOAD also allows the device to shift data into the Boundary Scan  
Register via JTDI using the Shift-DR state.  
7.2.5 IDCODE  
When the IDCODE instruction is latched into the parallel instruction register, the identification test register is  
selected. The device identification code will be loaded into the identification register on the rising edge of TCLK  
following entry into the Capture-DR state. Shift-DR can be used to shift the identification code out serially via  
JTDO. During Test-Logic-Reset, the identification code is forced into the instruction register’s parallel output. The  
ID code will always have a 1 in the LSB position. The next 11 bits identify the manufacturer’s JEDEC number and  
number of continuation bytes followed by 16 bits for the device and 4 bits for the version Table 7-2. Table 7-3 lists  
the device ID code for the DS26303.  
7.2.6 BYPASS  
When the BYPASS instruction is latched into the parallel instruction register, JTDI connects to JTDO through the  
1-bit bypass test register. This allows data to pass from JTDI to JTDO without affecting the device’s normal  
operation.  
76 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Table 7-2. ID Code Structure  
MSB  
LSB  
Version  
Contact Factory  
4 bits  
Device ID  
16 bits  
JEDEC  
00010100001  
1
1
Table 7-3 Device ID Codes  
PART  
DS26303-075  
DS26303-125  
DIE REV  
A1  
JTAG REV  
JTAG ID  
0080h  
0081h  
0h  
0h  
A1  
7.3 Test Registers  
IEEE 1149.1 requires a minimum of two test registers: the Bypass Register and the Boundary Scan Register. An  
optional test register has been included with the DS26303 design. This test register is the Identification Register  
and is used with the IDCODE instruction and the Test-Logic-Reset state of the TAP controller.  
7.3.1 Boundary Scan Register  
This register contains both a shift register path and a latched parallel output for all control cells and digital I/O cells  
and is n bits in length.  
7.3.2 Bypass Register  
This is a single 1-bit shift register used with the BYPASS, CLAMP, and HIGHZ instructions that provide a short  
path between JTDI and JTDO.  
7.3.3 Identification Register  
The identification register contains a 32-bit shift register and a 32-bit latched parallel output. This register is  
selected during the IDCODE instruction and when the TAP controller is in the Test-Logic-Reset state. See Table  
7-2 and Table 7-3 for more information about bit usage.  
77 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
8 OPERATING PARAMETERS  
ABSOLUTE MAXIMUM RATINGS  
Voltage Range on Any Lead with Respect to VSS (except VDD)…………………………………………….-0.3V to +5.5V  
Supply Voltage (VDD) Range with Respect to VSS………..…………………………………………………-0.3V to +3.63V  
Operating Temperature Range for DS26303L…………….…...……………………………………………...0°C to +70°C  
Operating Temperature Range for DS26303LN……………….……………………………………………-40°C to +85°C  
Storage Temperature…………………………………………………………………………………………-55°C to +125°C  
Soldering Temperature………………………………………………………….See IPC/JEDEC J-STD-020 Specification  
This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation  
sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.  
Table 8-1. Recommended DC Operating Conditions  
(TA = -40°C to +85°C)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
2
Logic 1  
Logic 0  
VIH  
V
2/3VDD  
0.2  
+
+
(Note 1)  
5.5  
0.8  
VIL  
V
1/3VDD  
0.2  
2/3VDD  
0.2  
-
-
(Note 1)  
(Note 1)  
-0.3  
1/3VDD  
0.2  
Midrange Level  
Supply Voltage  
1/2 x VDD  
3.3  
V
V
VDD  
3.135  
3.465  
Note 1:  
Applies to pins LP1–LP8, JAS, and MODESEL.  
Table 8-2. Capacitance  
(TA = +25°C)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Capacitance  
Output Capacitance  
CIN  
COUT  
7
7
pF  
pF  
Table 8-3. DC Characteristics  
(VDD = 3.135V to 3.465V, TA = -40°C to +85°C.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
3.465V  
(Notes 2, 3)  
3.3V  
478  
Supply Current  
IDD  
mA  
250  
Input Leakage  
IIL  
IOL  
–10.0  
–10.0  
+10.0  
+10.0  
µA  
µA  
Tri-State Output Leakage  
Output Voltage  
(Io = –4.0mA)  
Output Voltage  
(Io = +4.0mA)  
VOH  
VOL  
2.4  
V
V
0.4  
Note 1:  
Note 2:  
Note 3:  
Specifications to -40°C are guaranteed by design (GBD) and not production tested.  
RCLK1-n = TCLK1-n = 1.544MHz.  
Power dissipation with all ports active, TTIPn and TRINGn driving a 25Ω load, for an all-ones data density.  
78 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
9 THERMAL CHARACTERISTICS  
Table 9-1. Thermal Characteristics  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
Power Dissipation with RIMPMS = 0 (Notes 1, 2)  
0.7  
1.40  
W
Power Dissipation with RIMPMS = 1(Notes 1, 2)  
Ambient Temperature (Note 3)  
Junction Temperature  
0.9  
1.65  
+85  
W
°C  
°C  
-40  
+125  
+21.3  
(Note 4)  
29.0  
°C/W  
Theta-JA (θJA) in Still Air for 144-Pin LQFP with Exposed Pad  
(Note 5)  
Note 1:  
Note 2:  
Note 3:  
Note 4:  
RCLK1-n = TCLK1-n = 1.544MHz.  
Power dissipation with all ports active, TTIP and TRIN driving a 25Ω load, for an all-ones data density.  
The package is mounted on a four-layer JEDEC standard test board.  
Theta-JA (θJA) is the junction-to-ambient thermal resistance, when the package is mounted on a four-layer JEDEC standard test  
board and the die attach pad is soldered to the test board.  
Note 5:  
Theta-JA (θJA) is the junction-to-ambient thermal resistance, when the package is mounted on a four-layer JEDEC standard test  
board and the die attach pad is not soldered to the test board.  
79 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
10 AC CHARACTERISTICS  
10.1 Line Interface Characteristics  
Table 10-1. Transmitter Characteristics  
PARAMETER  
SYMBOL  
CONDITIONS  
E1 75Ω  
MIN  
TYP  
MAX  
UNITS  
2.14  
2.7  
2.37  
3.0  
2.6  
3.3  
3.6  
3.6  
E1 120Ω  
T1 100Ω  
T1 110Ω  
Output Mark Amplitude  
V
V
2.4  
3.0  
2.4  
3.0  
Output Zero Amplitude (Note 1)  
Vs  
-0.3  
-1  
+0.3  
+1  
V
Transmit Amplitude Variation with  
Supply  
%
Single-rail  
Dual-rail  
8
3
Transmit Path Delay  
UI  
Table 10-2. Receiver Characteristics  
PARAMETER  
Cable Attenuation  
SYMBOL  
Attn  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
12  
dB  
Analog Loss-of-Signal Threshold  
(Note 1)  
(Note 1)  
200  
60  
mV  
mV  
Analog Loss-of-Signal Threshold  
Hysteresis  
192  
192  
2048  
24  
Allowable Zeros Before Loss  
(Note 2)  
Allowable Ones Before Loss (Note 3)  
Receive Path Delay  
192  
192  
Dual-rail  
3
8
UI  
Single-rail  
Note 1:  
Note 2:  
Measured at the RRINGn and RTIPn pins with an all-ones input pattern.  
192 zeros for T1 and T1.231 specification compliance, 192 zeros for E1 and G.775 specification compliance, 2048 zeros for ETS  
300 233 compliance.  
Note 3:  
24 ones in 192-bit period for T1.231, 192 ones for G.775, 192 ones for ETS 300 233.  
80 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
10.2 Parallel Host Interface Timing Characteristics  
Table 10-3. Intel Read Mode Characteristics  
(VDD = 3.3V ±5%, Tj = -40°C to +125°C.) (Note 1) (See Figure 10-1 and Figure 10-2.)  
SIGNAL  
NAME(S)  
SYMBOL  
DESCRIPTION (Note 2)  
MIN  
TYP  
MAX  
UNITS  
RDB  
t1  
t2  
Pulse Width  
60  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CSB  
Setup Time to RDB  
CSB  
t3  
Hold Time from RDB  
0
AD[7:0]  
A[5:0]  
t4  
Setup Time to ALE  
10  
0
t5  
Hold Time from RDB  
D[7:0], AD[7:0]  
D[7:0], AD[7:0]  
RDYB  
t6  
Delay Time RDB, CSB Active  
Deassert Delay from RDB, CSB Inactive  
Enable Delay Time from CSB Active  
Disable Delay Time from the CSB Inactive  
Setup Time to RDB Active  
Pulse Width  
6
48  
35  
12  
12  
t7  
3
t8  
0
RDYB  
t9  
A[5:0]  
t10  
t11  
t12  
t13  
t14  
t15  
t16  
6
10  
5
ALE  
A[5:0]  
Hold Time from ALE  
RDB  
Output Delay Time of AD[7:0], D[7:0]  
Delay Time from RDB Inactive  
Active Output Delay Time from RDB  
Inactive Time to RDB Active  
10  
0
50  
12  
52  
RDYB  
RDYB  
40  
2
ALE  
Note 1:  
Note 2:  
The timing parameters in this table are guaranteed by design (GBD).  
The input/output timing reference level for all signals is VDD/2.  
81 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Figure 10-1. Intel Nonmuxed Read Cycle  
t3  
t2  
CSB  
t1  
t13  
RDB  
ALE=(1)  
A[5:0]  
t5  
t10  
ADDRESS  
t7  
t6  
D[7:0]  
RDY  
DATA OUT  
t8  
t9  
t14  
t15  
82 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Figure 10-2. Intel Mux Read Cycle  
t3  
t2  
CSB  
t1  
RDB  
t11  
t16  
t6  
t13  
ALE  
t12  
t4  
t7  
AD[7:0]  
RDY  
DATA OUT  
ADDRESS  
t9  
t8  
t14  
t15  
83 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Table 10-4. Intel Write Cycle Characteristics  
(VDD = 3.3V ±5%, Tj = -40°C to +125°C.) (Note 1) (See Figure 10-3 and Figure 10-4.)  
SIGNAL  
NAME(S)  
SYMBOL  
DESCRIPTION (Note 2)  
MIN  
TYP  
MAX  
UNITS  
WRB  
t1  
t2  
Pulse Width  
60  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CSB  
Setup Time to WRB  
CSB  
t3  
Hold Time to WRB  
0
AD[7:0]  
A[5:0]  
t4  
Setup Time to ALE  
10  
2
t5  
Hold Time from WRB Inactive  
Input Setup time to WRB Inactive  
Input Hold Time to WRB Inactive  
Enable Delay from CSB Active  
Delay Time from WRB Active  
Delay Time from WRB Inactive  
Disable Delay Time from CSB Inactive  
Pulse Width  
D[7:0], AD[7:0]  
D[7:0], AD[7:0]  
RDYB  
t6  
40  
30  
0
t7  
t8  
13  
RDYB  
t9  
40  
0
RDYB  
t10  
t11  
t12  
t13  
t14  
t15  
12  
12  
RDYB  
ALE  
10  
10  
10  
17  
ALE  
Inactive Time to WRB Active  
Hold Time from ALE Inactive  
Setup Time to WRB Inactive  
A[5:0]  
A[5:0]  
Note 1:  
Note 2:  
The timing parameters in this table are guaranteed by design (GBD).  
The input/output timing reference level for all signals is VDD/2.  
84 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Figure 10-3. Intel Nonmux Write Cycle  
t3  
t2  
CSB  
t1  
WRB  
ALE=(1)  
A[5:0]  
t15  
t5  
ADDRESS  
t6  
t7  
D[7:0]  
WRITE DATA  
t11  
t10  
t8  
RDY  
t9  
85 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Figure 10-4. Intel Mux Write Cycle  
t3  
t2  
CSB  
t1  
WRB  
t12  
t13  
ALE  
t14  
t4  
t6  
t7  
AD[7:0]  
RDY  
WRITE DATA  
ADDRESS  
t11  
t8  
t10  
t9  
86 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Table 10-5. Motorola Read Cycle Characteristics  
(VDD = 3.3V ±5%, Tj = -40°C to +125°C.) (Note 1) (See Figure 10-5 and Figure 10-6.)  
SIGNAL  
NAME(S)  
SYMBOL  
DESCRIPTION  
Pulse Width (Note 2)  
MIN TYP MAX UNITS  
DSB  
t1  
t2  
60  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CSB  
Setup Time to DSB Active (Note 2)  
CSB  
t3  
Hold Time from DSB Inactive (Note 2)  
0
RWB  
t4  
Setup Time to DSB Active (Note 2)  
10  
0
RWB  
t5  
Hold Time from DSB Inactive (Note 2)  
AD[7:0]  
AD[7:0]  
AD[7:0], D[7:0]  
AD[7:0], D[7:0]  
AD[7:0], D[7:0]  
ACKB  
t6  
Setup Time to ASB/DSB Active (Notes 2, 3)  
Hold Time from ASB/DSB Active (Notes 2, 3)  
Output Valid Delay Time from DSB Active (Note 2)  
Invalid Output Delay Time from DSB Active (Note 2)  
Output Valid Delay Time from DSB Inactive (Note 2)  
Asserted Delay from DSB Active (Note 2)  
Output Delay Time from DSB Inactive (Note 2)  
Active Delay Time to DSB Active (Note 2)  
10  
5
t7  
t8  
3
30  
t9  
2
t10  
t11  
t12  
t13  
3
30  
40  
12  
ACKB  
ASB  
10  
Note 1:  
Note 2:  
Note 3:  
The timing parameters in this table are guaranteed by design (GBD).  
The input/output timing reference level for all signals is VDD/2.  
In a nonmux cycle, the timing reference refers only to the DSB signal. While in a mux cycle, the timing reference refers only to the  
ASB signal.  
87 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Figure 10-5. Motorola Nonmux Read Cycle  
t3  
t2  
CSB  
t4  
t5  
RWB  
t1  
DSB  
ASB=(1)  
t7  
t6  
A[5:0]  
D[7:0]  
ACKB  
ADDRESS  
t8  
t10  
DATA OUT  
t9  
t12  
t11  
88 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Figure 10-6. Motorola Mux Read Cycle  
t3  
t2  
CSB  
t4  
t5  
RWB  
t1  
DSB  
t13  
ASB  
t9  
t8  
t6  
t10  
t7  
AD[7:0]  
ACKB  
ADDRESS  
DATA OUT  
t12  
t11  
89 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Table 10-6. Motorola Write Cycle Characteristics  
(VDD = 3.3V ±5%, Tj = -40°C to +125°C.) (Note 1) (See Figure 10-7 and Figure 10-8.)  
SIGNAL  
NAME(S)  
SYMBOL  
DESCRIPTION  
Pulse Width (Note 2)  
MIN TYP MAX UNITS  
DSB  
t1  
t2  
60  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CSB  
Setup Time to DSB Active (Note 2)  
Hold Time from DSB Inactive (Note 2)  
Setup Time to DSB Active (Note 2)  
Hold Time to DSB Inactive (Note 2)  
Setup Time to ASB/DSB Active (Notes 2, 3)  
Hold Time from ASB/DSB Active (Notes 2, 3)  
Setup Time to DSB Inactive (Note 2)  
Hold Time from DSB Inactive (Note 2)  
Assert Time from DSB Active (Note 2)  
Output Delay from DSB Inactive (Note 2)  
Active Time to DSB Active (Note 2)  
CSB  
t3  
0
RWB  
t4  
10  
0
RWB  
t5  
AD[7:0]  
AD[7:0]  
AD[7:0], D[7:0]  
AD[7:0], D[7:0]  
A[5:0]  
t6  
10  
5
t7  
t8  
40  
30  
t9  
t10  
t11  
t12  
40  
12  
ACKB  
0
ASB  
10  
Note 1:  
Note 2:  
Note 3:  
The timing parameters in this table are guaranteed by design (GBD).  
The input/output timing reference level for all signals is VDD/2.  
In a nonmux cycle, the timing reference refers only to the DSB signal. While in a mux cycle, the timing reference refers only to the  
ASB signal.  
90 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Figure 10-7. Motorola Nonmux Write Cycle  
t3  
t2  
CSB  
t4  
t5  
RWB  
t1  
DSB  
ASB=(1)  
t6  
t7  
A[5:0]  
D[7:0]  
ACKB  
ADDRESS  
t8  
t9  
WRITE DATA  
t11  
t10  
91 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Figure 10-8. Motorola Mux Write Cycle  
t3  
t2  
CSB  
t4  
t5  
RWB  
t1  
DSB  
t13  
t12  
ASB  
t6  
t7  
t9  
t8  
AD[7:0]  
ACKB  
WRITE DATA  
ADDRESS  
t10  
t11  
92 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
10.3 Serial Port  
Table 10-7. Serial Port Timing Characteristics  
(See Figure 10-9, Figure 10-10, and Figure 10-11.)  
PARAMETER  
SCLK High Time  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
25  
25  
50  
50  
50  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK Low Time  
Active CSB to SCLK Setup Time  
Last SCLK to CSB Inactive Time  
CSB Idle Time  
SDI to SCLK Setup Time  
SCLK to SDI Hold Time  
5
SCLK Falling Edge to SDO High  
Impedance (CLKE = 0);  
CSB Rising to SDO High  
Impedance (CLKE = 1)  
t8  
100  
ns  
Figure 10-9. Serial Bus Timing Write Operation  
t5  
CSB  
t3  
t4  
SCLK  
t1  
t2  
t6  
LSB  
t7  
SDI  
MSB  
Figure 10-10. Serial Bus Timing Read Operation with CLKE = 0  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
SCLK  
CSB  
t4  
t8  
SDO  
Figure 10-11. Serial Bus Timing Read Operation with CLKE = 1  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
SCLK  
CSB  
t4  
SDO  
t8  
93 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
10.4 System Timing  
Table 10-8. Transmitter System Timing  
(See Figure 10-12.)  
PARAMETER  
SYMBOL CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TPOS, TNEG Setup Time with Respect to  
TCLK Falling Edge  
t1  
t2  
40  
ns  
TPOS, TNEG Hold Time with Respect to  
TCLK Falling Edge  
40  
ns  
TCLK Pulse-Width High  
TCLK Pulse-Width Low  
t3  
t4  
75  
75  
ns  
ns  
488  
648  
TCLK Period  
t5  
ns  
TCLK Rise Time  
TCLK Fall Time  
t6  
t7  
25  
25  
ns  
ns  
Figure 10-12. Transmitter Systems Timing  
t5  
t4  
t3  
t7  
t6  
T C L K  
t1  
T P O S , T N E G  
t2  
94 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
Table 10-9. Receiver System Timing  
(See Figure 10-13.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Delay RCLK to RPOS, RNEG Valid  
t1  
t2  
50  
ns  
Delay RCLK to RNEG Valid in Single-  
Polarity Mode  
50  
ns  
ns  
RCLK Pulse-Width High  
t3  
t4  
75  
75  
RCLK Pulse-Width Low  
ns  
ns  
488  
648  
RCLK Period  
t5  
Figure 10-13. Receiver Systems Timing  
RCLK1  
t4  
t3  
RCLK2  
t1  
t5  
RPOS, RNEG  
t1  
RPOS, RNEG  
t2  
RNEG  
BPV/  
EXZ/  
CV  
BPV/  
EXZ/  
CV  
t2  
RNEG  
BPV/  
EXZ/  
CV  
BPV/  
EXZ/  
CV  
95 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
10.5 JTAG Timing  
Table 10-10. JTAG Timing Characteristics  
(See Figure 10-14.)  
PARAMETER  
JTCLK Period  
SYMBOL  
CONDITIONS  
MIN  
100  
25  
TYP  
MAX  
UNITS  
ns  
t1  
t2  
t3  
t4  
JTMS and JTDI Setup to JTCLK  
JTMS and JTDI Hold to JTCLK  
JTCLK to JTDO Hold  
ns  
25  
ns  
50  
ns  
Figure 10-14. JTAG Timing  
t1  
TCK  
t3  
t2  
TMS  
TDI  
t4  
TDO  
96 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
11 PIN CONFIGURATION  
11.1 144-Pin LQFP with Exposed Pad  
97 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
12 PACKAGE INFORMATION  
(The package drawing(s) in this data sheet may not reflect the most current specifications. The package number provided for  
each package is a link to the latest package outline information.)  
12.1 144-Pin LQFP with Exposed Pad Package Outline (56-G6037-002) (Sheet 1 of 2)  
98 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
12.2 144-Pin LQFP with Exposed Pad Package Outline (Sheet 2 of 2)  
99 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
13 DOCUMENT REVISION HISTORY  
REVISION  
DESCRIPTION  
072205  
060606  
082306  
New product release.  
Removed references to 160-ball PBGA package.  
Deleted Special Test Functions and Metal Options sections (formerly Section 6.10 and 6.10.1).  
Updated Package Drawing in Section 11.  
Corrected various typos.  
Added descriptions of feature enhancements implemented in Revision A2:  
1) Programmable corner frequency for the jitter attenuator in E1 mode (Section 5.1.3).  
2) Fully internal impedance matching option for RTIP/RRING (Section 5.1.1).  
3) Option for system-side deployment of BERT (Section 5.1.1.).  
4) Revised B8ZS/HDB3 sections for clarification of functions (Section 6.3.3, 6.3.4).  
See below for additional/specific changes made.  
(Page 6) Section 1: Detailed Description, paragraph 8: clarified transformer for transmit and  
receive path (see sentence).  
(Page 8) Table 2-2: Added specification: “Defines the 2048kHz synchronization interface  
(Chapter 13). Contact factory for usage details.”  
(Pages 11 to 18) Table 4-1: Updated “Function” descriptions for the following pins: TTIPn,  
TRINGn, TPOSn/TDATAn, TNEGn, TCLKn, RPOSn/RDATAn, RNEGn/CVn, RLOSn, CLKA,  
MODSEL, CSB/JAS, SCLK/ALE/ASB/TS2, RDB/RWB/TS1, SDI/WRB/DSB/T0,  
SDO/RDY/ACKB/RIMPOFF, Dn/ADn/LPn, An/GMCn, CLKE, TVDDn; removed RXPROBEA1  
(pin 35), scan_do (pin 113), scan_di (pin 106), scan_clk (pin 3), scan_en (pin 140), and BSWP  
(pin 28); changed scan_mode (pin 94) to N.C.  
(Page 19) Figure 4-1: Removed BSWP (pin 28), RXPROBEA1 (pin 35), RXPROBEC1 (pin 68),  
RXPROBEB1 (pin 75); changed scan_mode to N.C. (pin 94).  
(Page 20) Table 4-2: Changed scan_mode to N.C. (pin 94).  
(Page 21) Section 4.1.2: Serial Port Operation. Deleted portion of sentence “All serial port  
accesses are LSB first <when BSWP pin is low and MSB first when BSWP is high>.”  
020107  
(Page 22) Section 4.1.4: Interrupt Handling. Updated whole section.  
(Page 24) Section 5: Registers. Updated second and third sentence in first paragraph.  
(Page 24) Table 5-1: Changed G.772 Monitor Configuration (GMC) to G.772 Monitor Control;  
added “Status” to AIS register description; changed ADDP register name from Address Pointer  
to Address Pointer for Bank Selection (see also Table 5-2, Table 5-3, and Table 5-4).  
(Page 26) Table 5-4: Added Reserved register row for 0Fh; deleted Receive Bit Error Count  
Register 4 (does not exist in this device) and changed to Reserved (17h).  
(Page 27) Table 5-5: In GMC, changed bits 7, 6, 5 from Reserved to BERTDIR, BMCKS,  
BTCKS (see register description on page 32) and corrected bits 4 to 0 to match description  
(from GMC[4:1] to GMC[3:0]); for TST, changed bits 5 and 4 from T1MODE and TIMPRM to  
Reserved to correctly match the description on page 35.  
(Page 27) Table 5-6: Corrected SRS to SRMS.  
(Page 28) Table 5-7: For GMR, changed bits 2 and 1 from Reserved to JABWS1 and JABWS0.  
See also the GMR bit description on page 43.  
(Page 28) Table 5-8: For BPCR2, BSPR2, and BSPR4, changed TYPE from “—“ to “RW”; for  
BSR, changed TYPE from “R/W” to “R” and corrected PMS bit 3 to correctly show it is read-only  
(added underline); for BSRL, changed TYPE from “RL/W” to “R” and corrected PMSL bit 3 to  
correctly show it is read-only (added underline).  
(Page 29) ALBC: changed register description from Analog Loopback Control to Analog  
Loopback Configuration; RLBC: changed register description from Remote Loopback Control to  
Remote Loopback Configuration and added note to bits 7 to 0 description.  
100 of 101  
 
DS26303: 3.3V, T1/E1/J1, Short-Haul, Octal Line Interface Unit  
REVISION  
DESCRIPTION  
(Page 30) LOSS: added missing “S” to bit names (from LOS[8:1] to LOSS[8:1]); DFMS: changed  
bit description for bits 7 to 0.  
(Page 31) LOSIS: changed bit description for bits 7 to 0; DFMIS: changed bit description for bits  
7 to 0.  
(Page 33) DLBC: changed register description from Digital Loopback Control to Digital Loopback  
Configuration and added note to bits 7 to 0 description.  
(Page 34) GC: updated descriptions for bits 7 to 0.  
(Page 35) TST: changed register description from Template Select Transmitter to Template  
Select Transceiver.  
(Page 36) OEB: updated bits 7 to 0 description.  
(Page 37) AISI: added “S” and “Status” to register name and description; updated bit names and  
description; ADDP: changed register description from Address Pointer to Address Pointer for  
Bank Selection.  
(Page 38) TPDE: corrected bits 7 to 0 name from TPDE[7:0] to TPDE[8:1].  
(Page 39) EZDE: corrected bits 7 to 0 name from EXZDE[8:1] to EZDE[8:1].  
(Page 40) IJAPS: updated bits 7 to 0 description; IJAFLT: corrected bits 7 to 0 name to show  
read-only (added underline) and added sentence at end of description.  
(Page 43) GMR: changed bits 2 and 1 from Reserved to JABWS1 and JABWS0.  
(Page 44) LVDS: added information on when the bit is cleared.  
(Page 54) Section 6.1: Power-Up and Reset. Deleted “A reset can also be performed in software  
by writing to SWR register.”  
(Page 55) Section 6.3: Transmitter. In second paragraph, first sentence, “The data is encoded  
with HDB3 or B8ZS or NRZ encoding …” changed NRZ to AMI.  
(Page 59) Section 6.3.3: Dual-Rail Mode, Section 6.3.4: Single-Rail Mode, and Section 6.4:  
Receiver. Updated paragraphs.  
(Page 65) Section 6.8.3: Remote Loopback. Added information about when the TCLKn pin is  
ignored.  
(Page 67) Added new Section 6.8.4: Dual Loopback and Figure 6-11.  
(Page 69) Added new Section 6.9.2: BERT Interrupt Handling.  
(Page 80) Table 10-2: added Analog Loss-of-Signal Threshold Hysteresis parameter; updated  
Note 1.  
(Page 97) Added new Section 11: Pin Configuration.  
(Page 78) Table 8-3: added “Note 1: Specifications to -40°C are guaranteed by design (GBD).”  
053107  
(Pages 81, 84, 87, 90) Table 10-3, 10-4, 10-5, 10-6: added “Note 1: Timing parameters in this  
table are guaranteed by design (GBD).”  
101 of 101  
Maxim/Dallas Semiconductor cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim/Dallas Semiconductor product.  
No circuit patent licenses are implied. Maxim/Dallas Semiconductor reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2007 Maxim Integrated Products  
The Maxim logo is a registered trademark of Maxim Integrated Products, Inc. The Dallas logo is a registered trademark of Dallas Semiconductor Corporation.  

相关型号:

DS26303L-XXX+

3.3V, E1/T1/J1, Short-Haul, Octal Line Interface Unit
DALLAS

DS26303L-XXX+

3.3V, E1/T1/J1, Short-Haul, Octal Line Interface Unit
MAXIM

DS26303LN-120

3.3V, E1/T1/J1, Short-Haul, Octal Line Interface Unit
DALLAS

DS26303LN-120+

3.3V, E1/T1/J1, Short-Haul, Octal Line Interface Unit
DALLAS

DS26303LN-75

3.3V, E1/T1/J1, Short-Haul, Octal Line Interface Unit
DALLAS

DS26303LN-75+

3.3V, E1/T1/J1, Short-Haul, Octal Line Interface Unit
DALLAS

DS26303LN-XXX

3.3V, E1/T1/J1, Short-Haul, Octal Line Interface Unit
DALLAS

DS26303LN-XXX

3.3V, E1/T1/J1, Short-Haul, Octal Line Interface Unit
MAXIM

DS26303LN-XXX+

3.3V, E1/T1/J1, Short-Haul, Octal Line Interface Unit
DALLAS

DS26303LN-XXX+

3.3V, E1/T1/J1, Short-Haul, Octal Line Interface Unit
MAXIM

DS26303_07

3.3V, E1/T1/J1, Short-Haul, Octal Line Interface Unit
DALLAS

DS26303_V01

3.3V, E1/T1/J1, Short-Haul, Octal Line Interface Unit
MAXIM