DS26334 [MAXIM]

3.3V, 16-Channel, E1/T1/J1 Short- and Long-Haul Line Interface Unit;
DS26334
型号: DS26334
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

3.3V, 16-Channel, E1/T1/J1 Short- and Long-Haul Line Interface Unit

文件: 总121页 (文件大小:1186K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-5753; Rev 3/11  
DEMO KIT AVAILABLE  
DS26334  
3.3V, 16-Channel, E1/T1/J1 Short- and Long-Haul  
Line Interface Unit  
GENERAL DESCRIPTION  
FEATURES  
.
16 E1, T1, or J1 Short/Long-Haul Line  
Interface Units  
The DS26334 is a 16-channel short/long-haul line  
interface unit (LIU) that supports E1/T1/J1 from a  
single 3.3V power supply. A single bill of material can  
support E1/T1/J1 that requires no external  
termination. Redundancy is supported through  
nonintrusive monitoring, optimal high-impedance  
modes and configurable 1:1 or 1+1 backup  
enhancements. An on-chip synthesizer generates the  
E1/T1/J1 clock rates by a single master clock input of  
various frequencies. Two clock output references are  
also offered. The device is offered in a 256-pin  
TE-CSBGA, the smallest package available for a  
16-channel LIU.  
.
.
Independent E1, T1 or J1 Selections  
Fully Internal Impedance Match Requires No  
External Resistors  
.
Software-Selectable Transmit and Receive-  
Side Impedance Match  
.
.
Crystal-Less Jitter Attenuator  
Selectable Single-Rail and Dual-Rail Mode  
and AMI or HDB3/B8ZS Line Encoding and  
Decoding  
.
.
Detection and Generation of AIS  
Digital/Analog Loss of Signal Detection as  
per T1.231, G.775 and ETS 300 233  
APPLICATIONS  
T1 Digital Cross-Connects  
ATM and Frame Relay Equipment  
Wireless Base Stations  
ISDN Primary Rate Interface  
E1/T1/J1 Multiplexer and Channel Banks  
E1/T1/J1 LAN/WAN Routers  
.
External Master Clock Can Be Multiple of  
2.048MHz or 1.544MHz for T1/J1 or E1  
Operation; This Clock Will Be Internally  
Adapted for T1 or E1 Usage  
.
Receiver Signal Level Indicator from -2.5dB to  
-38dB in T1 Mode and -3dB to -43dB in E1  
Mode in 2.5dB Increments  
FUNCTIONAL DIAGRAM  
.
.
Two Built-In BERT Testers for Diagnostics  
JTAG  
MODE  
LOSS  
8-Bit Parallel Interface Support for Intel or  
Motorola Mode or a 4-Wire Serial Interface  
SOFTWARE CONTROL  
AND JTAG  
.
.
.
Transmit Short-Circuit Protection  
G.772 Nonintrusive Monitoring  
Receive Monitor Mode Handles Combinations  
of 14dB to 30dB of Resistive Attenuation  
Along with 12dB to 30dB of Cable Attenuation  
RTIP  
RPOS  
RNEG  
RCLK  
RECEIVER  
RRING  
TPOS  
TTIP  
TNEG  
TCLK  
TRANSMITTER  
TRING  
.
Specification Compliance to the Latest T1  
and E1 Standards  
1
.
.
Single 3.3V Supply with 5V Tolerant I/O  
JTAG Boundary Scan as Per IEEE 1149.1  
ORDERING INFORMATION  
16  
PART  
TEMP RANGE PIN-PACKAGE  
DS26334G  
DS26334G+  
DS26334GN  
0°C to +70°C 256 TE-CSBGA  
0°C to +70°C 256 TE-CSBGA  
-40°C to +85°C 256 TE-CSBGA  
DS26334GN+ -40°C to +85°C 256 TE-CSBGA  
+Denotes a lead(Pb)-free/RoHS compliant package.  
Note: Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of any device  
may be simultaneously available through various sales channels. For information about device errata, click here: www.maxim-ic.com/errata.  
1 of 121  
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
TABLE OF CONTENTS  
1
STANDARDS COMPLIANCE ........................................................................................................ 6  
1.1 TELECOM SPECIFICATIONS COMPLIANCE ....................................................................................... 6  
DETAILED DESCRIPTION ............................................................................................................ 7  
2
3
4
5
BLOCK DIAGRAMS ...................................................................................................................... 8  
PIN DESCRIPTION ...................................................................................................................... 10  
FUNCTIONAL DESCRIPTION ..................................................................................................... 17  
5.1 PORT OPERATION ...................................................................................................................... 17  
5.1.1 Serial Port Operation ..................................................................................................................... 17  
5.1.2 Parallel Port Operation................................................................................................................... 18  
5.1.3 Interrupt Handling .......................................................................................................................... 18  
5.2 POWER-UP AND RESET .............................................................................................................. 19  
5.3 MASTER CLOCK ......................................................................................................................... 19  
5.4 TRANSMITTER............................................................................................................................ 20  
5.4.1 Transmit Line Templates................................................................................................................ 22  
5.4.2 LIU Transmit Front-End.................................................................................................................. 25  
5.4.3 Transmit Dual-Rail Mode ............................................................................................................... 26  
5.4.4 Transmit Single-Rail Mode............................................................................................................. 26  
5.4.5 Zero Suppression—B8ZS or HDB3................................................................................................ 26  
5.4.6 Transmit Power-Down.................................................................................................................... 26  
5.4.7 Transmit All Ones .......................................................................................................................... 27  
5.4.8 Driver Fail Monitor.......................................................................................................................... 27  
5.5 RECEIVER.................................................................................................................................. 27  
5.5.1 Receiver Impedance Matching Calibration ..................................................................................... 27  
5.5.2 Receiver Monitor Mode.................................................................................................................. 27  
5.5.3 Peak Detector and Slicer ............................................................................................................... 28  
5.5.4 Receive Level Indicator.................................................................................................................. 28  
5.5.5 Clock and Data Recovery............................................................................................................... 28  
5.5.6 Loss of Signal................................................................................................................................ 28  
5.5.7 AIS ................................................................................................................................................ 29  
5.5.8 Receive Dual-Rail Mode ................................................................................................................ 30  
5.5.9 Receive Single-Rail Mode.............................................................................................................. 30  
5.5.10 Bipolar Violation and Excessive Zero Detector ............................................................................... 30  
5.6 JITTER ATTENUATOR.................................................................................................................. 31  
5.7 G.772 MONITOR ........................................................................................................................ 32  
5.8 LOOPBACKS............................................................................................................................... 32  
5.8.1 Analog Loopback ........................................................................................................................... 32  
5.8.2 Digital Loopback ............................................................................................................................ 33  
5.8.3 Remote Loopback.......................................................................................................................... 33  
5.9 BERT........................................................................................................................................ 34  
5.9.1 General Description ....................................................................................................................... 34  
5.9.2 Configuration and Monitoring ......................................................................................................... 35  
5.9.3 Receive Pattern Detection.............................................................................................................. 36  
5.9.4 Transmit Pattern Generation.......................................................................................................... 38  
6
7
REGISTER MAPS AND DEFINITION .......................................................................................... 39  
6.1 REGISTER DESCRIPTION............................................................................................................. 48  
6.1.1 Primary Register Bank................................................................................................................... 48  
6.1.2 Secondary Register Bank............................................................................................................... 63  
6.1.3 Individual LIU Register Bank.......................................................................................................... 66  
6.1.4 BERT Registers............................................................................................................................. 85  
JTAG BOUNDARY SCAN ARCHITECTURE AND TEST ACCESS PORT.................................. 92  
7.1 TAP CONTROLLER STATE MACHINE............................................................................................ 93  
7.1.1 Test-Logic-Reset ........................................................................................................................... 93  
7.1.2 Run-Test-Idle................................................................................................................................. 93  
2 of 121  
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
7.1.3 Select-DR-Scan............................................................................................................................. 93  
7.1.4 Capture-DR ................................................................................................................................... 93  
7.1.5 Shift-DR......................................................................................................................................... 93  
7.1.6 Exit1-DR........................................................................................................................................ 93  
7.1.7 Pause-DR...................................................................................................................................... 93  
7.1.8 Exit2-DR........................................................................................................................................ 93  
7.1.9 Update-DR..................................................................................................................................... 93  
7.1.10 Select-IR-Scan............................................................................................................................... 94  
7.1.11 Capture-IR..................................................................................................................................... 94  
7.1.12 Shift-IR .......................................................................................................................................... 94  
7.1.13 Exit1-IR.......................................................................................................................................... 94  
7.1.14 Pause-IR ....................................................................................................................................... 94  
7.1.15 Exit2-IR.......................................................................................................................................... 94  
7.1.16 Update-IR ...................................................................................................................................... 94  
7.2 INSTRUCTION REGISTER............................................................................................................. 96  
7.2.1 EXTEST ........................................................................................................................................ 96  
7.2.2 HIGHZ........................................................................................................................................... 96  
7.2.3 CLAMP.......................................................................................................................................... 96  
7.2.4 SAMPLE/PRELOAD...................................................................................................................... 96  
7.2.5 IDCODE ........................................................................................................................................ 96  
7.2.6 BYPASS........................................................................................................................................ 96  
7.3 TEST REGISTERS ....................................................................................................................... 97  
7.3.1 Boundary Scan Register ................................................................................................................ 97  
7.3.2 Bypass Register............................................................................................................................. 97  
7.3.3 Identification Register .................................................................................................................... 97  
8
9
DC ELECTRICAL CHARACTERIZATION ................................................................................... 98  
8.1 DC PIN LOGIC LEVELS................................................................................................................ 98  
8.2 SUPPLY CURRENT AND OUTPUT VOLTAGE................................................................................... 98  
AC TIMING CHARACTERISTICS ................................................................................................ 99  
9.1 LINE INTERFACE CHARACTERISTICS ............................................................................................ 99  
9.2 PARALLEL HOST INTERFACE TIMING CHARACTERISTICS...............................................................100  
9.3 SERIAL PORT............................................................................................................................112  
9.4 SYSTEM TIMING ........................................................................................................................113  
9.5 JTAG TIMING............................................................................................................................115  
10 PIN CONFIGURATION................................................................................................................116  
11 PACKAGE INFORMATION.........................................................................................................117  
12 THERMAL INFORMATION.........................................................................................................118  
13 DATA SHEET REVISION HISTORY...........................................................................................120  
3 of 121  
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
LIST OF FIGURES  
Figure 3-1. Block Diagram ..................................................................................................................................... 8  
Figure 3-2. Receive Logic Detail ............................................................................................................................ 9  
Figure 3-3. Transmit Logic Detail ........................................................................................................................... 9  
Figure 5-1. Serial Port Operation for Write Access ............................................................................................... 17  
Figure 5-2. Serial Port Operation for Read Access with CLKE = 0........................................................................ 17  
Figure 5-3. Serial Port Operation for Read Access with CLKE = 1........................................................................ 18  
Figure 5-4. Interrupt Handling Flow Diagram........................................................................................................ 19  
Figure 5-5. Prescaler PLL and Clock Generator ................................................................................................... 20  
Figure 5-6. T1 Transmit Pulse Templates............................................................................................................. 23  
Figure 5-7. E1 Transmit Pulse Templates............................................................................................................. 24  
Figure 5-8. LIU Front-End .................................................................................................................................... 25  
Figure 5-9. Jitter Attenuation................................................................................................................................ 31  
Figure 5-10. Analog Loopback ............................................................................................................................. 32  
Figure 5-11. Digital Loopback .............................................................................................................................. 33  
Figure 5-12. Remote Loopback............................................................................................................................ 33  
Figure 5-13. PRBS Synchronization State Diagram.............................................................................................. 36  
Figure 5-14. Repetitive Pattern Synchronization State Diagram............................................................................ 37  
Figure 7-1. JTAG Functional Block Diagram......................................................................................................... 92  
Figure 7-2. TAP Controller State Diagram ............................................................................................................ 95  
Figure 9-1. Intel Nonmuxed Read Cycle............................................................................................................. 101  
Figure 9-2. Intel Mux Read Cycle....................................................................................................................... 102  
Figure 9-3. Intel Nonmux Write Cycle................................................................................................................. 104  
Figure 9-4. Intel Mux Write Cycle ....................................................................................................................... 105  
Figure 9-5. Motorola Nonmux Read Cycle.......................................................................................................... 107  
Figure 9-6. Motorola Mux Read Cycle................................................................................................................ 108  
Figure 9-7. Motorola Nonmux Write Cycle.......................................................................................................... 110  
Figure 9-8. Motorola Mux Write Cycle ................................................................................................................ 111  
Figure 9-9. Serial Bus Timing Write Operation.................................................................................................... 112  
Figure 9-10. Serial Bus Timing Read Operation with CLKE = 0 .......................................................................... 112  
Figure 9-11. Serial Bus Timing Read Operation with CLKE = 1 .......................................................................... 112  
Figure 9-12. Transmitter Systems Timing........................................................................................................... 113  
Figure 9-13. Receiver Systems Timing............................................................................................................... 114  
Figure 9-14. JTAG Timing.................................................................................................................................. 115  
Figure 10-1. 256-Ball TE-CSBGA....................................................................................................................... 116  
4 of 121  
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
LIST OF TABLES  
Table 4-1. Pin Descriptions.................................................................................................................................. 10  
Table 5-1. Parallel Port Mode Selection and Pin Functions................................................................................... 18  
Table 5-2. Telecommunications Specification Compliance for DS26334 Transmitters........................................... 21  
Table 5-3. Registers Related to Control of DS26334 Transmitters........................................................................ 21  
Table 5-4. Template Selections for Short-Haul Mode............................................................................................ 22  
Table 5-5. Template Selections for Long-Haul Mode............................................................................................ 22  
Table 5-6. LIU Front-End Values.......................................................................................................................... 26  
Table 5-7. Loss Criteria ANSI T1.231, ITU-T G.775, and ETS 300 233 Specifications .......................................... 28  
Table 5-8. AIS Criteria ANSI T1.231, ITU-T G.775, and ETS 300 233 Specifications............................................ 29  
Table 5-9. AIS Detection and Reset Criteria for DS26334..................................................................................... 29  
Table 5-10. Registers Related to AIS Detection.................................................................................................... 30  
Table 5-11. BPV, Code Violation, and Excessive Zero Error Reporting................................................................. 30  
Table 5-12. Pseudorandom Pattern Generation ................................................................................................... 35  
Table 5-13. Repetitive Pattern Generation............................................................................................................ 35  
Table 6-1. Primary Register Set ........................................................................................................................... 40  
Table 6-2. Secondary Register Set....................................................................................................................... 41  
Table 6-3. Individual LIU Register Set.................................................................................................................. 42  
Table 6-4. BERT Register Set.............................................................................................................................. 43  
Table 6-5. Primary Register Set Bit Map .............................................................................................................. 44  
Table 6-6. Secondary Register Set Bit Map.......................................................................................................... 45  
Table 6-7. Individual LIU Register Set Bit Map ..................................................................................................... 46  
Table 6-8. BERT Register Bit Map ....................................................................................................................... 47  
Table 6-9. G.772 Monitoring Control (LIU 1)......................................................................................................... 54  
Table 6-10. G.772 Monitoring Control (LIU 9)....................................................................................................... 54  
Table 6-11. TST Template Select Transmitter Register (LIUs 1–8) ....................................................................... 59  
Table 6-12. TST Template Select Transmitter Register (LIUs 9–16) ..................................................................... 59  
Table 6-13. Template Selection............................................................................................................................ 60  
Table 6-14. Address Pointer Bank Selection ........................................................................................................ 63  
Table 6-15. DS26334 MCLK Selections ............................................................................................................... 69  
Table 6-16. Receiver Sensitivity/Monitor Mode Gain Selection ............................................................................. 75  
Table 6-17. Receiver Signal Level........................................................................................................................ 76  
Table 6-18. Bit Error Rate Transceiver Select for Channels 1–8........................................................................... 80  
Table 6-19. Bit Error Rate Transceiver Select for Channels 9–16 ......................................................................... 80  
Table 6-20. PLL Clock Select............................................................................................................................... 83  
Table 6-21. Clock A Select................................................................................................................................... 83  
Table 7-1. Instruction Codes for IEEE 1149.1 Architecture ................................................................................... 96  
Table 7-2. ID Code Structure ............................................................................................................................... 97  
Table 7-3. Device ID Codes ................................................................................................................................. 97  
Table 8-1. Recommended DC Operating Conditions............................................................................................ 98  
Table 8-2. Pin Capacitance.................................................................................................................................. 98  
Table 8-3. DC Characteristics .............................................................................................................................. 98  
Table 9-1. Transmitter Characteristics.................................................................................................................. 99  
Table 9-2. Receiver Characteristics...................................................................................................................... 99  
Table 9-3. Intel Read Mode Characteristics........................................................................................................ 100  
Table 9-4. Intel Write Cycle Characteristics........................................................................................................ 103  
Table 9-5. Motorola Read Cycle Characteristics................................................................................................. 106  
Table 9-6. Motorola Write Cycle Characteristics................................................................................................. 109  
Table 9-7. Serial Port Timing Characteristics...................................................................................................... 112  
Table 9-8. Transmitter System Timing................................................................................................................ 113  
Table 9-9. Receiver System Timing.................................................................................................................... 114  
Table 9-10. JTAG Timing Characteristics........................................................................................................... 115  
Table 12-1. Thermal Characteristics................................................................................................................... 118  
Table 12-2. Package Power Dissipation (for Thermal Considerations)................................................................ 118  
Table 12-3. Per-Channel Power-Down Savings (for Thermal Considerations)..................................................... 119  
5 of 121  
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
1 STANDARDS COMPLIANCE  
1.1 Telecom Specifications Compliance  
The DS26334 LIU meets all the relevant latest Telecommunications Specifications. The following provides the T1  
and E1 Specifications and relevant sections that are applicable to the DS26334.  
T1-Related Telecommunications Specifications  
ANSI T1.102: Digital Hierarchy Electrical Interface  
ANSI T1.231: Digital Hierarchy- Layer 1 in Service Performance Monitoring  
ANSI T1.403: Network and Customer Installation Interface- DS1 Electrical Interface  
G.736: Characteristics of a synchronous digital multiplex equipment operating at 2048kbps  
G.823: The control of jitter and wander within digital networks which are based on the 2048kbps hierarchy  
Pub 62411: High Capacity Terrestrial Digital Service  
ITU-T G.772: Protected monitoring points provided on digital transmission systems  
E1-Related Telecommunications Specifications  
ITU-T G.703: Physical/Electrical Characteristics of G.703 Hierarchical Digital Interfaces  
ITU-T G.736: Characteristics of Synchronous Digital Multiplex Equipment operating at 2048kbps  
ITU-T G.742: Second Order Digital Multiplex Equipment Operating at 8448kbps  
ITU-T G.772: Protected monitoring points provided on digital transmission systems  
ITU-T G.775: Loss of signal (LOS) and alarm indication signal (AIS) defect detection and clearance criteria  
ETS 300 166: Physical and electrical characteristics of hierarchical digital interfaces for equipment using  
the 2048kbps-based plesiosynchronous or synchronous digital hierarchies  
ETS 300 233: Integrated Services Digital Network (ISDN)  
G.736: Characteristics of a synchronous digital multiplex equipment operating at 2048kbps  
G.823: The control of jitter and wander within digital networks which are based on the 2048kbps hierarchy  
Pub 62411: High Capacity Terrestrial Digital Service  
6 of 121  
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
2 DETAILED DESCRIPTION  
The DS26334 is a single-chip, 16-channel, long-haul and short-haul line interface unit for T1 (1.544Mbps) and E1  
(2.048Mbps) applications. Sixteen independent receivers and transmitters are provided in a single TE-CSBGA  
package. The LIUs can be individually selected for T1, J1, or E1 operation. The LIU requires a single master  
reference clock. This clock can be either 1.544MHz or 2.048MHz or multiples thereof, and either frequency can be  
internally adapted for T1, J1, or E1 mode. Internal impedance matching provided for both transmit and receive  
paths reduces external component count. The transmit waveforms are compliant to G.703 and T1.102  
specification. The DS26324 provides software-selectable internal transmit termination for 100T1 twisted pair,  
110J1 twisted pair, 120E1 twisted pair, and 75E1 coaxial applications. The transmitters have fast high-  
impedance capability and can be individually powered down.  
The receivers can function with up to a receive signal attenuation of 36dB for T1 mode, or 43dB for E1 mode. A  
monitor gain setting also can be enabled to provide 14dB, 20dB, 26dB, and 32dB of resistive gain. The DS26334  
can be configured as a 14-channel LIU with Channel 1 and 9 used for nonintrusive monitoring in accordance with  
G.772. The receivers and transmitters can be programmed into single or dual-rail mode. AMI or HDB3/B8ZS  
encoding and decoding is selectable in single-rail mode. A 128-bit crystal-less on-board jitter attenuator for each  
LIU can be placed in receive or transmit directions. The jitter attenuator meets the ETS CTR12/13 ITU-T G.736,  
G.742, G.823, and AT&T Pub 62411 specifications.  
The DS26334 detects and generates AIS in accordance with T1.231, G.775, and ETS 300 233. Loss of signal is  
detected in accordance with T1.231, G.775, and ETS 300 233. The DS26334 can perform digital, analog, remote,  
and dual loopbacks on individual LIUs. JTAG boundary scan is provided for the digital pins.  
The DS26334 can be configured using 8-bit multiplexed or nonmultiplexed Intel or Motorola ports. A 4-pin serial  
port selection is also available for configuration and monitoring of the device.  
The analog AMI/HDB3 waveform of the E1 line or the AMI/B8ZS waveform of the T1 line is transformer coupled  
into the RTIP and RRING pins of the DS26334. The user can terminate the receive line using only internal  
termination that requires no external resistors. Or, the user has the option to use partially internal impedance  
matching using a common 120external resistor for E1, T1, and J1, and matching the line impedance internally to  
obtain 75, 100, 110, or 120termination values. Note that fully internal impedance match requires a 1:1  
transformer on the receive line. Partially internal impedance matching supports either a 1:1 or a 1:2 transformer on  
the receive line. If a 1:2 transformer is used, the external termination resistor should be 30. For long-haul  
applications, a 1:1 transformer on the receive line is preferred. The DS26334 drives the E1 or T1 line from the TTIP  
and TRING pins by a 1:2 coupling transformer.  
The device recovers clock and data from the analog signal and passes it through a selectable jitter attenuator  
outputting the received line clock at RCLK and data at RPOS and RNEG.  
The DS26334 receivers can recover data and clock for up to 36dB of attenuation of the transmitted signals in T1  
mode and 43dB for E1 mode. Receiver 1 can monitor the performance of receivers 2 to 8 or transmitters 2 to 8.  
Receiver 9 can monitor the performance of receivers 10 to 16 or transmitters 10 to 16.  
The DS26334 contains 16 identical transmitters. Digital transmit data is input at TPOS/TNEG with reference to  
TCLK. The data at these pins can be single-rail or dual-rail. This data is processed by waveshaping circuitry and  
the line driver to output at TTIP and TRING in accordance with ANSI T1.102 for T1/J1 or G.703 for E1 mask.  
7 of 121  
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
3 BLOCK DIAGRAMS  
Figure 3-1. Block Diagram  
TYPICAL OF ALL 16 CHANNELS  
T1CLK E1CLK  
DS26334  
MUX  
VCO/PLL  
LOS  
RPOS/RDAT  
RRING  
RTIP  
Receive Logic  
RCLK  
RNEG/CV  
Unframed All  
Ones Insertion  
TPOS/TDAT  
TCLK  
TRING  
Transmit Logic  
TTIP  
OE  
TNEG  
Reset  
Reset  
T1CLK  
E1CLK  
16  
16  
Control  
and  
Interrupt  
Master Clock  
Adapter  
Port Interface  
JTAG PORT  
5
8
8 of 121  
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Figure 3-2. Receive Logic Detail  
RCLK  
RCLK  
Excessive  
Zero  
Detect  
T1.231  
IAISEL  
AISEL  
POS  
NEG  
EN  
RPOS  
All Ones  
Insert  
(AIS)  
MUX  
NRZ Data  
B8ZS/HDB3/AMI  
Decoder (G.703, T1.102)  
RNEG/CV  
BPVs, Code Violatiions  
(T1.231, O.161)  
BPV/CV/EXZ  
AIS  
Detector  
G.775, ETSI 300233,  
T1.231  
Figure 3-3. Transmit Logic Detail  
B8ZS/HDB3/AMI  
Coder (G.703,  
T1.102)  
To Remote  
Loopback  
BPV  
Insert  
MUX  
TPOS/  
TDATA  
TNEG/  
BPV  
TCLK  
9 of 121  
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
4 PIN DESCRIPTION  
Table 4-1. Pin Descriptions  
NAME  
PIN  
TYPE  
FUNCTION  
ANALOG TRANSMIT AND RECEIVE  
TTIP1  
TTIP2  
E1  
F1  
TTIP3  
K1  
TTIP4  
TTIP5  
TTIP6  
TTIP7  
TTIP8  
TTIP9  
L1  
T5  
T6  
Transmit Bipolar Tip for Channels 1–16. These pins are differential  
line driver tip outputs. These pins can be high impedance if pin OE is  
low. When “1” is set in the Output Enable Register OE bit, the  
associated TTIPn pin will be enabled when the OE pin is high. The  
differential outputs of TTIPn and TRINGn can provide internal  
matched impedance for E1 75, E1 120, T1 100, or J1 110.  
T10  
T11  
M16  
L16  
G16  
F16  
A12  
A11  
A7  
A6  
E2  
F2  
K2  
Analog  
output  
TTIP10  
TTIP11  
TTIP12  
TTIP13  
TTIP14  
TTIP15  
TTIP16  
TRING1  
TRING2  
TRING3  
TRING4  
TRING5  
TRING6  
TRING7  
TRING8  
TRING9  
TRING10  
TRING11  
TRING12  
TRING13  
TRING14  
TRING15  
TRING16  
RTIP1  
If the TCLK input for a given LIU is held low for 64 MCLKs, that LIU’s  
transmitter is powered down and the TTIP/TRING outputs are high  
impedance.  
L2  
R5  
R6  
Transmit Bipolar Ring for Channels 1–16. These pins are  
differential line driver ring outputs. These pins can be high impedance  
if pin OE is low. When “1” is set in the Output Enable Register OE bit,  
the associated TRINGn pin will be enabled when the OE pin is high.  
The differential outputs of TTIPn and TRINGn can provide internal  
matched impedance for E1 75, E1 120, T1 100, or J1 110.  
R10  
R11  
M15  
L15  
G15  
F15  
B12  
B11  
B7  
Analog  
output  
If the TCLK input for a given LIU is held low for 64 MCLKs, that LIU’s  
transmitter is powered down and the TTIP/TRING outputs are high  
impedance.  
B6  
A1  
RTIP2  
C1  
RTIP3  
H1  
RTIP4  
N1  
RTIP5  
T1  
RTIP6  
RTIP7  
RTIP8  
RTIP9  
RTIP10  
RTIP11  
RTIP12  
RTIP13  
RTIP14  
RTIP15  
RTIP16  
T3  
T8  
Receive Bipolar Tip for Channels 1–16. Receive analog input for  
differential receiver. Data and clock are recovered and output at  
RPOS/RNEG and RCLK pins, respectively. The differential inputs of  
RTIPn and RRINGn can provide internal impedance matching with  
external resistance for E1 75, E1 120, T1 100, or J1 110.  
T13  
T16  
P16  
J16  
D16  
A16  
A14  
A9  
Analog  
input  
A4  
10 of 121  
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
NAME  
PIN  
TYPE  
FUNCTION  
Resistor Reference. If fully internal receive impedance match is  
selected, a 16kΩ ±1% resistor to GND is needed. If not used, tie pin  
low.  
Analog  
input  
RESREF  
R9  
RRING1  
RRING2  
RRING3  
RRING4  
RRING5  
RRING6  
RRING7  
RRING8  
RRING9  
RRING10  
RRING11  
RRING12  
RRING13  
RRING14  
RRING15  
RRING16  
A2  
C2  
H2  
N2  
R1  
R3  
R8  
Receive Bipolar Ring for Channels 1–16. Receive analog input for  
differential receiver. Data and clock are recovered and output at  
RPOS/RNEG and RCLK pins, respectively. The differential inputs of  
RTIPn and RRINGn can provide internal impedance matching with  
external resistance for E1 75, E1 120, T1 100, or J1 110.  
R13  
T15  
P15  
J15  
D15  
B16  
B14  
B9  
Analog  
input  
B4  
DIGITAL Tx/Rx  
TPOS1/TDATA1  
TPOS2/TDATA2  
TPOS3/TDATA3  
TPOS4/TDATA4  
TPOS5/TDATA5  
TPOS6/TDATA6  
TPOS7/TDATA7  
TPOS8/TDATA8  
TPOS9/TDATA9  
TPOS10/TDATA10  
TPOS11/TDATA11  
TPOS12/TDATA12  
TPOS13/TDATA13  
TPOS14/TDATA14  
TPOS15/TDATA15  
TPOS16/TDATA16  
TNEG1  
F6  
G7  
J6  
K6  
L9  
Transmit Positive Data Input for Channels 1–6. When DS26334 is  
configured in dual-rail mode, the data input to TPOSn is output as a  
positive pulse on the line (tip and ring).  
N5  
P12  
M11  
L11  
J11  
G11  
C14  
F9  
E7  
N12  
D5  
I
Transmit Data Input for Channels 1–16. When the device is  
configured in single-rail mode NRZ data is input to TDATAn. The data  
is sampled on the falling edge of TCLKn and encoded HDB3/B8ZS or  
AMI before being output to the line.  
C3  
TNEG2  
TNEG3  
TNEG4  
TNEG5  
J14  
J5  
G10  
M6  
P6  
Transmit Negative Data for Channels 1–16. When DS26334 is  
configured in dual-rail mode. The data input to TNEGn is output as a  
negative mark on the line. TPOS and TNEG in dual-rail mode result in  
positive and negative pulses sent on the line:  
TNEG6  
TPOSn  
TNEGn  
OUTPUT PULSE  
Space  
Negative mark  
Positive mark  
Space  
TNEG7  
TNEG8  
TNEG9  
TNEG10  
TNEG11  
TNEG12  
TNEG13  
TNEG14  
P7  
K9  
0
0
1
1
0
1
0
1
I
L12  
J12  
H11  
E13  
G8  
F7  
TNEG15  
C6  
TNEG16  
C5  
11 of 121  
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
NAME  
PIN  
TYPE  
FUNCTION  
TCLK1  
TCLK2  
TCLK3  
TCLK4  
TCLK5  
F5  
G4  
G9  
H6  
M7  
L8  
Transmit Clock for Channels 1–16. The transmit clock has to be  
1.544MHz for T1 or 2.048MHz for E1 mode. TCLKn is the clock used  
to sample the data TPOS/TNEG or TDAT on the falling edge. The  
expected TCLK can be inverted.  
TCLK6  
TCLK7  
TCLK8  
TCLK9  
TCLK10  
TCLK11  
TCLK12  
TCLK13  
TCLK14  
L10  
P9  
If TCLKn is ‘high’ for 16 or more MCLKs, then transmit all ones  
(TAOs) is sent to the line side of the corresponding transmit channel.  
When TCLKn starts clocking again, normal operation will begin again  
for the corresponding transmit channel.  
I
K11  
K12  
F14  
E12  
C11  
D12  
N7  
If TCLKn is ‘low’ for 64 or more MCLKs, then the corresponding  
transmit channel on the line side will power-down and be put into high  
impedance. When TCLKn starts clocking again the corresponding  
transmit channel will power-up and come out of high impedance.  
TCLK15  
TCLK16  
D11  
F4  
RPOS1/RDATA1  
RPOS2/RDATA2  
RPOS3/RDATA3  
RPOS4/RDATA4  
RPOS5/RDATA5  
RPOS6/RDATA6  
RPOS7/RDATA7  
RPOS8/RDATA8  
RPOS9/RDATA9  
RPOS10/RDATA10  
RPOS11/RDATA11  
RPOS12/RDATA12  
RPOS13/RDATA13  
RPOS14/RDATA14  
RPOS15/RDATA15  
RPOS16/RDATA16  
RNEG1/CV1  
RNEG2/CV2  
RNEG3/CV3  
RNEG4/CV4  
RNEG5/CV5  
RNEG6/CV6  
RNEG7/CV7  
RNEG8/CV8  
RNEG9/CV9  
RNEG10/CV10  
RNEG11/CV11  
RNEG12/CV12  
RNEG13/CV13  
RNEG14/CV14  
RNEG15/CV15  
RNEG16/CV16  
F3  
L3  
L4  
K8  
M9  
P8  
M12  
M14  
K13  
G12  
E14  
C12  
C10  
C8  
E5  
E3  
G5  
K4  
Receive Positive Data Output for Channels 1–16. In dual-rail mode  
the NRZ data output indicates a positive pulse on RTIP/RRING. Upon  
detecting an LOS, AIS can be inserted if the AISEL bit in the GC  
(0Fh) register is set; otherwise, the pins will be active. AIS insertion  
can also be controlled on an individual LIU basis by the IAISEL (05h)  
register. If a given receiver is in power-down mode, the associated  
RPOS pin is high impedance.  
O,  
tri-state  
Receive Data Output for Channels 1–16. In single-rail mode, NRZ  
data is sent out on this pin. If a given receiver is in power-down mode,  
the associated RPOS pin is high impedance.  
Note: During an LOS condition, the RPOS/RDATA outputs remain  
active.  
Receive Negative Data Output for Channels 1–16. In dual-rail  
mode the NRZ data output indicates a negative pulse on  
RTIP/RRING. Upon detecting a LOS, AIS can be inserted if AISEL bit  
in the GC register is set; otherwise, the pins will be active. AIS  
insertion can also be controlled on an individual LIU basis by IAISEL  
register. If a given receiver is in power-down mode, the associated  
RNEG pin is high impedance.  
M3  
L7  
M10  
P11  
K10  
M13  
L14  
F13  
F11  
E10  
C9  
O,  
tri-state  
Code Violation for Channels 1–16. In single-rail mode, bipolar  
violation, code violation, and excessive zeros are reported on CVn. If  
HDB3 or B8ZS is not selected, this pin indicates only BPVs. If a given  
receiver is in power-down mode, the associated CV pin is high  
impedance.  
C7  
J3  
12 of 121  
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
NAME  
PIN  
TYPE  
FUNCTION  
RCLK1  
RCLK2  
RCLK3  
RCLK4  
RCLK5  
RCLK6  
RCLK7  
RCLK8  
RCLK9  
RCLK10  
RCLK11  
RCLK12  
RCLK13  
RCLK14  
RCLK15  
RCLK16  
D3  
G6  
K3  
K5  
P5  
M8  
P10  
P13  
L13  
K14  
G13  
F12  
E8  
Receive Clock for Channels 1–16. The receive data (RPOS/RNEG)  
is clocked out on the rising edge of RCLK. If a given receiver is in  
power-down mode the RCLK is high impedance. Upon an LOS being  
detected, the RCLK is switched from the recovered clock to MCLK.  
RCLK can be inverted by the RCLKI register.  
O,  
tri-state  
E9  
F8  
E6  
Master Clock. This is an independent free-running clock that can be  
a multiple of 2.048MHz ±50ppm for E1 mode or 1.544MHz ±50ppm  
for T1 mode. The clock selection is available by MC bits MPS0,  
MPS1, FREQS, and PLLE. A multiple of 2.048MHz can be internal  
adapted to 1.544MHz and a multiple of 1.544MHz can be internal  
adapted to 2.048MHz.  
MCLK  
H12  
I
LOS1  
LOS2  
LOS3  
LOS4  
LOS5  
LOS6  
LOS7  
LOS8  
LOS9  
D2  
G2  
J2  
M2  
R2  
T2  
Loss-of-Signal Output. This output goes high when there is no  
transition on the received signal over a specified interval. The output  
will go low when there is sufficient ones density in the received signal.  
The LOS criteria for assertion and desertion criteria are described in  
Section 5.5.6. The LOS outputs can be configured to comply with  
T1.231, ITU-T G.775, or ETS 300 233.  
R4  
R7  
O
T1/E1 Clock (TECLK) (Ball E11 only). This output becomes a T1 or  
E1 programmable clock output when enabled by register MC. For T1  
or E1 frequency selection, see the CCR register.  
R14  
N15  
K15  
H15  
B10  
B8  
LOS10  
LOS11  
LOS12  
LOS13  
LOS14  
LOS15/TECLK  
LOS16/CLKA  
Clock A (CLKA) (Ball F10 only). This output becomes a  
programmable clock output when enabled by register MC. For  
frequency options, see the CCR register.  
E11  
F10  
HOST SELECTION  
Mode Selection. This pin is used to select the control mode of the  
DS26334:  
Low Serial Host Mode  
MODESEL  
A3  
I
High Parallel Host Mode  
Motorola Intel Select. When this pin is low, Motorola mode is  
selected. When this pin is high Intel mode is selected.  
Chip Select Bar. This signal must be low during all accesses to the  
registers.  
MOTEL  
CSB  
B3  
I
I
P14  
13 of 121  
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
NAME  
PIN  
TYPE  
FUNCTION  
Shift Clock. In the serial host mode, this pin is the serial clock. Data  
on SDI is clocked on the rising edge of SCLK. The data is clocked on  
SDO on the rising edge of SCLK if CLKE is high. If CLKE is low the  
data on SDO is clocked on the falling edge of SCLK.  
Address Latch Enable. In parallel Intel multiplexed mode, the  
address lines are latched on the falling edge of ALE.  
SCLK/ALE/ASB  
N14  
I
Address Strobe Bar. In parallel Motorola multiplexed mode, the  
address is sampled on the falling edge of ASB.  
Note: Tie ALE/ASB pin high if using nonmuxed mode.  
Read Bar. In Intel host mode, this pin must be low for read operation.  
RDB/RWB  
H14  
G14  
I
I
Read Write Bar. In Motorola mode, this pin is low for write operation  
and high for read operation.  
Serial Data Input. In the serial host mode, this pin is the serial input  
SDI; it is sampled on the rising edge of SCLK.  
Write Bar. In Intel host mode, this pin is active low during write  
operation. The data or address (multiplexed mode) is sampled on the  
rising edge of WRB.  
SDI/WRB/DSB  
Data Strobe Bar. In the parallel Motorola mode, this pin is active low.  
During a write operation the data or address is sampled on the rising  
edge of DSB. During a read operation the data or address is driven  
on the rising edge of DSB. In the nonmultiplexed Motorola mode the  
address bus (A[5:0]) is latched on the falling edge of DSB.  
Serial Data Out. In serial host mode, the SDO data is output on this  
pin. If a serial write is in progress this pin is high impedance. During a  
read SDO is high impedance when the SDI is in command/address  
mode. If CLKE is low SDO is output on the rising edge of SCLK, if  
CLKE is high on the falling edge.  
SD0/RDYB/ACKB  
C13  
O
Ready Bar Output. A high on this pin reports to the host that the  
cycle is not complete and wait states must be inserted. A low means  
the cycle is complete.  
Acknowledge Bar. In Motorola parallel mode, a low on this pin  
indicates that the read data is available for the Host or that the written  
data cycle is complete.  
Interrupt Bar (Active Low). This signal is tri-state when RSTB pin is  
low. This interrupt signal is driven low when an event is detected on  
any of the enabled interrupt sources in any of the register banks.  
When there are no active and enabled interrupt sources, the pin can  
be programmed to either drive high or as open drain. The reset  
default is open drain when there are no active enabled interrupt  
sources. All interrupt sources are disabled when RSTB = 0 and they  
must be programmed to be enabled.  
O,  
open  
drain  
INTB  
D7  
14 of 121  
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
NAME  
PIN  
TYPE  
FUNCTION  
D7/AD7  
D6/AD6  
D5/AD5  
D4/AD4  
D3/AD3  
D2/AD2  
D1/AD1  
D0/AD0  
N3  
P3  
M4  
L5  
K7  
P4  
M5  
L6  
Data Bus 7–0. In nonmultiplexed host mode, these pins are the  
bidirectional data bus.  
I/O,  
tri-state  
Address/Data Bus 7–0. In multiplexed host mode, these pins are the  
bidirectional address/data bus. Note: AD7 and AD6 do not carry  
address information.  
In serial host mode, these pins should be grounded.  
Address 5. In the host nonmultiplexed mode, this is the most  
significant bit of the address bus.  
A5/BSWP  
E4  
I
I
Bit Swap. In serial host mode, this bit defines the serial data position  
to be MSB first when low and LSB first when high.  
In multiplexed host mode, this pin should be grounded.  
A4  
A3  
A2  
A1  
A0  
C4  
H5  
G3  
H3  
Address Bus 4–0. These five pins are address pins in the parallel  
host mode.  
In serial host mode and multiplexed host mode, these pins should be  
grounded.  
N10  
Output Enable. If this pin is pulled low all the transmitters outputs  
(TTIP and TRING) are high impedance. If pulled high all the  
transmitters are enabled when the associated output enable OE bit is  
set. If TST.RHPMC is set, the OE pin is granted control of the  
receiver internal termination. When OE is low, receiver internal  
termination will be high impedance. When OE is high, receiver  
termination will be enabled. The receiver can still monitor incoming  
signals even when termination is in high impedance.  
OE  
R12  
T14  
I
I
Clock Edge. If CLKE is high, SDO is clocked out on falling edge of  
SCLK and if low SDO is on rising edge of SCLK.  
Multiplexed/Nonmultiplexed Select Pin. When in parallel port  
mode, this pin is used to select multiplexed address and data  
operation or separate address and data. When mux is a high  
multiplexed address and data is used and when mux is low  
nonmultiplexed is used.  
CLKE/MUX  
JTAG  
JTAG Test Port Reset. This pin if low will reset the JTAG port. If not  
used it can be left unconnected.  
JTAG Test Mode Select. This pin is clocked on the rising edge of  
TCK and is used to control the JTAG selection between scan and  
Test Machine control.  
I,  
TRSTB  
TMS  
E15  
B13  
pullup  
I,  
pullup  
JTAG Test Clock. The data TDI and TMS are clocked on rising edge  
of TCK and TDO is clocked out on the falling edge of TCK.  
JTAG Test Data Out. This is the serial output of the JTAG port. The  
data is clocked out on the falling edge of TCK.  
TCK  
TDO  
D14  
A15  
I
O,  
high-Z  
Test Data Input. This pin input is the serial data of the JTAG Test.  
The data on TDI is clocked on the rising edge of TCK. This pin can be  
left unconnected.  
I,  
TDI  
B15  
pullup  
15 of 121  
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
NAME  
PIN  
TYPE  
FUNCTION  
RESET  
Reset Bar. This is the asynchronous reset input bar. It is internally  
pulled high. A 1µs low on this pin will reset the DS26334 registers to  
default value.  
I,  
RSTB  
B5  
pullup  
POWER SUPPLIES  
H8,  
J9  
H9,  
J8  
3.3V Digital Power Supply  
DVDD  
DVSS  
I
I
Digital Ground  
VDDT1  
VDDT2  
VDDT3  
VDDT4  
VDDT5  
VDDT6  
VDDT7  
VDDT8  
VDDT9  
VDDT10  
VDDT11  
VDDT12  
VDDT13  
VDDT14  
VDDT15  
VDDT16  
GNDT1  
GNDT2  
GNDT3  
GNDT4  
GNDT5  
GNDT6  
GNDT7  
GNDT8  
GNDT9  
GNDT10  
GNDT11  
GNDT12  
GNDT13  
GNDT14  
GNDT15  
GNDT16  
D1  
G1  
J1  
M1  
T4  
T7  
T9  
T12  
N16  
K16  
H16  
E16  
A13  
A10  
A8  
A5  
D4  
H4  
J4  
N4  
N6  
N8  
N9  
N11  
N13  
J13  
H13  
D13  
D10  
D9  
3.3V Power Supply for the Transmitter. All VDDT pins must be  
connected to VDDT, which has to be 3.3V.  
I,  
high-Z  
Analog Ground for Transmitters  
I
D8  
D6  
B1,  
C16,  
P1,  
R16,  
H7,  
J10  
B2,  
C15,  
P2,  
R15,  
H10,  
J7  
3.3V Analog Core Power Supply. Decouple each pin separately.  
AVDD  
AVSS  
I
I
Analog Core Ground  
16 of 121  
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
5 FUNCTIONAL DESCRIPTION  
5.1 Port Operation  
5.1.1 Serial Port Operation  
Setting MODESEL = ‘low’ enables the serial bus interface on the DS26334. Port read/write timing is unrelated to  
the system transmit and receive timing, allowing asynchronous reads or writes by the host. See Section 9.3 for the  
AC timing of the serial port. All serial port accesses are LSB first when BSWP pin is high and MSB first when  
BSWP is low. Figure 5-1 to Figure 5-3 show operation with LSB first.  
This port is compatible with the SPI interface defined for Motorola Processors. An example of this is the MMC2107  
from Motorola.  
Reading or writing to the internal registers requires writing one address/command byte prior to transferring register  
data. The first bit written (LSB) of the address/command byte specifies whether the access is a read (1) or a write  
(0). The next 6 bits identify the register address (A1 to A6) (A7 is ignored).  
All data transfers are initiated by driving the CSB input low. When CLKE is low, SDO data is output on the rising  
edge of SCLK and when CLKE is high, data is output on the falling edge of SCLK. Data is held until the next falling  
or rising edge. All data transfers are terminated if CSB input transitions high. Port control logic is disabled and SDO  
is tri-stated when CSB is high. SDI is always sampled on the rising edge of SCLK.  
Figure 5-1. Serial Port Operation for Write Access  
SCLK  
CSB  
SDI  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
DO  
D6  
A1  
A2  
A3  
A4  
A5  
A
x
D1  
D2  
D3  
D4  
D5  
D7  
(msb)  
0
(lsb)  
(adrs  
msb)  
(lsb)  
WRITE ACCESS ENABLED  
SDO  
Figure 5-2. Serial Port Operation for Read Access with CLKE = 0  
SCLK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
CSB  
SDI  
A1  
A2  
A3  
A4  
A5  
X
A6  
0
(msb)  
(lsb)  
SDO  
D0  
(lsb)  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
(msb)  
Read  
Access  
Enabled  
17 of 121  
 
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Figure 5-3. Serial Port Operation for Read Access with CLKE = 1  
SCLK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
CSB  
SDI  
X
A1  
A2  
A3  
A4  
A5  
0
A6  
(lsb)  
(msb)  
SDO  
D0  
D1  
D3  
D4  
D5  
D7  
D2  
D6  
(lsb)  
(msb)  
5.1.2 Parallel Port Operation  
When using the parallel interface on the DS26334 the user has the option for either multiplexed bus operation or  
nonmultiplexed bus operation. The ALE pin is pulled high in nonmultiplexed bus operation. The DS26334 can  
operate with either Intel or Motorola bus-timing configurations selected by MOTEL pin. This pin being high selects  
the Intel mode. The parallel port is only operational if MODESEL pin is pulled high. The following Table lists all the  
pins and their functions in the parallel port mode. See the timing diagrams in Section 9 for more details.  
Table 5-1. Parallel Port Mode Selection and Pin Functions  
MODESEL, MOTEL,  
PARALLEL HOST  
INTERFACE  
ADDRESS, DATA, AND CONTROL  
MUX  
100  
110  
101  
111  
Nonmultiplexed Motorola CSB, ACKB, DSB, RWB, ASB, A[5:0], D[7:0], INTB  
Nonmultiplexed Intel  
Multiplexed Motorola  
Multiplexed Intel  
CSB, RDYB, WRB, RDB, ALE, A [5:0], D[7:0], INTB  
CSB, ACKB, DSB, RWB, ASB, AD[7:0], INTB  
CSB, RDYB, WRB, RDB, ALE, AD[7:0], INTB  
5.1.3 Interrupt Handling  
There are four sets of events that can potentially trigger an Interrupt. The interrupt functions as follows:  
When status changes on an interruptible event, INTB pin will go low if the event is enabled through the  
corresponding Interrupt Enable Register. The INTB has to be pulled high externally with a 10kresister for  
wired-OR operation. If a wired-OR operation is not required, the INTB pin can be configured to be high when  
not active by setting register GISC.INTM.  
When an Interrupt occurs the Host Processor has to read the Interrupt Status register to determine the source  
of the Interrupt. The read will also clear the Interrupt Status register and this will clear the output INTB pin. The  
Interrupt Status register can also be configured as clear on write as per register GISC.CWE. When set to clear  
on write, and interrupt status register bit (and the interrupt it generates) will only be cleared on writing a ‘1’ to  
it’s bit location in the interrupt status register. This makes is possible to clear interrupts on some bits in a  
register without clearing them on all bits.  
Subsequently the host processor can read the corresponding Status Register to check the real-time status of  
the event.  
18 of 121  
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Figure 5-4. Interrupt Handling Flow Diagram  
Interrupt Allowed  
No  
Interrupt Conditon  
Exist?  
Yes  
Read Interrupt Status  
Register  
Read Corresponding Status  
Register (Optional)  
Service the Interrupt  
5.2 Power-Up and Reset  
Internal power-on-reset circuitry generates a reset during power-up. All registers are reset to the default values.  
Writing to the Software Reset Register (SWR) generates at least 1µs reset cycle, which has the same effect as the  
power-up reset.  
The DS26334 can be reset by a low going pulse on the RSTB pin (see Table 4-1). A reset can also be performed in  
software by writing any value to the SWR register.  
5.3 Master Clock  
The DS26334 requires 2.048MHz ±50ppm or 1.544MHz ±50ppm or multiple thereof. The receiver uses the MCLK  
as a reference for clock recovery, jitter attenuation and generating RCLK during LOS. The AIS transmission uses  
MCLK for transmit all ones condition. See register MC to set desired incoming frequency. When the PLLE bit is set,  
the master clock adapter will generate both 2.048MHz (E1) and 1.544MHz (T1) clocks. If the PLLE bit is clear, both  
internal reference clocks will track MCLK.  
MCLK or RCLK can also be used to output CLKA on the LOS16 pin. Register CCR is used to select the clock  
generated for CLKA and the TECLK. Any RCLK can also be selected as an input to the clock generator using this  
same register. For a detailed description of selections available see Figure 5-5.  
19 of 121  
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Figure 5-5. Prescaler PLL and Clock Generator  
PCLKS2..0  
RLCK1..8  
CLKA3..0  
PLLE  
RLOS16  
T1CLK  
PCLKI1..0  
CLKAE  
MPS1..0  
FREQS  
LOS16  
CLK  
CLKA  
GEN  
Pre  
MCLK  
Scaler  
PLL  
E1CLK  
TECLK  
LOS15  
PLLE  
TECLKS  
TECLKE  
RLCK9..16  
RLOS15  
PCLKS2..0  
5.4 Transmitter  
NRZ data arrives on TPOS and TNEG on the transmit system side. The TPOS and TNEG data is sampled on the  
falling edge of TCLK.  
The data is encoded with HDB3 or B8ZS or AMI encoding when single-rail mode is selected (only TPOS as the  
data source). When in single-rail mode only, BPV errors can be inserted for test purposes by register BEIR. Pre-  
encoded data is expected when dual-rail mode is selected. The encoded data passes through a jitter attenuator if it  
is enabled for the transmit path. A digital sequencer and DAC are used to generate transmit waveforms compliant  
with T1.102 and G.703 pulse masks.  
The line driver supports internal impedance matching for 75, 100, 110, and 120modes.  
The DS26334 drivers have short and open circuit driver fail monitor detection. There is an OE pin that can high  
impedance the transmitter outputs for protection switching when low. The individual transmitters are by default in  
high impedance. The OE register is used to enable the transmitters individually when the OE pin is high. The  
DS26334 has to have the transmitter’s enabled by setting the register and then pulling the OE pin high. The  
registers that control the transmitter operation are shown in Table 5-2.  
20 of 121  
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Table 5-2. Telecommunications Specification Compliance for DS26334 Transmitters  
TRANSMITTER FUNCTION  
TELECOMMUNICATIONS COMPLIANCE  
AMI Coding, B8ZS Substitution, DS1 Electrical Interface  
T1 Telecom Pulse Mask compliance  
T1 Telecom Pulse Mask compliance  
ANSI T1.102  
ANSI T1.403  
ANSI T1.102  
Transmit Electrical Characteristics for E1 Transmission  
and Return Loss Compliance  
ITU-T G.703  
Table 5-3. Registers Related to Control of DS26334 Transmitters  
REGISTER  
Transmit All Ones Enable  
NAME  
TAOE  
FUNCTION  
Transmit all ones enable.  
Driver Fault Monitor Status  
DFMS  
DFMIE  
DFMIS  
ATAOS  
Driver fault status.  
Driver Fault Monitor Interrupt Enable  
Driver Fault Monitor Interrupt Status  
Automatic Transmit All Ones Select  
Driver fault status interrupt mask.  
Driver fault status interrupt mask.  
Transmit all ones enabled automatically on LOS.  
Global control of jitter attenuator, line coding and short  
circuit protection.  
Global Configuration  
GC  
The transmitter that the Template Select Transmitter  
Register applies to.  
Template Select Transmitter  
TST  
The TS2 to TS0 bits for selection of the templates for  
transmitter and TIMPOFF and TIMPRIM bits to control  
transmit impedance match.  
Template Select  
TS  
These register bits can be used to enable the transmitter  
outputs.  
Selects the MCLK frequency used for transmit and  
receive.  
This register can be used to select between single-rail  
and dual-rail mode.  
Output Enable Configuration  
Master Clock Selection  
Single-Rail Mode Select  
OE  
MC  
SRMS  
The individual transceiver line codes can be selected to  
overwrite the global setting.  
Line Code Selection  
LCS  
Transmit Power-Down Enable  
Individual Jitter Attenuator Enable  
Individual Jitter Attenuator Position  
Select  
Individual Jitter Attenuator FIFO  
Depth Select  
TPDE  
IJAE  
Individual transmitters can be powered down.  
Enables the jitter attenuator.  
Selects whether jitter attenuator is in transmit or receive  
path  
IJAPS  
IJAFDS  
IJAFLT  
Selects depth of jitter attenuator FIFO.  
Individual Jitter Attenuator FIFO  
Limit Trip  
Indicates jitter attenuator FIFO within 4 bits of its useful  
limit.  
Individual Short-Circuit Protection  
Disable  
Short-Haul/Long-Haul Select  
This register allows the individual transmitters to have  
short-circuit protection disable.  
This selects between short-haul and long-haul templates.  
This register allows mapping of the internal BERTs into  
an individual transmit path.  
Inverts TCLK input.  
Inserts a bipolar error in the transmit path when in single-  
rail mode.  
ISCPD  
SHLHS  
BTCR  
TCLKI  
BEIR  
Bit Error Rate Tester Control  
Transmit Clock Invert  
BPV Error Insertion  
21 of 121  
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
5.4.1 Transmit Line Templates  
The DS26334 transmitters can be selected individually to meet the pulse masks for E1 and T1/J1 mode. The T1/J1  
pulse mask is shown in the Transmit Pulse Template and can be configured on an individual LIU basis. The  
transmit template is selected via the TS[2:0] bits in the TS register. Transmit impedance matching is selected using  
the TIMPOFF and the TIMPRM bits of the same register. When transmit impedance matching is enabled TIMPRM  
will select between 75and 120impedance if an E1 template is selected, and between 100and 110Ω  
impedance if a T1/J1 template is selected. In E1 mode, if 75is selected via the TIMPRM bit, the output pulse  
amplitude will be 2.37V, if 120is selected via the TIMPRIM bit, the output pulse amplitude will be 3.0V.  
The E1 pulse template is shown in Figure 5-7 and the T1 pulse template is shown in Figure 5-6.  
Table 5-4. Template Selections for Short-Haul Mode  
TS2, TS1, TS0  
APPLICATION  
000  
001  
010  
011  
100  
101  
110  
111  
E1  
Reserved  
DSX-1 (0–133ft)  
DSX-1 (133–266ft)  
DSX-1 (266–399ft)  
DSX-1 (399–533ft)  
DSX-1 (533–655ft)  
Table 5-5. Template Selections for Long-Haul Mode  
TS2, TS1, TS0  
APPLICATION  
000  
001  
010  
011  
100  
101  
110  
E1  
Reserved  
0dB CSU  
-7.5dB CSU  
-15dB CSU  
-22dB CSU  
22 of 121  
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Figure 5-6. T1 Transmit Pulse Templates  
1 .2  
1 .1  
1 .0  
0 .9  
0 .8  
0 .7  
0 .6  
0 .5  
0 .4  
0 .3  
0 .2  
0 .1  
0
-0 .1  
-0 .2  
-0 .3  
-0 .4  
-0 .5  
T 1 .1 0 2 /8 7 , T 1 .4 0 3 ,  
C B 1 1 9 (O c t. 7 9 ), &  
I.4 3 1 T e m p la te  
-5 0 0 -4 0 0  
-3 0 0  
-2 0 0  
-1 0 0  
0
1 0 0  
2 0 0  
3 0 0  
4 0 0  
5 0 0  
6 0 0  
7 0 0  
T IM E (n s )  
D S 1 T e m p la te (p e r A N S I T 1 .4 0 3 -1 9 9 5 )  
D S X -1 T e m p la te (p e r A N S I T 1 .1 0 2 -1 9 9 3 )  
M A X IM U M C U R V E  
M IN IM U M C U R V E  
M A X IM U M C U R V E  
M IN IM U M C U R V E  
U I  
T im e  
A m p .  
U I  
T im e  
A m p .  
U I  
T im e  
A m p .  
U I  
T im e  
A m p .  
-0 .7 7  
-0 .3 9  
-0 .2 7  
-0 .2 7  
-0 .1 2  
0 .0 0  
0 .2 7  
0 .3 5  
0 .9 3  
1 .1 6  
-5 0 0  
-2 5 5  
-1 7 5  
-1 7 5  
-7 5  
0 .0 5  
0 .0 5  
0 .8 0  
1 .1 5  
1 .1 5  
1 .0 5  
1 .0 5  
-0 .0 7  
0 .0 5  
0 .0 5  
-0 .7 7  
-0 .2 3  
-0 .2 3  
-0 .1 5  
0 .0 0  
0 .1 5  
0 .2 3  
0 .2 3  
0 .4 6  
0 .6 6  
0 .9 3  
1 .1 6  
-5 0 0  
-1 5 0  
-1 5 0  
-1 0 0  
0
1 0 0  
1 5 0  
1 5 0  
3 0 0  
4 3 0  
6 0 0  
7 5 0  
-0 .0 5  
-0 .0 5  
0 .5 0  
0 .9 5  
0 .9 5  
0 .9 0  
0 .5 0  
-0 .4 5  
-0 .4 5  
-0 .2 0  
-0 .0 5  
-0 .0 5  
-0 .7 7 -5 0 0  
-0 .3 9 -2 5 5  
-0 .2 7 -1 7 5  
-0 .2 7 -1 7 5  
-0 .1 2 -7 5  
0 .0 5  
0 .0 5  
0 .8 0  
1 .2 0  
1 .2 0  
1 .0 5  
1 .0 5  
-0 .0 5  
0 .0 5  
0 .0 5  
-0 .7 7 -5 0 0  
-0 .2 3 -1 5 0  
-0 .2 3 -1 5 0  
-0 .1 5 -1 0 0  
-0 .0 5  
-0 .0 5  
0 .5 0  
0 .9 5  
0 .9 5  
0 .9 0  
0 .5 0  
-0 .4 5  
-0 .4 5  
-0 .2 6  
-0 .0 5  
-0 .0 5  
0 .0 0  
0 .1 5  
0 .2 3  
0 .2 3  
0 .4 6  
0 .6 1  
0 .9 3  
1 .1 6  
0
0
0 .0 0  
0 .2 7  
0 .3 4  
0 .7 7  
1 .1 6  
0
1 0 0  
1 5 0  
1 5 0  
3 0 0  
4 3 0  
6 0 0  
7 5 0  
1 7 5  
2 2 5  
6 0 0  
7 5 0  
1 7 5  
2 2 5  
6 0 0  
7 5 0  
23 of 121  
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Figure 5-7. E1 Transmit Pulse Templates  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
269ns  
G.703  
Template  
194ns  
219ns  
-0.1  
-0.2  
-250  
-200  
-150  
-100  
-50  
0
50  
100  
150  
200  
250  
TIME (ns)  
24 of 121  
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
5.4.2 LIU Transmit Front-End  
It is recommended that the LIU for the transmitter be configured as described in Figure 5-8 and in Table 5-6.  
Figure 5-8. LIU Front-End  
3.3V  
TFt  
Dt  
1:2  
VDDTn  
GNDTn  
AVDDn  
AVSSn  
TTIP  
Dt  
Dt  
Dt  
C1  
C2  
Tx Line  
Ct  
TRING  
(One Channel)  
3.3V  
TFr  
1:1 or 1:2  
Dt  
Dt  
Dt  
Dt  
optional  
RTIP  
Rt  
Rt  
C3  
C4  
Rx Line  
C5  
A75 A100 A110  
RRING  
termination  
3.3V  
TVS1  
25 of 121  
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Table 5-6. LIU Front-End Values  
75COAX, 120TWISTED PAIR,  
100/110TWISTED PAIR  
560pF typical. Adjust for board parasitics for optimal return loss.  
MODE  
Tx Capacitance  
COMPONENT  
Ct  
Dt1  
TFr  
International Rectifier 11DQ04 or 10BQ060,  
Motorola MBR0540T1  
Tx Protection  
Rx Transformer RTR 1:1  
Pulse TX1475 (recommended for both short/long-haul modes),  
Halo TG83-S005NU (recommended for short-haul only)  
Tx Transformer 1:2  
TFt  
TFr  
Rx Transformer RTR 1:2  
Pulse T1124 (0°C to +70°C),  
Pulse T1114 (-40°C to 85°C)  
Tx Transformer 1:2  
TFt  
C1  
C2  
Tx Decoupling (TVDDn)  
Tx Decoupling (TVDDn)  
Rx Decoupling (AVDD)  
Rx Decoupling (AVDD)  
Rx Termination  
Rx Termination RTR 1:1  
Rx Termination RTR 1:2  
Voltage Protection  
Common decoupling for all 16 channels = 68µF.  
Recommended decoupling per channel = 0.1µF.  
Common decoupling for all 16 channels = 68µF.  
Decouple all six pins separately with a 0.1µF capacitor.  
Rx capacitance for all 16 channels = 0.1µF.  
Need two resistors = 60.4±1%.  
C3  
C4  
C51  
Rt1  
Rt1  
Need two resistors = 15.0±1%.  
SGS-Thomson SMLVT 3V3 (3.3V Transient Suppressor)  
TVS1  
1Only use if necessary for application.  
5.4.3 Transmit Dual-Rail Mode  
Transmit dual-rail mode consists of the TPOS, TNEG, and TCLK pins on the system side. NRZ data is sampled on  
the falling edge of TCLK as shown in Figure 9-12.  
B8ZS or HDB3 encoding is not available in transmit dual-rail mode. The data that appears on the TPOS and TNEG  
pins is output on TTIP and TRING without any modification. The Single-Rail Mode Select Register (SRMS) is used  
for selection of dual-rail or single-rail mode. The data that arrives at the TPOS and TNEG can be overwritten in the  
maintenance mode by setting the BERT Control Register (BTCR).  
5.4.4 Transmit Single-Rail Mode  
Transmit single-rail mode consists of the TPOS and TCLK pins on the system side (TNEG is not used.). NRZ data  
is sampled on the falling edge of TCLK as shown in Figure 9-12. The zero substitution B8ZS or HDB3 encoding is  
allowed. The TPOS data is encoded in AMI or B8ZS/HDB3 format on the TTIP and TRING pins after pulse  
shaping. The Single-Rail Mode Select Register (SRMS) is used for selection of dual-rail or single-rail mode. The  
data that arrives at the TPOS can be overwritten in the maintenance mode by setting in Bit Error Rate Tester  
Control Register (BTCR).  
5.4.5 Zero Suppression—B8ZS or HDB3  
B8ZS coding is available when the device is in T1 mode (selected by TS2, TS1 and TS0 bits in the TS register).  
B8ZS/HDB3 coding are enabled by default in single-rail mode. Setting the LCS bit in the LCS Register disables  
B8ZS/HDB3. Note that if the individual LIU is configured in E1 mode then HDB3 code substitution will be selected.  
B8ZS substitution is defined in ANSI T1.102 and HDB3 in ITU-T G.703 standards.  
5.4.6 Transmit Power-Down  
The transmitter will be powered down if the relevant bits in the TPDE are set. The TTIP/TRING outputs will be high  
impedance when TPDE is set.  
26 of 121  
 
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
5.4.7 Transmit All Ones  
When Transmit All Ones is invoked, continuous ones are transmitted using MCLK as the timing reference. Data  
input at TPOS and TNEG is ignored.  
Transmit All Ones can be sent by setting bits in the TAOE Register. Also, Transmit All Ones will be enabled if bits  
in ATAOS are set and the corresponding receiver goes into LOS state in status register LOSS.  
5.4.8 Driver Fail Monitor  
The Driver Fail Monitor is connected to the TTIP and TRING pins. It will detect a short or open circuit on the  
secondary side of the transmit transformer. The drive current will be limited to 50mA if a short circuit is detected.  
The DFMS status registers and the corresponding interrupt and enable registers can be used to monitor the driver  
failure.  
5.5 Receiver  
The DS26334’s 16 receivers are all identical. A 1:2 or 1:1 transformer can be used on the receive side (selected by  
the RTR bit), but only a 1:1 transformer can be used if fully internal impedance match is enabled. Fully internal  
receive impedance match does not require the use of any external resistor on the receive line. If partially internal  
impedance matching is selected, the DS26334 will need only an external 120resistor (30for a 1:2 transformer)  
for E1, T1, and J1. The receive impedance match settings are controlled by the transmit template/impedance  
selection. See Figure 5-8 and Table 5-6 for external component values. Partially internal impedance matching is  
enabled via the TS.RIMPON bit. Fully internal impedance matching is enabled by setting GC.RIMPMS and  
TS.RIMPON.  
The peak detector and data slicer process the received signal. The output of the data slicer goes to clock and data  
recovery. A 2.048/1.544 PLL is internally multiplied by 16 via another internal PLL and fed to the clock recovery  
system derives E1 or T1 clock. The clock recovery system uses the clock from the PLL circuit to form a 16 times  
oversampler, which is used to recover the clock and data. This oversampling technique offers outstanding  
performance to meet jitter tolerance specifications.  
B8ZS/HDB3/AMI decoding is available when single-rail mode is selected. The selection of single-rail or dual rail is  
done by settings in the SRMS register.  
The receiver is capable of recovering signals up to 36dB worth of attenuation for T1 mode, and up to 43dB for E1  
mode. The receiver contains functionality to provide resistive gain up to 32dB for monitor mode.  
Three receive termination modes are available:  
1) External Impedance Matching. Internal impedance matching is disabled, external resistor should match  
line impedance.  
2) Partially Internal Impedance Matching. Internal impedance matching is enabled, in parallel with an  
external termination resistor (one value for all terminations).  
3) Fully Internal Impedance Matching. Internal impedance matching is enabled, no external termination  
necessary. This mode requires a 1:1 receive-side transformer.  
5.5.1 Receiver Impedance Matching Calibration  
In fully internal impedance matching mode, calibration of the internal resistors is necessary to match the line  
impedance accurately. Calibration must be done upon power-up of the device. The resistance of the internal  
resistors does vary across temperature. Therefore, it may be necessary to recalibrate if the ambient temperature  
changes more than 30°C. The user may conclude that it is necessary to recalibrate on a periodic basis if he  
expects such temperature swings. Calibration is not necessary for partially internal impedance match mode.  
5.5.2 Receiver Monitor Mode  
The receive equalizer is equipped with monitor mode function that allows for resistive gain up to 32dB, along with  
cable attenuation of 6dB to 24dB as shown in the RSMM1–4 registers.  
27 of 121  
 
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
5.5.3 Peak Detector and Slicer  
The slicer determines the polarity and presence of the received data. The output of the slicer is sent to the clock  
and data recovery circuitry for extraction of data and clock. The slicer has a built-in peak detector for determination  
of the slicing threshold.  
5.5.4 Receive Level Indicator  
The DS26334 will report the signal strength at RTIP and RRING in increments described in Table 6-17 via register  
bits CnRL3–CnRL0 located in the RSL1–4 registers.  
5.5.5 Clock and Data Recovery  
The resultant E1 or T1 clock derived from the 2.048/1.544 PLL is internally multiplied by 16 via another internal PLL  
and fed to the clock recovery system. The clock recovery system uses the clock from the PLL circuit to form a 16  
times oversampler, which is used to recover the clock and data. This oversampling technique offers outstanding  
performance to meet jitter tolerance specifications.  
5.5.6 Loss of Signal  
The DS26334 uses both the digital and analog loss-detection method in compliance with the latest ANSI T1.231 for  
T1/J1 and ITU-T G.775 or ETS 300 233 for E1 mode of operation.  
LOS is detected if the receiver level falls bellow a threshold analog voltage for certain duration. Alternatively, this  
can be termed as having received “zeros” for certain duration. The signal level and timing duration are defined in  
accordance with the ANSI T1.231, ITU-T G.775, or ETS 300 233 specifications.  
For short-haul mode, the loss detection thresholds are based on cable loss of 18dB for both T1 and E1 modes. For  
long-haul mode, the LOS detection threshold is based on cable loss of 38dB for T1 mode and 45dB for E1 mode.  
RCLK is replaced by MCLK when the receiver detects a loss of signal. If the AISEL bit is set in the GC register or  
the IAISEL bit is set, the RPOS/RNEG data is replaced by AIS. The loss state is exited when the receiver detects a  
certain number of ones density at a higher signal level than the loss detection level. The loss detection signal level  
and loss reset signal level are defined with a hysteresis to prevent the receiver from bouncing between “LOS” and  
“no LOS” states.  
Table 5-7 outlines the specifications governing the loss function.  
Table 5-7. Loss Criteria ANSI T1.231, ITU-T G.775, and ETS 300 233 Specifications  
STANDARD  
CRITERIA  
T1.231  
ITU-T G.775  
No pulses are detected for  
duration of 10 to 255 bit  
periods.  
ETS 300 233  
No pulses are detected for a  
duration of 2048 bit periods or  
1ms.  
Loss  
No pulses are detected for 175  
±75 bits.  
Detection  
Criteria  
Loss is terminated if a duration  
of 12.5% ones are detected over  
duration of 175 ±75 bits.  
The incoming signal has  
transitions for duration of 10 to  
255 bit periods.  
Loss is not terminated if 8  
consecutive zeros are found if  
B8ZS encoding is used. If B8ZS  
is not used loss is not  
Loss Reset  
Criteria  
Loss reset criteria is not  
defined.  
terminated if 100 consecutive  
pulses are zero.  
28 of 121  
 
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
5.5.6.1 ANSI T1.231 for T1 and J1 Modes  
For short-haul mode, loss is detected if the received signal level is less than 200mV for duration of 192 bit periods.  
LOS is reset if the all of the following criteria are met:  
24 or more ones are detected in 192-bit period with a detection threshold of 300mV measured  
at RTIP and RRING.  
During the 192 bits less than 100 consecutive zeros are detected.  
8 consecutive zeros are not detected if B8ZS is set.  
For long-haul mode, loss is detected if the received signal level is less than 30mV for duration of 192 bit periods.  
LOS is reset if the all of the following criteria are met:  
24 or more ones are detected in 192-bit period with a detection threshold of 40mV measured  
at RTIP and RRING.  
During the 192 bits less than 100 consecutive zeros are detected.  
8 consecutive zeros are not detected if B8ZS is set.  
5.5.6.2 ITU-T G.775 for E1 Modes  
For short-haul mode, LOS is detected if the received signal level is less than 200mV for a continuous duration of  
192 bit periods. LOS is reset if the receive signal level is greater than 300mV for a duration of 192 bit periods.  
For long-haul mode, LOS is detected if the received signal level is less than 12mV for a continuous duration of 192  
bit periods. LOS is reset if the receive signal level is greater than 20mV for a duration of 192 bit periods.  
5.5.6.3 ETS 300 233 for E1 Modes  
For short-haul mode, LOS is detected if the received signal level is less than 200mV for a continuous duration of  
2048 (1ms) bit periods. LOS is reset if the receive signal level is greater than 300mV for a duration of 192 bit  
periods.  
For long-haul mode, LOS is detected if the received signal level is less than 12mV for a continuous duration of 192  
bit periods. LOS is reset if the receive signal level is greater than 20mV for a duration of 192 bit periods.  
5.5.7 AIS  
Table 5-8 outlines the DS26334 AIS related specifications. Table 5-9 states the AIS functionality in the DS26334.  
The registers related to the AIS detection are shown in Table 5-10.  
Table 5-8. AIS Criteria ANSI T1.231, ITU-T G.775, and ETS 300 233 Specifications  
STANDARD  
CRITERIA  
ITU-T G.775 for E1  
ETS 300 233 for E1  
ANSI T1.231 for T1  
Fewer than 9 zeros detected in  
Fewer than 3 zeros detected in a 8192-bit period (a ones  
AIS  
Detection  
Criteria  
2 or fewer zeros in each of 2  
consecutive 512-bit stream  
received.  
512 bit period.  
density of 99.9% over a period  
of 5.3ms) are received.  
AIS  
Clearance  
Criteria  
3 or more zeros in each of 2  
consecutive 512-bit streams  
received.  
3 or more zeros in 512 bits  
received.  
9 or more zeros detected in a  
8192-bit period are received.  
Table 5-9. AIS Detection and Reset Criteria for DS26334  
STANDARD  
CRITERIA  
ITU-T G.775 for E1  
2 or fewer zeros in each of 2  
consecutive 512-bit streams  
received.  
ETS 300 233 for E1  
ANSI T1.231 for T1  
AIS  
Fewer than 3 zeros detected in Fewer than 9 zeros contained  
512-bit period.  
Detection  
Criteria  
AIS  
in 8192 bits.  
3 or more zeros in each of 2  
consecutive 512-bit streams  
received.  
3 or more zeros in 512 bits  
received.  
9 or more bits received in a  
8192-bit stream.  
Clearance  
Criteria  
29 of 121  
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Table 5-10. Registers Related to AIS Detection  
REGISTER  
NAME  
FUNCTIONALITY  
LOS/AIS Criteria Selection  
Alarm Indication Signal Status  
AIS Interrupt Enable  
LASCS  
AIS  
AISIE  
AISI  
Section criteria for AIS (T1.231, G.775, ETS 300 233 for E1).  
Set when AIS is detected.  
If reset, interrupt due to AIS is not generated.  
Latched if there is a change in AIS and the interrupt is enabled.  
AIS Interrupt Status  
5.5.8 Receive Dual-Rail Mode  
Receive dual-rail mode consists of the RPOS, RNEG, and RCLK pins on the system side. In receive dual-rail  
mode, B8ZS and HDB3 decoding is not available. The data that appears on the RTIP and RRING pins is output on  
RPOS and RNEG without any modification. The Single-Rail Mode Select Register (SRMS) is used for selection of  
dual-rail or single-rail mode. The bipolar violation (and B8ZS/HDB3) detectors detect violations in dual-rail and  
single-rail modes, but in dual-rail mode the violations will only be reported to the Line Violation Detect Status  
(LVDS) registers.  
5.5.9 Receive Single-Rail Mode  
Receive single-rail mode consists of the RPOS, RCLK, and CV pins on the system side. B8ZS or HDB3 decoding  
is available. The Single-Rail Mode Select Register (SRMS) is used for selection of dual-rail or single-rail mode.  
5.5.10 Bipolar Violation and Excessive Zero Detector  
The DS26334 detects HDB3 code violations, BPVs, and excessive zero errors. The reporting of the errors is done  
through the RNEGn/CVn pin in single-rail mode and the LVDS registers in both single- and dual-rail modes. Code  
violations are only detected in E1 mode with HDB3 encoding. The code violation detection declares an error when  
a bipolar violation of the same polarity as the last bipolar violation is received.  
Excessive zeros are detected if eight consecutive zeros are detected with B8ZS enabled and four consecutive  
zeros are detected with HDB3 enabled. Excessive zero detection is enabled via the Excessive Zero Detect Enable  
Register (EZDE) and when HDB3/B8ZS encoding/decoding is selected via the Line Code Selection Register (LCS).  
The bits in the LCS, EZDE, and CVDEB registers determine the combinations that are reported. Table 5-11  
outlines the functionality.  
Table 5-11. BPV, Code Violation, and Excessive Zero Error Reporting  
CONDITIONS  
ERRORS DETECTED  
LCS  
EZDE  
CVDEB  
0
0
0
0
1
0
0
1
1
X
0
1
0
1
X
BPV (T1)/Code Violation (E1)  
BPV  
Excessive Zeros and BPV (T1)/Code Violation (E1)  
Excessive Zeros and BPV  
BPV  
30 of 121  
 
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
5.6 Jitter Attenuator  
The DS26334 contains an on-board jitter attenuator that can be set to a depth of either 32 or 128 bits via the JADS  
bit in register GC. It can also be controlled on an individual LIU basis by settings in the IJAFDS register.  
The 128-bit mode is used in applications where large excursions of wander are expected. The 32-bit mode is used  
in delay sensitive applications. The characteristics of the attenuation are shown in Figure 5-9. The jitter attenuator  
can be placed in either the receive path or the transmit path or none by appropriately setting the JAPS and the JAE  
bits in register GC. These selections can be changed on an individual LIU basis by settings in the IJAPS and IJAE.  
In order for the jitter attenuator to operate properly, a 2.048MHz clock or multiple thereof, or 1.544MHz clock or  
multiple thereof, must be applied at MCLK. ITU-T specification G.703 requires an accuracy of ±50ppm for both T1  
and E1 applications. AT&T Pub 62411 and ANSI specs require an accuracy of ±32ppm for T1 interfaces. On-board  
circuitry adjusts either the recovered clock from the clock/data recovery block or the clock applied at the TCLK pin  
to create a smooth jitter-free clock, which is used to clock data out of the jitter attenuator FIFO. It is acceptable to  
provide a jittery clock at the TCLK pin if the jitter attenuator is placed on the transmit side. If the incoming jitter  
exceeds either 120UIP-P (buffer depth is 128 bits) or 28UIP-P (buffer depth is 32 bits), the DS26334 will divide the  
internal nominal 32.768MHz (E1) or 24.704MHz (T1) clock by either 15 or 17 instead of the normal 16 to keep the  
buffer from overflowing. When the device divides by either 15 or 17, it also sets the jitter attenuator limit trip  
(IJAFLT) bits in the IJAFLT register described.  
Figure 5-9. Jitter Attenuation  
0dB  
TBR12  
Prohibited  
Area  
-20dB  
-40dB  
-60dB  
E1  
T1  
1
10  
100  
1K  
10K  
100K  
FREQUENCY (Hz)  
31 of 121  
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
5.7 G.772 Monitor  
In this application, only 14 transceivers are functional and two transceivers are used for nonintrusive monitoring of  
input and output of the other 14 channels. Channel 9 is used for 10 to 16 channels and Channel 1 is used for 2 to 8  
channels. G.772 monitoring is configured by the BERT and G.772 Monitoring Control Register (BGMC) (see Table  
6-9). While monitoring, Channel 1 can be configured in remote loopback and the monitored signal can be output on  
TTIP1 and TRING1. While monitoring, Channel 9 can be configured in remote loopback and the monitored signal  
can be output on TTIP9 and TRING9.  
5.8 Loopbacks  
The DS26334 provides four loopbacks for diagnostic purposes: analog loopback, digital loopback, remote  
loopback, and dual loopback. Dual loopback is accomplished by turning on digital loopback and remote loopback at  
the same time.  
5.8.1 Analog Loopback  
The analog output of the transmitter TTIP and TRING is looped back to RTIP and RRING of the receiver. Data at  
RTIP and RRING is ignored in analog loopback. This is shown in Figure 5-10.  
Figure 5-10. Analog Loopback  
TCLK  
TPOS  
TNEG  
H
B
E
D
8
n
B 3 /  
O
p t i o n a l  
J i t t e r  
t t e n u a t o r  
Z
S
T r a n s m i t  
A n a lo g  
T r a n s m it  
Line  
c o d e r  
A
D
ig i t a l  
Driver  
RCLK  
RPOS  
RNEG  
Rtip  
H
B
D
D
8 Z  
e c o d e r  
B 3 /  
S
R e c e iv e  
D ig i ta l  
R e c e iv e  
A n a lo g  
O
p
t i o  
J i t t e  
t t e n  
n
u
a
a
l
r
Rring  
A
t o r  
32 of 121  
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
5.8.2 Digital Loopback  
The transmit system data TPOS, TNEG, and TCLK will be looped back to output on RCLK, RPOS, and RNEG. The  
data input at TPOS and TNEG is output on TTIP and TRING. All ones can also be output when selected by the  
Transmit All Ones Enable Register (TAOE). Signals at RTIP and RRING will be ignored. This loopback is  
conceptually shown in Figure 5-11.  
Figure 5-11. Digital Loopback  
TCLK  
TPOS  
TNEG  
TTIP  
OS  
H
B
E
D
8
n
B 3 /  
O
p t i o n a l  
J i t t e r  
t t e n u a t o r  
Z
S
T r a n s m i t  
A n a lo g  
T r a n s m it  
Line  
c o d e r  
A
D
ig i t a l  
Drive
TRING  
EG  
RCLK  
RPOS  
RNEG  
RTIP  
RRING  
H
B
D
D
8 Z  
e c o d e r  
B 3 /  
S
O
p
t i o  
J i t t e  
t t e n  
n
u
a
a
l
R e c e iv e  
D ig i ta l  
R e c e iv e  
A n a lo g  
r
A
t o r  
5.8.3 Remote Loopback  
The inputs at RTIP and RRING are looped back to TTIP and TRING. The inputs at TCLK, TPOS, and TNEG are  
ignored during a remote loopback. This loopback is conceptually shown in Figure 5-12.  
Note: Remote loopback does not take precedence over transmit power-down and requires TCLK to operate. The  
transmitters will use the recovered RCLK in remote loopback. TCLK is still required because if it is removed the  
transmitters will power-down (TCLK held low) or transmit all ones (TCLK held high).  
Figure 5-12. Remote Loopback  
TTIP  
S  
TCLK  
TPOS  
TNEG  
H
B
E
D
8
n
B 3 /  
O
p t i o n a l  
J i t t e r  
t t e n u a t o r  
Z
S
T r a n s m i t  
A n a lo g  
T r a n s m it  
c o d e r  
Line  
A
D
ig i t a l  
Driver  
TRING  
G  
RCLK  
RPOS  
RNEG  
RTIP  
H
B
D
D
8 Z  
e c o d e r  
B 3 /  
S
O
p
t i o  
J i t t e  
t t e n  
n
u
a
a
l
R e c e iv e  
D ig i ta l  
R e c e iv e  
A n a lo g  
r
A
t o r  
RRING  
33 of 121  
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
5.9 BERT  
There are two bit error-rate testers available on the DS26334. One BERT can be mapped into LIUs 1–8 and the  
other into LIUs 9–16 via the BTCR registers. The two BERTs operate independently of each other.  
Each BERT transmitter, by default, replaces data from TPOS and TNEG; each BERT receiver, by default, samples  
recovered data from RTIP and RRING.  
The BERT can be enabled to replace data received on RTIP and RRING via the BERTDIR bit in the BERT and  
G.772 Monitoring Control Register (BGMC). In this mode, the SRMS bit determines whether data comes out single-  
rail or dual-rail. BERT data can be sourced using the recovered clock, MCLK, or TCLK. In this mode of operation,  
the BERT receiver samples data on TPOS and TNEG on the falling edge of TCLK. This function is useful for  
testing the digital side of the LIU. If TCLK is selected as a source for this mode, the input TCLK will control the  
BERT transmitter and receiver. If the recovered clock or MCLK is selected, the RCLK output needs to drive the  
TCLK input in order for the BERT receiver to sync to the data.  
5.9.1 General Description  
The BERT is a software-programmable test pattern generator and monitor capable of meeting most error  
performance requirements for digital transmission equipment. It will generate and synchronize to pseudorandom  
patterns with a generation polynomial of the form xn + xy + 1, where n and y can take on values from 1 to 32 and  
repetitive patterns of any length up to 32 bits.  
The transmit direction generates the programmable test pattern, and inserts the test pattern payload into the data  
stream.  
The receive direction extracts the test pattern payload from the receive data stream, and monitors the test pattern  
payload for the programmable test pattern.  
5.9.1.1 BERT Features  
Programmable PRBS Pattern. The pseudorandom bit sequence (PRBS) polynomial (xn + xy + 1) and  
seed are programmable (length n = 1 to 32, tap y = 1 to n – 1, and seed = 0 to 2n – 1).  
Programmable Repetitive Pattern. The repetitive pattern length and pattern are programmable (the  
length n = 1 to 32 and pattern = 0 to 2n – 1).  
24-Bit Error Count and 32-Bit Bit Count Registers  
Programmable Bit-Error Insertion. Errors can be inserted individually, on a pin transition, or at a specific  
rate. The rate 1/10n is programmable (n = 1 to 7).  
Pattern Synchronization at a 10-3 BER. Pattern synchronization is achieved even in the presence of a  
random bit error rate (BER) of 10-3.  
34 of 121  
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
5.9.2 Configuration and Monitoring  
Set BTCR.BERTE = 1 to enable the BERT. The following tables show how to configure the on-board BERT to send  
and receive common patterns.  
Table 5-12. Pseudorandom Pattern Generation  
BPCR REGISTER  
PLF[4:0]  
BERT.CR  
BERT.  
PCR  
BERT.  
SPR2  
BERT.  
SPR1  
PATTERN TYPE  
PTF[4:0]  
(hex)  
TPIC,  
RPIC  
PTS QRSS  
(hex)  
29-1 O.153 (511 type)  
04  
08  
0
0
0
0
0x0408 0xFFFF 0xFFFF  
0x080A 0xFFFF 0xFFFF  
0
211-1 O.152 and O.153  
(2047 type)  
08  
0A  
0
215-1 O.151  
220-1 O.153  
0D  
10  
02  
11  
0E  
13  
13  
16  
0
0
0
0
0
0
1
0
0x0D0E 0xFFFF 0xFFFF  
0x1013 0xFFFF 0xFFFF  
0x0253 0xFFFF 0xFFFF  
0x1116 0xFFFF 0xFFFF  
1
0
0
1
220-1 O.151 QRSS  
223-1 O.151  
Table 5-13. Repetitive Pattern Generation  
BPCR REGISTER  
PTF[4:0] PLF[4:0]  
BERT.  
PCR  
BERT.  
SPR2  
BERT.  
SPR1  
PATTERN TYPE  
All Ones  
PTS QRSS  
(hex)  
(hex)  
NA  
00  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0x0020  
0x0020  
0x0021  
0x0023  
0x0037  
0x002F  
0x0027  
0x0023  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFF20  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFE  
0xFFFE  
0xFFFC  
0x0022  
0x0001  
0xFF01  
0xFFF1  
All Zeros  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
00  
01  
03  
17  
0F  
07  
03  
Alternating Ones and Zeros  
Double Alternating and Zeros  
3 in 24  
1 in 16  
1 in 8  
1 in 4  
After configuring these bits, the pattern must be loaded into the BERT. This is accomplished via a zero-to-one  
transition on BCR.TNPL and BCR.RNPL  
Monitoring the BERT requires reading the BSR register, which contains the Bit Error Count (BEC) bit and the Out  
of Synchronization (OOS) bit. The BEC bit will be one when the bit error counter is one or more. The OOS will be  
one when the receive pattern generator is not synchronized to the incoming pattern, which will occur when it  
receives a minimum 6 bit errors within a 64-bit window. The Receive BERT Bit Count Register (RBCR) and the  
Receive BERT Bit Error Count Register (RBECR) will be updated upon the reception of a Performance Monitor  
Update signal (e.g., BCR.LPMU). This signal will update the registers with the values of the counters since the last  
update and will reset the counters.  
35 of 121  
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
5.9.3 Receive Pattern Detection  
The Receive BERT receives only the payload data and synchronizes the receive pattern generator to the incoming  
pattern. The receive pattern generator is a 32-bit shift register that shifts data from the least significant bit (LSB) or  
bit 1 to the most significant bit (MSB) or bit 32. The input to bit 1 is the feedback. For a PRBS pattern (generating  
polynomial xn + xy + 1), the feedback is an XOR of bit n and bit y. For a repetitive pattern (length n), the feedback is  
bit n. The values for n and y are individually programmable (1 to 32). The output of the receive pattern generator is  
the feedback. If QRSS is enabled, the feedback is an XOR of bits 17 and 20, and the output will be forced to one if  
the next 14 bits are all zeros. QRSS is programmable (on or off). For PRBS and QRSS patterns, the feedback will  
be forced to one if bits 1 through 31 are all zeros. Depending on the type of pattern programmed, pattern detection  
performs either PRBS synchronization or repetitive pattern synchronization.  
5.9.3.1 Receive PRBS Synchronization  
PRBS synchronization synchronizes the receive pattern generator to the incoming PRBS or QRSS pattern. The  
receive pattern generator is synchronized by loading 32 data stream bits into the receive pattern generator, and  
then checking the next 32 data stream bits. Synchronization is achieved if all 32 bits match the incoming pattern. If  
at least six incoming bits in the current 64-bit window do not match the receive pattern generator, automatic pattern  
re-synchronization is initiated. Automatic pattern re-synchronization can be disabled.  
See Figure 5-13 for the PRBS synchronization diagram.  
Figure 5-13. PRBS Synchronization State Diagram  
Sync  
6 of  
s
64 bi  
or  
r
r
e
t
s
w
hout  
t
i
i
t
h e  
w
s
t
r
r
or  
s
32 bi  
1 bit error  
Verify  
Load  
32 bits loaded  
36 of 121  
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
5.9.3.2 Receive Repetitive Pattern Synchronization  
Repetitive pattern synchronization synchronizes the receive pattern generator to the incoming repetitive pattern.  
The receive pattern generator is synchronized by searching each incoming data stream bit position for the  
repetitive pattern, and then checking the next 32 data stream bits. Synchronization is achieved if all 32 bits match  
the incoming pattern. If at least six incoming bits in the current 64-bit window do not match the receive PRBS  
pattern generator, automatic pattern re-synchronization is initiated. Automatic pattern re-synchronization can be  
disabled.  
See Figure 5-14 for the repetitive pattern synchronization state diagram.  
Figure 5-14. Repetitive Pattern Synchronization State Diagram  
Sync  
6 of  
s
64 bi  
or  
r
r
e
t
s
w
hout  
t
i
i
t
h e  
w
s
t
r
r
or  
s
32 bi  
1 bit error  
Verify  
Match  
Pattern Matches  
5.9.3.3 Receive Pattern Monitoring  
Receive pattern monitoring monitors the incoming data stream for both an OOS condition and bit errors and counts  
the incoming bits. An Out Of Synchronization (OOS) condition is declared when the synchronization state machine  
is not in the “Sync” state. An OOS condition is terminated when the synchronization state machine is in the “Sync”  
state.  
Bit errors are determined by comparing the incoming data stream bit to the receive pattern generator output. If they  
do not match, a bit error is declared, and the bit error and bit counts are incremented. If they match, only the bit  
count is incremented. The bit count and bit error count are not incremented when an OOS condition exists.  
37 of 121  
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
5.9.4 Transmit Pattern Generation  
Pattern generation generates the outgoing test pattern, and passes it onto error insertion. The transmit pattern  
generator is a 32-bit shift register that shifts data from the least significant bit (LSB) or bit 1 to the most significant  
bit (MSB) or bit 32. The input to bit 1 is the feedback. For a PRBS pattern (generating polynomial xn + xy + 1), the  
feedback is an XOR of bit n and bit y. For a repetitive pattern (length n), the feedback is bit n. The values for n and  
y are individually programmable (1 to 32). The output of the receive pattern generator is the feedback. If QRSS is  
enabled, the feedback is an XOR of bits 17 and 20, and the output will be forced to one if the next 14 bits are all  
zeros. QRSS is programmable (on or off). For PRBS and QRSS patterns, the feedback will be forced to one if bits  
1 through 31 are all zeros. When a new pattern is loaded, the pattern generator is loaded with a seed/pattern value  
before pattern generation starts. The seed/pattern value is programmable (0 – 2n – 1).  
5.9.4.1 Transmit Error Insertion  
Error insertion inserts errors into the outgoing pattern data stream. Errors are inserted one at a time or at a rate of  
one out of every 10n bits. The value of n is programmable (1 to 7 or off). Single bit error insertion can be initiated  
from the microprocessor interface, or by the manual error insertion input (TMEI). The method of single error  
insertion is programmable (register or input). If pattern inversion is enabled, the data stream is inverted before the  
overhead/stuff bits are inserted. Pattern inversion is programmable (on or off).  
38 of 121  
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
6 REGISTER MAPS AND DEFINITION  
Six address bits are used to control the settings of the registers. In the parallel nonmultiplexed mode address [5:0]  
is used. In multiplexed mode AD[5:0] is used and A[6:1] is used in the serial mode. The register space contains two  
independent sets of registers. The lower set of registers (LIUs 1–8) is located from address 00 hex to 1F hex and  
contains controls for LIUs 1–8. The upper set of registers (LIUs 9–16) is a duplicate of the lower set, located from  
address 20 hex to 3F hex that controls LIUs 9–16. Each of these sets of registers consists of four banks: Primary,  
Secondary, Individual LIU, and BERT.  
The ADDP register for the lower set of registers (LIUs 1–8) is located at address 1F hex. This register is used as a  
pointer to access the 4 banks of registers in the lower (LIUs 1–8) register set. Similarly, the ADDP register for the  
upper set of registers (LIUs 9–16) is located at address 3F hex. This register is used as a pointer to access the four  
banks of registers in the upper (LIUs 9–16) register set. Setting an ADDP register to AA hex will access the  
secondary bank of registers, 01 hex will access the Individual LIU bank of registers, 02 hex will access the BERT  
bank of registers, and 00 hex (default on power-up) will access the Primary bank of registers. Note that bank  
selection for the lower set of registers (LIUs 1–8) is controlled only by the ADDP at 1F hex and that bank selection  
for the upper set of registers (LIUs 9–16) is controlled only by the ADDP at 3F hex.  
39 of 121  
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Table 6-1. Primary Register Set  
ADDRESS FOR CH 1–8  
ADDRESS FOR CH 9–16  
HEX FOR  
CH 1–8  
HEX FOR  
CH 9–16  
PARALLEL  
INTERFACE  
SERIAL  
INTERFACE  
PARALLEL  
INTERFACE  
SERIAL  
INTERFACE  
REGISTER  
NAME  
RW  
A[7:0] (HEX) A[7:1] (HEX)  
A[7:0] (HEX) A[7:1] (HEX)  
Identification  
ID  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
xx000000  
xx000001  
xx000010  
xx000011  
xx000100  
xx000101  
xx000110  
xx000111  
xx001000  
xx001001  
xx001010  
xx001011  
xx001100  
xx001101  
xx001110  
xx001111  
xx010000  
xx010001  
xx010010  
xx010011  
xx010100  
xx010101  
xx010110–  
xx011110  
xx011111  
x000000  
x000001  
x000010  
x000011  
x000100  
x000101  
x000110  
x000111  
x001000  
x001001  
x001010  
x001011  
x001100  
x001101  
x001110  
x001111  
x010000  
x010001  
x010010  
x010011  
x010100  
x010101  
x010110–  
x011110  
x011111  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
Not used  
xx100001  
xx100010  
xx100011  
xx100100  
xx100101  
xx100110  
xx100111  
xx101000  
xx101001  
xx101010  
xx101011  
xx101100  
xx101101  
xx101110  
xx101111  
xx110000  
xx110001  
xx110010  
xx110011  
xx110100  
xx110101  
xx110110–  
x111110  
Not used  
x100001  
x100010  
x100011  
x100100  
x100101  
x100110  
x100111  
x101000  
x101001  
x101010  
x101011  
x101100  
x101101  
x101110  
x101111  
x110000  
x110001  
x110010  
x110011  
x110100  
x110101  
x110110–  
x111110  
x111111  
R
Analog Loopback Control  
Remote Loopback Control  
Transmit All Ones Enable  
Loss of Signal Status  
Driver Fault Monitor Status  
Loss of Signal Interrupt Enable  
Driver Fault Monitor Interrupt Enable  
Loss of Signal Interrupt Status  
Driver Fault Monitor Interrupt Status  
Software Reset  
BERT and G.772 Monitoring Control  
Digital Loopback Control  
LOS/AIS Criteria Selection  
Automatic Transmit All Ones Select  
Global Configuration  
ALBC  
RLBC  
TAOE  
LOSS  
DFMS  
LOSIE  
DFMIE  
LOSIS  
DFMIS  
SWR  
BGMC  
DLBC  
LASCS  
ATAOS  
GC  
RW  
RW  
RW  
R
R
RW  
RW  
R
R
W
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
Template Select Transmitter  
Template Select  
Output Enable Configuration  
Alarm Indication Signal Status  
AIS Interrupt Enable  
TST  
TS  
OE  
AIS  
AISIE  
AISI  
RW  
R
AIS Interrupt Status  
Reserved  
16–1E  
1F  
36–3E  
3F  
Address Pointer for Bank Selection  
ADDP  
xx111111  
RW  
40 of 121  
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Table 6-2. Secondary Register Set  
ADDRESS FOR CHANNELS 1–8  
ADDRESS FOR CHANNELS 9–16  
HEX  
FOR  
CH 1–8  
HEX  
FOR  
CH 9–16  
PARALLEL  
INTERFACE  
A[7:0] (HEX)  
xx000000  
xx000001  
xx000010  
xx000011  
xx000100  
xx000101  
xx000110  
xx000111–  
xx011110  
xx011111  
SERIAL  
INTERFACE  
A[7:1] (HEX)  
x000000  
x000001  
x000010  
x000011  
x000100  
x000101  
x000110  
x000111–  
x011110  
x011111  
PARALLEL  
INTERFACE  
A[7:0] (HEX)  
xx100000  
xx100001  
xx100010  
xx100011  
xx100100  
xx100101  
xx100110  
xx100111–  
xx111110  
xx111111  
SERIAL  
INTERFACE  
A[7:1] (HEX)  
x100000  
x100001  
x100010  
x100011  
x100100  
x100101  
x100110  
x100111–  
x111110  
x111111  
REGISTER  
NAME  
RW  
Single-Rail Mode Select  
Line Code Selection  
SRMS  
LCS  
00  
01  
02  
03  
04  
05  
06  
20  
21  
22  
23  
24  
25  
26  
RW  
R
Not Used  
R
Receive Power-Down Enable  
Transmit Power-Down Enable  
Excessive Zero Detect Enable  
Code Violation Detect Enable Bar  
RPDE  
TPDE  
EZDE  
CVDEB  
RW  
RW  
R
R
Not Used  
07–1E  
1F  
27–3E  
3F  
W
Address Pointer for Bank Selection  
ADDP  
RW  
41 of 121  
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Table 6-3. Individual LIU Register Set  
ADDRESS FOR CHANNELS 1–8  
ADDRESS FOR CHANNELS 9–16  
HEX  
FOR  
CH 1–8  
HEX FOR  
CH 9–16  
PARALLEL  
INTERFACE  
A[7:0] (HEX)  
xx000000  
SERIAL  
INTERFACE  
A[7:1] (HEX)  
x000000  
PARALLEL  
INTERFACE  
A[7:0] (HEX)  
xx100000  
SERIAL  
INTERFACE  
A[7:1] (HEX)  
x100000  
REGISTER  
NAME  
RW  
Individual Jitter Attenuator Enable  
Individual Jitter Attenuator Position  
Select  
IJAE  
00  
01  
20  
21  
RW  
RW  
IJAPS  
xx000001  
xx000010  
xx000011  
xx000100  
x000001  
x000010  
x000011  
x000100  
xx100001  
xx100010  
xx100011  
xx100100  
x100001  
x100010  
x100011  
x100100  
Individual Jitter Attenuator FIFO  
Depth Select  
Individual Jitter Attenuator FIFO  
Limit Trip  
Individual Short-Circuit Protection  
Disable  
IJAFDS  
IJAFLT  
ISCPD  
02  
03  
04  
22  
23  
24  
RW  
R
RW  
Individual AIS Select  
Master Clock Select  
Short-Haul/Long-Haul Select  
IAISEL  
MC  
SHLHS  
RSMM1,  
RSMM2,  
RSMM3,  
RSMM4  
05  
06  
07  
xx000101  
xx000110  
xx000111  
x000101  
x000110  
x000111  
25  
26  
27  
xx100101  
Not used  
xx100111  
x100101  
Not used  
x100111  
RW  
RW  
RW  
Receive Sensitivity Monitor Mode  
1–4  
xx001000–  
xx001011  
x001000–  
x001011  
xx101000–  
xx101011  
x101000–  
x101011  
08–0B  
28–2B  
RW  
xx001100–  
xx001111  
xx010000  
xx010010  
xx010011  
xx010100  
xx010101  
xx010110  
xx011110  
xx011111  
x001100–  
x001111  
x010000  
x010010  
x010011  
x010100  
x010101  
x010110  
x011110  
x011111  
xx101100–  
xx101111  
xx110000  
xx110010  
xx110011  
xx110100  
Not used  
xx110110  
Not used  
xx111111  
x101100–  
x101111  
x110000  
x110010  
x110011  
x110100  
Not used  
x110110  
Not used  
x111111  
Receive Signal Level Indicator 1–4  
RSL1–4  
0C–0F  
2C–2F  
R
Bit Error Rate Tester Control  
Line Violation Detect Status  
Receive Clock Invert  
Transmit Clock Invert  
Clock Control Register  
RCLK Disable Upon LOS  
Global Interrupt Status Control  
Address Pointer for Bank Selection  
BTCR  
LVDS  
RCLKI  
TCLKI  
CCR  
RDULR  
GISC  
ADDP  
10  
12  
13  
14  
15  
16  
1E  
1F  
30  
32  
33  
34  
35  
36  
3E  
3F  
RW  
R
RW  
RW  
RW  
RW  
RW  
RW  
42 of 121  
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Table 6-4. BERT Register Set  
ADDRESS FOR CHANNELS 1–8  
ADDRESS FOR CHANNELS 9–16  
HEX FOR  
CH 1–8  
HEX FOR  
CH 9–16  
PARALLEL  
INTERFACE  
A[7:0] (HEX)  
SERIAL  
INTERFACE  
A[7:1] (HEX)  
PARALLEL  
INTERFACE  
A[7:0] (HEX)  
SERIAL  
INTERFACE  
A[7:1] (HEX)  
REGISTER  
NAME  
RW  
BERT Control  
Reserved  
BCR  
00  
01  
02  
03  
04  
05  
06  
07  
08  
xx000000  
xx000001  
xx000010  
xx000011  
xx000100  
xx000101  
xx000110  
xx000111  
xx001000  
xx001001–  
x001010  
x000000  
x000001  
x000010  
x000011  
x000100  
x000101  
x000110  
x000111  
x001000  
20  
21  
22  
23  
24  
25  
26  
27  
28  
xx100000  
xx100001  
xx100010  
xx100011  
xx100100  
xx100101  
xx100110  
xx100111  
xx101000  
xx101001–  
x101010  
x100000  
x100001  
x100010  
x100011  
x100100  
x100101  
x100110  
x100111  
x101000  
RW  
BERT Pattern Configuration 1  
BERT Pattern Configuration 2  
BERT Seed/Pattern 1  
BERT Seed/Pattern 2  
BERT Seed/Pattern 3  
BERT Seed/Pattern 4  
Transmit Error Insertion Control  
BPCR1  
BPCR2  
BSPR1  
BSPR2  
BSPR3  
BSPR4  
TEICR  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Reserved  
09–0A  
29–2A  
BERT Status  
Reserved  
BERT Status Register Latched  
BERT Status Register Interrupt Enable  
BSR  
BSRL  
BSRIE  
0C  
0D  
0E  
10  
xx001100  
xx001101  
xx010011  
xx010000  
xx010001–  
xx010011  
xx010100  
xx010101  
xx010110  
xx011000  
xx011001  
xx011010  
xx011011  
xx011100–  
xx011110  
xx011111  
x001100  
x001101  
x010011  
x010000  
X010001–  
x010011  
x010100  
x010101  
x010110  
x011000  
x011001  
x011010  
x011011  
x011100–  
x011110  
x011111  
2C  
2D  
2E  
30  
xx101100  
xx101101  
xx110011  
xx110000  
xx110001–  
xx110011  
xx110100  
xx110101  
xx110110  
xx111000  
xx111001  
xx111010  
xx111011  
xx111100–  
xx111110  
xx111111  
x101100  
x101101  
x110011  
x110000  
x110001–  
x110011  
x110100  
x110101  
x110110  
x111000  
x111001  
x111010  
x111011  
x111100–  
x111110  
x111111  
R
RW  
RW  
Reserved  
11–13  
31–33  
Receive Bit Error Count Register 1  
Receive Bit Error Count Register 2  
Receive Bit Error Count Register 3  
Receive Bit Count Register 1  
Receive Bit Count Register 2  
Receive Bit Count Register 3  
Receive Bit Count Register 4  
RBECR1  
RBECR2  
RBECR3  
RBCR1  
RBCR2  
RBCR3  
RBCR4  
14  
15  
16  
18  
19  
1A  
1B  
34  
35  
36  
38  
39  
3A  
3B  
R
R
R
R
R
R
R
Reserved  
1C–1E  
1F  
3C–3E  
3F  
Address Pointer for Bank Selection  
ADDP  
RW  
43 of 121  
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Table 6-5. Primary Register Set Bit Map  
ADDRESS  
FOR LIUs  
1–8  
REGISTER  
R/W  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
ID  
ALBC  
RLBC  
TAOE  
LOSS  
DFMS  
LOSIE  
DFMIE  
LOSIS  
DFMIS  
SWR  
BGMC  
DLBC  
LASCS  
ATAOS  
GC  
00  
01  
02  
03  
04  
05  
06  
07  
08  
R
ID7  
ALBC8  
RLBC8  
TAOE8  
LOSS8  
DFMS8  
LOSIE8  
DFMIE8  
LOSIS8  
DFMIS8  
SWRL  
BERTDIR  
DLBC8  
LASCS8  
ATAOS8  
RIMPMS  
JABWS1  
RIMPON  
OE8  
ID6  
ALBC7  
RLBC7  
TAOE7  
LOSS7  
DFMS7  
LOSIE7  
DFMIE7  
LOSIS7  
DFMIS7  
SWRL  
BMCKS  
DLBC7  
LASCS7  
ATAOS7  
AISEL  
ID5  
ALBC6  
RLBC6  
TAOE6  
LOSS6  
DFMS6  
LOSIE6  
DFMIE6  
LOSIS6  
DFMIS6  
SWRL  
BTCKS  
DLBC6  
LASCS6  
ATAOS6  
SCPD  
RHPMC  
ID4  
ALBC5  
RLBC5  
TAOE5  
LOSS5  
DFMS5  
LOSIE5  
DFMIE5  
LOSIS5  
DFMIS5  
SWRL  
DLBC5  
LASCS5  
ATAOS5  
CODE  
ID3  
ALBC4  
RLBC4  
TAOE4  
LOSS4  
DFMS4  
LOSIE4  
DFMIE4  
LOSIS4  
DFMIS4  
SWRL  
GMC4  
DLBC4  
LASCS4  
ATAOS4  
JADS  
ID2  
ALBC3  
RLBC3  
TAOE3  
LOSS3  
DFMS3  
LOSIE3  
DFMIE3  
LOSIS3  
DFMIS3  
SWRL  
GMC3  
DLBC3  
LASCS3  
ATAOS3  
CRIMP  
TST2  
ID1  
ALBC2  
RLBC2  
TAOE2  
LOSS2  
DFMS2  
LOSIE2  
DFMIE2  
LOSIS2  
DFMIS2  
SWRL  
GMC2  
DLBC2  
LASCS2  
ATAOS2  
JAPS  
ID0  
ALBC1  
RLBC1  
TAOE1  
LOSS1  
DFMS1  
LOSIE1  
DFMIE1  
LOSIS1  
DFMIS1  
SWRL  
GMC1  
DLBC1  
LASCS1  
ATAOS1  
JAE  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
09  
R
W
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
TST  
TS  
OE  
AIS  
JABWS0  
TIMPOFF  
OE7  
TIMPRM  
OE4  
TST1  
TS1  
OE2  
AIS2  
TST0  
TS0  
OE1  
AIS1  
OE5  
AIS5  
TS2  
OE3  
AIS3  
OE6  
AIS6  
AIS8  
AIS7  
AIS4  
AISIE  
AISI  
14  
15  
RW  
R
AISIE8  
AISI8  
AISIE7  
AISI7  
AISIE6  
AISI6  
AISIE5  
AISI5  
AISIE4  
AISI4  
AISIE3  
AISI3  
AISIE2  
AISI2  
AISIE1  
AISI1  
Not Used  
ADDP  
16-1E  
1F  
RW  
ADDP7  
ADDP6  
ADDP5  
ADDP4  
ADDP3  
ADDP2  
ADDP1  
ADDP0  
ADDRESS  
FOR LIUs  
9–16  
REGISTER  
R/W  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Not Used  
ALBC  
RLBC  
TAOE  
LOSS  
DFMS  
LOSIE  
DFMIE  
LOSIS  
DFMIS  
SWR  
BGMC  
DLBC  
LASCS  
ATAOS  
GC  
20  
21  
22  
23  
24  
25  
26  
27  
28  
R
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
ALBC16  
RLBC16  
TAOE16  
LOSS16  
DFMS16  
LOSIE16  
DFMIE16  
LOSIS16  
DFMIS16  
SWRU  
BERTDIR  
DLBC16  
LASCS16  
ATAOS16  
RIMPMS  
ALBC15  
RLBC15  
TAOE15  
LOSS15  
DFMS15  
LOSIE15  
DFMIE15  
LOSIS15  
DFMIS15  
SWRU  
BMCKS  
DLBC15  
LASCS15  
ATAOS15  
AISEL  
ALBC14  
RLBC14  
TAOE14  
LOSS14  
DFMS14  
LOSIE14  
DFMIE14  
LOSIS14  
DFMIS14  
SWRU  
BTCKS  
DLBC14  
LASCS14  
ATAOS14  
SCPD  
ALBC13  
RLBC13  
TAOE13  
LOSS13  
DFMS13  
LOSIE13  
DFMIE13  
LOSIS13  
DFMIS13  
SWRU  
DLBC13  
LASCS13  
ATAOS13  
CODE  
ALBC12  
RLBC12  
TAOE12  
LOSS12  
DFMS12  
LOSIE12  
DFMIE12  
LOSIS12  
DFMIS12  
SWRU  
GMC4  
DLBC12  
LASCS12  
ATAOS12  
JADS  
TIMPRM  
OE12  
ALBC11  
RLBC11  
TAOE11  
LOSS11  
DFMS11  
LOSIE11  
DFMIE11  
LOSIS11  
DFMIS11  
SWRU  
GMC3  
DLBC11  
LASCS11  
ATAOS11  
CALEN  
TST2  
ALBC10  
RLBC10  
TAOE10  
LOSS10  
DFMS10  
LOSIE10  
DFMIE10  
LOSIS10  
DFMIS10  
SWRU  
GMC2  
DLBC10  
LASCS10  
ATAOS10  
JAPS  
TST1  
TS1  
ALBC9  
RLBC9  
TAOE9  
LOSS9  
DFMS9  
LOSIE9  
DFMIE9  
LOSIS9  
DFMIS9  
SWRU  
GMC1  
DLBC9  
LASCS9  
ATAOS9  
JAE  
29  
R
W
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
TST  
TS  
OE  
AIS  
OE14  
AIS14  
TST0  
TS0  
OE9  
AIS9  
RIMPON  
OE16  
AIS16  
TIMPOFF  
OE15  
AIS15  
OE13  
AIS13  
TS2  
OE11  
AIS11  
OE10  
AIS10  
AIS12  
AISIE  
AISI  
Not Used  
ADDP  
34  
35  
36-3E  
3F  
RW  
R
AISIE16  
AISI16  
ADDP7  
AISIE15  
AISI15  
ADDP6  
AISIE14  
AISI14  
AISIE13  
AISI13  
AISIE12  
AISI12  
ADDP3  
AISIE11  
AISI11  
ADDP2  
AISIE10  
AISI10  
ADDP1  
AISIE9  
AISI9  
RW  
ADDP5  
ADDP4  
ADDP0  
Note: Underlined bits are read only.  
44 of 121  
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Table 6-6. Secondary Register Set Bit Map  
ADDRESS  
FOR LIUs  
1–8  
REGISTER  
RW  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
SRMS  
LCS  
Not Used  
RPDE  
TPDE  
EZDE  
CVDEB  
Not Used  
ADDP  
00  
01  
02  
03  
04  
05  
06  
07–1E  
1F  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
SRMS8  
LCS8  
RPDE8  
TPDE8  
EZDE8  
CVDEB8  
SRMS7  
LCS7  
RPDE7  
TDPE7  
EZDE7  
CVDEB7  
SRMS6  
LCS6  
RPDE6  
TPDE6  
EZDE6  
CVDEB6  
SRMS5  
LCS5  
RPDE5  
TPDE5  
EZDE5  
CVDEB5  
SRMS4  
LSC4  
RPDE4  
TPDE4  
EZDE4  
CVDEB4  
SRMS3  
LCS3  
RPDE3  
TPDE3  
EZDE3  
CVDEB3  
SRMS2  
LSC2  
RPDE2  
TPDE2  
EZDE2  
CVDEB2  
SRMS1  
LSC1  
RPDE1  
TPDE1  
EZDE1  
CVDEB1  
RW  
ADDP7  
ADDP6  
ADDP5  
ADDP4  
ADDP3  
ADDP2  
ADDP1  
ADDP0  
ADDRESS  
FOR LIUs  
9–16  
REGISTER  
RW  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
SRMS  
LCS  
Not Used  
RPDE  
TPDE  
EZDE  
CVDEB  
Not Used  
ADDP  
20  
21  
22  
23  
24  
25  
26  
27–3E  
3F  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
SRMS16  
LCS16  
RPDE16  
TPDE16  
EZDE16  
CVDEB16  
SRMS15  
LCS15  
RPDE15  
TDPE15  
EZDE15  
CVDEB15  
SRMS14  
LCS14  
RPDE14  
TPDE14  
EZDE14  
CVDEB14  
SRMS13  
LCS13  
RPDE13  
TPDE13  
EZDE13  
CVDEB13  
SRMS12  
LSC12  
RPDE12  
TPDE12  
EZDE12  
CVDEB12  
SRMS11  
LCS11  
RPDE11  
TPDE11  
EZDE11  
CVDEB11  
SRMS10  
LSC10  
RPDE10  
TPDE10  
EZDE10  
CVDEB10  
SRMS9  
LSC9  
RPDE9  
TPDE9  
EZDE9  
CVDEB9  
RW  
ADDP7  
ADDP6  
ADDP5  
ADDP4  
ADDP3  
ADDP2  
ADDP1  
ADDP0  
45 of 121  
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Table 6-7. Individual LIU Register Set Bit Map  
ADDRESS  
FOR LIUs  
1–8  
REGISTER  
RW  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
IJAE  
IJAPS  
IJAFDS  
IJAFLT  
ISCPD  
IAISEL  
MC  
SHLHS  
RSMM1  
RSMM2  
RSMM3  
RSMM4  
RSL1  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
RW  
RW  
RW  
R
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
IJAE8  
IJAPS8  
IJAFDS8  
IJAFLT8  
ISCPD8  
IAISEL8  
PCLKI1  
SHLHS8  
RTR2  
RTR4  
RTR6  
RTR8  
C2RSL3  
C4RSL3  
C6RSL3  
IJAE7  
IJAPS7  
IJAE6  
IJAPS6  
IJAE5  
IJAPS5  
IJAFDS5  
IJAFLT5  
ISCPD5  
IAISEL5  
CLKAE  
SHLHS5  
C2RSM0  
C4RSM0  
C6RSM0  
C8RSM0  
C2RSL0  
C4RSL0  
C6RSL0  
C8RSL0/  
CALSTAT  
IJAE4  
IJAPS4  
IJAFDS4  
IJAFLT4  
ISCPD4  
IAISEL4  
MPS1  
SHLHS4  
RTR1  
RTR3  
RTR5  
RTR7  
C1RSL3  
C3RSL3  
C5RSL3  
IJAE3  
IJAPS3  
IJAE2  
IJAPS2  
IJAE1  
IJAPS1  
IJAFDS7  
IJAFLT7  
ISCPD7  
IAISEL7  
PCLKI0  
SHLHS7  
C2RSM2  
C4RSM2  
C6RSM2  
C8RSM2  
C2RSL2  
C4RSL2  
C6RSL2  
IJAFDS6  
IJAFLT6  
ISCPD6  
IAISEL6  
TECLKE  
SHLHS6  
C2RSM1  
C4RSM1  
C6RSM1  
C8RSM1  
C2RSL1  
C4RSL1  
C6RSL1  
IJAFDS3  
IJAFLT3  
ISCPD3  
IAISEL3  
MPS0  
SHLHS3  
C1RSM2  
C3RSM2  
C5RSM2  
C7RSM2  
C1RSL2  
C3RSL2  
C5RSL2  
IJAFDS2  
IJAFLT2  
ISCPD2  
IAISEL2  
FREQS  
SHLHS2  
C1RSM1  
C3RSM1  
C5RSM1  
C7RSM1  
C1RSL1  
C3RSL1  
C5RSL1  
IJAFDS1  
IJAFLT1  
ISCPD1  
IAISEL1  
PLLE  
SHLHS1  
C1RSM0  
C3RSM0  
C5RSM0  
C7RSM0  
C1RSL0  
C3RSL0  
C5RSL0  
RSL2  
RSL3  
R
R
RSL4  
0F  
R
C8RSL3  
C8RSL2  
C8RSL1  
C7RSL3  
C7RSL2  
C7RSL1  
C7RSL0  
BTCR  
BEIR  
LVDS  
RCLKI  
TCLKI  
CCR  
RDULR  
GISC  
ADDP  
10  
11  
12  
13  
14  
15  
16  
1E  
1F  
RW  
RW  
R
RW  
RW  
RW  
RW  
RW  
RW  
BTS2  
BEIR8  
LVDS8  
RCLKI8  
TCLKI8  
PCLKS2  
RDULR8  
BTS1  
BEIR7  
LVDS7  
RCLKI7  
TCLKI7  
PCLKS1  
RDULR7  
BTS0  
BEIR6  
LVDS6  
RCLKI6  
TCLKI6  
PCLKS0  
RDULR6  
BERTE  
BEIR1  
BEIR5  
LVDS5  
BEIR4  
LVDS4  
RCLKI4  
TCLKI4  
CLKA3  
RDULR4  
BEIR3  
LVDS3  
RCLKI3  
TCLKI3  
CLKA2  
RDULR3  
BEIR2  
LVDS2  
RCLKI2  
TCLKI2  
CLKA1  
RDULR2  
INTM  
LVDS1  
RCLKI1  
TCLKI1  
CLKA0  
RDULR1  
CWE  
RCLKI5  
TCLKI5  
TECLKS  
RDULR5  
ADDP7  
ADDP6  
ADDP5  
ADDP4  
ADDP3  
ADDP2  
ADDP1  
ADDP0  
ADDRESS  
FOR LIUs  
9–16  
REGISTER  
RW  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
IJAE  
IJAPS  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
3E  
3F  
RW  
RW  
RW  
R
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
IJAE16  
IJAPS16  
IJAE15  
IJAPS15  
IJAE14  
IJAPS14  
IJAE13  
IJAPS13  
IJAE12  
IJAPS12  
IJAE11  
IJAPS11  
IJAE10  
IJAPS10  
IJAE9  
IJAPS9  
IJAFDS9  
IJAFLT9  
ISCPD9  
IAISEL9  
IJAFDS  
IJAFLT  
ISCPD  
IAISEL  
Not Used  
SHLHS  
RSMM1  
RSMM2  
RSMM3  
RSMM4  
RSL1  
RSL2  
RSL3  
RSL4  
BTCR  
BEIR  
LVDS  
IJAFDS16 IJAFDS15 IJAFDS14 IJAFDS13 IJAFDS12 IJAFDS11 IJAFDS10  
IJAFLT16  
ISCPD16  
IAISEL16  
SHLHS16  
RTR10  
RTR12  
RTR14  
RTR16  
C10RSL3  
C12RSL3  
C14RSL3  
C16RSL3  
BTS2  
BEIR16  
LVDS16  
RCLKI16  
TCLKI16  
IJAFLT15  
ISCPD15  
IAISEL15  
IJAFLT14  
ISCPD14  
IAISEL14  
IJAFLT13  
ISCPD13  
IAISEL13  
IJAFLT12  
ISCPD12  
IAISEL12  
SHLHS12  
RTR9  
RTR11  
RTR13  
RTR15  
C9RSL3  
C11RSL3  
C13RSL3  
C15RSL3  
BEIR12  
LVDS12  
RCLKI12  
TCLKI12  
IJAFLT11  
ISCPD11  
IAISEL11  
SHLHS11  
C9RSM2  
C11RSM2 C11RSM1 C11RSM0  
C13RSM2 C13RSM1 C13RSM0  
C15RSM2 C15RSM1 C15RSM0  
C9RSL2  
C11RSL2  
C13RSL2  
C15RSL2  
IJAFLT10  
ISCPD10  
IAISEL10  
SHLHS10  
C9RSM1  
SHLHS15  
SHLHS14  
SHLHS13  
SHLHS9  
C9RSM0  
C10RSM2 C10RSM1 C10RSM0  
C12RSM2 C12RSM1 C12RSM0  
C14RSM2 C14RSM1 C14RSM0  
C16RSM2 C16RSM1 C16RSM0  
C10RSL2  
C12RSL2  
C14RSL2  
C16RSL2  
BTS1  
BEIR15  
LVDS15  
RCLKI15  
TCLKI15  
C10RSL1  
C12RSL1  
C14RSL1  
C16RSL1  
BTS0  
BEIR14  
LVDS14  
RCLKI14  
TCLKI14  
C10RSL0  
C12RSL0  
C14RSL0  
C16RSL0  
BEIR13  
LVDS13  
RCLKI13  
TCLKI13  
C9RSL1  
C11RSL1  
C13RSL1  
C15RSL1  
BEIR10  
LVDS10  
RCLKI10  
TCLKI10  
C9RSL0  
C11RSL0  
C13RSL0  
C15RSL0  
BERTE  
BEIR9  
LVDS9  
RCLKI9  
TCLKI9  
R
R
R
RW  
RW  
R
RW  
RW  
RW  
RW  
RW  
RW  
BEIR11  
LVDS11  
RCLKI11  
TCLKI11  
RCLKI  
TCLKI  
Not Used  
RDULR  
Not Used  
ADDP  
RDULR16 RDULR15 RDULR14 RDULR13 RDULR12 RDULR11 RDULR10  
ADDP7  
RDULR9  
CWE  
ADDP0  
ADDP6  
ADDP5  
ADDP4  
ADDP3  
ADDP2  
INTM  
ADDP1  
Note: Underlined bits are read only.  
46 of 121  
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Table 6-8. BERT Register Bit Map  
ADDRESS FOR  
LIUs  
REGISTER  
RW  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
1–8  
9–16  
BCR  
00  
01  
20  
21  
RW  
RW  
RW  
RW  
RW  
R
PMUM  
LPMU  
RNPL  
RPIC  
MPR  
APRD  
TNPL  
TPIC  
Not Used  
BPCR1  
BPCR2  
BSPR1  
BSPR2  
BSPR3  
BSPR4  
TEICR  
02  
22  
QRSS  
PTS  
PLF4  
PTF4  
BSP4  
BSP12  
BSP20  
BSP28  
TEIR1  
PLF3  
PTF3  
BSP3  
BSP11  
BSP19  
BSP27  
TEIR0  
PLF2  
PTF2  
BSP2  
BSP10  
BSP18  
BSP26  
BEI  
PLF1  
PTF1  
BSP1  
BSP9  
BSP17  
BSP25  
TSEI  
PLF0  
PTF0  
BSP0  
BSP8  
BSP16  
BSP24  
MEIMS  
03  
23  
04  
24  
BSP7  
BSP15  
BSP23  
BSP31  
BSP6  
BSP14  
BSP22  
BSP30  
BSP5  
BSP13  
BSP21  
BSP29  
TEIR2  
05  
25  
06  
26  
07  
27  
08  
28  
Not Used  
BSR  
09–0B  
0C  
0D  
0E  
29–2B  
2C  
2D  
2E  
PMS  
BEC  
OOS  
Not Used  
BSRL  
R
PMSL  
BEL  
BECL  
OOSL  
Not Used  
BSRIE  
0F  
2F  
RW  
R
10  
30  
PMSIE  
BEIE  
BECIE  
OOSIE  
Not Used  
RBECR1  
RBECR2  
RBECR3  
Not Used  
RBCR1  
RBCR2  
RBCR3  
11–13  
14  
31–33  
34  
BEC7  
BEC15  
BEC23  
BEC6  
BEC14  
BEC22  
BEC5  
BEC13  
BEC21  
BEC4  
BEC12  
BEC20  
BEC3  
BEC11  
BEC19  
BEC2  
BEC10  
BEC18  
BEC1  
BEC9  
BEC17  
BEC0  
BEC8  
BEC16  
15  
35  
R
16  
36  
R
17  
37  
R
18  
38  
BC7  
BC15  
BC23  
BC31  
BC6  
BC14  
BC22  
BC30  
BC5  
BC13  
BC21  
BC29  
BC4  
BC12  
BC20  
BC28  
BC3  
BC2  
BC10  
BC18  
BC26  
BC1  
BC0  
19  
39  
R
BC11  
BC19  
BC27  
BC9  
BC8  
1A  
3A  
R
BC17  
BC25  
BC16  
BC24  
RBCR4  
Not Used  
ADDP  
1B  
3B  
R
1C–1E  
1F  
3C–3E  
3F  
RW  
ADDP7  
ADDP6  
ADDP5  
ADDP4  
ADDP3  
ADDP2  
ADDP1  
ADDP0  
Note: Underlined bits are read only.  
47 of 121  
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
6.1 Register Description  
This section contains the detailed register descriptions of each bit. Whenever the variable “n” in italics is used in  
any of the register descriptions, it represents 1–16. Note that in the register descriptions, there are duplicate  
registers for LIUs 1–8 and LIUs 9–16. There are registers in LIUs 1–8 that do not have a duplicate in the register  
set for LIUs 9–16. For these registers, only one address is listed. All other registers list two addresses, one for LIUs  
1–8 and one for LIUs 9–16.  
6.1.1 Primary Register Bank  
The ADDP register must be set to 00h to access this bank.  
ID  
Register Name:  
Identification Register  
00h  
Register Description:  
Register Address:  
Bit #  
7
6
5
4
3
2
1
0
Name  
ID7  
ID6  
ID5  
ID4  
ID3  
ID2  
ID1  
ID0  
Bit 7: Device CODE ID Bit 7 (ID7). This bit is “one” for long-haul operation.  
Bits 6 to 3: Device CODE ID Bits 6 to 3 (ID[6:3]). These bits tell the user the number of ports the device contains.  
Bits 2 to 0: Device CODE ID Bits 2 to 0 (ID[2:0]). These bits tell the user the revision of the part. Contact the  
factory for details.  
ALBC  
Register Name:  
Analog Loopback Control Register  
01h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
ALBC8  
0
6
ALBC7  
0
5
ALBC6  
0
4
ALBC5  
0
3
ALBC4  
0
2
ALBC3  
0
1
ALBC2  
0
0
ALBC1  
0
21h  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
ALBC16  
0
6
ALBC15  
0
5
ALBC14  
0
4
ALBC13  
0
3
ALBC12  
0
2
ALBC11  
0
1
ALBC10  
0
0
ALBC9  
0
Bits 7 to 0: Analog Loopback Control Bits Channel n (ALBCn). When this bit is set, LIUn is placed in analog  
loopback. TTIP and TRING are looped back to RTIP and RRING. The data at RTIP and RRING is ignored. The  
LOS detector is still in operation. The jitter attenuator is in use if enabled for the transmitter or receiver.  
48 of 121  
 
 
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
RLBC  
Register Name:  
Remote Loopback Control Register  
02h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
RLBC8  
0
6
RLBC7  
0
5
RLBC6  
0
4
RLBC5  
0
3
RLBC4  
0
2
RLBC3  
0
1
RLBC2  
0
0
RLBC1  
0
22h  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
RLBC16  
0
6
RLBC15  
0
5
RLBC14  
0
4
RLBC13  
0
3
RLBC12  
0
2
RLBC11  
0
1
RLBC10  
0
0
RLBC9  
0
Bits 7 to 0: Remote Loopback Control Bits Channel n (RLBCn). When this bit is set, remote loopback is  
enabled on LIUn. The analog received signal goes through the receive digital and is looped back to the transmitter.  
The data at TPOS and TNEG is ignored. The jitter attenuator is in use if enabled.  
TAOE  
Register Name:  
Transmit All Ones Enable Register  
03h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
TAOE8  
0
6
TAOE7  
0
5
TAOE6  
0
4
TAOE5  
0
3
TAOE4  
0
2
TAOE3  
0
1
TAOE2  
0
0
TAOE1  
0
23h  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
TAOE16  
0
6
5
TAOE14  
0
4
TAOE13  
0
3
TAOE12  
0
2
TAOE11  
0
1
TAOE10  
0
0
TAOE9  
0
TAOE15  
0
Bits 7 to 0: Transmit All Ones Enable Channel n (TAOEn). When this bit is set, continuous stream of all ones on  
TTIP and TRING are sent on Channel n. MCLK is used as a reference clock for Transmit All Ones Signal. The data  
arriving at TPOS and TNEG is ignored.  
LOSS  
Register Name:  
Loss of Signal Status Register  
04h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
LOSS8  
0
6
LOSS7  
0
5
LOSS6  
0
4
LOSS5  
0
3
LOSS4  
0
2
LOSS3  
0
1
LOSS2  
0
0
LOSS1  
0
24h  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
LOSS16  
0
6
5
LOSS14  
0
4
LOSS13  
0
3
LOSS12  
0
2
LOSS11  
0
1
LOSS10  
0
0
LOSS9  
0
LOSS15  
0
Bits 7 to 0: Loss of Signal Status Channel n (LOSSn). When this bit is set, an LOS condition has been detected  
on LIUn. The criteria and conditions of LOS are described in Section 5.5.6.  
49 of 121  
 
 
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
DFMS  
Register Name:  
Driver Fault Monitor Status Register  
05h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
DFMS8  
0
6
DFMS7  
0
5
DFMS6  
0
4
DFMS5  
0
3
DFMS4  
0
2
DFMS3  
0
1
DFMS2  
0
0
DFMS1  
0
25h  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
DFMS16  
0
6
5
DFMS14  
0
4
DFMS13  
0
3
DFMS12  
0
2
DFMS11  
0
1
DFMS10  
0
0
DFMS9  
0
DFMS15  
0
Bits 7 to 0: Driver Fault Monitor Status Channel n (DFMSn). When this bit is set, it indicates that there is a short  
or open circuit at the transmit driver for LIUn.  
LOSIE  
Register Name:  
Loss of Signal Interrupt Enable Register  
06h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
LOSIE8  
0
6
LOSIE7  
0
5
LOSIE6  
0
4
LOSIE5  
0
3
LOSIE4  
0
2
LOSIE3  
0
1
LOSIE2  
0
0
LOSIE1  
0
26h  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
LOSIE16  
0
6
5
LOSIE14  
0
4
LOSIE13  
0
3
LOSIE12  
0
2
LOSIE11  
0
1
LOSIE10  
0
0
LOSIE9  
0
LOSIE15  
0
Bits 7 to 0: Loss of Signal Interrupt Enable Channel n (LOSIEn). When this bit is set, a change in LOS status  
for LIUn can generate an interrupt.  
DFMIE  
Register Name:  
Driver Fault Monitor Interrupt Enable Register  
07h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
DFMIE8  
0
6
DFMIE7  
0
5
DFMIE6  
0
4
DFMIE5  
0
3
DFMIE4  
0
2
DFMIE3  
0
1
DFMIE2  
0
0
DFMIE1  
0
27h  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
6
5
4
3
2
1
0
DFMIE9  
0
DFMIE16 DFMIE15 DFMIE14 DFMIE13 DFMIE12 DFMIE11 DFMIE10  
0
0
0
0
0
0
0
Bits 7 to 0: Driver Fault Monitor Interrupt Enable Channel n (DFMIEn). When this bit is set, a change in DFM  
status can generate an interrupt.  
50 of 121  
 
 
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
LOSIS  
Register Name:  
Loss of Signal Interrupt Status Register  
08h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
LOSIS8  
0
6
LOSIS7  
0
5
LOSIS6  
0
4
LOSIS5  
0
3
LOSIS4  
0
2
LOSIS3  
0
1
LOSIS2  
0
0
LOSIS1  
0
28h  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
LOSIS16  
0
6
5
LOSIS14  
0
4
LOSIS13  
0
3
LOSIS12  
0
2
LOSIS11  
0
1
LOSIS10  
0
0
LOSIS9  
0
LOSIS15  
0
Bits 7 to 0: Loss of Signal Interrupt Status Channel n (LOSISn). When this bit is set, it indicates a LOS status  
has transition from a “0 to 1” or “1 to 0” and was detected for LIUn. The bit for LIUn is enabled by register LOSIE  
(06h). This bit when latched is cleared on a read operation.  
DFMIS  
Register Name:  
Driver Fault Monitor Interrupt Status Register  
09h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
DFMIS8  
0
6
DFMIS7  
0
5
DFMIS6  
0
4
DFMIS5  
0
3
DFMIS4  
0
2
DFMIS3  
0
1
DFMIS2  
0
0
DFMIS1  
0
29h  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
6
5
4
3
2
1
0
DFMIS9  
0
DFMIS16 DFMIS15 DFMIS14 DFMIS13 DFMIS12 DFMIS11 DFMIS10  
0
0
0
0
0
0
0
Bits 7 to 0: Driver Fault Status Register Channel n (DFMISn). When this bit is set, it indicates a DFM status has  
transitioned from “0 to 1” or “1 to 0” and was detected for LIUn. The bit for LIUn is enabled by register DFMIE (07h).  
This bit when latched is cleared on a read operation.  
51 of 121  
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
SWR  
Register Name:  
Software Reset Register  
0Ah  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
SWRL  
0
6
SWRL  
0
5
SWRL  
0
4
SWRL  
0
3
SWRL  
0
2
SWRL  
0
1
SWRL  
0
0
SWRL  
0
Bits 7 to 0: Software Reset (SWRL). Whenever any write is performed to this register, at least 1µs reset will be  
generated that resets the lower set of registers (LIUs 1–8). All the registers will be restored to their default values.  
A read operation will always read back all zeros.  
2Ah  
Register Address (LIUs 9–16):  
Bit #  
7
6
5
4
3
2
1
0
Name  
Default  
SWRU  
0
SWRU  
0
SWRU  
0
SWRU  
0
SWRU  
0
SWRU  
0
SWRU  
0
SWRU  
0
Bits 7 to 0: Software Reset (SWRU). Whenever any write is performed to this register, at least 1µs reset will be  
generated that resets the upper set of registers (LIUs 9–16). All the registers will be restored to their default values.  
A read operation will always read back all zeros.  
52 of 121  
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
BGMC  
Register Name:  
BERT and G.772 Monitoring Control Register  
0Bh  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
BERTDIR  
0
6
BMCKS  
0
5
BTCKS  
0
4
0
3
GMC3  
0
2
GMC2  
0
1
GMC1  
0
0
GMC0  
0
Bit 7: BERT Direction Control Bit (BERTDIR). When this bit is set, the BERT for LIUs 1–8 will be enabled on the  
system side of the part (BERT data will come out on RPOS/RNEG and be expected on TPOS/TNEG) for whichever  
LIU the BERT is enabled.  
Bit 6: BERT MCLK Selection (BMCKS). When the BERT is enabled on the system side (BERTDIR = 1), setting  
this bit will select MCLK as the BERT clock unless BTCKS is set. If neither BMCKS nor BTCKS is set, the BERT  
will use the recovered clock.  
Bit 5: BERT TCLK Selection (BTCKS). When the BERT is enabled on the system side (BERTDIR = 1), setting  
this bit selects TCLK as the BERT clock, regardless of the state of the BMCKS bit. If neither BMCKS nor BTCKS is  
set, the BERT will use the recovered clock.  
Bits 3 to 0: G.772 Monitoring Control (GMC[3:0]). These bits are used to select transmitter or receiver for  
nonintrusive monitoring. Receiver 1 is used to monitor Channels 2 to 8 of one receiver from RTIP2–  
RTIP8/RRING2–RRING8 or of one transmitter from TTIP2–TTIP8/TRING2–TRING8. See Table 6-9.  
2Bh  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
BERTDIR  
0
6
BMCKS  
0
5
BTCKS  
0
4
3
GMC3  
0
2
GMC2  
0
1
GMC1  
0
0
GMC0  
0
0
Bit 7: BERT Direction Control Bit (BERTDIR). When this bit is set, the BERT for LIUs 9–16 will be enabled on  
the system side of the part (BERT data will come out on RPOS/RNEG and be expected on TPOS/TNEG) for  
whichever LIU the BERT is enabled.  
Bit 6: BERT MCLK Selection (BMCKS). When the BERT is enabled on the system side (BERTDIR = 1), setting  
this bit will select MCLK as the BERT clock unless BTCKS is set. If neither BMCKS nor BTCKS is set, the BERT  
will use the recovered clock. If the clock used as the BERT clock is MCLK or the recovered clock, TCLK must be  
frequency locked to the BERT clock in order for the BERT to sync.  
Bit 5: BERT TCLK Selection (BTCKS). When the BERT is enabled on the system side (BERTDIR = 1), setting  
this bit selects TCLK as the BERT clock, regardless of the state of the BMCKS bit. If neither BMCKS nor BTCKS is  
set, the BERT will use the recovered clock.  
Bits 3 to 0: G.772 Monitoring Control (GMC). These bits are used to select transmitter or receiver for  
nonintrusive monitoring. Receiver 9 is used to monitor Channels 10 to 16 of one receiver from RTIP10–  
RTIP16/RRING10–RRING16 or of one transmitter from TTIP10–TTIP16/TRING10–TRING16. See Table 6-10.  
53 of 121  
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Table 6-9. G.772 Monitoring Control (LIU 1)  
GMC3  
GMC2  
GMC1  
GMC0  
SELECTION  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
No Monitoring  
Receiver 2  
Receiver 3  
Receiver 4  
Receiver 5  
Receiver 6  
Receiver 7  
Receiver 8  
No Monitoring  
Transmitter 2  
Transmitter 3  
Transmitter 4  
Transmitter 5  
Transmitter 6  
Transmitter 7  
Transmitter 8  
Table 6-10. G.772 Monitoring Control (LIU 9)  
GMC3  
GMC2  
GMC1  
GMC0  
SELECTION  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
No Monitoring  
Receiver 10  
Receiver 11  
Receiver 12  
Receiver 13  
Receiver 14  
Receiver 15  
Receiver 16  
No Monitoring  
Transmitter 10  
Transmitter 11  
Transmitter 12  
Transmitter 13  
Transmitter 14  
Transmitter 15  
Transmitter 16  
54 of 121  
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
DLBC  
Register Name:  
Digital Loopback Control Register  
0Ch  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
DLBC8  
0
6
DLBC7  
0
5
DLBC6  
0
4
DLBC5  
0
3
DLBC4  
0
2
DLBC3  
0
1
DLBC2  
0
0
DLBC1  
0
2Ch  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
DLBC16  
0
6
DLBC15  
0
5
DLBC14  
0
4
DLBC13  
0
3
DLBC12  
0
2
DLBC11  
0
1
DLBC10  
0
0
DLBC9  
0
Bits 7 to 0: Digital Loopback Control Channel n (DLBCn). When this bit is set the LIUn is placed in digital  
loopback. The data at TPOS/TNEG is encoded and looped back to the decoder and output on RPOS/RNEG. The  
Jitter Attenuator can optionally be included in the transmit or receive paths.  
LASCS  
Register Name:  
LOS/AIS Criteria Selection Register  
0Dh  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
LASCS8  
0
6
LASCS7  
0
5
LASCS6  
0
4
LASCS5  
0
3
LASCS4  
0
2
LASCS3  
0
1
LASCS2  
0
0
LASCS1  
0
2Dh  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
6
5
4
3
2
1
0
LASCS9  
0
LASCS16 LASCS15 LASCS14 LASCS13 LASCS12 LASCS11 LASCS10  
0
0
0
0
0
0
0
Bits 7 to 0: LOS/AIS Criteria Selection Channel n (LASCSn). This bit is used for LOS/AIS selection criteria for  
LIUn. In E1 mode, if set it uses ETS 300 233 mode selections. If reset it uses G.775 criteria. In T1/J1 mode T1.231  
criteria is selected.  
ATAOS  
Register Name:  
Automatic Transmit All Ones Select Register  
0Eh  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
ATAOS8  
0
6
ATAOS7  
0
5
ATAOS6  
0
4
ATAOS5  
0
3
ATAOS4  
0
2
ATAOS3  
0
1
ATAOS2  
0
0
ATAOS1  
0
2Eh  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
6
5
4
3
2
1
0
ATAOS9  
0
ATAOS16 ATAOS15 ATAOS14 ATAOS13 ATAOS12 ATAOS11 ATAOS10  
0
0
0
0
0
0
0
Bits 7 to 0: Automatic Transmit All Ones Select Channel n (ATAOSn). When this bit is set all ones signal is  
sent if an LOS is detected for LIUn. “All Ones Signal” uses MCLK as the reference clock.  
55 of 121  
 
 
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
GC  
Register Name:  
Global Configuration Register  
0Fh  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
RIMPMS  
0
6
AISEL  
0
5
SCPD  
0
4
CODE  
0
3
JADS  
0
2
CRIMP  
0
1
JAPS  
0
0
JAE  
0
Note: CRIMP controls all 16 LIUs. All other bits are for LIUs 1–8 only.  
Bit 7: Receive Impedance Mode Select (RIMPMS). When this bit is set, fully internal impedance match mode is  
selected, so RTIP and RRING require no external resistor. If this bit is set, the receiver line transformer must be a  
1:1 turns ratio and the RTR bit set. When reset, external termination mode is selected and an external resistor is  
required to terminate the receive line. This external resistor will be adjusted internally to the correct termination  
value if partially internal impedance matching is turned on (TS.RIMPON = 1).  
Bit 6: AIS Enable During Loss (AISEL). When this bit is set, an AIS is sent to the system side upon detecting  
LOS for each channel. The individual LIU register IAISEL settings will be ignored when this bit is set. When reset,  
the IAISEL register will have control.  
Bit 5: Short Circuit Protection Disable (SCPD). If this bit is set the short-circuit protection is disabled for all the  
transmitters. The individual LIU register ISCPD settings will be ignored when this bit is set. When reset, the ISCPD  
register will have control.  
Bit 4: Code (CODE). If this bit is set AMI encoder/decoder is selected. The LCS register settings will be ignored  
when this bit is set. If reset, the LCS register will have control.  
Bit 3: Jitter Attenuator Depth Select (JADS). If this bit is set the jitter attenuator FIFO depth is 128 bits. The  
settings in the IJAFDS register will be ignored if this register is set. If reset the IJAFDS register will have control.  
Bit 2: Calibrate Receive Internal Termination (CRIMP). A low-to-high transition on this bit initiates a calibration  
cycle for the receive internal termination. This requires a 16kΩ ±1% resistor on the RESREF pin. Bit 2 of the GC  
register at address 0x2F must also be set to enable calibration. While this bit is set, RSL4.4 (0x0F in individual  
bank) will indicate the status of the calibration cycle.  
Bit 1: Jitter Attenuator Position Select (JAPS). When the JAPS bit is set high, the jitter attenuator will be in the  
receive path and when default or set low in the Transmit path. These settings can be changed for an individual LIU  
by settings in the IJAPS register. Note that when bit JAE is set, the settings in the IJAPS register will be ignored.  
Bit 0: Jitter Attenuator Enable (JAE). When this bit is set the jitter attenuator is enabled. The settings in the IJAE  
register will be ignored if this register is set. If reset, the IJAE register will have control.  
56 of 121  
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
2Fh  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
RIMPMS  
0
6
AISEL  
0
5
SCPD  
0
4
CODE  
0
3
JADS  
0
2
CALEN  
0
1
JAPS  
0
0
JAE  
0
Note: CALEN controls all 16 LIUs. All other bits are for LIUs 9–16 only.  
Bit 7: Receive Impedance Mode Select (RIMPMS). When this bit is set, the fully internal receive impedance  
matching mode is selected, so RTIP and RRING require no external resistor. If this bit is set, the receiver line  
transformer must be a 1:1 turns ratio and the RTR bit set. When reset and TS.RIMPON = 1, partially internal  
receive impedance matching mode is selected and an external resistor is required to terminate the receive line.  
This external resistor will be adjusted internally to the correct termination value.  
Bit 6: AIS Enable During Loss (AISEL). When this bit is set, an AIS is sent to the system side upon detecting  
LOS for each channel. The individual LIU register IAISEL settings will be ignored when this bit is set. When reset,  
the IAISEL register will have control.  
Bit 5: Short Circuit Protection Disable (SCPD). If this bit is set the short-circuit protection is disabled for all the  
transmitters. The individual LIU register ISCPD settings will be ignored when this bit is set. When reset, the ISCPD  
register will have control.  
Bit 4: Code (CODE). If this bit is set AMI encoder/decoder is selected. The LCS register settings will be ignored  
when this bit is set. If reset, the LCS register will have control.  
Bit 3: Jitter Attenuator Depth Select (JADS). If this bit is set the jitter attenuator FIFO depth is 128 bits. The  
settings in the IJAFDS register will be ignored if this register is set. If reset the IJAFDS register will have control.  
Bit 2: Calibrate Receive Impedance Match (CALEN). This bit must be set to enable calibration of the receive  
termination. If this bit is set and a 16kresistor is on the RESREF pin, then a low-to-high transition on the CRIMP  
bit will initiate a calibration cycle for the receive internal termination. The user should wait at least 5µs before  
setting the CRIMP bit.  
Bit 1: Jitter Attenuator Position Select (JAPS). When the JAPS bit is set, the jitter attenuator will be in the  
receive path for each channel. The individual LIU register IJAPS settings will be ignored when this bit is set. When  
reset, the IJAPS register will have control.  
Bit 0: Jitter Attenuator Enable (JAE). When this bit is set the jitter attenuator is enabled. The settings in the IJAE  
register will be ignored if this register is set. If reset, the IJAE register will have control.  
57 of 121  
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
TST  
Register Name:  
Template Select Transmitter Register  
10h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
JABWS1  
0
6
JABWS0  
0
5
RHPMC  
0
4
0
3
0
2
TST2  
0
1
TST1  
0
0
TST0  
0
Bits 7 and 6: Jitter Attenuator Bandwidth Selection [1:0] (JABWS[1:0]). In E1 mode, JABWS[1:0] is used to  
control the bandwidth of the jitter attenuator according to the following table:  
JABWS  
00  
BANDWIDTH (Hz)  
0.625  
1.25  
2.5  
01  
10  
11  
5
Bit 5: Receive Hitless Protection Mode Control (RHPMC). When this bit is set, the receive impedance match  
on/off selection will be controlled by the OE pin. If OE is high, receive impedance match is on. If OE is low, receive  
impedance match is off (Internal impedance to RTIP and RRING is high impedance). When this bit is reset, the  
RIMPON register bit will control receive impedance match.  
Bits 2 to 0: TST Template Select Transceiver [2:0] (TST[2:0]). TST[2:0] is used to select the transceiver that the  
Transmit Template Select Register (0x11) will configure for LIUs 1–8. See Table 6-11.  
30h  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
JABWS1  
0
6
5
RHPMC  
0
4
0
3
0
2
TST2  
0
1
TST1  
0
0
TST0  
0
JABWS0  
0
Bits 7 and 6: Jitter Attenuator Bandwidth Selection [1:0] (JABWS[1:0]). In E1 mode, JABWS[1:0] is used to  
control the bandwidth of the jitter attenuator according to the following table:  
JABWS  
00  
BANDWIDTH (Hz)  
0.625  
1.25  
2.5  
01  
10  
11  
5
Bit 5: Receive Hitless Protection Mode Control (RHPMC). When this bit is set, the receive impedance match  
on/off selection will be controlled by the OE pin. If OE is high, receive impedance match is on. If OE is low, receive  
impedance match is off (internal impedance to RTIP and RRING is high impedance). When this bit is reset, the  
RIMPON register bit will control receive impedance match.  
Bits 2 to 0: TST Template Select Transceiver [2:0] (TST[2:0]). TST[2:0] is used to select the transceiver that the  
Transmit Template Select Register (0x11) will configure for LIUs 9–16. See Table 6-12.  
58 of 121  
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Table 6-11. TST Template Select Transmitter Register (LIUs 1–8)  
TST[2:0]  
000  
CHANNEL  
TST[2:0]  
100  
CHANNEL  
1
2
3
4
5
6
7
8
001  
010  
011  
101  
110  
111  
Table 6-12. TST Template Select Transmitter Register (LIUs 9–16)  
TST[2:0]  
000  
CHANNEL  
TST[2:0]  
100  
CHANNEL  
9
13  
14  
15  
16  
001  
010  
011  
10  
11  
12  
101  
110  
111  
59 of 121  
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
TS  
Register Name:  
Template Select Register  
Register Description:  
11h  
31h  
Register Address (LIUs 1–8):  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
RIMPON  
0
6
TIMPOFF  
0
5
0
4
0
3
TIMPRM  
0
2
TS2  
0
1
TS1  
0
0
TS0  
0
Note: This register configures each LIU individually. This register configures the LIU selected by TST.TST[2:0].  
Bit 7: Receive Impedance Match On (RIMPON). If this bit is set, internal receive impedance matching is turned  
on. Otherwise, the receiver is in high impedance. Note that the OE pin can have control instead of this bit when the  
TST.RHPMC bit is set.  
Bit 6: Transmit Impedance Termination Off (TIMPOFF). If this bit is set all the internal transmit terminating  
impedance is turned off.  
Bit 3: Transmit Impedance Receive Match (TIMPRM). This bit selects the internal transmit termination  
impedance and receive impedance match for E1 mode and T1/J1 mode.  
0 = 75for E1 mode or 100for T1 mode.  
1 = 120for E1 mode or 110for J1 mode.  
Bits 2 to 0: Template Selection [2:0] (TS[2:0]). Bits TS[2:0] are used to select E1 or T1/J1 mode, the template,  
and the settings for various cable lengths. The impedance termination for the transmitter and impedance match for  
the receiver are specified by bit TIMPRM. Short-haul or long-haul operation is selected by the SHLHS bit in the  
individual registers SHLHS (07). See Table 6-13 for bit selection of TS[2:0].  
Table 6-13. Template Selection  
TEMPLATE SELECTION  
IMPEDANCE  
()  
CABLE LOSS  
TS[2:0]  
LINE LENGTH (ft)  
OPERATION MODE  
(dB)  
0.6  
1.2  
1.8  
2.4  
3.0  
011  
100  
101  
110  
111  
0–133 ABAM  
133–266 ABAM  
266–399 ABAM  
399–533 ABAM  
533–655 ABAM  
100/110  
100/110  
100/110  
100/110  
100/110  
75/120  
T1/J1 Short Haul  
T1 Short Haul  
T1 Short Haul  
T1 Short Haul  
T1 Short Haul  
E1 Short/Long Haul  
Short/Long Haul  
T1/J1 Long Haul  
T1/J1 Long Haul  
T1/J1 Long Haul  
T1/J1 Long Haul  
000  
G.703 coaxial and twisted pair cable  
001 and 010  
011  
Reserved  
0db CSU  
-7.5dB CSU  
-15dB CSU  
100/110  
100/110  
100/110  
100/110  
100  
101  
110  
-22.5dB CSU  
60 of 121  
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
OE  
Register Name:  
Output Enable Configuration Register  
12h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
OE8  
0
6
OE7  
0
5
OE6  
0
4
OE5  
0
3
OE4  
0
2
OE3  
0
1
OE2  
0
0
OE1  
0
32h  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
OE16  
0
6
OE15  
0
5
OE14  
0
4
OE13  
0
3
OE12  
0
2
OE11  
0
1
OE10  
0
0
OE9  
0
Bits 7 to 0: Output Enable Channel n (OEn). When this bit is reset, the transmitter output for LIUn is high  
impedance. When this bit is set, the transmitter output for LIUn is enabled. Note that the OE pin will override this  
setting when low.  
AIS  
Register Name:  
Alarm Indication Signal Status Register  
13h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
AIS8  
0
6
AIS7  
0
5
AIS6  
0
4
AIS5  
0
3
AIS4  
0
2
AIS3  
0
1
AIS2  
0
0
AIS1  
0
33h  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
AIS16  
0
6
AIS15  
0
5
AIS14  
0
4
AIS13  
0
3
AIS12  
0
2
AIS11  
0
1
AIS10  
0
0
AIS9  
0
Bits 7 to 0: Alarm Indication Signal Channel n (AISn). This bit will be set when AIS is detected for LIUn. The  
criteria for AIS selection is detailed in Section 5.5.7. The selection of the AIS criteria is done by settings in the  
LASCS (0D) register.  
61 of 121  
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
AISIE  
Register Name:  
AIS Interrupt Enable Register  
14h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
AISIE8  
0
6
AISIE7  
0
5
AISIE6  
0
4
AISIE5  
0
3
AISIE4  
0
2
AISIE3  
0
1
AISIE2  
0
0
AISIE1  
0
34h  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
AISIE16  
0
6
AISIE15  
0
5
AISIE14  
0
4
AISIE13  
0
3
AISIE12  
0
2
AISIE11  
0
1
AISIE10  
0
0
AISIE9  
0
Bits 7 to 0: AIS Interrupt Mask Channel n (AISIEn). When this bit is set, interrupts can be generated for LIUn if  
AIS status transitions.  
AISI  
Register Name:  
AIS Interrupt Status Register  
15h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
AISI8  
0
6
AISI7  
0
5
AISI6  
0
4
AISI5  
0
3
AISI4  
0
2
AISI3  
0
1
AISI2  
0
0
AISI1  
0
35h  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
AISI16  
0
6
AISI15  
0
5
AISI14  
0
4
AISI13  
0
3
AISI12  
0
2
AISI11  
0
1
AISI10  
0
0
AISI9  
0
Bits 7 to 0: AIS Interrupt Status Channel n (AISIn). This bit is set when AIS ransitions from a “0 to 1” or “1 to 0”  
and interrupts are enabled by the AISIE(14) register for LIUn. If set, this bit is cleared on a read operation or when  
the interrupt enable register is disabled.  
62 of 121  
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
ADDP  
Register Name:  
Address Pointer for Bank Selection Register  
Register Description:  
1Fh  
3Fh  
Register Address (LIUs 1–8):  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
ADDP7  
0
6
ADDP6  
0
5
ADDP5  
0
4
ADDP4  
0
3
ADDP3  
0
2
ADDP2  
0
1
ADDP1  
0
0
ADDP0  
0
Bits 7 to 0: Address Pointer (ADDP). This pointer is used to switch between pointing to the primary registers, the  
secondary registers, individual registers, and BERT registers. See Table 6-14 for bank selection. The register  
space contains control for Channels 1 to 8 from address 00 hex to 1F hex and a duplicate set of registers for  
control of Channels 9 to 16 from address 20 hex to 3F hex. The ADDP at address 1F hex select the banks for the  
set of registers for LIUs 1–8. The ADDP register at address 3F select the banks for the set of registers for LIUs 9–  
16.  
Table 6-14. Address Pointer for Bank Selection  
ADDP[7:0] (HEX)  
BANK NAME  
Primary Bank  
Secondary Bank  
Individual LIU Bank  
BERT Bank  
00  
AA  
01  
02  
6.1.2 Secondary Register Bank  
The ADDP register must be set to AAh in order to access this bank.  
SRMS  
Register Name:  
Single-Rail Mode Select Register  
00h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
SRMS8  
0
6
SRMS7  
0
5
SRMS6  
0
4
SRMS5  
0
3
SRMS4  
0
2
SRMS3  
0
1
SRMS2  
0
0
SRMS1  
0
20h  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
SRMS16  
0
6
5
SRMS14  
0
4
SRMS13  
0
3
SRMS12  
0
2
SRMS11  
0
1
SRMS10  
0
0
SRMS9  
0
SRMS15  
0
Bits 7 to 0: Single-Rail Mode Select Channel n (SRMSn). When this bit is set single-rail mode is selected for the  
system transmit and receive n. If this bit is reset, dual-rail is selected.  
63 of 121  
 
 
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
LCS  
Register Name:  
Line Code Selection Register  
01h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
LCS8  
0
6
LCS7  
0
5
LCS6  
0
4
LCS5  
0
3
LCS4  
0
2
LCS3  
0
1
LCS2  
0
0
LCS1  
0
21h  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
LCS16  
0
6
LCS15  
0
5
LCS14  
0
4
LCS13  
0
3
LCS12  
0
2
LCS11  
0
1
LCS10  
0
0
LCS9  
0
Bits 7 to 0: Line Code Select Channel n (LCSn). When this bit is set AMI encoding/decoding is selected for LIUn.  
If reset, B8ZS or HDB3 encoding/decoding is selected for LIUn. Note that if the GC.CODE register bit is set it will  
ignore this register.  
RPDE  
Register Name:  
Receive Power-Down Enable Register  
03h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
RPDE8  
0
6
RPDE7  
0
5
RPDE6  
0
4
RPDE5  
0
3
RPDE4  
0
2
RPDE3  
0
1
RPDE2  
0
0
RPDE1  
0
23h  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
RPDE16  
0
6
5
RPDE14  
0
4
RPDE13  
0
3
RPDE12  
0
2
RPDE11  
0
1
RPDE10  
0
0
RPDE9  
0
RPDE15  
0
Bits 7 to 0: Receive Power-Down Enable Channel n (RPDEn). When this bit is set the receiver for LIUn is  
powered down.  
TPDE  
Register Name:  
Transmit Power-Down Enable Register  
04h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
TPDE8  
0
6
TPDE7  
0
5
TPDE6  
0
4
TPDE5  
0
3
TPDE4  
0
2
TPDE3  
0
1
TPDE2  
0
0
TPDE1  
0
24h  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
TPDE16  
0
6
5
TPDE14  
0
4
TPDE13  
0
3
TPDE12  
0
2
TPDE11  
0
1
TPDE10  
0
0
TPDE9  
0
TPDE15  
0
Bits 7 to 0: Transmit Power-Down Enable Channel n (TPDEn). When this bit is set the transmitter for LIUn is  
powered down.  
64 of 121  
 
 
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
EZDE  
Register Name:  
Excessive Zero Detect Enable Register  
05h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
EZDE8  
0
6
EZDE7  
0
5
EZDE6  
0
4
EZDE5  
0
3
EZDE4  
0
2
EZDE3  
0
1
EZDE2  
0
0
EZDE1  
0
25h  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
EZDE16  
0
6
5
EZDE14  
0
4
EZDE13  
0
3
EZDE12  
0
2
EZDE11  
0
1
EZDE10  
0
0
EZDE9  
0
EZDE15  
0
Bits 7 to 0: Excessive Zero Detect Enable Channel n (EZDEn). When this bit is reset excessive zero detection is  
disabled for LIUn. When this bit is set excessive zero detect enable is enabled. Excessive zero detection is only  
relevant when HDB3 or B8ZS decoding is enabled (LCS register).  
CVDEB  
Register Name:  
Code Violation Detect Enable Bar Register  
06h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
CVDEB8  
0
6
CVDEB7  
0
5
CVDEB6  
0
4
CVDEB5  
0
3
CVDEB4  
0
2
CVDEB3  
0
1
CVDEB2  
0
0
CVDEB1  
0
26h  
Register Address (LIUs 9–16):  
Bit #  
7
6
5
4
3
2
1
0
Name  
Default  
CVDEB16 CVDEB15 CVDEB14 CVDEB13 CVDEB12 CVDEB11 CVDEB10 CVDEB9  
0
0
0
0
0
0
0
0
Bits 7 to 0: Code Violation Detect Enable Bar Channel n (CVDEBn). If this bit is set, code violation detection is  
disabled for the LIUn. If this bit is reset, code violation detection is enabled. Code violation detection is only  
relevant when HDB3 decoding is enabled (LCS register).  
65 of 121  
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
6.1.3 Individual LIU Register Bank  
The ADDP register must be set to 01h to access this bank.  
IJAE  
Register Name:  
Individual Jitter Attenuator Enable Register  
00h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
IJAE8  
0
6
IJAE7  
0
5
IJAE6  
0
4
IJAE5  
0
3
IJAE4  
0
2
IJAE3  
0
1
IJAE2  
0
0
IJAE1  
0
20h  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
IJAE16  
0
6
IJAE15  
0
5
IJAE14  
0
4
IJAE13  
0
3
IJAE12  
0
2
IJAE11  
0
1
IJAE10  
0
0
IJAE9  
0
Bits 7 to 0: Individual Jitter Attenuator Enable Channel n (IJAEn). When this bit is set, the LIU jitter attenuator  
n is enabled. Note that if the GC.JAE register bit is set, this register will be ignored.  
IJAPS  
Register Name:  
Individual Jitter Attenuator Position Select Register  
01h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
IJAPS8  
0
6
IJAPS7  
0
5
IJAPS6  
0
4
IJAPS5  
0
3
IJAPS4  
0
2
IJAPS3  
0
1
IJAPS2  
0
0
IJAPS1  
0
21h  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
IJAPS16  
0
6
5
IJAPS14  
0
4
IJAPS13  
0
3
IJAPS12  
0
2
IJAPS11  
0
1
IJAPS10  
0
0
IJAPS9  
0
IJAPS15  
0
Bits 7 to 0: Individual Jitter Attenuator Position Select Channel n (IJAPSn). When this bit is set high, the jitter  
attenuator is in the receive path n; when this bit is default or set low the jitter attenuator is in the transmit path n.  
Note that if the GC.JAE register bit is set, this register will be ignored.  
66 of 121  
 
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
IJAFDS  
Register Name:  
Individual Jitter Attenuator FIFO Depth Select Register  
02h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
IJAFDS8  
0
6
IJAFDS7  
0
5
IJAFDS6  
0
4
IJAFDS5  
0
3
IJAFDS4  
0
2
IJAFDS3  
0
1
IJAFDS2  
0
0
IJAFDS1  
0
22h  
Register Address (LIUs 9–16):  
Bit #  
7
6
5
4
3
2
1
0
Name  
Default  
IJAFDS16 IJAFDS15 IJAFDS14 IJAFDS13 IJAFDS12 IJAFDS11 IJAFDS10 IJAFDS9  
0
0
0
0
0
0
0
0
Bits 7 to 0: Individual Jitter Attenuator FIFO Depth Select n (IJAFDSn). When this bit is set for LIUn the jitter  
attenuator FIFO depth will be 128 bits. When reset the jitter attenuator FIFO depth will be 32 bits. Note that if the  
GC.IJAFDS register bit is set, this register will be ignored.  
IJAFLT  
Register Name:  
Individual Jitter Attenuator FIFO Limit Trip Register  
03h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
IJAFLT8  
0
6
IJAFLT7  
0
5
IJAFLT6  
0
4
IJAFLT5  
0
3
IJAFLT4  
0
2
IJAFLT3  
0
1
IJAFLT2  
0
0
IJAFLT1  
0
23h  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
6
5
4
3
2
1
0
IJAFLT9  
0
IJAFLT16 IJAFLT15 IJAFLT14 IJAFLT13 IJAFLT12 IJAFLT11 IJAFLT10  
0
0
0
0
0
0
0
Bits 7 to 0: Individual Jitter Attenuator FIFO Limit Trip n (IJAFLTn). Set when the jitter attenuator FIFO  
reaches to within 4 bits of its useful limit for transmitter n. This bit will be cleared when read.  
ISCPD  
Register Name:  
Individual Short-Circuit Protection Disable Register  
04h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
ISCPD8  
0
6
ISCPD7  
0
5
ISCPD6  
0
4
ISCPD5  
0
3
ISCPD4  
0
2
ISCPD3  
0
1
ISCPD2  
0
0
ISCPD1  
0
24h  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
ISCPD16  
0
6
5
ISCPD14  
0
4
ISCPD13  
0
3
ISCPD12  
0
2
ISCPD11  
0
1
ISCPD10  
0
0
ISCPD9  
0
ISCPD15  
0
Bits 7 to 0: Individual Short-Circuit Protection Disable n. (ISCPDn). When this bit is set the short-circuit  
protection is disabled for the individual transmitter n. Note that if the GC.SCPD register bit is set, the settings in this  
register will be ignored.  
67 of 121  
 
 
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
IAISEL  
Register Name:  
Individual AIS Select Register  
05h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
IAISEL8  
0
6
IAISEL7  
0
5
IAISEL6  
0
4
IAISEL5  
0
3
IAISEL4  
0
2
IAISEL3  
0
1
IAISEL2  
0
0
IAISEL1  
0
25h  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
6
5
4
3
2
1
0
IAISEL9  
0
IAISEL16 IAISEL15 IAISEL14 IAISEL13 IAISEL12 IAISEL11 IAISEL10  
0
0
0
0
0
0
0
Bits 7 to 0: Individual AIS Enable During Loss n (IAISELn). When this bit is set, individual AIS enable during  
loss is enabled for the individual receiver n, and AIS is sent to the system side upon detection of an LOS. Note that  
if the GC.AISEL register bit is set, the settings in this register will be ignored.  
68 of 121  
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
MC  
Register Name:  
Master Clock Select Register  
06h  
Register Description:  
Register Address:  
Bit #  
Name  
Default  
7
PCLKI1  
0
6
PCLKI0  
0
5
TECLKE  
0
4
CLKAE  
0
3
MPS1  
0
2
MPS0  
0
1
FREQS  
0
0
PLLE  
0
Bits 7 and 6: PLL Clock Input [1:0] (PCLKI[1:0]). These bits select the input into to the PLL.  
00: MCLK is used.  
01: RCLK1 to 8 is used based on the selection in register CCR.  
10: RCLK9 to 16 is used based on the selection in register CCR.  
11: Reserved.  
Bit 5: T1/E1 Clock Enable (TECLKE). When this bit is set the TECLK output is enabled. If not set TECLK will be  
disabled and the TECLK output is a LOS output. TECLK requires PLLE to be set for correct functionality.  
Bit 4: Clock A Enable (CLKAE). When this bit is set the CLKA output is enabled. If not set CLKA will be disabled  
and the CLKA output is a LOS output. CLKA requires PLLE to be set for correct functionality.  
Bits 3 and 2: Master Period Select [1:0] (MPS[1:0]). These bits MPS[1:0] selects the external MCLK frequency  
for the DS26334. See Table 6-15 for details. This register when written to will also controller functionality of  
Channels 9 to 16.  
Bit 1: Frequency Select (FREQS). In conjunction with MPS[1:0] selects the external MCLK frequency for the  
DS26334. If this bit is set the external Master clock can be 1.544MHz or multiple thereof. If not set the external  
master clock can be 2.048MHz or multiple thereof. See Table 6-15 for details. This register when written to will also  
controller functionality of Channels 9 to 16.  
Bit 0: Phase Lock Loop Enable (PLLE). When this bit is set the phase lock loop is enabled. If not set MCLK will  
be the applied input clock.  
Table 6-15. DS26334 MCLK Selections  
MCLK,  
MHz ±50ppm  
PLLE  
MPS1, MPS0  
FREQS  
MODE  
0
0
1
1
1
1
1
1
1
1
xx  
xx  
00  
01  
10  
11  
00  
01  
10  
11  
1.544  
2.048  
1.544  
3.088  
6.176  
12.352  
2.048  
4.096  
8.192  
x
x
1
1
1
1
0
0
0
0
T1  
E1  
T1/J1 or E1  
T1/J1 or E1  
T1/J1 or E1  
T1/J1 or E1  
T1/J1 or E1  
T1/J1 or E1  
T1/J1 or E1  
T1/J1 or E1  
16.384  
69 of 121  
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
SHLHS  
Register Name:  
Short-Haul/Long-Haul Select Register  
07h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
SHLHS8  
0
6
SHLHS7  
0
5
SHLHS6  
0
4
SHLHS5  
0
3
SHLHS4  
0
2
SHLHS3  
0
1
SHLHS2  
0
0
SHLHS1  
0
27h  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
6
5
4
3
2
1
0
SHLHS9  
0
SHLHS16 SHLHS15 SHLHS14 SHLHS13 SHLHS12 SHLHS11 SHLHS10  
0
0
0
0
0
0
0
Bits 7 to 0: Short-Haul/Long-Haul Select n. (SHLHSn). When this bit is set, the long-haul mode is enabled for  
the individual transmitter n.  
70 of 121  
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
RSMM1  
Register Name:  
Receive Sensitivity Monitor Mode 1 Register  
08h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
RTR2  
0
6
C2RSM2  
0
5
C2RSM1  
0
4
C2RSM0  
0
3
RTR1  
0
2
C1RSM2  
0
1
C1RSM1  
0
0
C1RSM0  
0
Bit 7: Receiver Transformer Turns Ratio Channel 2 (RTR2). If this bit is set the turns ratio is 1:1 on the receiver  
side. This bit should be set when a 1:1 receiver transformer is used and is recommended when using long-haul  
mode (SHLHS2). Note that in order to use fully internal receive impedance termination, a 1:1 transformer must be  
used and this bit must be set to 1.  
Bits 6 to 4: Channel 2 Receive Sensitivity/Monitor Select [2:0] (C2RSM[2:0]). Bits C2RSM[2:0] are used to  
select the receiver sensitivity level and the monitor mode resistive gain. See Table 6-16.  
Bit 3: Receiver Transformer Turns Ratio Channel 1 (RTR1). If this bit is set the turns ratio is 1:1 on the receiver  
side. This bit should be set when a 1:1 receiver transformer is used and is recommended when using long-haul  
mode (SHLHS1). Note that in order to use the fully internal receive impedance termination, a 1:1 transformer must  
be used and this bit must be set to 1.  
Bits 2 to 0: Channel 1 Receive Sensitivity/Monitor Select [2:0] (C1RSM[2:0]). Bits C1RSM[2:0] are used to  
select the receiver sensitivity level and the monitor mode resistive gain. See Table 6-16.  
28h  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
RTR10  
0
6
5
4
3
RTR9  
0
2
C9RSM2  
0
1
C9RSM1  
0
0
C9RSM0  
0
C10RSM2 C10RSM1 C10RSM0  
0
0
0
Bit 7: Receiver Transformer Turns Ratio Channel 10 (RTR10). If this bit is set the turns ratio is 1:1 on the  
receiver side. This bit should be set when a 1:1 receiver transformer is used and is recommended when using long-  
haul mode (SHLHS10). Note that in order to use fully internal receive impedance termination, a 1:1 transformer  
must be used and this bit must be set to 1.  
Bits 6 to 4: Channel 10 Receive Sensitivity/Monitor Select [2:0] (C10RSM[2:0]). Bits C10RSM[2:0] are used to  
select the receiver sensitivity level and the monitor mode resistive gain. See Table 6-16.  
Bit 3: Receiver Transformer Turns Ratio Channel 9 (RTR9). If this bit is set the Turns Ratio is 1:1 on the  
receiver side. This bit should be set when a 1:1 receiver transformer is used and is recommended when using long-  
haul mode (SHLHS9). Note that in order to use the fully internal receive impedance termination, a 1:1 transformer  
must be used and this bit must be set to 1.  
Bits 2 to 0: Channel 9 Receive Sensitivity/Monitor Select [2:0] (C9RSM[2:0]). Bits C9RSM[2:0] are used to  
select the receiver sensitivity level and the monitor mode resistive gain. See Table 6-16.  
71 of 121  
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
RSMM2  
Register Name:  
Receive Sensitivity Monitor Mode 2 Register  
09h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
RTR4  
0
6
C4RSM2  
0
5
C4RSM1  
0
4
C4RSM0  
0
3
RTR3  
0
2
C3RSM2  
0
1
C3RSM1  
0
0
C3RSM0  
0
Bit 7: Receiver Transformer Turns Ratio Channel 4 (RTR4). If this bit is set the turns ratio is 1:1 on the receiver  
side. This bit should be set when a 1:1 receiver transformer is used and is recommended when using long-haul  
mode (SHLHS4). Note that in order to use fully internal receive impedance termination, a 1:1 transformer must be  
used and this bit must be set to 1.  
Bit 6 to 4: Channel 4 Receive Sensitivity/Monitor Select [2:0] (C4RSM[2:0]). Bits C4RSM[2:0] are used to  
select the receiver sensitivity level and the monitor mode resistive gain. See Table 6-16.  
Bit 3: Receiver Transformer Turns Ratio Channel 3 (RTR3). If this bit is set the turns ratio is 1:1 on the receiver  
side. This bit should be set when a 1:1 receiver transformer is used and is recommended when using long-haul  
mode (SHLHS3). Note that in order to use the fully internal receive impedance termination, a 1:1 transformer must  
be used and this bit must be set to 1.  
Bit 2 to 0: Channel 3 Receive Sensitivity/Monitor Select [2:0] (C3RSM[2:0]). Bits C3RSM[2:0] are used to  
select the receiver sensitivity level and the monitor mode resistive gain. See Table 6-16.  
29h  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
RTR12  
0
6
5
4
3
RTR11  
0
2
1
0
C12RSM2 C12RSM1 C12RSM0  
C11RSM2 C11RSM1 C11RSM0  
0
0
0
0
0
0
Bit 7: Receiver Transformer Turns Ratio Channel 12 (RTR12). If this bit is set the turns ratio is 1:1 on the  
receiver side. This bit should be set when a 1:1 receiver transformer is used and is recommended when using long-  
haul mode (SHLHS12). Note that in order to use fully internal receive impedance termination, a 1:1 transformer  
must be used and this bit must be set to 1.  
Bits 6 to 4: Channel 12 Receive Sensitivity/Monitor Select [2:0] (C12RSM[2:0]). Bits C12RSM[2:0] are used to  
select the receiver sensitivity level and the monitor mode resistive gain. See Table 6-16.  
Bit 3: Receiver Transformer Turns Ratio Channel 11 (RTR11). If this bit is set the rurns ratio is 1:1 on the  
receiver side. This bit should be set when a 1:1 receiver transformer is used and is recommended when using long-  
haul mode (SHLHS11). Note that in order to use the fully internal receive impedance termination, a 1:1 transformer  
must be used and this bit must be set to 1.  
Bits 2 to 0: Channel 11 Receive Sensitivity/Monitor Select [2:0] (C11RSM[2:0]). Bits C11RSM[2:0] are used to  
select the receiver sensitivity level and the monitor mode resistive gain. See Table 6-16.  
72 of 121  
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
RSMM3  
Register Name:  
Receive Sensitivity Monitor Mode 3 Register  
0Ah  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
RTR6  
0
6
C6RSM2  
0
5
C6RSM1  
0
4
C6RSM0  
0
3
RTR5  
0
2
C5RSM2  
0
1
C5RSM1  
0
0
C5RSM0  
0
Bit 7: Receiver Transformer Turns Ratio Channel 6 (RTR6). If this bit is set the turns ratio is 1:1 on the receiver  
side. This bit should be set when a 1:1 receiver transformer is used and is recommended when using long-haul  
mode (SHLHS6). Note that in order to use fully internal receive impedance termination, a 1:1 transformer must be  
used and this bit must be set to 1.  
Bits 6 to 4: Channel 6 Receive Sensitivity/Monitor Select [2:0] (C6RSM[2:0]). Bits C6RSM[2:0] are used to  
select the receiver sensitivity level and the monitor mode resistive gain. See Table 6-16.  
Bit 3: Receiver Transformer Turns Ratio Channel 5 (RTR5). If this bit is set the turns ratio is 1:1 on the receiver  
side. This bit should be set when a 1:1 receiver transformer is used and is recommended when using long-haul  
mode (SHLHS5). Note that in order to use the fully internal receive impedance termination, a 1:1 transformer must  
be used and this bit must be set to 1.  
Bits 2 to 0: Channel 5 Receive Sensitivity/Monitor Select [2:0] (C5RSM[2:0]). Bits C5RSM[2:0] are used to  
select the receiver sensitivity level and the monitor mode resistive gain. See Table 6-16.  
2Ah  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
RTR14  
0
6
5
4
3
RTR13  
0
2
1
0
C14RSM2 C14RSM1 C14RSM0  
C13RSM2 C13RSM1 C13RSM0  
0
0
0
0
0
0
Bit 7: Receiver Transformer Turns Ratio Channel 14 (RTR14). If this bit is set the turns ratio is 1:1 on the  
receiver side. This bit should be set when a 1:1 receiver transformer is used and is recommended when using long-  
haul mode (SHLHS14). Note that in order to use fully internal receive impedance termination, a 1:1 transformer  
must be used and this bit must be set to 1.  
Bits 6 to 4: Channel 14 Receive Sensitivity/Monitor Select [2:0] (C14RSM[2:0]). Bits C14RSM[2:0] are used to  
select the receiver sensitivity level and the monitor mode resistive gain. See Table 6-16.  
Bit 3: Receiver Transformer Turns Ratio Channel 13 (RTR13). If this bit is set the turns ratio is 1:1 on the  
receiver side. This bit should be set when a 1:1 receiver transformer is used and is recommended when using long-  
haul mode (SHLHS13). Note that in order to use the fully internal receive impedance termination, a 1:1 transformer  
must be used and this bit must be set to 1.  
Bits 2 to 0: Channel 13 Receive Sensitivity/Monitor Select [2:0] (C13RSM[2:0]). Bits C13RSM[2:0] are used to  
select the receiver sensitivity level and the monitor mode resistive gain. See Table 6-16.  
73 of 121  
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
RSMM4  
Register Name:  
Receive Sensitivity Monitor Mode 4 Register  
0Bh  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
RTR8  
0
6
C8RSM2  
0
5
C8RSM1  
0
4
C8RSM0  
0
3
RTR7  
0
2
C7RSM2  
0
1
C7RSM1  
0
0
C7RSM0  
0
Bit 7: Receiver Transformer Turns Ratio Channel 8 (RTR8). If this bit is set the turns ratio is 1:1 on the receiver  
side. This bit should be set when a 1:1 receiver transformer is used and is recommended when using long-haul  
mode (SHLHS8). Note that in order to use fully internal receive impedance termination, a 1:1 transformer must be  
used and this bit must be set to 1.  
Bits 6 to 4: Channel 8 Receive Sensitivity/Monitor Select [2:0] (C8RSM[2:0]). Bits C8RSM[2:0] are used to  
select the receiver sensitivity level and the monitor mode resistive gain. See Table 6-16.  
Bit 3: Receiver Transformer Turns Ratio Channel 7 (RTR7). If this bit is set the turns ratio is 1:1 on the receiver  
side. This bit should be set when a 1:1 receiver transformer is used and is recommended when using long-haul  
mode (SHLHS7). Note that in order to use the fully internal receive impedance termination, a 1:1 transformer must  
be used and this bit must be set to 1.  
Bits 2 to 0: Channel 7 Receive Sensitivity/Monitor Select [2:0] (C7RSM[2:0]). Bits C7RSM[2:0] are used to  
select the receiver sensitivity level and the monitor mode resistive gain. See Table 6-16.  
2Bh  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
RTR16  
0
6
5
4
3
RTR15  
0
2
1
0
C16RSM2 C16RSM1 C16RSM0  
C15RSM2 C15RSM1 C15RSM0  
0
0
0
0
0
0
Bit 7: Receiver Transformer Turns Ratio Channel 16 (RTR16). If this bit is set the turns ratio is 1:1 on the  
receiver side. This bit should be set when a 1:1 receiver transformer is used and is recommended when using long-  
haul mode (SHLHS16). Note that in order to use fully internal receive impedance termination, a 1:1 transformer  
must be used and this bit must be set to 1.  
Bit 6 to 4: Channel 16 Receive Sensitivity/Monitor Select [2:0] (C16RSM[2:0]). Bits C16RSM[2:0] are used to  
select the receiver sensitivity level and the monitor mode resistive gain. See Table 6-16.  
Bit 3: Receiver Transformer Turns Ratio Channel 15 (RTR15). If this bit is set the turns ratio is 1:1 on the  
receiver side. This bit should be set when a 1:1 receiver transformer is used and is recommended when using long-  
haul mode (SHLHS15). Note that in order to use the fully internal receive impedance termination, a 1:1 transformer  
must be used and this bit must be set to 1.  
Bits 2 to 0: Channel 15 Receive Sensitivity/Monitor Select [2:0] (C15RSM[2:0]). Bits C15RSM[2:0] are used to  
select the receiver sensitivity level and the monitor mode resistive gain. See Table 6-16.  
74 of 121  
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Table 6-16. Receiver Sensitivity/Monitor Mode Gain Selection  
RECEIVER  
SENSITIVITY  
(MAXIMUM  
LOSS)  
RECEIVER  
MONITOR  
MODE GAIN  
SETTINGS  
RECEIVER  
MONITOR  
MODE  
LOSS  
DECLARATION  
LEVEL  
CnRSM[2:0],  
T1/ E1 MODE  
DISABLED  
(dB)  
(dB)  
(dB)  
No flat gain  
No flat gain  
No flat gain  
000  
001  
010  
12  
18  
30  
0
0
0
15  
21  
33  
39 for T1,46 for  
E1  
36 for T1, 43  
for E1  
No flat gain  
011  
0
Receiver  
monitor mode  
enabled  
Receiver  
Max cable loss monitor mode  
gain settings  
CnRSM[2:0]  
Flat gain  
Flat gain  
Flat gain  
Flat gain  
100  
101  
110  
111  
30  
22.5  
17.5  
12  
14  
20  
26  
32  
37  
45.5  
47.5  
47  
RSL1  
Register Name:  
Receive Signal Level Indicator 1 Register  
0Ch  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
C2RSL3  
0
6
C2RSL2  
0
5
C2RSL1  
0
4
C2RSL0  
0
3
C1RSL3  
0
2
C1RSL2  
0
1
C1RSL1  
0
0
C1RSL0  
0
Bits 7 to 4: Channel 2 Receive Signal Level [3:0] (C2RSL[3:0]). C2RSL[3:0] bits provide the receive signal  
lLevel as shown in Table 6-17.  
Bits 3 to 0: Channel 1 Receive Signal Level [3:0] (C1RSL[3:0]). C1RSL[3:0] bits provide the receive signal level  
as shown in Table 6-17.  
2Ch  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
6
5
4
3
C9RSL3  
0
2
C9RSL2  
0
1
C9RSL1  
0
0
C9RSL0  
0
C10RSL3 C10RSL2 C10RSL1 C10RSL0  
0
0
0
0
Bits 7 to 4: Channel 10 Receive Signal Level [3:0] (C10RSL[3:0]). C10RSL[3:0] bits provide the receive signal  
level as shown in Table 6-17.  
Bits 3 to 0: Channel 9 Receive Signal Level [3:0] (C9RSL[3:0]). C9RSL[3:0] bits provide the receive signal level  
as shown in Table 6-17.  
75 of 121  
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Table 6-17. Receiver Signal Level  
RECEIVE LEVEL (dB)  
CnRSL3 to  
CnRSL0  
T1  
E1  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
>-2.5  
>-2.5  
-2.5 to -5  
-5 to -7.5  
-7.5 to -10  
-10 to -12.5  
-12.5 to -15  
-15 to -17.5  
-17.5 to -20  
-20 to -22.5  
-22.5 to -25  
-25 to -27.5  
-27.5 to -30  
-30 to -34  
<-34  
-2.5 to -5  
-5 to -7.5  
-7.5 to -10  
-10 to -12.5  
-12.5 to -15  
-15 to -17.5  
-17.5 to -20  
-20 to -22.5  
-22.5 to -25  
-25 to -27.5  
-27.5 to -30  
-30 to -34  
-34 to -38  
-38 to -43  
<-43  
RSL2  
Register Name:  
Receive Signal Level Indicator 2 Register  
0Dh  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
C4RSL3  
0
6
C4RSL2  
0
5
C4RSL1  
0
4
C4RSL0  
0
3
C3RSL3  
0
2
C3RSL2  
0
1
C3RSL1  
0
0
C3RSL0  
0
Bits 7 to 4: Channel 4 Receive Signal Level [3:0] (C4RSL[3:0]). C4RSL[3:0] bits provide the receive signal level  
as shown in Table 6-17.  
Bits 3 to 0: Channel 3 Receive Signal Level [3:0] (C3RSL[3:0]). C3RSL[3:0] bits provide the receive signal level  
as shown in Table 6-17.  
2Dh  
Register Address (LIUs 9–16):  
Bit #  
7
6
5
4
3
2
1
0
Name  
Default  
C12RSL3 C12RSL2 C12RSL1 C12RSL0 C11RSL3 C11RSL2 C11RSL1 C11RSL0  
0
0
0
0
0
0
0
0
Bits 7 to 4: Channel 12 Receive Signal Level [3:0] (C12RSL[3:0]). C12RSL[3:0] bits provide the receive signal  
level as shown in Table 6-17.  
Bits 3 to 0: Channel 11 Receive Signal Level [3:0] (C11RSL[3:0]). C11RSL[3:0] bits provide the receive signal  
level as shown in Table 6-17.  
76 of 121  
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
RSL3  
Register Name:  
Receive Signal Level Indicator 3 Register  
0Eh  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
C6RSL3  
0
6
C6RSL2  
0
5
C6RSL1  
0
4
C6RSL0  
0
3
C5RSL3  
0
2
C5RSL2  
0
1
C5RSL1  
0
0
C5RSL0  
0
Bits 7 to 4: Channel 6 Receive Signal Level [3:0] (C6RSL[3:0]). C6RSL[3:0] bits provide the receive signal level  
as shown in Table 6-17.  
Bits 3 to 0: Channel 5 Receive Signal Level [3:0] (C5RSL[3:0]). C5RSL[3:0] bits provide the receive signal level  
as shown in Table 6-17.  
2Eh  
Register Address (LIUs 9–16):  
Bit #  
7
6
5
4
3
2
1
0
Name  
Default  
C14RSL3 C14RSL2 C14RSL1 C14RSL0 C13RSL3 C13RSL2 C13RSL1 C13RSL0  
0
0
0
0
0
0
0
0
Bits 7 to 4: Channel 14 Receive Signal Level [3:0] (C14RSL[3:0]). C14RSL[3:0] bits provide the receive signal  
level as shown in Table 6-17.  
Bits 3 to 0: Channel 13 Receive Signal Level [3:0] (C13RSL[3:0]). C13RSL[3:0] bits provide the receive signal  
level as shown in Table 6-17.  
77 of 121  
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
RSL4  
Register Name:  
Receive Signal Level Indicator 4 Register  
0Fh  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
7
C8RSL3  
0
6
C8RSL2  
0
5
C8RSL1  
0
4
3
C7RSL3  
0
2
C7RSL2  
0
1
C7RSL1  
0
0
C7RSL0  
0
C8RSL0/  
CALSTAT  
0
Default  
Bits 7 to 4: Channel 8 Receive Signal Level [3:0] (C8RSL[3:0]). C8RSL[3:0] bits provide the receive signal level  
as shown in Table 6-17.  
Bit 4: Channel 8 Receive Signal Level 0/Calibration Status (C8RSL0/CALSTAT). When CRIMP is high,  
C8RSL0 will be replaced by a real-time status bit for the receive internal termination calibration circuit. If the bit is  
low, this indicates that the calibration has not completed. If the bit is high, this indicates the calibration completed  
successfully. Normally this bit should go high within 7µs of the low-to-high transition of the CRIMP bit. Receive  
termination values will be updated subsequently.  
Bits 3 to 0: Channel 7 Receive Signal Level [3:0] (C7RSL[3:0]). C7RSL[3:0] bits provide the receive signal level  
as shown in Table 6-17.  
2Fh  
Register Address (LIUs 9–16):  
Bit #  
7
6
5
4
3
2
1
0
Name  
Default  
C16RSL3 C16RSL2 C16RSL1 C16RSL0 C15RSL3 C15RSL2 C15RSL1 C15RSL0  
0
0
0
0
0
0
0
0
Bits 7 to 4: Channel 16 Receive Signal Level [3:0] (C16RSL[3:0]). C16RSL[3:0] bits provide the receive signal  
level as shown in Table 6-17.  
Bits 3 to 0: Channel 15 Receive Signal Level [3:0] (C15RSL[3:0]). C15RSL[3:0] bits provide the receive signal  
level as shown in Table 6-17.  
78 of 121  
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
BTCR  
Register Name:  
Bit Error Rate Tester Control Register  
10h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
BTS2  
0
6
BTS1  
0
5
BTS0  
0
4
0
3
0
2
0
1
0
0
BERTE  
0
Note: This register enables the LIU1-LIU8 BERT. The BERT can only connect to one LIU at a time. The LIU1-LIU8 BERT operates  
independently of the LIU9-LIU16 BERT.  
Bits 7 to 5: Bit Error Rate Transceiver Select [2:0] (BTS[2:0]). These bits BTS[2:0] select the LIU that the BERT  
applies to (see Table 6-18). This is only applicable if the BERTE bit is set.  
Bit 0: Bit Error Rate Tester Enable (BERTE). When this bit is set and 2µs have past, the BERT will be enabled.  
The BERT register set should be written and read to only after being enabled. The BERT is only active for one LIU  
at a time selected by BTS[2:0]. If the BERT is enabled on the transmit (line) side, the BERT data will be  
automatically B8ZS/HDB3 encoded before it is transmitted.  
30h  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
BTS2  
0
6
BTS1  
0
5
BTS0  
0
4
0
3
0
2
0
1
0
0
BERTE  
0
Note: This register enables the LIU9-LIU16 BERT. The BERT can only connect to one LIU at a time. The LIU9-LIU16 BERT operates  
independently of the LIU1–LIU8 BERT.  
Bits 7 to 5: Bit Error Rate Transceiver Select [2:0] (BTS[2:0]) These bits BTS[2:0] select the LIU that the BERT  
applies too (see Table 6-19). This is only applicable if the BERTE bit is set.  
Bit 0: Bit Error Rate Tester Enable (BERTE). When this bit is set and 2µs have past, the BERT will be enabled.  
The BERT register set should be written and read to only after being enabled. The BERT is only active for one LIU  
at a time selected by BTS[2:0]. If the BERT is enabled on the transmit (line) side, the BERT data will be  
automatically B8ZS/HDB3 encoded before it is transmitted.  
79 of 121  
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Table 6-18. Bit Error Rate Transceiver Select for Channels 1–8  
REGISTER  
ADDRESS  
10h  
CHANNEL BERT  
APPLIES TO  
Channel 1  
BTS2  
BTS1  
BTS0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
10h  
10h  
10h  
10h  
10h  
10h  
10h  
Channel 2  
Channel 3  
Channel 4  
Channel 5  
Channel 6  
Channel 7  
Channel 8  
Table 6-19. Bit Error Rate Transceiver Select for Channels 9–16  
REGISTER  
ADDRESS  
30h  
CHANNEL BERT  
APPLIES TO  
Channel 9  
BTS2  
BTS1  
BTS0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
30h  
30h  
30h  
30h  
30h  
30h  
30h  
Channel 10  
Channel 11  
Channel 12  
Channel 13  
Channel 14  
Channel 15  
Channel 16  
BEIR  
Register Name:  
BPV Error Insertion Register  
11h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
BEIR8  
0
6
BEIR7  
0
5
BEIR6  
0
4
BEIR5  
0
3
BEIR4  
0
2
BEIR3  
0
1
BEIR2  
0
0
BEIR1  
0
31h  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
BEIR16  
0
6
BEIR15  
0
5
BEIR14  
0
4
BEIR13  
0
3
BEIR12  
0
2
BEIR11  
0
1
BEIR10  
0
0
BEIR9  
0
Bits 7 to 0: BPV Error Insertion Register n (BEIRn). A 0-to-1 transition on this bit will cause a single bipolar  
violation (BPV) to be inserted into the transmit data stream Channel n. This bit must be cleared and set again for a  
subsequent error to be inserted.  
80 of 121  
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
LVDS  
Register Name:  
Line Violation Detect Status Register  
12h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
LVDS8  
0
6
LVDS7  
0
5
LVDS6  
0
4
LVDS5  
0
3
LVDS4  
0
2
LVDS3  
0
1
LVDS2  
0
0
LVDS1  
0
32h  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
LVDS16  
0
6
LVDS15  
0
5
LVDS14  
0
4
LVDS13  
0
3
LVDS12  
0
2
LVDS11  
0
1
LVDS10  
0
0
LVDS9  
0
Bits 7 to 0: Line Violation Detect Status n (LVDSn). A bipolar violation, a code violation, or excessive zeros will  
cause the associated LVDSn bit to latch. This bit will be cleared on a read operation. The LVDS register captures  
the first violation within a three clock period window. If a second violation occurs after the first violation within the  
three clock period window, then the second violation will not be latched even if a read to the LVDS register was  
performed. Excessive zeros need to be enabled by the EZDE register for detection by this register. Code violations  
are only relevant when in HDB3 mode and can be disabled for detection by this register by setting the CVDEB  
register.  
RCLKI  
Register Name:  
Receive Clock Invert Register  
13h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
RCLKI8  
0
6
RCLKI7  
0
5
RCLKI6  
0
4
RCLKI5  
0
3
RCLKI4  
0
2
RCLKI3  
0
1
RCLKI2  
0
0
RCLKI1  
0
33h  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
RCLKI16  
0
6
5
RCLKI14  
0
4
RCLKI13  
0
3
RCLKI12  
0
2
RCLKI11  
0
1
RCLKI10  
0
0
RCLKI9  
0
RCLKI15  
0
Bit 7 to 0: Receive Clock Invert n (RCLKIn). When this bit is set the RCLK for Channel n is inverted. This aligns  
RPOS/RNEG on the falling edge of RCLK. When reset or default RPOS/RNEG is aligned on the rising edge of  
RCLK.  
81 of 121  
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
TCLKI  
Register Name:  
Transmit Clock Invert Register  
14h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
TCLKI8  
0
6
TCLKI7  
0
5
TCLKI6  
0
4
TCLKI5  
0
3
TCLKI4  
0
2
TCLKI3  
0
1
TCLKI2  
0
0
TCLKI1  
0
34h  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
TCLKI16  
0
6
5
TCLKI14  
0
4
TCLKI13  
0
3
TCLKI12  
0
2
TCLKI11  
0
1
TCLKI10  
0
0
TCLKI9  
0
TCLKI15  
0
Bits 7 to 0: Transmit Clock Invert n (TCLKIn). When this bit is set the expected TCLK for Channel n is inverted.  
TPOS/TNEG should be aligned on the falling edge of TCLK. When reset or default TPOS/TNEG should be aligned  
on the rising edge of TCLK.  
82 of 121  
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
CCR  
Register Name:  
Clock Control Register  
15h  
Register Description:  
Register Address:  
Bit #  
Name  
Default  
7
PCLKS2  
0
6
PCLKS1  
0
5
PCLKS0  
0
4
TECLKS  
0
3
CLKA3  
0
2
CLKA2  
0
1
CLKA1  
0
0
CLKA0  
0
Bits 7 to 5: PLL Clock Select (PCLKS[2:0]). These bits determine the RCLK that is to be used as the input to the  
PLL. If an LOS is detect for the channel that RCLK is recovered from, the PLL will switch to MCLK until the LOS is  
cleared. When the LOS is cleared RCLK will be used again. See Table 6-20 for RCLK selection. MC.PCLKI[1:0]  
must be set to ‘01’ or ‘10’ in order for these settings to take effect.  
Table 6-20. PLL Clock Select  
PLL CLOCK  
SELECTED  
PLL CLOCK  
SELECTED  
PCLKS[2:0]  
MC.PCLKI[1:0]=01 MC.PCLKI[1:0]=10  
000  
001  
010  
011  
100  
101  
110  
111  
RCLK1  
RCLK2  
RCLK3  
RCLK4  
RCLK5  
RCLK6  
RCLK7  
RCLK8  
RCLK9  
RCLK10  
RCLK11  
RCLK12  
RCLK13  
RCLK14  
RCLK15  
RCLK16  
Bit 4: T1/E1 Clock Select (TECLKS). When this bit is set the T1/E1 clock output is 2.048MHz. When this bit is  
reset the T1/E1 clock rate is 1.544MHz  
Bits 3 to 0: Clock A Select (CLKA[3:0]). These bits select the output frequency for CLKA pin. See Table 6-21 for  
available frequencies. For best jitter performance, select MCLK as the source for CLKA and input a 2.048MHz  
MCLK.  
Table 6-21. Clock A Select  
CLKA[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
CLKA (Hz)  
2.048M  
4.096M  
8.192M  
16.384M  
1.544M  
3.088M  
6.176M  
12.352M  
1.536M  
3.072M  
6.144M  
12.288M  
32k  
64k  
128k  
256k  
83 of 121  
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
RDULR  
Register Name:  
RCLK Disable Upon LOS Register  
16h  
Register Description:  
Register Address (LIUs 1–8):  
Bit #  
Name  
Default  
7
RDULR8  
0
6
RDULR7  
0
5
RDULR6  
0
4
RDULR5  
0
3
RDULR4  
0
2
RDULR3  
0
1
RDULR2  
0
0
RDULR1  
0
36h  
Register Address (LIUs 9–16):  
Bit #  
7
6
5
4
3
2
1
0
Name  
Default  
RDULR16 RDULR15 RDULR14 RDULR13 RDULR12 RDULR11 RDULR10 RDULR9  
0
0
0
0
0
0
0
0
Bits 7 to 0: RCLK Disable Upon LOS Register n (RDULRn). When this bit is set the RCLK for Channel n is  
disabled upon a loss of signal and set as a low output. When reset or default RCLK will switch to MCLK upon a  
loss of signal within 10ms.  
GISC  
Register Name:  
Global Interrupt Status Control Register  
1Eh  
Register Description:  
Register Address:  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
0
2
0
1
INTM  
0
0
CWE  
0
Bit 1: INT Pin Mode (INTM). This bit determines the inactive mode of the INT pin. The INT pin always drives low  
when active.  
0 = Pin is high impedance when not active.  
1 = Pin drives high when not active.  
Bit 0: Clear On Write Enable (CWE). When this bit is set the clear on write is enabled for all the latched interrupt  
status registers. The host processor must write a 1 to the latched interrupt status register bit position before the  
particular bit will be cleared. Default for all the latched interrupt status registers is to clear on a read.  
84 of 121  
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
6.1.4 BERT Registers  
BCR  
Register Name:  
BERT Control Register  
Register Description:  
00h  
20h  
Register Address (LIUs 1–8):  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
PMUM  
0
6
LPMU  
0
5
RNPL  
0
4
RPIC  
0
3
MPR  
0
2
APRD  
0
1
TNPL  
0
0
TPIC  
0
Bit 7: Performance Monitoring Update Mode (PMUM). When 0, a performance monitoring update is initiated by  
the LPMU register bit. When 1, a performance monitoring update is initiated by the receive performance monitoring  
update signal (RPMU). Note: If RPMU or LPMU is one, changing the state of this bit may cause a performance  
monitoring update to occur.  
Bit 6: Local Performance Monitoring Update (LPMU). This bit causes a performance monitoring update to be  
initiated if local performance monitoring update is enabled (PMUM = 0). A 0-to-1 transition causes the performance  
monitoring registers to be updated with the latest data, and the counters reset (0 or 1). For a second performance  
monitoring update to be initiated, this bit must be set to 0, and back to 1. If LPMU goes low before the PMS bit  
goes high, an update might not be performed. This bit has no affect when PMUM = 1.  
Bit 5: Receive New Pattern Load (RNPL). A 0-to-1 transition of this bit will cause the programmed test pattern  
(QRSS, PTS, PLF[4:0], PTF[4:0], and BSP[31:0]) to be loaded in to the receive pattern generator. This bit must be  
changed to zero and back to one for another pattern to be loaded. Loading a new pattern will forces the receive  
pattern generator out of the “Sync” state which causes a resynchronization to be initiated. Note: QRSS, PTS,  
PLF[4:0], PTF[4:0], and BSP[31:0] must not change from the time this bit transitions from 0 to 1 until four RXCK  
clock cycles after this bit transitions from 0 to 1.  
Bit 4: Receive Pattern Inversion Control (RPIC). When 0, the receive incoming data stream is not altered. When  
1, the receive incoming data stream is inverted.  
Bit 3: Manual Pattern Resynchronization (MPR). A zero to one transition of this bit will cause the receive pattern  
generator to resynchronize to the incoming pattern. This bit must be changed to zero and back to one for another  
resynchronization to be initiated. Note: A manual resynchronization forces the receive pattern generator out of the  
“Sync” state.  
Bit 2: Automatic Pattern Resynchronization Disable (APRD). When 0, the receive pattern generator will  
automatically resynchronize to the incoming pattern if six or more times during the current 64-bit window the  
incoming data stream bit and the receive pattern generator output bit did not match. When 1, the receive pattern  
generator will not automatically resynchronize to the incoming pattern. Note: Automatic synchronization is  
prevented by not allowing the receive pattern generator to automatically exit the “Sync” state.  
Bit 1: Transmit New Pattern Load (TNPL). A 0-to-1 transition of this bit will cause the programmed test pattern  
(QRSS, PTS, PLF[4:0], PTF[4:0], and BSP[31:0]) to be loaded in to the transmit pattern generator. This bit must be  
changed to zero and back to one for another pattern to be loaded. Note: QRSS, PTS, PLF[4:0], PTF[4:0], and  
BSP[31:0] must not change from the time this bit transitions from 0 to 1 until four TXCK clock cycles after this bit  
transitions from 0 to 1.  
Bit 0: Transmit Pattern Inversion Control (TPIC). When 0, the transmit outgoing data stream is not altered.  
When 1, the transmit outgoing data stream is inverted.  
85 of 121  
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
BPCR1  
Register Name:  
BERT Pattern Configuration Register 1  
Register Description:  
02h  
22h  
Register Address (LIUs 1–8):  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
0
6
QRSS  
0
5
PTS  
0
4
PLF4  
0
3
PLF3  
0
2
PLF2  
0
1
PLF1  
0
0
PLF0  
0
Bit 6: QRSS Enable (QRSS). When 0, the pattern generator configuration is controlled by PTS, PLF[4:0], and  
PTF[4:0], and BSP[31:0]. When 1, the pattern generator configuration is forced to a PRBS pattern with a  
generating polynomial of x20 + x17 + 1. The output of the pattern generator will be forced to one if the next fourteen  
output bits are all zero.  
Bit 5: Pattern Type Select (PTS). When 0, the pattern is a PRBS pattern. When 1, the pattern is a repetitive  
pattern.  
Bits 4 to 0: Pattern Length Feedback (PLF[4:0]). These five bits control the “length” feedback of the pattern  
generator. The “length” feedback will be from bit n of the pattern generator (n = PLF[4:0] +1). For a PRBS signal,  
the feedback is an XOR of bit n and bit y. For a repetitive pattern the feedback is bit n.  
BPCR2  
Register Name:  
BERT Pattern Configuration Register 2  
Register Description:  
03h  
23h  
Register Address (LIUs 1–8):  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
PTF4  
0
3
PTF3  
0
2
PTF2  
0
1
PTF1  
0
0
PTF0  
0
Bits 4 to 0: Pattern Tap Feedback (PTF[4:0]). These five bits control the PRBS “tap” feedback of the pattern  
generator. The “tap” feedback will be from bit y of the pattern generator (y = PTF[4:0] +1). These bits are ignored  
when programmed for a repetitive pattern. For a PRBS signal, the feedback is an XOR of bit n and bit y.  
86 of 121  
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
BSPR1  
Register Name:  
BERT Seed/Pattern Register 1  
Register Description:  
04h  
24h  
Register Address (LIUs 1–8):  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
BSP7  
0
6
BSP6  
0
5
BSP5  
0
4
BSP4  
0
3
BSP3  
0
2
BSP2  
0
1
BSP1  
0
0
BSP0  
0
BSPR2  
Register Name:  
BERT Seed/Pattern Register 2  
Register Description:  
05h  
25h  
Register Address (LIUs 1–8):  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
BSP15  
0
6
BSP14  
0
5
BSP13  
0
4
BSP12  
0
3
BSP11  
0
2
BSP10  
0
1
BSP9  
0
0
BSP8  
0
BSPR3  
Register Name:  
BERT Seed/Pattern Register 3  
Register Description:  
06h  
26h  
Register Address (LIUs 1–8):  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
BSP23  
0
6
BSP22  
0
5
BSP21  
0
4
BSP20  
0
3
BSP19  
0
2
BSP18  
0
1
BSP17  
0
0
BSP16  
0
BSPR4  
Register Name:  
BERT Seed/Pattern Register 4  
Register Description:  
07h  
27h  
Register Address (LIUs 1–8):  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
BSP31  
0
6
BSP30  
0
5
BSP29  
0
4
BSP28  
0
3
BSP27  
0
2
BSP26  
0
1
BSP25  
0
0
BSP24  
0
Bits 31 to 0: BERT Seed/Pattern (BSP[31:0]). These 32 bits are the programmable seed for a transmit PRBS  
pattern, or the programmable pattern for a transmit or receive repetitive pattern. BSP(31) will be the first bit output  
on the transmit side for a 32-bit repetitive pattern or 32-bit length PRBS. BSP(31) will be the first bit input on the  
receive side for a 32-bit repetitive pattern.  
87 of 121  
 
 
 
 
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
TEICR  
Register Name:  
Transmit Error Insertion Control Register  
Register Description:  
08h  
28h  
Register Address (LIUs 1–8):  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
0
6
0
5
TEIR2  
0
4
TEIR1  
0
3
TEIR0  
0
2
BEI  
0
1
TSEI  
0
0
MEIMS  
0
Bits 5 to 3: Transmit Error Insertion Rate (TEIR[2:0]). These three bits indicate the rate at which errors are  
inserted in the output data stream. One out of every 10n bits is inverted. TEIR[2:0] is the value n. A TEIR[2:0] value  
of 0 disables error insertion at a specific rate. A TEIR[2:0] value of 1 result in every 10th bit being inverted. A  
TEIR[2:0] value of 2 result in every 100th bit being inverted. Error insertion starts when this register is written to  
with a TEIR[2:0] value that is nonzero. If this register is written to during the middle of an error insertion process,  
the new error rate will be started after the next error is inserted.  
Bit 2: Bit Error Insertion Enable (BEI). When 0, single bit error insertion is disabled. When 1, single bit error  
insertion is enabled.  
Bit 1: Transmit Single Error Insert (TSEI). This bit causes a bit error to be inserted in the transmit data stream if  
manual error insertion is disabled (MEIMS = 0) and single bit error insertion is enabled. A 0 to 1 transition causes a  
single bit error to be inserted. For a second bit error to be inserted, this bit must be set to 0, and back to 1. Note: If  
MEIMS is low, and this bit transitions more than once between error insertion opportunities, only one error will be  
inserted.  
Bit 0: Manual Error Insert Mode Select (MEIMS). When 0, error insertion is initiated by the TSEI register bit.  
When 1, error insertion is initiated by the transmit manual error insertion signal (TMEI). Note: If TMEI or TSEI is  
one, changing the state of this bit may cause a bit error to be inserted.  
BSR  
Register Name:  
BERT Status Register  
Register Description:  
0Ch  
2Ch  
Register Address (LIUs 1–8):  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
PMS  
0
2
0
1
BEC  
0
0
OOS  
0
Bit 3: Performance Monitoring Update Status (PMS). This bit indicates the status of the receive performance  
monitoring register (counters) update. This bit will transition from low to high when the update is completed. PMS is  
asynchronously forced low when the LPMU bit (PMUM = 0) or RPMU signal (PMUM=1) goes low.  
Bit 1: Bit Error Count (BEC). When 0, the bit error count is zero. When 1, the bit error count is one or more.  
Bit 0: Out Of Synchronization (OOS). When 0, the receive pattern generator is synchronized to the incoming  
pattern. When 1, the receive pattern generator is not synchronized to the incoming pattern.  
88 of 121  
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
BSRL  
Register Name:  
BERT Status Register Latched Register  
Register Description:  
0Eh  
2Eh  
Register Address (LIUs 1–8):  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
PMSL  
0
2
BEL  
0
1
BECL  
0
0
OOSL  
0
Bit 3: Performance Monitoring Update Status Latched (PMSL). This bit is set when the PMS bit transitions from  
0 to 1. A read operation clears this bit.  
Bit 2: Bit Error Latched (BEL). This bit is set when a bit error is detected. A read operation clears this bit.  
Bit 1: Bit Error Count Latched (BECL). This bit is set when the BEC bit transitions from 0 to 1. A read operation  
clears this bit.  
Bit 0: Out Of Synchronization Latched (OOSL). This bit is set when the OOS bit changes state. A read operation  
clears this bit.  
BSRIE  
Register Name:  
BERT Status Register Interrupt Enable Register  
Register Description:  
10h  
30h  
Register Address (LIUs 1–8):  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
0
6
0
5
0
4
0
3
PMSIE  
0
2
BEIE  
0
1
BECIE  
0
0
OOSIE  
0
Bit 3: Performance Monitoring Update Status Interrupt Enable (PMSIE). This bit enables an interrupt if the  
PMSL bit is set.  
0 = interrupt disabled  
1 = interrupt enabled  
Bit 2: Bit Error Interrupt Enable (BEIE). This bit enables an interrupt if the BEL bit is set.  
0 = interrupt disabled  
1 = interrupt enabled  
Bit 1: Bit Error Count Interrupt Enable (BECIE). This bit enables an interrupt if the BECL bit is set.  
0 = interrupt disabled  
1 = interrupt enabled  
Bit 0: Out Of Synchronization Interrupt Enable (OOSIE). This bit enables an interrupt if the OOSL bit is set.  
0 = interrupt disabled  
1 = interrupt enabled  
89 of 121  
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
RBECR1  
Register Name:  
Receive BERT Bit Error Count Register 1  
Register Description:  
14h  
34h  
Register Address (LIUs 1–8):  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
BEC7  
0
6
BEC6  
0
5
BEC5  
0
4
BEC4  
0
3
BEC3  
0
2
BEC2  
0
1
BEC1  
0
0
BEC0  
0
RBECR2  
Register Name:  
Receive BERT Bit Error Count Register 2  
Register Description:  
15h  
35h  
Register Address (LIUs 1–8):  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
BEC15  
0
6
BEC14  
0
5
BEC13  
0
4
BEC12  
0
3
BEC11  
0
2
BEC10  
0
1
BEC9  
0
0
BEC8  
0
RBECR3  
Register Name:  
Receive BERT Bit Error Count Register 3  
Register Description:  
16h  
36h  
Register Address (LIUs 1–8):  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
BEC23  
0
6
BEC22  
0
5
BEC21  
0
4
BEC20  
0
3
BEC19  
0
2
BEC18  
0
1
BEC17  
0
0
BEC16  
0
Bits 23 to 0: BERT Bit Error Count (BEC[23:0]). These 24 bits indicate the number of bit errors detected in the  
incoming data stream. This count stops incrementing when it reaches a count of FF FFFFh. The associated bit  
error counter will not incremented when an OOS condition exists.  
90 of 121  
 
 
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
RBCR1  
Register Name:  
Receive BERT Bit Count Register 1  
Register Description:  
18h  
38h  
Register Address (LIUs 1–8):  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
BC7  
0
6
BC6  
0
5
BC5  
0
4
BC4  
0
3
BC3  
0
2
BC2  
0
1
BC1  
0
0
BC0  
0
RBCR2  
Register Name:  
Receive BERT Bit Count Register 2  
Register Description:  
19h  
39h  
Register Address (LIUs 1–8):  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
15  
BC15  
0
14  
BC14  
0
13  
BC13  
0
12  
BC12  
0
11  
BC11  
0
10  
BC10  
0
9
BC9  
0
8
BC8  
0
RBCR3  
Register Name:  
Receive BERT Bit Count Register 3  
Register Description:  
1Ah  
3Ah  
Register Address (LIUs 1–8):  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
7
BC23  
0
6
BC22  
0
5
BC21  
0
4
BC20  
0
3
BC19  
0
2
BC18  
0
1
BC17  
0
0
BC16  
0
RBCR4  
Register Name:  
Receive BERT Bit Count Register 4  
Register Description:  
1Bh  
3Bh  
Register Address (LIUs 1–8):  
Register Address (LIUs 9–16):  
Bit #  
Name  
Default  
15  
BC31  
0
14  
BC30  
0
13  
BC29  
0
12  
BC28  
0
11  
BC27  
0
10  
BC26  
0
9
BC25  
0
8
BC24  
0
Bits 31 to 0: BERT Bit Count (BC[31:0]). These 32 bits indicate the number of bits in the incoming data stream.  
This count stops incrementing when it reaches a count of FFFF FFFFh. The associated bit counter will not  
incremented when an OOS condition exists.  
91 of 121  
 
 
 
 
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
7 JTAG BOUNDARY SCAN ARCHITECTURE AND TEST ACCESS PORT  
The DS26334 IEEE 1149.1 design supports the standard instruction codes SAMPLE/PRELOAD, BYPASS, and  
EXTEST. Optional public instructions included are HIGHZ, CLAMP, and IDCODE. The DS26334 contains the  
following as required by IEEE 1149.1 Standard Test-Access Port and Boundary-Scan Architecture:  
Test Access Port (TAP)  
TAP Controller  
Instruction Register  
Bypass Register  
Boundary Scan Register  
Device Identification Register  
Details on Boundary Scan Architecture and the Test Access Port can be found in IEEE 1149.1-1990, IEEE  
1149.1a-1993, and IEEE 1149.1b-1994. The Test Access Port has the necessary interface pins: TRSTB, TCLK,  
TMS, TDI, and TDO. See the pin descriptions for details. For the latest BSDL files  
go to www.maxim-ic.com/tools/bsdl/ and search for DS26334.  
Figure 7-1. JTAG Functional Block Diagram  
BOUNDARY SCAN  
REGISTER  
INDENTIFICATION  
REGISTER  
BYPASS  
REGISTER  
MUX  
INSTRUCTION  
REGISTER  
SELECT  
TEST ACCESS PORT  
OUTPUT ENABLE  
CONTROLLER  
+V  
+V  
+V  
10kΩ  
10kΩ  
10kΩ  
TDI  
TMS  
TRSTB  
TDO  
TCLK  
92 of 121  
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
7.1 TAP Controller State Machine  
The TAP controller is a finite state machine that responds to the logic level at TMS on the rising edge of TCLK. The  
state diagram is shown in Figure 7-2.  
7.1.1 Test-Logic-Reset  
Upon power-up, the TAP controller will be in the Test-Logic-Reset state. The instruction register will contain the  
IDCODE instruction. All system logic of the device will operate normally. This state is automatically entered during  
power-up. This state is entered from any state if the TMS is held high for at least 5 clocks.  
7.1.2 Run-Test-Idle  
The Run-Test-Idle is used between scan operations or during specific tests. The instruction register and test  
registers will remain idle. The controller remains in this state when TMS is held low. When the TMS is high and  
rising edge of TCLK is applied the controller moves to the Select-DR-Scan state.  
7.1.3 Select-DR-Scan  
All test registers retain their previous state. With TMS LOW, a rising edge of TCLK moves the controller into the  
Capture-DR state and will initiate a scan sequence. TMS HIGH during a rising edge on TCLK moves the controller  
to the Select-IR-Scan state.  
7.1.4 Capture-DR  
Data can be parallel-loaded into the test-data registers if the current instruction is EXTEST or SAMPLE/PRELOAD.  
If the instruction does not call for a parallel load or the selected register does not allow parallel loads, the test  
register will remain at its current value. On the rising edge of TCLK, the controller will go to the shift-DR state if  
TMS is LOW or it will go to the exit1-DR state if TMS is HIGH.  
7.1.5 Shift-DR  
The test-data register selected by the current instruction will be connected between TDI and TDO and will shift data  
one stage towards its serial output on each rising edge of TCLK. If a test register selected by the current instruction  
is not placed in the serial path, it will maintain its previous state. When the TAP controller is in this state and a  
rising edge of TCLK is applied, the controller enters the Exit1-DR state if TMS is high or remains in Shift-DR state if  
TMS is low.  
7.1.6 Exit1-DR  
While in this state, a rising edge on TCLK will put the controller in the Update-DR state, which terminates the  
scanning process, if TMS is HIGH. A rising edge on TCLK with TMS LOW will put the controller in the Pause-DR  
state.  
7.1.7 Pause-DR  
Shifting of the test registers is halted while in this state. All test registers selected by the current instruction will  
retain their previous state. The controller will remain in this state while TMS is LOW. A rising edge on TCLK with  
TMS HIGH will put the controller in the Exit2-DR state.  
7.1.8 Exit2-DR  
A rising edge on TCLK with TMS HIGH while in this state will put the controller in the Update-DR state and  
terminate the scanning process. A rising edge on TCLK with TMS LOW will enter the Shift-DR state.  
7.1.9 Update-DR  
A falling edge on TCLK while in the Update-DR state will latch the data from the shift register path of the test  
registers into the data output latches. This prevents changes at the parallel output due to changes in the shift  
register.  
93 of 121  
 
 
 
 
 
 
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
7.1.10 Select-IR-Scan  
All test registers retain their previous state. The instruction register will remain unchanged during this state. With  
TMS LOW, a rising edge on TCLK moves the controller into the Capture-IR state and will initiate a scan sequence  
for the instruction register. TMS HIGH during a rising edge on TCLK puts the controller back into the Test-Logic-  
Reset state.  
7.1.11 Capture-IR  
The Capture-IR state is used to load the shift register in the instruction register with a fixed value. This value is  
loaded on the rising edge of TCLK. If TMS is HIGH on the rising edge of TCLK, the controller will enter the Exit1-IR  
state. If TMS is LOW on the rising edge of TCLK, the controller will enter the Shift-IR state.  
7.1.12 Shift-IR  
In this state, the shift register in the instruction register is connected between TDI and TDO and shifts data one  
stage for every rising edge of TCLK towards the serial output. The parallel registers as well as all test registers  
remain at their previous states. A rising edge on TCLK with TMS HIGH will move the controller to the Exit1-IR  
state. A rising edge on TCLK with TMS LOW will keep the controller in the Shift-IR state while moving data one  
stage thorough the instruction shift register.  
7.1.13 Exit1-IR  
A rising edge on TCLK with TMS LOW will put the controller in the pause-IR state. If TMS is HIGH on the rising  
edge of TCLK, the controller will enter the update-IR state and terminate the scanning process.  
7.1.14 Pause-IR  
Shifting of the instruction shift register is halted temporarily. With TMS HIGH, a rising edge on TCLK will put the  
controller in the Exit2-IR state. The controller will remain in the Pause-IR state if TMS is LOW during a rising edge  
on TCLK.  
7.1.15 Exit2-IR  
A rising edge on TCLK with TMS HIGH will put the controller in the Update-IR state. The controller will loop back to  
Shift-IR if TMS is LOW during a rising edge of TCLK in this state.  
7.1.16 Update-IR  
The instruction code shifted into the instruction shift register is latched into the parallel output on the falling edge of  
TCLK as the controller enters this state. Once latched, this instruction becomes the current instruction. A rising  
edge on TCLK with TMS LOW will put the controller in the Run-Test-Idle state. With TMS HIGH, the controller will  
enter the Select-DR-Scan state.  
94 of 121  
 
 
 
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Figure 7-2. TAP Controller State Diagram  
Test Logic  
Reset  
1
0
0
1
1
1
Run Test/  
Idle  
Select  
Select  
DR-Scan  
IR-Scan  
0
0
1
1
Capture DR  
Capture IR  
0
0
Shift DR  
Shift IR  
0
1
0
1
1
1
Exit DR  
Exit IR  
0
0
Pause DR  
Pause IR  
0
0
1
1
0
0
Exit2 DR  
Exit2 IR  
1
1
Update DR  
Update IR  
1
0
1
0
95 of 121  
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
7.2 Instruction Register  
The instruction register contains a shift register as well as a latched parallel output and is 3 bits in length. When the  
TAP controller enters the Shift-IR state, the instruction shift register will be connected between TDI and TDO. While  
in the Shift-IR state, a rising edge on TCLK with TMS LOW will shift the data one stage towards the serial output at  
TDO. A rising edge on TCLK in the Exit1-IR state or the Exit2-IR state with TMS HIGH will move the controller to  
the Update-IR state. The falling edge of that same TCLK will latch the data in the instruction shift register to the  
instruction parallel output. Instructions supported by the DS26334 and its respective operational binary codes are  
shown in Table 7-1.  
Table 7-1. Instruction Codes for IEEE 1149.1 Architecture  
INSTRUCTION  
SELECTED REGISTER  
INSTRUCTION CODES  
EXTEST  
HIGHZ  
CLAMP  
Boundary Scan  
Bypass  
000  
010  
011  
100  
110  
111  
Bypass  
SAMPLE/PRELOAD  
IDCODE  
Boundary Scan  
Device Identification  
Bypass  
BYPASS  
7.2.1 EXTEST  
This allows testing of all interconnections to the device. When the EXTEST instruction is latched in the instruction  
register, the following actions occur. Once enabled via the Update-IR state, the parallel outputs of all digital output  
pins will be driven. The Boundary Scan Register will be connected between TDI and TDO. The Capture-DR will  
sample all digital inputs into the Boundary Scan Register.  
7.2.2 HIGHZ  
All digital outputs of the device will be placed in a high-impedance state. The Bypass Register will be connected  
between TDI and TDO.  
7.2.3 CLAMP  
All digital outputs of the device will output data from the boundary scan parallel output while connecting the Bypass  
Register between TDI and TDO. The outputs will not change during the CLAMP instruction.  
7.2.4 SAMPLE/PRELOAD  
This is a mandatory instruction for the IEEE 1149.1 specification that supports two functions. The digital I/Os of the  
device can be sampled at the Boundary Scan Register without interfering with the normal operation of the device  
by using the Capture-DR state. SAMPLE/PRELOAD also allows the device to shift data into the Boundary Scan  
Register via TDI using the Shift-DR state.  
7.2.5 IDCODE  
When the IDCODE instruction is latched into the Parallel Instruction Register, the Identification Test Register is  
selected. The device identification code will be loaded into the Identification Register on the rising edge of TCLK  
following entry into the Capture-DR state. Shift-DR can be used to shift the identification code out serially via TDO.  
During Test-Logic-Reset, the identification code is forced into the Instruction Register’s parallel output. The ID code  
will always have a 1 in the LSB position. The next 11 bits identify the manufacturer’s JEDEC number and number  
of continuation bytes followed by 16 bits for the device and 4 bits for the version Table 7-2. Table 7-3 lists the  
device ID code for the DS26334.  
7.2.6 BYPASS  
When the BYPASS instruction is latched into the Parallel Instruction Register, TDI connects to TDO through the  
one-bit test Bypass Register. This allows data to pass from TDI to TDO not affecting the device’s normal operation.  
96 of 121  
 
 
 
 
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Table 7-2. ID Code Structure  
MSB  
LSB  
Version  
Contact Factory  
4 bits  
Device ID  
16 bits  
JEDEC  
1
00010100001  
1
Table 7-3. Device ID Codes  
DEVICE  
16-BIT ID  
DS26334  
003Ch  
7.3 Test Registers  
IEEE 1149.1 requires a minimum of two test registers: the Bypass Register and the Boundary Scan Register. An  
optional test register has been included with the DS26334 design. This test register is the Identification Register  
and is used with the IDCODE instruction and the Test-Logic-Reset state of the TAP controller.  
7.3.1 Boundary Scan Register  
This register contains both a shift register path and a latched parallel output for all control cells and digital I/O cells  
and is n bits in length.  
7.3.2 Bypass Register  
This register is a single 1-bit shift register used with the BYPASS, CLAMP, and HIGHZ instructions that provide a  
short path between TDI and TDO.  
7.3.3 Identification Register  
The Identification Register contains a 32-bit shift register and a 32-bit latched parallel output. This register is  
selected during the IDCODE instruction and when the TAP controller is in the Test-Logic-Reset state. See Table  
7-2 and Table 7-3 for more information about bit usage.  
97 of 121  
 
 
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
8 DC ELECTRICAL CHARACTERIZATION  
ABSOLUTE MAXIMUM RATINGS  
Voltage Range on Any Lead with Respect to VSS (except VDD)…………………………………………….-0.3V to +5.5V  
Supply Voltage (VDD) Range with Respect to VSS…..………………………………………………………-0.3V to +3.63V  
Operating Temperature Range for DS26334G………………………………………………………………..0°C to +70°C  
Operating Temperature Range for DS26334GN………………………………………………..…………..-40°C to +85°C  
Storage Temperature…………………………………………………………………………………………-55°C to +125°C  
Soldering Temperature (reflow)  
Lead(Pb)-free........................................................................................................................................+260°C  
Containing lead(Pb)...............................................................................................................................+240°C  
This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation  
sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.  
8.1 DC Pin Logic Levels  
Table 8-1. Recommended DC Operating Conditions  
(TA = -40°C to +85°C for DS26334GN.)  
PARAMETER  
SYMBOL  
VIH  
MIN  
2.0  
TYP  
MAX UNITS  
NOTES  
Logic 1  
Logic 0  
Supply  
5.5  
V
V
V
VIL  
-0.3  
+0.8  
3.465  
VDD  
3.135  
3.3  
Table 8-2. Pin Capacitance  
(TA = +25°C)  
PARAMETER  
SYMBOL  
CIN  
MIN  
TYP  
7
MAX UNITS  
NOTES  
Input Capacitance  
Output Capacitance  
pF  
pF  
COUT  
7
8.2 Supply Current and Output Voltage  
Table 8-3. DC Characteristics  
(VDD = 3.135 to 3.465V, TA = -40°C to +85°C.) (Note 1)  
PARAMETER SYMBOL  
Supply Current at 3.465V  
MIN  
TYP  
MAX  
UNITS  
NOTES  
IDD  
1100  
mA  
2, 3  
Supply Current at 3.3V  
Input Leakage  
500  
IIL  
-10.0  
-10.0  
2.4  
+10.0  
+10.0  
µA  
µA  
V
Tri-State Output Leakage  
Output Voltage (Io = –4.0mA)  
Output Voltage (Io = +4.0mA)  
IOL  
VOH  
VOL  
0.4  
V
Note 1:  
Note 2:  
Note 3:  
Specifications to -40°C are guaranteed by design (GBD) and not production tested.  
RCLK1-n = TCLK1-n = 1.544MHz.  
Power dissipation with all ports active, TTIP and TRING driving a 25load, for an all-ones data density.  
98 of 121  
 
 
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
9 AC TIMING CHARACTERISTICS  
9.1 Line Interface Characteristics  
Table 9-1. Transmitter Characteristics  
PARAMETER  
E1 75Ω  
SYMBOL  
MIN  
2.14  
2.7  
TYP  
2.37  
3.0  
MAX  
2.6  
UNITS  
NOTES  
3.3  
E1 120Ω  
T1 100Ω  
T1 110Ω  
Output Mark  
Amplitude  
VM  
V
2.4  
3.0  
3.6  
2.4  
3.0  
3.6  
Output Zero Amplitude  
VS  
-0.3  
-1  
+0.3  
+1  
V
1
Transmit Amplitude Variation with  
Supply  
%
Single-Rail  
Transmit Path Delay  
Dual-Rail  
8
3
UI  
Table 9-2. Receiver Characteristics  
PARAMETER  
Cable Attenuation  
SYMBOL  
Attn  
MIN  
TYP  
MAX  
UNITS  
dB  
NOTES  
12  
Analog Loss-of-Signal Threshold  
Hysteresis Short-Haul Mode  
200  
100  
mV  
1
mV  
Analog Loss-of-Signal Threshold  
Long-Haul Mode  
30  
mV  
Hysteresis Long-Haul Mode  
40  
192  
192  
2048  
24  
Allowable Zeros Before Loss  
2
3
192  
Allowable Ones Before Loss  
192  
Single-Rail  
Dual-Rail  
8
3
Receive Path Delay  
UI  
Note 1:  
Note 2:  
Measured at the RRING and RTIP pins.  
192 zeros for T1 and T1.231 Specification Compliance; 192 zeros for E1 and G.775 Specification  
Compliance; 2048 zeros for ETS 300 233 compliance.  
Note 3:  
24 ones in 192-bit period for T1.231; 192 ones for G.775; 192 ones for ETS 300 233.  
99 of 121  
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
9.2 Parallel Host Interface Timing Characteristics  
The following tables show the AC characteristics for the external bus interface.  
Table 9-3. Intel Read Mode Characteristics  
(VDD = 3.3V ±5%, TJ = -40°C to +125°C.) (Note 1) (See Figure 9-1 and Figure 9-2.)  
SIGNAL  
NAME(S)  
SYMBOL  
DESCRIPTION  
MIN TYP MAX UNITS NOTES  
RDB  
CSB  
t1  
t2  
Pulse width if not using RDYB  
Setup time to RDB  
40  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
CSB  
t3  
Hold time from RDB  
0
AD[7:0]  
A[5:0]  
t4  
Setup time to ALE  
2
t5  
Hold time from RDB  
0
D[7:0], AD[7:0]  
D[7:0], AD[7:0]  
RDYB  
t6  
Delay time RDB, CSB active  
Deassert delay from RDB, CSB inactive  
Enable delay time from CSB active  
Disable delay time from the CSB inactive  
Hold time from ALE  
40  
20  
20  
15  
t7  
2
t8  
RDYB  
t9  
AD[7:0]  
ALE  
t10  
t11  
t12  
t13  
t14  
t15  
3
5
Pulse width  
D[7:0]  
Output delay from ALE Latched  
Setup time to RDB  
40  
35  
A[5:0]  
10  
0
RDYB  
Delay time from RDB  
RDYB  
Active output delay time from RDB  
10  
Note 1:  
Note 2:  
The timing parameters in this table are guaranteed by design (GBD).  
The input/output timing reference level for all signals is VDD/2.  
100 of 121  
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Figure 9-1. Intel Nonmuxed Read Cycle  
t3  
t2  
CSB  
RDB  
t1  
ALE=(1)  
A[5:0]  
t5  
t13  
ADDRESS  
t6  
t7  
D[7:0]  
RDYB  
DATA OUT  
t8  
t9  
t14  
t15  
101 of 121  
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Figure 9-2. Intel Mux Read Cycle  
t3  
t2  
CSB  
t1  
RDB  
t11  
t12  
t6  
ALE  
t4  
t10  
t7  
AD[7:0]  
DATA OUT  
ADDRESS  
t9  
t8  
t14  
RDYB  
t15  
102 of 121  
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Table 9-4. Intel Write Cycle Characteristics  
(VDD = 3.3V ±5%, TJ = -40°C to +125°C.) (Note 1) (See Figure 9-3 and Figure 9-4.)  
SIGNAL  
NAME(S)  
SYMBOL  
DESCRIPTION  
MIN TYP MAX UNITS NOTES  
WRB  
t1  
t2  
Pulse width  
40  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
CSB  
CSB  
Setup time to WRB  
t3  
Hold time to WRB  
0
AD[7:0]  
A[5:0]  
t4  
Setup time to ALE  
2
t5  
Hold time from WRB  
0
D[7:0], AD[7:0]  
D[7:0], AD[7:0]  
RDYB  
t6  
Input setup time to WRB  
Input hold time to WRB  
Enable delay from CSB active  
Delay time from WRB active  
Delay time from WRB inactive  
Disable delay time from CSB inactive  
Pulse width  
10  
5
t7  
t8  
20  
15  
RDYB  
t9  
10  
0
RDYB  
t10  
t11  
t12  
t13  
t14  
RDYB  
ALE  
5
3
AD[7:0]  
A[5:0]  
Hold time from ALE inactive  
Valid address to WRB inactive  
35  
Note 1:  
Note 2:  
The timing parameters in this table are guaranteed by design (GBD).  
The input/output timing reference level for all signals is VDD/2.  
103 of 121  
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Figure 9-3. Intel Nonmux Write Cycle  
t3  
t2  
CSB  
t1  
WRB  
ALE=(1)  
A[5:0]  
t14  
t5  
ADDRESS  
t6  
t7  
D[7:0]  
RDYB  
WRITE DATA  
t11  
t10  
t8  
t9  
104 of 121  
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Figure 9-4. Intel Mux Write Cycle  
t3  
t2  
CSB  
t1  
WRB  
t12  
ALE  
t13  
t4  
t6  
t7  
AD[7:0]  
WRITE DATA  
ADDRESS  
t11  
t8  
t10  
RDYB  
t9  
105 of 121  
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Table 9-5. Motorola Read Cycle Characteristics  
(VDD = 3.3V ±5%, TJ = -40°C to +125°C.) (Note 1) (See Figure 9-5 and Figure 9-6.)  
SIGNAL  
NAME(S)  
SYMBOL  
DESCRIPTION  
MIN TYP MAX UNITS NOTES  
DSB  
CSB  
t1  
t2  
Pulse width  
40  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Setup time to DSB active  
CSB  
t3  
Hold time from DSB inactive  
0
RWB  
t4  
Setup time to DSB active  
0
RWB  
t5  
Hold time from DSB inactive  
0
AD[7:0]  
AD[7:0]  
AD[7:0], D[7:0]  
AD[7:0], D[7:0]  
ACKB  
t6  
Setup time to ASB active  
2
t7  
Hold time to ASB inactive  
3
t8  
Output delay time from DSB active  
Output valid delay time from DSB inactive  
Output delay time from CSB inactive  
Output delay time from DSB inactive  
Enable output delay time from DSB active  
Output delay time from DSB active  
Hold time from DSB inactive  
40  
20  
15  
t10  
t11  
t12  
t13  
t14  
t15  
t16  
2
0
ACKB  
ACKB  
20  
35  
ACKB  
10  
0
A[5:0]  
A[5:0]  
Setup time to DSB active  
10  
Note 1:  
Note 2:  
The timing parameters in this table are guaranteed by design (GBD).  
The input/output timing reference level for all signals is VDD/2.  
106 of 121  
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Figure 9-5. Motorola Nonmux Read Cycle  
t3  
t2  
CSB  
t4  
t5  
RWB  
DSB  
t1  
ASB=(1)  
A[5:0]  
t16  
t15  
ADDRESS  
t8  
t10  
D[7:0]  
ACKB  
DATA OUT  
t11  
t12  
t13  
t14  
107 of 121  
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Figure 9-6. Motorola Mux Read Cycle  
t3  
t2  
CSB  
t4  
t5  
RWB  
t1  
DSB  
ASB  
t14  
t7  
t6  
t8  
t10  
AD[7:0]  
ACKB  
ADDRESS  
DATA OUT  
t11  
t12  
t13  
t14  
108 of 121  
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Table 9-6. Motorola Write Cycle Characteristics  
(VDD = 3.3V ±5%, TJ = -40°C to +125°C.) (Note 1) (See Figure 9-7 and Figure 9-8.)  
SIGNAL  
NAME(S)  
SYMBOL  
DESCRIPTION  
MIN TYP MAX UNITS NOTES  
DSB  
t1  
t2  
Pulse width  
35  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
CSB  
CSB  
Setup time to DSB active  
t3  
Hold time from DSB inactive  
Setup time to DSB active  
0
RWB  
t4  
0
RWB  
t5  
Hold time to DSB inactive  
0
AD[7:0]  
AD[7:0]  
AD[7:0], D[7:0]  
AD[7:0], D[7:0]  
A[5:0]  
t6  
Setup time to ASB active  
2
t7  
Hold time from ASB active  
Setup time to DSB inactive  
Hold time from DSB inactive  
Setup time to DSB active  
3
t8  
10  
5
t9  
t10  
t11  
t12  
t13  
t14  
t15  
10  
ACKB  
Output delay from CSB inactive  
Output delay from DSB inactive  
Output enable delay time from DSB active  
Output delay time from DSB active  
Hold time from DSB  
15  
20  
ACKB  
0
ACKB  
ACKB  
10  
0
A[5:0]  
Note 1:  
Note 2:  
The timing parameters in this table are guaranteed by design (GBD).  
The input/output timing reference level for all signals is VDD/2.  
109 of 121  
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Figure 9-7. Motorola Nonmux Write Cycle  
t3  
t2  
CSB  
t4  
t5  
RWB  
DSB  
t1  
ASB=(1)  
A[5:0]  
t10  
t15  
ADDRESS  
t8  
t9  
D[7:0]  
ACKB  
WRITE DATA  
t11  
t12  
t13  
t14  
110 of 121  
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Figure 9-8. Motorola Mux Write Cycle  
t3  
t2  
CSB  
t4  
t5  
RWB  
t1  
DSB  
ASB  
t13  
t6  
t7  
t9  
t8  
AD[7:0]  
ACKB  
WRITE DATA  
ADDRESS  
t12  
t11  
t13  
t14  
111 of 121  
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
9.3 Serial Port  
Table 9-7. Serial Port Timing Characteristics  
(See Figure 9-9, Figure 9-10, and Figure 9-11.)  
PARAMETER  
SYMBOL  
MIN  
TYP MAX  
UNITS  
NOTES  
SCLK High Time  
SCLK Low Time  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
25  
25  
50  
50  
50  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Active CSB to SCLK Setup Time  
Last SCLK to CSB Inactive Time  
CSB Idle Time  
SDI to SCLK Setup Time  
SCLK to SDI Hold Time  
5
SCLK Falling Edge to SDO  
High Impedance (CLKE = 0); CSB Rising to SDO  
High Impedance (CLKE = 1)  
t8  
100  
ns  
Figure 9-9. Serial Bus Timing Write Operation  
t5  
CSB  
t3  
t4  
SCLK  
t1  
t2  
t6  
LSB  
t7  
SDI  
MSB  
Figure 9-10. Serial Bus Timing Read Operation with CLKE = 0  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
SCLK  
CSB  
t4  
SDO  
t8  
Figure 9-11. Serial Bus Timing Read Operation with CLKE = 1  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
SCLK  
CSB  
t4  
t8  
SDO  
112 of 121  
 
 
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
9.4 System Timing  
Table 9-8. Transmitter System Timing  
(See Figure 9-12.)  
PARAMETER  
SYMBOL  
MIN  
TYP MAX UNITS NOTES  
TPOS, TNEG Setup Time with Respect to TCLK  
Falling Edge  
t1  
40  
ns  
TPOS, TNEG Hold Time with Respect to TCLK  
Falling Edge  
t2  
40  
ns  
TCLK Pulse-Width High  
TCLK Pulse-Width Low  
t3  
t4  
75  
75  
ns  
ns  
488  
TCLK Period  
t5  
ns  
648  
TCLK Rise Time  
TCLK Fall Time  
t6  
t7  
25  
25  
ns  
ns  
Figure 9-12. Transmitter Systems Timing  
t5  
t4  
t3  
t7  
t6  
TCLK  
t1  
TPOS, TNEG  
t2  
113 of 121  
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Table 9-9. Receiver System Timing  
(See Figure 9-13.)  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
50  
UNITS NOTES  
Delay RCLK to RPOS, RNEG Valid  
Delay RCLK to CV Valid in Single-Rail Mode  
RCLK Pulse-Width High  
t1  
t2  
t3  
t4  
ns  
ns  
ns  
ns  
50  
200  
200  
RCLK Pulse-Width Low  
488  
648  
RCLK Period  
t5  
ns  
Figure 9-13. Receiver Systems Timing  
RCLK1  
t3  
t4  
RCLK2  
t1  
t5  
RPOS,RNEG  
t2  
CV  
BPV/  
BPV/  
EXZ/  
CV  
EXZ/  
CV  
Notes:  
1) CLKE = 1.  
2) CLKE = 0.  
114 of 121  
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
9.5 JTAG Timing  
Table 9-10. JTAG Timing Characteristics  
(See Figure 9-14.)  
PARAMETER  
SYMBOL  
MIN  
100  
25  
TYP  
MAX  
UNITS  
ns  
NOTES  
TCK Period  
t1  
t2  
t3  
t4  
TMS and TDI Setup to TCK  
TMS and TDI Hold to TCK  
TCK to TDO Hold  
ns  
25  
ns  
50  
ns  
Figure 9-14. JTAG Timing  
t1  
TCK  
t3  
t2  
TMS  
TDI  
t4  
TDO  
115 of 121  
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
10 PIN CONFIGURATION  
Figure 10-1. 256-Ball TE-CSBGA  
1
2
3
MODESEL  
MOTEL  
TNEG1  
RCLK1  
RNEG1  
RPOS2  
A2  
4
RTIP16  
RRING16  
A4  
5
6
7
8
9
10  
VDDT14  
LOS13  
RPOS14  
GNDT13  
RNEG13  
LOS16  
TNEG4  
AVSS  
11  
12  
13  
VDDT13  
TMS  
14  
RTIP14  
15  
TDO  
16  
RTIP13  
RRING13  
AVDD  
RTIP1  
AVDD  
RTIP2  
VDDT1  
TTIP1  
TTIP2  
VDDT2  
RTIP3  
VDDT3  
TTIP3  
TTIP4  
VDDT4  
RTIP4  
AVDD  
RRING5  
RTIP5  
RRING1  
AVSS  
VDDT16  
RSTB  
TTIP16  
TRING16  
TNEG15  
GNDT16  
RCLK16  
TPOS1  
RCLK2  
TCLK4  
TPOS3  
TPOS4  
D0  
TTIP15  
TRING15  
RNEG15  
INTB  
VDDT15  
LOS14  
RPOS15  
GNDT15  
RCLK13  
RCLK15  
TNEG13  
DVDD  
RTIP15  
RRING15  
RNEG14  
GNDT14  
RCLK14  
TPOS13  
TCLK3  
TTIP14  
TRING14  
TCLK13  
TCLK16  
LOS15  
TTIP13  
TRING13  
RPOS13  
TCLK14  
TCLK12  
RCLK12  
RPOS11  
MCLK  
A
B
C
D
E
F
RRING14  
TPOS12  
TCK  
TDI  
RRING2  
LOS1  
TNEG16  
TPOS16  
RPOS16  
TCLK1  
RNEG2  
A3  
SDO/RDY/ACKB  
GNDT12  
TNEG12  
RNEG11  
RCLK11  
GNDT11  
GNDT10  
RPOS10  
RCLK9  
AVSS  
GNDT1  
A5  
RRING12  
TRSTB  
TRING12  
TRING11  
LOS12  
RRING11  
LOS11  
TRING10  
TRING9  
LOS10  
RRING10  
AVSS  
RTIP12  
VDDT12  
TTIP12  
TTIP11  
VDDT11  
RTIP11  
VDDT10  
TTIP10  
TTIP9  
TRING1  
TRING2  
LOS2  
TPOS14  
TNEG14  
TPOS2  
AVDD  
RPOS12  
TCLK11  
SDI/WRB/DSB  
RDB/RWB  
TNEG2  
RPOS1  
TCLK2  
GNDT2  
GNDT3  
RNEG3  
RPOS4  
D5  
RNEG12  
TPOS11  
TNEG11  
TPOS10  
TCLK9  
G
H
J
RRING3  
LOS3  
A1  
DVSS  
RNEG16  
RCLK3  
RPOS3  
RNEG4  
D7  
TNEG3  
RCLK4  
D4  
AVSS  
DVSS  
DVDD  
AVDD  
TNEG10  
TCLK10  
TNEG9  
RPOS8  
TPOS15  
TPOS7  
OE  
TRING3  
TRING4  
LOS4  
D3  
RPOS5  
TCLK6  
RCLK6  
GNDT6  
RPOS7  
RRING7  
RTIP7  
TNEG8  
TPOS5  
RPOS6  
GNDT7  
TCLK8  
RNEG8  
TCLK7  
RNEG6  
A0  
RCLK10  
RNEG10  
RPOS9  
K
L
RNEG5  
TCLK5  
TCLK15  
TNEG7  
LOS8  
TPOS9  
TPOS8  
GNDT8  
RNEG7  
TRING8  
TTIP8  
D1  
TNEG5  
GNDT5  
TNEG6  
TRING6  
TTIP6  
RNEG9  
M
N
P
R
T
RRING4  
AVSS  
GNDT4  
D2  
TPOS6  
RCLK5  
TRING5  
TTIP5  
GNDT9  
SCLK/ALE/ASB  
CSB  
VDDT9  
RTIP10  
AVDD  
D6  
RCLK7  
TRING7  
TTIP7  
RCLK8  
LOS5  
RRING6  
RTIP6  
LOS7  
RESREF  
VDDT7  
RRING8  
RTIP8  
LOS9  
LOS6  
VDDT5  
VDDT6  
VDDT8  
CLKE/MUX  
RRING9  
RTIP9  
116 of 121  
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
11 PACKAGE INFORMATION  
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix  
character, but the drawing pertains to the package regardless of RoHS status.  
PACKAGE TYPE  
PACKAGE CODE  
OUTLINE NO.  
LAND PATTERN NO.  
256 TE-CSBGA  
X256T+2  
21-0315  
90-0291  
117 of 121  
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
12 THERMAL INFORMATION  
Table 12-1. Thermal Characteristics  
PARAMETER  
MIN  
TYP  
MAX  
V (m/s)  
NOTES  
Ambient Temperature  
Junction Temperature  
1
-40°C  
+85°C  
+125°C  
0
2
Theta-JA (θJA) in Still Air Conduction  
Theta-JC (θJC) Conduction  
Theta-JB (θJB) Conduction  
Theta-JA (θJA) in Forced Air  
Theta-JA (θJA) in Forced Air  
Theta-JA (θJA) in Forced Air  
16.6°C/W  
3.0°C/W  
7.5°C/W  
15.0°C/W  
14.6°C/W  
14.0°C/W  
0.75  
1.25  
2.5  
Note 1:  
Note 2:  
The package is mounted on a four-layer JEDEC standard test board.  
Theta-JA (θJA) is the junction-to-ambient thermal resistance, when the package is mounted on a four-layer JEDEC standard  
test board.  
Table 12-2. Package Power Dissipation (for Thermal Considerations)  
TYPICAL 50% 1s (Note 1)  
TYPICAL 100% 1s (Note 2)  
MAXIMUM 100% 1s (Note 3)  
MODE  
FULLY PARTIALLY  
INTERNAL INTERNAL  
FULLY  
INTERNAL INTERNAL  
PARTIALLY  
FULLY  
INTERNAL INTERNAL  
PARTIALLY  
EXTERNAL  
EXTERNAL  
EXTERNAL  
E1-75Ω  
1.64  
1.49  
1.87  
1.92  
1.95  
1.99  
2.02  
1.84  
1.89  
1.92  
1.95  
1.99  
1.43  
1.19  
1.52  
1.57  
1.60  
1.63  
1.67  
1.49  
1.54  
1.57  
1.60  
1.63  
1.31  
1.19  
1.47  
1.51  
1.55  
1.58  
1.61  
1.47  
1.51  
1.55  
1.58  
1.61  
2.56  
2.23  
2.96  
3.03  
3.06  
3.12  
3.16  
2.90  
2.96  
2.99  
3.05  
3.10  
2.15  
1.62  
2.26  
2.32  
2.35  
2.41  
2.46  
2.20  
2.26  
2.29  
2.35  
2.39  
1.90  
1.62  
2.14  
2.20  
2.29  
2.29  
2.34  
2.14  
2.20  
2.29  
2.29  
2.34  
2.82  
2.54  
3.56  
3.63  
3.66  
3.72  
3.77  
3.44  
3.51  
3.54  
3.60  
3.65  
2.36  
1.69  
2.51  
2.57  
2.60  
2.67  
2.72  
2.36  
2.42  
2.45  
2.52  
2.57  
1.98  
1.69  
2.23  
2.30  
2.39  
2.39  
2.44  
2.23  
2.30  
2.39  
2.39  
2.44  
E1-120Ω  
T1-LBO0  
T1-LBO1  
T1-LBO2  
T1-LBO3  
T1-LBO4  
J1-LBO0  
J1-LBO1  
J1-LBO2  
J1-LBO3  
J1-LBO4  
Note 1:  
Note 2:  
Note 3:  
Typical voltage, transmitting/receiving 50% 1s in Watts.  
Typical voltage, transmitting/receiving 100% 1s in Watts.  
Maximum voltage, transmitting/receiving 100% 1s in Watts.  
Table 12-3 describes how much power to deduct per-channel from the total power dissipation values listed in  
Table 12-2.  
118 of 121  
 
 
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
Table 12-3. Per-Channel Power-Down Savings (for Thermal Considerations)  
TYPICAL 50% 1s (Note 1)  
TYPICAL 100% 1s (Note 2)  
MAXIMUM 100% 1s (Note 3)  
MODE  
FULLY PARTIALLY  
INTERNAL INTERNAL  
FULLY  
INTERNAL INTERNAL  
PARTIALLY  
FULLY  
INTERNAL INTERNAL  
PARTIALLY  
EXTERNAL  
EXTERNAL  
EXTERNAL  
0.093  
0.084  
0.108  
0.111  
0.113  
0.115  
0.117  
0.106  
0.109  
0.111  
0.113  
0.115  
0.080  
0.065  
0.086  
0.089  
0.091  
0.093  
0.095  
0.084  
0.087  
0.089  
0.091  
0.093  
0.072  
0.065  
0.083  
0.086  
0.088  
0.090  
0.092  
0.083  
0.086  
0.088  
0.090  
0.092  
0.151  
0.130  
0.176  
0.180  
0.182  
0.186  
0.189  
0.172  
0.176  
0.178  
0.182  
0.185  
0.125  
0.092  
0.132  
0.136  
0.138  
0.142  
0.145  
0.128  
0.132  
0.134  
0.138  
0.141  
0.109  
0.092  
0.125  
0.129  
0.134  
0.134  
0.137  
0.125  
0.129  
0.134  
0.134  
0.137  
0.166  
0.148  
0.213  
0.217  
0.219  
0.223  
0.226  
0.205  
0.209  
0.211  
0.215  
0.218  
0.137  
0.095  
0.147  
0.151  
0.153  
0.157  
0.160  
0.137  
0.141  
0.143  
0.147  
0.150  
0.113  
0.095  
0.130  
0.134  
0.140  
0.140  
0.143  
0.130  
0.134  
0.140  
0.140  
0.143  
E1-75Ω  
E1-120Ω  
T1-LBO0  
T1-LBO1  
T1-LBO2  
T1-LBO3  
T1-LBO4  
J1-LBO0  
J1-LBO1  
J1-LBO2  
J1-LBO3  
J1-LBO4  
Note 1:  
Note 2:  
Note 3:  
Typical voltage, transmitting/receiving 50% 1s in Watts.  
Typical voltage, transmitting/receiving 100% 1s in Watts.  
Maximum voltage, transmitting/receiving 100% 1s in Watts.  
TA°C + θJA x Power Dissipation Maximum Junction Temperature  
Where: TA = Maximum Ambient Temperature  
Example:  
TA = +70°C  
Mode = Typical 100% 1s E1-75, Fully Internal Impedance Matching  
Air Flow = 1.25m/s  
70°C + 14.6°C/W x 2.56W = 107°C  
This is below the maximum junction temperature and, therefore, this solution will support the thermal requirements.  
119 of 121  
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
13 DATA SHEET REVISION HISTORY  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
Initial release.  
070105  
Added descriptions of feature enhancements implemented in revision A2:  
1) Programmable corner frequency for the jitter attenuator in E1 mode.  
2) Fully internal impedance matching option for RTIP/RRING.  
3) Option for system-side deployment of BERT.  
4) Revised B8ZS/HDB3 sections for clarification of functions.  
5) Added RESREF pin for receive termination calibration.  
See below for the detailed list of changes made to this data sheet revision.  
See Features bullets, Detailed Description, and Section 5.5.1 for mention of fully  
internal receive impedance matching.  
1, 7, 27  
Added RESREF pin (R9).  
11  
15  
16  
In OE pin description, changed GC.RTCTL to TST.RHPMC  
Deleted R9 from DVSS.  
In Section 5.4: Transmitter, second paragraph, changed NRZ encoding to AMI  
encoding.  
20  
25  
26  
Replaced Figure 5-8.  
In Table 5-6, updated Rt; updated Section 5.4.3 and Section 5.4.4; in Section 5.4.5:  
Zero Suppression—B8ZS or HDB3, removed last sentence from first paragraph.  
Changed Section 5.4.8 name from Drive Failure Monitor to Driver Fail Monitor;  
updated Section 5.5; added new Section 5.5.1: Receive Impedance Matching  
Calibration.  
27  
30  
Added Section 5.5.8: Receive Dual-Rail Mode; added new Section 5.5.9: Receive  
Single-Rail Mode; updated Table 5-11.  
012507  
Updated Section 5.8.2: Digital Loopback.  
33  
34  
40  
Added new paragraph to Section 5.9: BERT.  
Changed GMC to BGMC (Table 6-1) (see also page 53).  
In Table 6-4, deleted Receive Bit Error Count Register 4 (does not exist for this  
part).  
43  
In Table 6-5, changed bit names for LOSS (LIUs 1–16) to correctly match bit  
description on page 49; for TST, changed bits 7–5 from Reserved to JABWS1,  
JABWS0, and RHPMC (see also page 58).  
44  
45  
46  
In Table 6-6, changed SRS bit to correctly say SRMS.  
In Table 6-7, added missing address (27) to SHLHS for LIUs 9–16; changed bit 7  
and bits 3–0 names for RSMM4 (LIUs 9–16) to correctly match bit description on  
page 74; changed “GISC” (3E) to “Not Used” for LIUs 9–16.  
In Table 6-8, changed BSR register bit 3 (PMS) to show it is read only (added  
underline), matching the bit description on page 88, as well as changed “RW” to “R”  
to correctly show all bits are read only; changed BSRL register bit 3 (PMSL) to show  
it is read only (added underline), matching the bit description on page 89, as well as  
changed “RL/W” to “R” to correctly show all bits are read only.  
47  
In the LOSS register, corrected bit names from LOS[8:1] to LOSS[8:1].  
Changed GMC to BGMC; changed bits 7, 6, and 5 from Reserved to BERTDIR,  
BMCKS, and BTCKS.  
49  
53  
In the GC register (LIUs 1–8), changed bit 7 from Reserved to RIMPMS and bit 2  
from RTCTL to CRIMP (see also page 44, Table 6-5).  
56  
120 of 121  
 
DS26334 3.3V, 16-Channel, E1/T1/J1 Short/Long-Haul Line Interface Unit  
REVISION  
DATE  
PAGES  
DESCRIPTION  
CHANGED  
In the GC register (LIUs 9–16), changed bit 7 from Reserved to RIMPMS and  
57  
58  
changed bit 2 from Reserved to CALEN (see also page 44, Table 6-5).  
For TST, changed bits 7, 6, and 5 from Reserved to JABWS1, JABWS0, and  
RHPMC.  
In the bit 7 (RIMPON) description, changed GC.RTCTL to TST.RHPMC; added note  
to bit description.  
60  
61  
Changed bit description for OE bits 7 to 0.  
For EZDE, corrected bit names for LIUs 1–16 from EXZDE[1:16] to EZDE[1:16];  
changed bit description to say “Excessive zero detection is only relevant when  
HDB3 or B8ZS decoding is enabled.” For CVDEB, changed bit description to say  
“Code violation detection is only relevant when HDB3 decoding is enabled (LCS  
register).”  
65  
In Table 12-1, deleted “Power Dissipation in Package”; added new Table 12-2.  
Package Power Dissipation (for Thermal Considerations) and Table 12-3. Per-  
Channel Power-Down Saving (for Thermal Considerations).  
118  
Added note to bit 3 (RSMM1:RSSM4) description and updated descriptions for bits  
6–4 and 2–0 (deleted “When” from each sentence for clarity).  
71, 72, 73,  
74  
Updated package drawing information.  
117  
Table 8-3: added “Note 1: Specifications to -40°C are guaranteed by design (GBD)  
and not production tested.”  
98  
053107  
012108  
Table 9-3, 9-4, 9-5, 9-6: added “Note 1: The timing parameters in this table are  
guaranteed by design (GBD).”  
100, 103,  
106, 109  
Changed the GC (2Fh) register bit 1 (JAPS) description.  
57  
116  
1
Figure 10-1 in Section 10 PIN CONFIGURATION: Corrected cell R9. Changed from  
DVSS to RESREF  
Pb-free ordering information added  
3/11  
Table 4-1. PIN DESCRIPTION. TRSTB Function description changed. Replaced  
“floating” with “unconnected”  
15  
98  
Soldering information in ABSOLUTE MAXIMUM RATINGS table updated  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim  
reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2011 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  
121 of 121  

相关型号:

DS26334G

3.3V, 16-Channel, E1/T1/J1 Short and Long-Haul Line Interface Unit
DALLAS

DS26334G

PCM Transceiver, 1-Func, PBGA256, 17 X 17 MM, 1 MM PITCH, TE-CSBGA-256
MAXIM

DS26334G+

PCM Transceiver, 1-Func, PBGA256, 17 X 17 MM, 1 MM PITCH, TE-CSBGA-256
MAXIM

DS26334GN

3.3V, 16-Channel, E1/T1/J1 Short and Long-Haul Line Interface Unit
DALLAS

DS26334GN

PCM Transceiver, 1-Func, PBGA256, 17 X 17 MM, 1 MM PITCH, TE-CSBGA-256
MAXIM

DS26334GN+

3.3V, 16-Channel, E1/T1/J1 Short- and Long-Haul Line Interface Unit
MAXIM

DS26334GNA2

Digital Transmission Interface, PBGA256
MAXIM

DS26334GNA3

PCM Transceiver, 1-Func, PBGA256, CSBGA-256
MAXIM

DS26334_07

3.3V, 16-Channel, E1/T1/J1 Shortand Long-Haul Line Interface Unit
DALLAS

DS26401

Octal T1/E1/J1 Framer
DALLAS

DS26401+

Framer, PBGA256, 17 X 17 MM, 1 MM PITCH, BGA-256
MAXIM
MAXIM