DS34T101 [MAXIM]

Single/Dual/Quad/Octal TDM-Over-Packet Chip; 单/双/四/八通道的TDM-over -Packet时芯片
DS34T101
型号: DS34T101
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Single/Dual/Quad/Octal TDM-Over-Packet Chip
单/双/四/八通道的TDM-over -Packet时芯片

文件: 总74页 (文件大小:804K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Rev: 072707  
DS34T101/DS34T102/DS34T104/DS34T108  
Single/Dual/Quad/Octal TDM-Over-Packet Chip  
General Description  
Features  
The IETF PWE3 SAToP/CESoPSN/TDMoIP/HDLC  
draft-compliant DS34T108 allows up to eight T1/E1  
links or frame-based serial HDLC links to be  
transported transparently through a switched IP or  
MPLS packet network. Jitter and wander of  
recovered clocks conform to G.823/G.824, G.8261,  
and TDM specifications. This eliminates the need for  
remote timing sources in cabinets and pedestals.  
Full-Featured T1/E1/J1 LIU/Framer/TDM-Over-  
Packet  
Supports Adaptive Clock Recovery, Common  
Clock (Using RTP), External Clock, and  
Loopback Timing Modes  
Selectable 32-Bit or 16-Bit Processor Bus  
Clock Rate Adapter for T1/E1 Master Clock  
10/100 Ethernet MAC That Supports  
MII/RMII/SSMII  
The Ethernet side of the DS34T108 provides high  
QoS capabilities to its MII/RMII/SSMII port, while the  
WAN side supports full-featured T1/E1 framers and  
LIUs. This takes the solution all the way through  
analog, while preserving options to make use of TDM  
streams at key intermediate points. The high level of  
integration that the DS34T108 brings minimizes cost,  
board space, and time to market.  
Fully Compatible with IEEE 802.3 Standard  
VLAN Support According to 802.1 p&Q  
Multiprotocol Encapsulation Supports IPv4,  
IPv6, UDP, RTP, L2TPv3, MPLS, and Metro  
Ethernet  
End-to-End TDM Synchronization Through  
the IP/MPLS Domain by Eight Independent  
On-Chip TDM Clock Recovery Mechanisms  
Applications  
Single Serial Support for RS-530 and V.35  
Single DS3/E3/STS-1 to Ethernet  
TDM Circuit Extension Over PSN  
o
o
o
o
Leased—Line Services Over PSN  
TDM Over G/E—PON  
TDM Over Cable  
Packet Loss Compensation and Handling of  
Misordered Packets  
TDM Over WiMAX  
64 Independent Bundle/Connections  
Glueless SDRAM Buffer Management  
1.8V Core, 3.3V I/O  
Cellular Backhaul Over PSN  
Multiservice Over Unified PSN  
HDLC—Based Traffic Transport Over PSN  
Complies with IETF PWE3 RFCs and Drafts  
for CESoPSN, SAToP, TDMoIP, and HDLC  
Functional Diagram  
Features continued in Section 7.  
CPU  
Bus  
Ordering Information  
DS34T108  
Octal  
T1/E1/J1  
Transceiver  
Framers  
PIN-  
PACKAGE  
PART  
PORTS TEMP RANGE  
Circuit  
Emulation  
Engine  
10/100  
Ethernet  
xMII  
DS34T108GN  
DS34T108GN+  
DS34T104GN*  
DS34T104GN+*  
DS34T102GN*  
DS34T102GN+*  
DS34T101GN*  
DS34T101GN+*  
8
8
4
4
2
2
1
1
484 HSBGA  
484 HSBGA  
484 TEBGA  
484 TEBGA  
484 TEBGA  
484 TEBGA  
484 TEBGA  
484 TEBGA  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
MAC  
BERT  
& CAS  
Buffer  
Manager  
LIUs  
CLAD  
TDM  
Access  
SDRAM  
Interface  
Clock Inputs  
+Denotes a lead-free package.  
*Future product—Contact factory for availability.  
Maxim Integrated Products 1  
Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple  
revisions of any device may be simultaneously available through various sales channels. For information about  
device errata, go to: www.maxim-ic.com/errata. For pricing, delivery, and ordering information, please contact Maxim  
Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
Table of Contents  
1.  
INTRODUCTION ..............................................................................................................................6  
ACRONYMS AND GLOSSARY.......................................................................................................7  
STANDARDS COMPLIANCE ..........................................................................................................9  
DETAILED DESCRIPTION ............................................................................................................12  
APPLICATION EXAMPLES...........................................................................................................14  
2.  
3.  
4.  
5.  
5.1.1  
Other Possible Applications................................................................................................................. 15  
6.  
7.  
BLOCK DIAGRAM.........................................................................................................................16  
FEATURE HIGHLIGHTS................................................................................................................17  
7.1 GLOBAL FEATURES .......................................................................................................................17  
7.2 LINE INTERFACE............................................................................................................................17  
7.3 CLOCK SYNTHESIZER ....................................................................................................................18  
7.4 JITTER ATTENUATOR .....................................................................................................................18  
7.5 FRAMER/FORMATTER....................................................................................................................18  
7.6 FRAMER SYSTEM PORTS...............................................................................................................19  
7.7 TDM-OVER-PACKET ENGINE .........................................................................................................19  
7.7.1  
7.7.2  
7.7.3  
7.7.4  
7.7.5  
7.7.6  
TDM-over-Packet User Interfaces ....................................................................................................... 20  
Network Port ........................................................................................................................................ 20  
Bundles ................................................................................................................................................ 20  
Clock Recovery.................................................................................................................................... 20  
Delay Variation Compensation ............................................................................................................ 21  
CAS Support ........................................................................................................................................ 21  
7.8 TEST AND DIAGNOSTICS ................................................................................................................21  
7.9 CONTROL PORT ............................................................................................................................22  
8.  
9.  
OVERVIEW OF MAJOR OPERATIONAL MODES .......................................................................23  
8.1 INTERNAL MODE CONFIGURED AS ONE-CLOCK MODE ....................................................................23  
8.2 INTERNAL MODE CONFIGURED AS TWO-CLOCK MODE....................................................................25  
8.3 EXTERNAL MODE ..........................................................................................................................26  
FUNCTIONAL DESCRIPTION AND DEVICE REGISTERS..........................................................27  
10. PIN DESCRIPTION ........................................................................................................................28  
10.1  
10.2  
SHORT PIN DESCRIPTIONS .........................................................................................................28  
DETAILED PIN DESCRIPTIONS.....................................................................................................35  
11. JTAG INFORMATION....................................................................................................................49  
11.1  
11.2  
11.3  
JTAG DESCRIPTION...................................................................................................................49  
JTAG TAP CONTROLLER STATE MACHINE DESCRIPTION ...........................................................50  
JTAG INSTRUCTION REGISTER AND INSTRUCTIONS ....................................................................52  
11.3.1 SAMPLE/PRELOAD ............................................................................................................................ 52  
11.3.2 EXTEST ............................................................................................................................................... 52  
11.3.3 BYPASS............................................................................................................................................... 52  
11.3.4 IDCODE ............................................................................................................................................... 53  
11.3.5 HIGHZ.................................................................................................................................................. 53  
11.3.6 CLAMP................................................................................................................................................. 53  
11.4  
JTAG TEST REGISTERS.............................................................................................................53  
11.4.1 Bypass Register................................................................................................................................... 53  
2 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
11.4.2 Identification Register........................................................................................................................... 53  
11.4.3 Boundary Scan Register...................................................................................................................... 53  
12. DC ELECTRICAL CHARACTERISTICS .......................................................................................54  
13. AC TIMING CHARACTERISTICS..................................................................................................55  
14. PIN ASSIGNMENTS ......................................................................................................................56  
14.1  
14.2  
14.3  
14.4  
14.5  
BOARD DESIGN FOR THE DS34T108 FAMILY OF PRODUCTS .......................................................56  
DS34T108 PIN ASSIGNMENT .....................................................................................................67  
DS34T104 PIN ASSIGNMENT .....................................................................................................68  
DS34T102 PIN ASSIGNMENT .....................................................................................................69  
DS34T101 PIN ASSIGNMENT .....................................................................................................70  
15. PACKAGE INFORMATION ...........................................................................................................71  
15.1  
15.2  
484-BALL HSBGA (56-G6038-002) ..........................................................................................71  
484-BALL TEBGA (56-G6038-001)...........................................................................................72  
16. THERMAL INFORMATION............................................................................................................73  
17. DOCUMENT REVISION HISTORY................................................................................................74  
3 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
List of Figures  
Figure 1-1. Block Diagram........................................................................................................................................... 6  
Figure 5-1. Metropolitan Legacy Service Over Packet-Switched Network................................................................ 14  
Figure 5-2. Cellular 2/3G Backhaul Over Packet-Switched Networks....................................................................... 15  
Figure 6-1. DS34T108 Functional Block Diagram..................................................................................................... 16  
Figure 8-1. Internal Mode .......................................................................................................................................... 24  
Figure 8-2. Internal One-Clock Mode ........................................................................................................................ 25  
Figure 8-3. Internal Two-Clock Mode (Framed) ........................................................................................................ 26  
Figure 8-4. Internal Two-Clock Mode (Unframed)..................................................................................................... 26  
Figure 11-1. JTAG Block Diagram............................................................................................................................. 49  
Figure 11-2. JTAG TAP Controller State Machine .................................................................................................... 50  
Figure 14-1. DS34T108 Pin Assignment (HSBGA Package).................................................................................... 67  
Figure 14-2. DS34T104 Pin Assignment (TEBGA Package) .................................................................................... 68  
Figure 14-3. DS34T102 Pin Assignment (TEBGA Package) .................................................................................... 69  
Figure 14-4. DS34T101 Pin Assignment (TEBGA Package) .................................................................................... 70  
4 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
List of Tables  
Table 3-1. T1-Related Telecommunications Specifications ........................................................................................ 9  
Table 3-2. E1-Related Telecommunications Specifications...................................................................................... 10  
Table 3-3. TDM-over-Packet Related Specifications................................................................................................. 11  
Table 10-1. DS34T108 Short Pin Descriptions.......................................................................................................... 28  
Table 10-2. Detailed Pin Descriptions ....................................................................................................................... 35  
Table 11-1. JTAG Instruction Codes ......................................................................................................................... 52  
Table 11-2. JTAG ID Code ........................................................................................................................................ 52  
Table 12-1. Recommended DC Operating Conditions.............................................................................................. 54  
Table 12-2. DC Electrical Characteristics.................................................................................................................. 54  
Table 14-1. Common Board Design Connections..................................................................................................... 56  
5 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
1.  
Introduction  
The DS34T108/DS34T104/DS34T102/DS34T101 (DS34T10x) family of products combines LIU, framer, and  
Pseudo Wire Emulation Edge-to-Edge (PWE3) circuit emulation technology into one die. Dedicated payload-type  
engines are included for TDMoIP (AAL1, AAL2), CESoPSN, SAToP, and HDLC.  
Products in the DS34T10x family provide a transport technology for simple conversion of T1/E1/J1/T3/E3/STS-1  
serial TDM to IP, MPLS, or pure Ethernet Layer 2 networks. They carry from the line E1/T1/J1 or they provide a  
carrier for E3, T3, or STS1 services and serial data across a packet-switched network, transparent to all protocols  
and signaling. These products enable service providers to migrate to next-generation networks while continuing to  
provide all their revenue-generating legacy voice and data services. They also benefit data carriers by enabling  
them to offer lucrative leased-line services and increase revenues from their packet-switched infrastructure by  
selling voice as well as data services. Finally, they enable enterprises to run voice and video over the same  
IP/Ethernet-based network that is currently used to run only LAN traffic, thereby minimizing network maintenance  
and operating costs.  
Packet-switched networks, such as IP networks, were not designed to transport TDM data and have no inherent  
clock distribution mechanism. Hence, when transporting TDM over packet-switched networks, the receiver needs  
to reconstruct the transmitter's TDM clock. The DS34T10x family ensures that jitter and wander levels of the  
recovered clock conform to ITU-T G.823/824 and G.8261, even for networks that introduce significant packet delay  
variation and packet loss.  
The Circuit Emulation technology in the DS34T10x products that makes this possible is called TDM-over-Packet  
(TDMoP) and complements VoIP in those cases where VoIP is not applicable or where VoIP price/performance is  
not sufficient. Most importantly, TDMoP technology provides higher voice quality with lower latency than VoIP.  
Unlike VoIP, TDMoP can support all applications that run over E1/T1/J1 circuits, not just voice. TDMoP can provide  
traditional leased-line services over IP and is transparent to protocols and signaling. Because TDMoP provides an  
evolutionary, as opposed to revolutionary, approach, investment protection is maximized.  
Figure 1-1. Block Diagram  
CPU  
Bus  
32 bit or 16 bit  
DS34T108  
Control  
BERT  
T1/E1/J1  
T1/E1/J1  
Framer  
LIU  
10/100  
Ethernet  
MAC  
T1/E1/J1  
LIU  
T1/E1/J1  
Framer  
MII/RMII  
T1/E1/J1  
LIU  
T1/E1/J1  
Framer  
Octal  
T1  
E1  
J1  
(analog)  
T1/E1/J1  
LIU  
T1/E1/J1  
Framer  
CLAD  
Circuit Emulation  
Engine  
T1/E1/J1  
LIU  
T1/E1/J1  
Framer  
T1/E1/J1  
LIU  
T1/E1/J1  
Framer  
SDRAM  
Interface  
T1/E1/J1  
LIU  
T1/E1/J1  
Framer  
T1/E1/J1  
LIU  
T1/E1/J1  
Framer  
32 bit  
SDRAM  
6 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
2.  
Acronyms and Glossary  
Listed below are the terms used in this data sheet.  
2.5G  
2.5 Generation  
2G  
Second Generation  
3G  
Third Generation  
AAL1  
ATM Adaptation Layer 1  
AAL2  
ATM Adaptation Layer 2  
ATM  
BGA  
Asynchronous Transfer Mode  
Ball Grid Array  
Bridge  
Bundle  
BW  
Bridge  
Bundle  
Bandwidth  
CAS  
CCS  
CE  
Channel Associated Signaling  
Common Channel Signaling  
Customer Edge  
CESoP  
CESoPSN  
Circuit Switching  
CLAD  
CLEC  
CPE  
CSMA  
CSMA/CD  
DS0  
Circuit Emulation Service over Packet  
Circuit Emulation Services over Packet Switched Network  
Circuit Switching  
Clock Rate Adapter  
Competitive Local Exchange Carrier  
Customer Premises Equipment  
Carrier Sense Multiple Access  
Carrier Sense Multiple Access with Collision Detection  
Digital Signal Level 0  
DS1  
Digital Signal 1  
DS3  
Digital Signal 3  
HDLC  
IEEE 802.3  
IEEE 802.X  
IETF  
ILEC  
IP  
High-Level Data Link Control  
Institute of Electrical and Electronics Engineers 802.3  
Institute of Electrical and Electronics Engineers 802.X  
Internet Engineering Task Force  
Incumbent Local Exchange Carrier  
Internet Protocol  
IP Address  
IWF  
Internet Protocol Address  
Interworking Function  
LAN  
Local Area Network  
LEC  
Local Exchange Carrier  
LIU  
Line Interface Unit  
MAC  
Media Access Control  
MAN  
Message Switching  
MII  
MPLS  
OC-3  
Metropolitan Area Network  
Message Switching  
Medium Independent Interface  
Multiprotocol Label Switching  
Optical Carrier Level 3  
OCXO  
OFE  
Oven-Controlled Crystal Oscillator  
Optical Front-End  
OSI  
OSI-RM  
PAD  
PBX  
PCI  
PCI Express  
PCI-X  
PDV  
Open Systems Interconnection  
Open Systems Interconnection—Reference Model  
Packet Assembler/Disassembler  
Private Branch Exchange  
Peripheral Component Interconnect  
Peripheral Component Interconnect Express  
Peripheral Component Interconnect Extended  
Packet Delay Variation  
PE  
Provider Edge  
7 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
PLCC  
PQFP  
PSN  
Plastic Leaded Chip Carrier  
Plastic Quad Flat Pack  
Packet Switched Network  
PSTN  
PWE3  
QoS  
Public Switched Telephone Network  
Pseudo-Wire Edge-to-Edge Emulation  
Quality of Service  
RMII  
RPR  
Reduced Medium Independent Interface  
Resilient Packet Ring  
SAToP  
SDH  
SMII  
SONET  
SS7  
Structure-Agnostic TDM over Packet  
Synchronous Digital Hierarchy  
Serial Media Independent Interface  
Synchronous Optical Network  
Signal System 7  
SSMII  
STM-1  
TDM  
Source Synchronous Serial Media Independent Interface  
Synchronous Transfer Module -1  
Time Division Multiplexing  
TDMoIP  
TDMoP  
TLS  
Time Division Multiplexing over Internet Protocol  
Time Division Multiplexing over Packet  
Transport Layer Security  
UDP  
User Datagram Protocol  
VoIP  
Voice over IP  
VPLS  
WAN  
Virtual Private LAN Services  
Wide Area Network  
8 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
3.  
Standards Compliance  
The DS34T108 meets all the latest relevant telecommunications specifications. Table 3-1 and Table 3-2 provide  
the T1 and E1 specifications and sections that are applicable to the DS34T108. The TDM-over-Packet  
specifications and sections relevant for the DS34T108 are described in Table 3-3.  
Table 3-1. T1-Related Telecommunications Specifications  
ANSI T1.102- Digital Hierarchy Electrical Interface.  
AMI Coding.  
B8ZS Substitution Definition.  
DS1 Electrical Interface. Line rate ±32ppm; pulse amplitude between 2.4V to 3.6V peak; power level between 12.6dBm to  
17.9dBm; the T1 pulse mask is provided that we comply. DSX-1 for cross-connects the return loss is greater than -26dB. The  
DSX-1 cable is restricted up to 655 feet.  
This specification also provides cable characteristics of DSX-Cross Connect cable—22 AVG cables of 1000 feet.  
ANSI T1.231- Digital Hierarchy- Layer 1 in Service Performance Monitoring  
BPV Error Definition; Excessive Zero Definition; LOS description; AIS definition.  
ANSI T1.403- Network and Customer Installation Interface- DS1 Electrical Interface  
Description of the Measurement of the T1 Characteristics—100Ω. Pulse shape and template compliance according to T1.102;  
Power level 12.4dBm to 19.7dBm when all ones is transmitted.  
LBO for the Customer Interface (CI) is specified as 0dB, -7.5dB and -15dB. Line rate is ±32ppm. Pulse Amplitude is 2.4V to  
3.6V.  
AIS generation as unframed all ones is defined.  
The total cable attenuation is defined as 22dB. The DS34T108 will function with up to -36dB cable loss.  
Note that the pulse template defined by T1.403 and T1.102 are different, specifically at times 0.61, -0.27, -34, and 0.77. The  
DS34T108 is complaint to both templates.  
Pub 62411  
This specification has tighter jitter tolerance and transfer characteristics than other specifications.  
The jitter transfer characteristics are tighter than G.736 and jitter tolerance is tighter than G.823.  
(ANSI) “Digital Hierarchy – Electrical Interfaces”  
(ANSI) “Digital Hierarchy – Formats Specification”  
(ANSI) “Digital Hierarchy – Layer 1 In-Service Digital Transmission Performance Monitoring”  
(ANSI) “Network and Customer Installation Interfaces – DS1 Electrical Interface”  
(AT&T) “Requirements for Interfacing Digital Terminal Equipment to Services Employing the Extended Super frame Format”  
(AT&T) “High Capacity Digital Service Channel Interface Specification”  
(TTC) “Frame Structures on Primary and Secondary Hierarchical Digital Interfaces”  
(TTC) “ISDN Primary Rate User-Network Interface Layer 1 Specification”  
9 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
Table 3-2. E1-Related Telecommunications Specifications  
ITUT G.703 Physical/Electrical Characteristics of G.703 Hierarchical Digital Interfaces  
Defines the 2048kbps bit rate—2048 ±50ppm; The transmission media are 75Ω coax or 120Ω twisted pair; peak to peak space  
voltage is ±0.237V; Nominal pulse width is 244ns.  
Return loss 51 to 102Hz is 6dB, 102 to 3072Hz is 8dB, 2048 to 3072Hz is 14dB.  
Nominal peak voltage is 2.37V for coax and 3V for twisted pair.  
The pulse template for E1 is defined in G.703.  
ITUT G.736 Characteristics of Synchronous Digital Multiplex Equipment operating at 2048Kbit/s  
The peak-to-peak jitter at 2048kbps must be less than 0.05UI at 20Hz to 100Hz.  
Jitter transfer between 2.048 synchronization signal and 2.048 transmission signal is provided.  
ITUT G.775  
A LOS detection criterion is defined.  
ITUT G.823 The control of jitter and wander within digital networks which are based on 2.048Kbit/s hierarchy  
G.823 provides the jitter amplitude tolerance at different frequencies, specifically 20Hz, 2.4kHz, 18kHz, and 100kHz.  
ETSI 300 233  
This specification provides LOS and AIS signal criteria for E1 mode.  
Pub 62411  
This specification has tighter jitter tolerance and transfer characteristics than other specifications.  
The jitter transfer characteristics are tighter than G.736 and jitter tolerance is tighter than G.823.  
(ITU) “Synchronous Frame Structures used at 1544, 6312, 2048, 8488 and 44736Kbit/s Hierarchical Levels”  
(ITU) “Frame Alignment and Cyclic Redundancy Check (CRC) Procedures Relating to Basic Frame Structures Defined in  
Recommendation G.704”  
(ITU) “Characteristics of primary PCM Multiplex Equipment Operating at 2048Kbit/s”  
(ITU) Characteristics of a synchronous digital multiplex equipment operating at 2048Kbit/s”  
(ITU) “Loss Of Signal (LOS) and Alarm Indication Signal (AIS) Defect Detection and Clearance Criteria”  
(ITU) “The Control of Jitter and Wander Within Digital Networks Which are Based on the 2048Kbit/s Hierarchy”  
(ITU) “Primary Rate User-Network Interface – Layer 1 Specification”  
(ITU) “Error Performance Measuring Equipment Operating at the Primary Rate and Above”  
(ITU) “In-service code violation monitors for digital systems”  
(ETSI) “Integrated Services Digital Network (ISDN); Primary rate User-Network Interface (UNI); Part 1/ Layer 1 specification”  
(ETSI) “Transmission and multiplexing; Physical/electrical characteristics of hierarchical digital interfaces for equipment using  
the 2048Kbit/s-based plesiochronous or synchronous digital hierarchies”  
(ETSI) “Integrated Services Digital Network (ISDN); Access digital section for ISDN primary rate”  
(ETSI) “Integrated Services Digital Network (ISDN); Attachment requirements for terminal equipment to connect to an ISDN  
using ISDN primary rate access”  
(ETSI) “Business Telecommunications (BT); Open Network Provision (ONP) technical requirements; 2048Kbit/s digital  
unstructured leased lines (D2048U) attachment requirements for terminal equipment interface”  
(ETSI) “Business Telecommunications (BTC); 2048Kbit/s digital structured leased lines (D2048S); Attachment requirements for  
terminal equipment interface”  
(ITU) “Synchronous Frame Structures used at 1544, 6312, 2048, 8488 and 44736Kbit/s Hierarchical Levels”  
(ITU) “Frame Alignment and Cyclic Redundancy Check (CRC) Procedures Relating to Basic Frame Structures Defined in  
Recommendation G.704”  
10 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
Table 3-3. TDM-over-Packet Related Specifications  
Y.1413 TDM-MPLS network interworking – User plane interworking  
TDMoMPLS will meet standards for network interworking that covers the Transport label, Interworking label, Common  
interworking indicators, and Optional timing information. The Common interworking indicators include a Control Field, a  
Fragmentation Field, Length Indicator and the Sequence number.  
TDMoMPLS shall meet standards for Structure Agnostic transport.  
TDMoMPLS shall meet standards for Structure Aware transport that contains Structure-locked encapsulation and Structure-  
indicated encapsulation.  
Y.1414 Voice Service – MPLS network interworking  
The recommendation focuses on the required functions and procedures necessary for support of narrow-band voice services  
by MPLS networks. Details of the encapsulation of encoded audio streams in MPLS packets are specified. Clause 10 draft  
recommendation shall be met.  
Y.1452 (Y.VTOIP) Voice trunking over IP  
This recommendation specifies a method for transporting multiplexed voice services over UDP/IP.  
Y.1453 (Y.TDMIP) TDM-IP interworking – User plane interworking  
This recommendation specifies methods for transporting low-rate TDM (T1, E1, T3, E3) over UDP/IP. Y.1453 is a direct  
extension of Y.1413.  
PWE3-CESoPSN Structure-aware TDM Circuit Emulation Service over Packet Switched Network  
May 2006 ‘draft-ietf-pwe3-cesopsn-07.txt’ revision shall be supported.  
The TDM-over-Packet shall meet Basic NxDS0 service, and "Trunk-specific" NxDS0 service with CAS.  
The TDM-over-Packet shall meet CESoPSN packet format for an IPv4/IPv6 PSN, CESoPSN Packet Format for an MPLS PSN.  
Shall also meet CESoPSN Payload Layer.  
PWE3-SAToP Structure-Agnostic TDM over Packet  
June 2006 ‘rfc4553.txt’ revision shall be supported.  
The TDM-over-Packet shall meet Basic SAToP Packet format, SAToP Packet format for an IPv4/IPv6, SAToP Packet format  
for a MPLS PSN, and SAToP Payload Layer. SATop Control Word.  
PWE3-TDMoIP  
December 2006 ‘draft-ietf-pwe3-tdmoip-06.txt’ revision shall be supported.  
PWE3-HDLC  
September 2006 ‘rfc4618.txt’ revision shall be supported. (excluding clause 4.3 – PPP)  
IEEE 802.3  
This standard covers the MAC interface to a PHY for MII.  
MPLS-Frame Relay Alliance Implementation Agreements 4.1  
The purpose of this Implementation Agreement (IA) is to define network interworking between TDM circuits (n x 64 kbps,  
E1/T1/E3/T3) over MPLS Label Switched Paths (LSPs) by using AAL1 encapsulation.  
MPLS-Frame Relay Alliance Implementation Agreements 5.1  
This specification defines MPLS support for the transport of AAL type 2 CPS-Packets. Frame formats and  
procedures required for this transport are described in this Implementation Agreement. This specification addresses the  
transport of any AAL type 2 CPS-Packets regardless of the application data that is transported.  
MPLS-Frame Relay Alliance Implementation Agreements 8.0.0  
This document describes a method for encapsulating TDM signals belonging to the PDH hierarchy (T1, E1, T3, E3, Nx64kbps)  
as pseudo-wires over a MPLS network.  
MEF 8 – Metro Ethernet Forum 8 - Implementation Agreement for the Emulation of PDH Circuits over Metro Ethernet  
Networks  
This document provides an implementation agreement for the emulation of PDH services across a Metro Ethernet Network.  
Specifically it covers emulation of Nx64kbps, DS1, E1, DS3 and E3 circuits. Generically this is referred to as Circuit Emulation  
Services over Ethernet (CESoETH).  
G.823/G.824 Jitter & Wander Requirements  
G.8261/Y.1361 (G.pactiming) Timing and Synchronization Aspects in Packet Networks  
This recommendation defines synchronization aspects in packet networks and specifies the maximum network limits of jitter  
and wander that shall not be exceeded and the minimum equipment tolerance to jitter and wander than shall be provided at the  
boundary of these packet networks at TDM interfaces. It also outlines the minimum requirements for the synchronization  
function of network elements.  
11 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
4.  
Detailed Description  
The DS34T108 is an 8-port device featuring independent transceivers that can be software configured for T1/J1 or  
E1. The DS34T104/DS34T102/DS34T101 have the same functionality as the DS34T108, the product reference  
throughout this document, but with fewer ports. Each transceiver, composed of an LIU, framer, HDLC controller,  
elastic store, connects to the TDM-over-Packet (TDMoP) block for a complete monolithic solution to IP or MPLS or  
Ethernet Layer 2 networks. The internal MAC supports connectivity to a single 10/100Mbps, MII//RMII/SSMII. The  
DS34T108 is controlled via a 16-bit or 32-bit parallel port or via an SPI serial port.  
The LIU is composed of a transmit interface, receive interface, and a jitter attenuator. Internal impedance matching  
is provided for both transmit and receive paths, reducing external component count. The transmit interface is  
responsible for generating the necessary waveshapes for driving the network and providing the correct source  
impedance depending on the type of media used. T1 waveform generation includes DSX-1 line build-outs as well  
as CSU line build-outs of 0dB, -7.5dB, -15dB, and -22.5dB. E1 waveform generation includes G.703 waveshapes  
for both 75Ω coax and 120Ω twisted cables. The receive interface provides network termination and recovers clock  
and data from the network. The receive sensitivity adjusts automatically to the incoming signal level and can be  
programmed for 0dB to -43dB or 0dB to -12dB for E1 applications and 0dB to -15dB or 0dB to -36dB for T1  
applications. The jitter attenuator removes phase jitter from the transmitted or received signal. The crystal-less jitter  
attenuator can be placed in either the transmit or the receive data paths and requires only a T1/J1 or E1 clock rate,  
a SONET/SDH reference frequency of 19.44/38.88/77.76MHz, or a GPS reference frequency of 10MHz for both  
T1/J1 and E1 applications.  
On the transmit side, clock, data, and frame-sync signals are provided to the framer by the backplane interface  
section. The framer inserts the appropriate synchronization framing patterns, alarm information, calculates and  
inserts the CRC codes, and provides the B8ZS/HDB3 (zero code suppression) and AMI line coding. The receive-  
side framer decodes AMI, B8ZS, and HDB3 line coding, synchronizes to the data stream, reports alarm  
information, counts framing/coding/CRC errors, and provides clock, data, and frame-sync signals to the backplane  
interface section.  
Both transmit and receive paths have access to an HDLC controller. The HDLC controller transmits and receives  
data via the framer block. The HDLC controller can be assigned to any time slot, a portion of a time slot or to FDL  
(T1) or Sa bits (E1). Each controller has 64-byte FIFOs, reducing the amount of processor overhead required to  
manage the flow of data.  
The TDM-over-Packet (TDMoP) core is the building block for circuit emulation and other network applications. It  
performs transparent transport of legacy TDM traffic over Packet Switched Networks (PSNs). The TDMoP core  
implements payload methods such as AAL1 for circuit emulation, AAL2-like method for loop emulation, HDLC  
method, structure-agnostic SAToP method, and the structure-aware CESoPSN method.  
The AAL1 payload-type machine converts E1/T1/E3/T3/STS-1/serial data flows into IP, MPLS or Ethernet packets,  
and vice versa, according to ITU-T Y.1413, Y.1453, MEF 8, MFA 4.1, and the IETF PWE3 TDMoIP draft. It  
supports E1/T1 structured mode with/without CAS, using a time slot size of 8 bits, or unstructured mode (carrying  
serial interfaces, unframed E1/T1 or E3/T3/STS-1 traffic).  
The AAL2 payload-type machine converts E1/T1 data flows into IP, MPLS or Ethernet packets, and vice versa,  
implementing dynamic time slot allocation. It supports E1/T1 structured mode with/without CAS with 8-bit time slot  
resolution, according to ITU-T Y.1414 (clause 10), Y.1452, MFA 5.1 and the IETF PWE3 TDMoIP draft.  
The HDLC payload-type machine converts and terminates HDLC-based E1/T1/serial flow into IP/MPLS packets  
and vice versa, according to the IETF RFC 4618 (excluding clause 5.3—PPP) and TDMoIP draft. It supports 2-, 7-  
and 8-bit time slot resolution (i.e., 16kbps, 56kbps, and 64kbps, respectively), as well as N × 64 kbps bundles  
(n = 1 to 32). Supported applications of this machine include trunking of HDLC-based traffic (such as frame relay)  
implementing dynamic bandwidth allocation over IP/MPLS networks, and HDLC-based signaling interpretation  
(such as ISDN D-channel signaling termination—BRI or PRI, V5.1/2, or GR-303).  
12 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
The SAToP payload-type machine converts unframed E1/T1/E3/T3 data flows into IP, MPLS, or Ethernet packets,  
and vice versa, according to ITU-T Y.1413, Y.1453, MEF 8, MFA 8.0.0, and IETF RFC 4553. It supports  
E1/T1/E3/T3 with no regard for the TDM structure. If TDM structure exists it is ignored, allowing it to be the simplest  
way of making payload. The size of the payload is programmable for different services. This emulation suits  
applications where the provider edges have no need to interpret TDM data or to participate in the TDM signaling.  
The PSN network must have almost no packet loss and a very low PDV for this method.  
The CESoPSN payload-type machine converts structured E1/T1/E3/T3 data flows into IP, MPLS or Ethernet  
packets, and vice versa, with static assignment of time slots inside a bundle according to ITU-T Y.1413, Y.1453,  
MEF 8, MFA 8.0.0, and the IETF PWE3 CESoPSN draft. It supports E1/T1/E3/T3 while taking into account the  
TDM structure. The level of structure must be chosen for proper payload conversion such as the framing type (i.e.,  
frame, multiframe). This method is less sensitive to PSN impairments, but lost packets could still cause service  
interruption. The payload is simply encapsulated into 24 bytes for T1 and 32 bytes for E1.  
13 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
5.  
Application Examples  
In Figure 5-1, DS34T108 is used to allow TDM services over a packet-switched metropolitan network, using  
various access methods (G/E PON, fiber optic, wireless, cable).  
Figure 5-1. Metropolitan Legacy Service Over Packet-Switched Network  
14 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
Figure 5-2. Cellular 2/3G Backhaul Over Packet-Switched Networks  
5.1.1 Other Possible Applications  
5.1.1.1 Point-to-Multipoint TDM Connectivity over IP/Ethernet  
The TDM-over-Packet chip supports DS0-level multiple bundles/connections with and without CAS (Channel  
Associated Signaling). There is no need for an external TDM cross-connect, as the packet domain can be used as  
a virtual cross-connect; any bundle of time slots can be directed to another remote location on the packet domain.  
5.1.1.2 HDLC Transport over IP/MPLS  
TDM traffic streams often contain HDLC-based control and data traffic. These data streams, when transported over  
a packet domain, should be treated differently than the time-sensitive TDM payload. The DS34T108 includes  
HDLC controller capability, which enables termination of the HDLC frames. HDLC-based control protocols, such as  
ISDN BRI and PRI, SS7, etc., and other frame-based traffic, can be managed and transported.  
5.1.1.3 Using a Packet Backplane for Multiservice Concentrators  
A communications device with all the above-mentioned capabilities can use a packet-based backplane instead of  
the more expensive TDM bus option. This enables a cost-effective and future-proof design of communication  
platforms with full support for both legacy and next-generation services.  
15 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
6.  
Block Diagram  
Figure 6-1. DS34T108 Functional Block Diagram  
E1CLK  
T1CLK  
E1CLK  
T1CLK  
RESREF  
JITTER ATTENUATOR  
RCLKn/  
RCLKFn  
RDATFn  
TDATFn  
TCLKOn  
TCLKFn  
F
S y s t e m I  
F
/
S y s t e m I  
/
RLOF/RLOSn  
RSYSCLKn  
BACKPLANE INTERFACE  
RSERn  
RSYNCn  
RF/RMSYNCn  
TDMn_TCLK  
TDMn_TX_SYNC  
TDMn_TX_MF_CD  
TDMn_RX  
TDMn_RCLK  
TDMn_RX_SYNC  
TDMn_RSIG_RTS  
TSERn  
TSYNC/TSSYNCn  
TSYSCLKn /ECLKn  
TDMn_TX  
TDMn_ACLK  
TDMn_TSIG_CTS  
CLK_CMN  
H_D[31:0]  
H_A[24:1]  
H_CS_N  
CLK_HIGH  
MCLK  
H_ R_W_N  
H_WR_BE3..0_N  
H_READY_N  
H_INT[1:0]  
DATA_31_16_N  
Reserved  
SD_D[31: 0]  
SD_DQM[3:0]  
SD_A[11:0]  
SD_BA[1:0]  
JTMS  
Data  
JTCLK  
JTDI  
Byte Enable Mask  
Address  
Bank Select  
Control  
JTDO  
SD_CLK  
JTRST_EN  
SD_CS_N  
SD_WE_N  
SD_RAS_N  
SD_CAS_N  
HIZ_EN  
SCEN  
STMD  
MBIST_EN  
MBIST_DONE  
MBIST_FAIL  
RST_SYS_N  
16 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
7.  
Feature Highlights  
The following sections describe the features provided by the 8-port DS34T108.  
7.1  
Global Features  
The DS34T108 chip offers:  
Eight E1/T1 LIUs/framers/TDMoP interfaces or  
One E3/DS3/STS-1 TDMoP interface or  
One serial TDMoP interface for V.35 and RS530  
Ethernet interface  
One 10/100Mbps, MII/RMII/SSMII  
Half/full duplex  
VLAN support according to 802.1 p&Q  
Fully compatible with IEEE 802.3 standard  
End-to-end TDM synchronization through the IP/MPLS domain by eight independent on-chip TDM clock  
recovery mechanisms, on a per-port basis  
64 independent bundles/connections, each with its own:  
Transmit and receive queues  
Configurable jitter-buffer depth  
Connection level redundancy, with traffic duplication option  
64 Internal bundle cross-connect capability, with DS0 resolution  
Any framer receiver port to any TDM interface receiver to maintain bundle connectivity  
Any transmit TDM interface to any framer transmit port to maintain bundle connectivity  
Packet loss compensation and handling of misordered packets  
Glueless SDRAM interface  
Complies with MPLS-Frame Relay Alliance Implementation Agreements 4.1, 5.1, and 8.0  
Meets ITU standards Y.1413 and Y.1414  
Complies with Metro Ethernet Forum 3 & 8  
Conforms to drafts submitted to IETF  
23mm x 23 mm, 484-pin HSBGA package (1mm pitch)  
IEEE 1146.1 JTAG boundary scan  
1.8V and 3.3V Operation with 5.0V tolerant I/O  
7.2  
Line Interface  
Requires a single 38.88Mz, 19.44MHz, 77.76MHz, or 10MHz clock high synthesis (CLK_HIGH) input for both  
E1 and T1 operation. Optionally, a 1.544MHz or 2.048MHz master clock (MCLK) also can be used for LIU  
clock recovery  
Fully software configurable  
Short- and long-haul applications  
Ranges include 0dB to -43dB, 0dB to -30dB, 0dB to 20dB, and 0dB to -12dB for E1; 0dB to -36dB,  
0dB to 30dB, 0dB to 20dB, and 0dB to -15dB for T1  
Receiver signal level indication from -2.5dB to -36dB in T1 mode and -2.5dB to -44dB in E1 mode in 2.5dB  
increments  
Internal receive termination option for 75Ω, 100Ω, 110Ω, and 120Ω lines  
Monitor application gain settings of 14dB, 20dB, 26dB, and 32dB  
G.703 receive synchronization signal mode  
Flexible transmit waveform generation  
T1 DSX-1 line build-outs  
T1 CSU line build-outs of 0dB, -7.5dB, -15dB, and -22.5dB  
17 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
E1 waveforms include G.703 waveshapes for both 75Ω coax and 120Ω twisted cables  
Analog loss of signal detection  
AIS generation independent of loopbacks  
Alternating ones and zeros generation  
Receiver power-down  
Transmitter power-down  
Transmitter short-circuit limiter with current limit exceeded indication  
Transmit open-circuit-detected indication  
7.3  
Clock Synthesizer  
Internal clock synthesis for the E1 and T1 from an input of 38.88Mz, 19.44MHz, 77.76MHz, or 10MHz clock  
source.  
7.4  
Jitter Attenuator  
32-bit or 128-bit crystal-less jitter attenuator  
Can be placed in either the receive or transmit path or disabled  
Limit trip indication  
7.5  
Framer/Formatter  
Fully independent transmit and receive functionality  
Full receive and transmit path transparency  
T1 framing formats D4 and ESF per T1.403, and expanded SLC-96 support (TR-TSY-008)  
E1 FAS framing and CRC-4 multiframe per G.704/G.706, and G.732 CAS multiframe  
Transmit side synchronizer  
Transmit midpath CRC recalculate (E1)  
Detailed alarm and status reporting with optional interrupt support  
Large path and line error counters  
T1: BPV, CV, CRC6, and framing bit errors  
E1: BPV, CV, CRC4, E-bit, and frame alignment errors  
Timed or manual update modes  
DS1 Idle Code Generation on a per-channel basis in both transmit and receive paths  
User-defined code generation  
Digital milliwatt code generation  
ANSI T1.403-1999 Support  
G.965 V5.2 link detect  
Ability to monitor one DS0 channel in both the transmit and receive paths  
In-band repeating pattern generators and detectors  
Three independent generators and detectors  
Patterns from 1 to 8 bits or 16 bits in Length  
Bit oriented code (BOC) support  
Software or hardware based signaling support  
Interrupt generated on change of signaling data  
Optional receive signaling freeze on loss of frame, loss of signal, or frame slip  
Hardware pins provided to indicate loss of frame (LOF), loss of signal (LOS), loss of transmit clock (LOTC), or  
signaling freeze condition  
Automatic RAI generation to ETS 300 011 specifications  
18 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
RAI-CI and AIS-CI support  
Expanded access to Sa and Si bits  
Option to extend carrier loss criteria to a 1ms period as per ETS 300 233  
Japanese J1 support  
Ability to calculate and check CRC6 according to the Japanese standard  
Ability to generate Yellow Alarm according to the Japanese standard  
T1 to E1 conversion  
7.6  
Framer System Ports  
Independent two-frame receive and transmit elastic stores  
Independent control and clocking  
Controlled slip capability with status  
Supports T1 to CEPT (E1) conversion  
Ability to pass the T1 F-bit position through the elastic stores in the 2.048MHz backplane mode  
Hardware signaling capability  
Receive signaling reinsertion to a backplane multiframe sync  
Availability of signaling in a separate PCM data stream  
BERT testing to the system interface  
7.7  
TDM-over-Packet Engine  
TDM-over-Packet enables transport of legacy TDM services – E1/T1, E3/T3, STS-1, or serial data (on the user  
side) over packet switched networks – IP, MPLS or Ethernet (on the network side). This module implements the  
following payload methods of TDM transfer over IP, MPLS or Ethernet networks:  
SAToP (Structure-Agnostic TDM over Packet)  
Structure-aware format for structured E1/T1 with or without CAS (CESoPSN)  
AAL1 format (constant rate/static allocation of time slots)  
AAL2 format (dynamic allocation of time slots)  
HDLC termination for efficient transfer of frame-based traffic.  
A dedicated payload type engine implements each per the following method:  
SAToP hardware engine converts unframed E1/T1/E3/T3/STS-1 or serial data flows into IP, MPLS, or Ethernet  
packets and vice versa according to ITU-T Y.1413, MEF 8, MFA 8.0.0 and the IETF PWE3 SAToP draft.  
CESoPSN hardware engine converts structured E1/T1 data flows into IP, MPLS or Ethernet packets and vice  
versa with static assignment of time slots inside a bundle according to ITU-T Y.1413, MEF 8, MFA 8.0.0, and  
the IETF PWE3 CESoPSN draft.  
AAL1 hardware engine converts E1/T1/E3/T3/STS-1 or serial data flows into IP, MPLS or Ethernet packets,  
and vice versa, according to ITU-T Y.1413, MEF 8, MFA 4.1 and the IETF PWE3 TDMoIP draft. For E1/T1 it  
supports structured mode with/without CAS using 8-bit time slot resolution, while implementing static time slot  
allocation. For E1/T1, E3/T3/STS-1 or serial interface it supports unstructured mode.  
AAL2 hardware engine converts E1/T1 data flows into IP/MPLS/Ethernet packets, and vice versa, while  
implementing dynamic time slot allocation. It supports E1/T1 structured mode with/without CAS using 8-bit time  
slot resolution, according to ITU-T Y.1414 (clause 10), MFA 5.1 and the IETF PWE3 TDMoIP draft.  
HDLC hardware engine converts and terminates HDLC-based E1/T1/serial flow into IP/MPLS/Ethernet packets  
and vice versa. It supports 2-, 7- and 8-bit time slot resolution (i.e., 16kbps, 56kbps, and 64kbps, respectively),  
as well as N x 64kbps bundles. This is useful in applications where HDLC-based signaling interpretation is  
required (such as ISDN D channel signaling termination, V.51/2, or GR-303), or for trunking packet-based  
applications (such as Frame Relay), according to the IETF PWE3 HDLC draft.  
19 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
7.7.1 TDM-over-Packet User Interfaces  
The user side consists of either a single high-speed E3, T3 or STS-1, or eight I/Fs, each independently supporting  
E1, T1 or serial data transfer.  
For the E3/T3/STS-1 option, the AAL1 or SAToP method is used.  
For the E1/T1 option, the module supports the following operation modes:  
Unframed—E1/T1 pass-through mode (AAL1, SAToP, or HDLC payload type method)  
Structured—fractional E1/T1 support (all payload type methods)  
Structured with CAS—fractional E1/T1 with CAS support (CESoPSN, AAL1, or AAL2 payload type method)  
The serial interface option supports synchronous data transfer (for interfaces such as V.35) over the  
IP/MPLS/Ethernet network for legacy data services (such as frame relay or arbitrary continuous bit stream).  
The serial port option supports the following synchronous serial data formats:  
Arbitrary continuous bit stream (using AAL1 or SAToP payload type method)  
In single-interface high-speed mode, the first interface operates at up to STS-1 rate (51.84Mbps) and the  
other interfaces are disabled. In this mode, the whole traffic is transferred using a single bundle/connection.  
In eight-interface low-speed mode each interface can operate at the rate of N x 64kbps, where N = 1 to 63,  
with an aggregate rate of 18.6Mbps.  
HDLC-based traffic (such as frame relay transferred using HDLC payload type method). Only the eight-  
interface low-speed mode is available (N x 64kbps, where N = 1 to 63, with an aggregate rate of  
18.6Mbps).  
All serial interface modes can work with a gapped clock.  
7.7.2 Network Port  
The chip features one 10/100 Ethernet port with the option of MII/RMII/SSMII. The port can work in half/full-duplex  
mode and supports VLAN tagging and priority labeling according to 802.1 p&Q, including VLAN stacking.  
7.7.3 Bundles  
A bundle is defined as a stream of bits that have originated from the same physical interface and that are  
transmitted from a TDM-over-Packet source device to a TDM-over-Packet destination device. For example,  
bundles can comprise any number of 64kbps time slots originating from a single E1 or an entire T3 or E3. Bundles  
are single-direction streams, frequently coupled with bundles in the opposite direction to enable full-duplex  
communications. More than one bundle can be transmitted between two TDM-over-Packet edge devices.  
The chip supports up to 64 bundles; each can be assigned to any port. The bundles are configured independently,  
each with its own:  
Transmit and receive queues  
Configurable receive-buffer depth  
Optional connection level redundancy (SAToP, AAL1, CESoPSN only)  
The bundles can be assigned to one of the payload type machines or to the CPU. For E1/T1, the chip provides  
internal bundle cross-connect functionality, with DS0 resolution.  
7.7.4 Clock Recovery  
Sophisticated TDM clock recovery mechanisms, one for each E1/T1 interface, allow end-to-end TDM clock  
synchronization, despite packet delay variation of IP/MPLS/Ethernet network.  
20 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
TDM-over-Packet supports the following clock recovery modes:  
Adaptive clock recovery  
Common clock (using RTP)  
External clock  
Loopback clock  
The clock recovery mechanisms provide both fast frequency acquisition and highly accurate phase tracking.  
Jitter and wander of the recovered clock are maintained at levels that conform to G.823/G.824 traffic or  
synchronization interfaces. For adaptive clock recovery, the recovered clock performance depends on  
packet network characteristics.  
Short-term frequency accuracy (1 second) is better than 16ppb (using OCXO reference) or 100ppb (using  
TCXO reference)  
Capture range is ±90ppm  
Internal synthesizer resolution of 0.5ppb  
High resilience to the packet loss and misordering, up to 2% of packet loss/misordering without  
degradation of clock recovery performance  
Robust to sudden significant constant delay changes  
Automatic transition to hold-over is performed upon link-break events.  
7.7.5 Delay Variation Compensation  
The TDM-over-Packet module provides large configurable jitter buffers, on a per-bundle basis, that compensate for  
the delay variation introduced by the IP/MPLS/Ethernet network, with the following depths:  
E1: Up to 256ms  
T1 Unframed: Up to 340ms  
T1 Framed: Up to 256ms  
T1 Framed with CAS: Up to 192ms  
E3: Up to 60ms  
T3: Up to 45ms  
STS-1: Up to 40ms  
For the SAToP and CESoPSN bundles, TDM-over-Packet performs packet reordering within the range of the jitter  
buffer.  
Packet loss is compensated by inserting either a preconfigured conditioning value or the last received value.  
7.7.6 CAS Support  
A CAS handler terminates the E1/T1 CAS when using AAL1/AAL2/CESoPSN in structured-with-CAS mode. This  
eliminates the need for CPU intervention.  
7.8  
Test and Diagnostics  
IEEE 1149.1 Support  
Per-channel programmable on-chip bit error-rate testing (BERT)  
Pseudorandom patterns including QRSS  
User-defined repetitive patterns  
Error insertion single and continuous  
Total-bit and errored-bit counts  
Payload error insertion  
Error insertion in the payload portion of the T1 & E1 frame in the transmit path  
21 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
Errors can be inserted over the entire frame or selected channels  
Insertion options include continuous and absolute number with selectable insertion rates  
F-bit corruption for line testing  
Loopbacks (remote, local, analog, and per-channel loopback)  
MBIST  
7.9  
Control Port  
The CPU interface provides a connection to a host with a 16/32-bit data bus. This allows configuration of chip  
control registers and statistics collection using the chip counters and status registers. It also provides access to the  
CPU transmit and received buffers allocated in the SDRAM, used for packets that are directed to/originate from the  
CPU (such as ARP, SNMP, etc.).  
32- or 16-bit parallel control port  
Software reset supported  
Hardware reset pin  
Software access to device ID and silicon revision  
22 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
8.  
Overview of Major Operational Modes  
This section provides a high-level overall description of the DS34T108 and its functional interfaces and capabilities.  
8.1  
Internal Mode Configured as One-Clock Mode  
The default mode of the DS34T108 is internal mode and one-clock mode. Internal mode is used to internally  
connect the framer and the TDM-over-Packet blocks. Internal mode additionally sets many unused output  
port/interface pins to drive low. Unused input port/interface pins become inactive. This is due to the signals now  
being connected internally. Figure 8-1 represents the block diagram of this mode.  
One-clock mode refers to both the transmit and the receive interfaces using a single recovery clock for the framer  
port and TDM-over-Packet interface. Transmit and the receiver are therefore synchronized together. This mode  
requires the elastic store of the receiver framer to be enabled. Registers additionally allow the selection of any one  
clock and transmit synchronization pulse to connect to any port. Figure 8-2 represents the internal connections for  
a single port/interface.  
23 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
Figure 8-1. Internal Mode  
RESREF  
E1CLK  
T1CLK  
E1CLK  
T1CLK  
JITTER ATTENUATOR  
RCLKn  
RCLKFn  
RDATFn  
TCLKOn  
TDATFn  
F
S y s t e m I  
F
/
S y s t e m I  
/
BACKPLANE INTERFACE  
H_D[31:0]  
H_A[24:1]  
CLK_HIGH  
MCLK  
H_CS_N  
H_R_W_N  
H_WR_BE3..0_N  
H_READY_N  
H_INT[1:0]  
DATA_31_16_N  
Reserved  
SD_D[31:0]  
SD_DQM[3:0]  
SD_A[11:0]  
SD_BA[1:0]  
JTMS  
JTCLK  
Data  
Byte Enable Mask  
Address  
JTDI  
JTDO  
Bank Select  
Control  
SD_CLK  
JTRST_EN  
SD_CS_N  
SD_WE_N  
SD_RAS_N  
SD_CAS_N  
HIZ_EN  
SCEN  
STMD  
MBIST_EN  
MBIST_DONE  
MBIST_FAIL  
RST_SYS_N  
24 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
Figure 8-2. Internal One-Clock Mode  
"One Clock Mode (Framed/Multiframed)"  
RCLK[8..1]  
ACLK[8.. 1]  
E1CLK  
ECLK[8..1] pin  
T1CLK  
CLKCNTL  
bits  
TDMoPacket X 8  
Framer X8  
ACLKn  
RCLKn  
TDMn_ACLK  
TDMn_TCLK  
TDMn_RCLK  
TDMn_TSIG  
TDMn_RSIG  
TDMn_TX  
TCLKn  
RSYSCLKn  
TSIGn  
rclkn  
rposn  
rnegn  
RSIGn  
TSERn  
RSERn  
RSYNCn  
TSYNCn  
TDMn_RX  
Connected to LIU  
TDMn_RX_SYNC  
TDMn_TX_SYNC  
TDMn_TX_MF*  
tclkon  
tposn  
tnegn  
TSYNC  
SYNCNTL  
bits  
TSYNC[8..1]  
*Note: The internal signal input "TDMn_TX_MF" is a don 't care when configured in framer mode  
.
8.2  
Internal Mode Configured as Two-Clock Mode  
Internal two-clock mode configures the port/interfaces to have separate clocking between transmit and receive  
port/interfaces.  
Figure 8-3 represent a single internal two-clock mode port/interface connection for framed and multiframed  
applications. In this mode, the elastic store should not be enabled. The receive frame synchronization pulse or  
receive multiframe synchronization are delivered from the framer to the TDM-over-Packet block based on RCLKFn.  
The transmit synchronization pulse also comes from the framer with TSYNC configured for framer pulses or  
multiframe pulses based on the TCLKF input.  
The user may not need to use the framer during particular applications. If this is the case, the user should set the  
GCR1.UNFRMMODE bit. This selects internal two-clock mode for unframed applications as shown in Figure 8-4.  
25 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
Figure 8-3. Internal Two-Clock Mode (Framed)  
"Two Clock Mode, (Framed)"  
RCLK[8..1]  
ACLK[8..1]  
ECLK[8.. 1] pin  
E1CLK  
T1CLK  
CLKCNTL  
bits  
TDMoPacket X 8  
Framer X8  
ACLKn  
TDMn_ACLK  
TDMn_TCLK  
TDMn_RCLK  
TDMn_TSIG  
TDMn_RSIG  
TDMn_TX  
RCLKn  
TCLKFn  
RCLKn  
RCLKFn  
RPOSn  
RNEGn  
TSIGn  
RSIGn  
TSERn  
RSERn  
TDMn_RX  
Connected to LIU  
TDMn_RX_SYNC  
TDMn_TX_SYNC  
TDMn_TX_MF  
RF/RMSYNCn  
TCLKOn  
TPOSn  
TNEGn  
TSYNCn  
SYNCNTL  
bits  
SYNCNTL  
bits  
RF/RMSYNC[8..1]  
TSYNC[8..1]  
*Note: The internal signal input "TDMn_TX_MF" is a don 't care when configured in framer mode  
.
Figure 8-4. Internal Two-Clock Mode (Unframed)  
"Two Clock Mode, (Unframmed)"  
RCLK[8..1]  
ACLK[8..1]  
ECLK[8..1] pin  
E1CLK  
T1CLK  
CLKCNTL  
bits  
TDMoPacket X 8  
Framer X8  
(Bypassed mode)  
ACLKn  
TDMn_ACLK  
TDMn_TCLK  
TDMn_RCLK  
RCLKn  
TCLKFn  
RCLKn  
RCLKFn  
RPOSn  
RNEGn  
TDMn_TX  
TDMn_RX  
TSERn  
RSERn  
Connected to LIU  
TCLKOn  
TPOSn  
TNEGn  
8.3  
External Mode  
External mode activates all the port interface pins for utilization of when the user wants to custom wire the  
connections between the framer and TDM-over-Packet externally. Many applications that require a network  
processor would need wiring like this to be applied between these two points. Refer to the full data sheet for more  
information.  
26 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
9.  
Functional Description and Device Registers  
Refer to the full data sheet for this information.  
27 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
10. Pin Description  
10.1 Short Pin Descriptions  
In the type column, of the short pin description, the following abbreviations are used: I (Input), Ipu (Input with  
Pullup), Ipd (Input with Pulldown), Ia (Analog Input), O (Output), Oz (Output Tri-Stateable), Oa (Analog Output),  
IO (Bidirectional Inout), IOpd (Bidirectional with Pulldown), and IOpu (Bidirectional with Pullup).  
Table 10-1. DS34T108 Short Pin Descriptions  
NAME  
SD_D[31:0]  
TYPE  
IO  
FUNCTION  
Synchronous DRAM Data Bus  
Byte Enable Mask  
SD_DQM[3:0]  
SD_A[11:0]  
O
O
SDRAM Address Bus  
SDRAM Bank Select  
SDRAM Clock  
SD_BA[1:0]  
O
SD_CLK  
O
SD_CS_N  
O
SDRAM Chip Select (Active Low)  
SDRAM Write Enable (Active Low)  
SDRAM Row Address Strobe Enable (Active Low)  
SDRAM Column Address Strobe (Active Low)  
TDM1 Transmit  
SD_WE_N  
O
SD_RAS_N  
O
SD_CAS_N  
O
TDM1_TX  
O
TDM1_RX  
Ipu  
Ipu  
Ipu  
O
TDM1 Receive  
TDM1_TCLK  
TDM1_RCLK  
TDM1_ACLK  
TDM1_TX_SYNC  
TDM1_TX_MF_CD  
TDM1_RX_SYNC  
TDM1_TSIG_CTS  
TDM1_RSIG_RTS  
TDM2_TX  
TDM1 Transmit Clock  
TDM1 Receive Clock  
TDM1 Recovery Clock  
Ipd  
IOpd  
Ipd  
O
TDM1 Transmit/Receive Sync Pulse  
TDM1 Transmit Multiframe Sync Pulse/Carrier Detect  
TDM1 Receive Multiframe Sync Pulse/Sync Pulse  
TDM1 Transmit Signaling/Clear to Send  
TDM1 Receive Signaling/Request To Send  
TDM2 Transmit  
Ipu  
O
TDM2_RX  
Ipu  
Ipu  
Ipu  
O
TDM2 Receive  
TDM2_TCLK  
TDM2_RCLK  
TDM2_ACLK  
TDM2_TX_SYNC  
TDM2_TX_MF_CD  
TDM2_RX_SYNC  
TDM2_TSIG_CTS  
TDM2_RSIG_RTS  
TDM3_TX  
TDM2 Transmit Clock  
TDM2 Receive Clock  
TDM2 Recovery Clock  
Ipd  
IOpd  
Ipd  
O
TDM2 Transmit/Receive Sync Pulse  
TDM2 Transmit Multiframe Sync Pulse/Carrier Detect  
TDM2 Receive Multiframe Sync Pulse/Sync Pulse  
TDM2 Transmit Signaling/Clear to Send  
TDM2 Receive Signaling/Request To Send  
TDM3 Transmit  
Ipu  
O
28 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
NAME  
TYPE  
Ipu  
Ipu  
Ipu  
O
FUNCTION  
TDM3_RX  
TDM3 Receive  
TDM3_TCLK  
TDM3Transmit Clock  
TDM3 Receive Clock  
TDM3 Recovery Clock  
TDM3_RCLK  
TDM3_ACLK  
TDM3_TX_SYNC  
TDM3_TX_MF_CD  
TDM3_RX_SYNC  
TDM3_TSIG_CTS  
TDM3_RSIG_RTS  
TDM4_TX  
Ipd  
IOpd  
Ipd  
O
TDM3 Transmit/Receive Sync Pulse  
TDM3 Transmit Multiframe Sync Pulse/Carrier Detect  
TDM3 Receive Multiframe Sync Pulse/Sync Pulse  
TDM3 Transmit Signaling/Clear to Send  
TDM3 Receive Signaling/Request To Send  
TDM4 Transmit  
Ipu  
O
TDM4_RX  
Ipu  
Ipu  
Ipu  
O
TDM4 Receive  
TDM4_TCLK  
TDM4Transmit Clock  
TDM4_RCLK  
TDM4 Receive Clock  
TDM4_ACLK  
TDM4 Recovery Clock  
TDM4_TX_SYNC  
TDM4_TX_MF_CD  
TDM4_RX_SYNC  
TDM4_TSIG_CTS  
TDM4_RSIG_RTS  
TDM5_TX  
Ipd  
IOpd  
Ipd  
O
TDM4 Transmit/Receive Sync Pulse  
TDM4 Transmit Multiframe Sync Pulse/Carrier Detect  
TDM4 Receive Multiframe Sync Pulse/Sync Pulse  
TDM4 Transmit Signaling/Clear to Send  
TDM4 Receive Signaling/Request To Send  
TDM5 Transmit  
Ipu  
O
TDM5_RX  
Ipu  
Ipu  
Ipu  
O
TDM5 Receive  
TDM5_TCLK  
TDM5Transmit Clock  
TDM5_RCLK  
TDM5 Receive Clock  
TDM5_ACLK  
TDM5 Recovery Clock  
TDM5_TX_SYNC  
TDM5_TX_MF_CD  
TDM5_RX_SYNC  
TDM5_TSIG_CTS  
TDM5_RSIG_RTS  
TDM6_TX  
Ipd  
IOpd  
Ipd  
O
TDM5 Transmit/Receive Sync Pulse  
TDM5 Transmit Multiframe Sync Pulse/Carrier Detect  
TDM5 Receive Multiframe Sync Pulse/Sync Pulse  
TDM5 Transmit Signaling/Clear to Send  
TDM5 Receive Signaling/Request To Send  
TDM6 Transmit  
Ipu  
O
TDM6_RX  
Ipu  
Ipu  
Ipu  
O
TDM6 Receive  
TDM6_TCLK  
TDM6Transmit Clock  
TDM6_RCLK  
TDM6 Receive Clock  
TDM6_ACLK  
TDM6 Recovery Clock  
TDM6_TX_SYNC  
TDM6_TX_MF_CD  
TDM6_RX_SYNC  
TDM6_TSIG_CTS  
TDM6_RSIG_RTS  
Ipd  
IOpd  
Ipd  
O
TDM6 Transmit/Receive Sync Pulse  
TDM6 Transmit Multiframe Sync Pulse/Carrier Detect  
TDM6 Receive Multiframe Sync Pulse/Sync Pulse  
TDM6 Transmit Signaling/Clear to Send  
TDM6 Receive Signaling/Request To Send  
Ipu  
29 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
NAME  
TDM7_TX  
TYPE  
O
FUNCTION  
TDM7 Transmit  
TDM7_RX  
Ipu  
Ipu  
Ipu  
O
TDM7 Receive  
TDM7_TCLK  
TDM7_RCLK  
TDM7_ACLK  
TDM7_TX_SYNC  
TDM7_TX_MF_CD  
TDM7_RX_SYNC  
TDM7_TSIG_CTS  
TDM7_RSIG_RTS  
TDM8_TX  
TDM7Transmit Clock  
TDM7 Receive Clock  
TDM7 Recovery Clock  
Ipd  
IOpd  
Ipd  
O
TDM7 Transmit/Receive Sync Pulse  
TDM7 Transmit Multiframe Sync Pulse/Carrier Detect  
TDM7 Receive Multiframe Sync Pulse/Sync Pulse  
TDM7 Transmit Signaling/Clear to Send  
TDM7 Receive Signaling/Request To Send  
TDM8 Transmit  
Ipu  
O
TDM8_RX  
Ipu  
Ipu  
Ipu  
O
TDM8 Receive  
TDM8_TCLK  
TDM8_RCLK  
TDM8_ACLK  
TDM8_SYNC  
TDM8_TX_MF_CD  
TDM8_RX_MF  
TDM8_TSIG_CTS  
TDM8_RSIG_RTS  
CLK_MII_RX  
MII_RXD[0]  
TDM8Transmit Clock  
TDM8 Receive Clock  
TDM8 Recovery Clock  
Ipd  
IOpd  
Ipd  
O
TDM8 Transmit/Receive Sync Pulse  
TDM8 Transmit Multiframe Sync Pulse/Carrier Detect  
TDM8 Receive Multiframe Sync Pulse  
TDM8 Transmit Signaling/Clear to Send  
TDM8 Receive Signaling/Request To Send  
Clock Media Independent Interface Receive  
Media Independent Interface Receive Data 0  
Media Independent Interface Receive Data 1  
Media Independent Interface Receive Data 2  
Media Independent Interface Receive Data 3  
Media Independent Interface Receive Data Valid  
Media Independent Interface Receive Error  
Media Independent Interface Collision  
Media Independent Interface carrier sense.  
Clock Media Independent Interface Transmit  
Clock Source Synchronous Serial Media Independent Interface Transmit  
Media Independent Interface Transmit Data 0  
Media Independent Interface Transmit Data 1  
Media Independent Interface Transmit Data 2  
Media Independent Interface Transmit Data 3  
Media Independent Interface Transmit Enable  
Media Independent Interface Transmit Error  
Management Data Input/Output  
Ipu  
I
I
MII_RXD[1]  
I
MII_RXD[2]  
I
MII_RXD[3]  
I
MII_RX_DV  
I
MII_RX_ERR  
MII_COL  
I
I
MII_CRS  
I
CLK_MII_TX  
CLK_SSMII_TX  
MII_TXD[0]  
I
O
O
MII_TXD[1]  
O
MII_TXD[2]  
O
MII_TXD[3]  
O
MII_TX_EN  
O
MII_TX_ERR  
MDIO  
O
IOpu  
O
MDC  
Management Data Clock  
30 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
NAME  
TYPE  
FUNCTION  
TTIP1  
TTIP2  
TTIP3  
TTIP4  
TTIP5  
Oa  
Transmit Bipolar Tip for Channels 1–8  
TTIP6  
TTIP7  
TTIP8  
TRING1  
TRING2  
TRING3  
TRING4  
TRING5  
TRING6  
TRING7  
TRING8  
Oa  
I
Transmit Bipolar Ring for Channels 1–8  
Transmit Enable for All Channels 1–8  
Receive Bipolar Tip for Channels 1–8  
TXENABLE  
RTIP1  
RTIP2  
RTIP3  
RTIP4  
RTIP5  
Ia  
RTIP6  
RTIP7  
RTIP8  
RRING1  
RRING2  
RRING3  
RRING4  
RRING5  
RRING6  
RRING7  
RRING8  
Ia  
I
Receive Bipolar Ring for Channels 1–8  
Receive Termination Selection  
RXTSEL  
RCLKF1/RCLK1  
RCLKF2/RCLK2  
RCLKF3/RCLK3  
RCLKF4/RCLK4  
RCLKF5/RCLK5  
RCLKF6/RCLK6  
RCLKF7/RCLK7  
RCLKF8/RCLK8  
TCLKF1  
IO  
Receive Framer Clock/Receive Clock  
TCLKF2  
TCLKF3  
TCLKF4  
TCLKF5  
I
Transmit Clock Input for the Formatter  
TCLKF6  
TCLKF7  
TCLKF8  
31 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
NAME  
TYPE  
FUNCTION  
TCLKO1  
TCLKO2  
TCLKO3  
TCLKO4  
TCLKO5  
TCLKO6  
TCLKO7  
TCLKO8  
RSER1  
RSER2  
RSER3  
RSER4  
RSER5  
RSER6  
RSER7  
RSER8  
TDATF1  
TDATF2  
TDATF3  
TDATF4  
TDATF5  
TDATF6  
TDATF7  
TDATF8  
RSYNC1  
RSYNC2  
RSYNC3  
RSYNC4  
RSYNC5  
RSYNC6  
RSYNC7  
O
Transmit Clock Output  
Receive Serial Data Output  
Transmit Data Formatter Output  
Receive Sync  
O
O
IO  
I
RSYNC8  
RSYSCLK1  
RSYSCLK2  
RSYSCLK3  
RSYSCLK4  
RSYSCLK5  
RSYSCLK6  
RSYSCLK7  
RSYSCLK8  
RF/RMSYNC1  
RF/RMSYNC2  
RF/RMSYNC3  
RF/RMSYNC4  
RF/RMSYNC5  
RF/RMSYNC6  
RF/RMSYNC7  
RF/RMSYNC8  
Receive System Clock  
O
Frame Synchronization/Receive Multiframe Synchronization  
32 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
NAME  
TYPE  
FUNCTION  
RLOF/RLOS1  
RLOF/RLOS2  
RLOF/RLOS3  
RLOF/RLOS4  
RLOF/RLOS5  
RLOF/RLOS6  
RLOF/RLOS7  
RLOF/RLOS8  
TSER1  
O
Receive Loss of Frame/Receive Loss of Signal  
TSER2  
TSER3  
TSER4  
TSER5  
TSER6  
TSER7  
TSER8  
RDATF1  
RDATF2  
RDATF3  
I
I
Transmit Serial Data  
RDATF4  
RDATF5  
Receive Data Framer Input/Transmit Signaling  
Transmit Synchronization/Transmit System Synchronization In  
Transmit System Clock  
RDATF6  
RDATF7  
RDATF8  
TSYNC/TSSYNC1  
TSYNC/TSSYNC2  
TSYNC/TSSYNC3  
TSYNC/TSSYNC4  
TSYNC/TSSYNC5  
TSYNC/TSSYNC6  
TSYNC/TSSYNC7  
TSYNC/TSSYNC8  
TSYSCLK1/ECLK1  
TSYSCLK2/ECLK2  
TSYSCLK3/ECLK3  
TSYSCLK4/ECLK4  
TSYSCLK5/ECLK5  
TSYSCLK6/ECLK6  
TSYSCLK7/ECLK7  
TSYSCLK8/ECLK8  
IO  
I
CLK_SYS_S  
CLK_SYS  
I
System Clock Selection  
System Clock  
I
CLK_HIGH  
MCLK  
I
I
Clock High Synthesis  
Master Clock  
CLK_CMN  
I
Common Clock  
Host Data Bus  
H_D[31:1]  
IO  
IO  
I
H_D[0]/SPI_MISO  
H_AD[24:1]  
H_CS_N  
Host Data LSB  
Host Address Bus  
Host Chip Select  
Host Read/Write  
I
H_R_W_N/SPI_CP  
I
33 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
NAME  
TYPE  
FUNCTION  
H_D[7:0] Write Enable, Active Low  
H_WR_BE0_N/  
SPI_CLK  
I
H_WR_BE1_N/  
SPI_MOSI  
I
I
I
H_D[15:8] Write Enable, Active Low  
H_D[23:16] Write Enable, Active Low  
H_D[31:24] Write Enable, Active Low  
H_WR_BE2_N/  
SPI_SEL_N  
H_WR_BE3_N/  
SPI_CI  
H_READY_N  
Oz  
O
Host Ready  
H_INT[1]  
H_INT[0]  
Host Interrupt  
DAT_32_16_N  
H_CPU_SPI_N  
RST_SYS_N  
RESREF  
JTMS  
Ipu  
Ipu  
Ipu  
I
Data 32/16-Bit Select  
CPU or SPI Mode  
System Reset  
Resistance Reference  
Ipu  
Ipd  
Ipu  
Oz  
Ipu  
Ipd  
Ipd  
I
JTAG Test Mode Select  
JTCLK  
JTAG Test Clock  
JTDI  
JTAG Test data In  
JTDO  
JTAG Test Data Out  
JTRST  
JTAG Test Reset  
SCEN  
Used for factory tests.  
STMD  
Used for factory tests.  
HIZ_N  
Used for factory tests.  
MBIST_EN  
MBIST_DONE  
MBIST_FAIL  
TEST_CLK  
TST_CLD  
TST_TA  
TST_TB  
TST_TC  
TST_RA  
TST_RB  
TST_RC  
DVSS  
I
Used for factory tests.  
O
Used for factory tests.  
O
Used for factory tests  
O
Used for factory tests.  
I
Used for factory tests. DS34T104 only.  
Used for factory tests. DS34T104 only.  
Used for factory tests. DS34T104 only.  
Used for factory tests. DS34T104 only.  
Used for factory tests. DS34T104 only.  
Used for factory tests. DS34T104 only.  
Used for factory tests. DS34T104 only.  
Digital Core Ground for Framers and TDM-over-Packet (31 pins)  
1.8V Core Supply Voltage for Framers and TDM-over-Packet (17 pins)  
3.3V Supply Voltage for I/O (16 pins)  
3.3V Supply Voltage for LIUs (2 pins)  
Digital Ground for the LIUs (2 pins)  
3.3V Power Supply for the Transmitter (8 pins)  
O
O
O
O
O
O
DVDDC  
DVDDIO  
DVDDLIU  
DVSSLIU  
ATVDDn  
34 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
NAME  
TYPE  
FUNCTION  
Analog Ground for Transmitters (8 pins)  
ATVSSn  
ARVDDn  
ARVSSn  
ACVDD2  
ACVSS2  
ACVDD1  
ACVSS1  
3.3V Analog Receive Power Supply (8 pins)  
Analog Receive GND (8 pins)  
Analog CLAD 1.8V Supply 2  
Analog CLAD GND 2  
Analog CLAD 1.8V Supply 1  
Analog CLAD GND 1  
Note: Pins with names ending in an asterisk (*) or “_N” are active low.  
10.2 Detailed Pin Descriptions  
In the detailed pin description table, the type column defines the drive current for any type of output pin. Also in the  
detailed pin description table, the type column uses the following abbreviations: I (Input), Ipu (Input with Pullup), Ipd  
(Input with Pulldown), Ia (Analog Input), O (Output), Oz (Output Tri-Stateable), Oa (Analog output), IO (Bidirectional  
Inout), IOpd (Bidirectional with Pulldown), and IOpu (Bidirectional with Pullup).  
Table 10-2. Detailed Pin Descriptions  
NAME  
TYPE  
FUNCTION  
SDRAM PINS  
IO  
8mA  
Synchronous DRAM Data Bus  
SD_D[31:0]: Data bus towards SDRAM. MSB is SD_D[31].  
SD_D[31:0]  
Byte Enable Mask  
O
8mA  
SD_DQM[3:0]: Byte enable towards SDRAM. Serves as a mask. SD_DQM[0] is  
connected to the least significant byte at SDRAM, while SD_DQM[3] is connected  
to the most significant byte at SDRAM.  
SD_DQM[3:0]  
O
8mA  
SDRAM Address Bus  
SD_A[11:0]: Address bus towards SDRAM. MSB is SD_A[11].  
SD_A[11:0]  
SD_BA[1:0]  
SDRAM Bank Select  
SD_BA[1:0]: SDRAM bank select. Selects one bank out of four banks at  
SDRAM.  
O
8mA  
O
8mA  
SDRAM Clock  
SD_CLK: Drives the SDRAM clock towards the SDRAM.  
SD_CLK  
SD_CS_N  
SD_WE_N  
SD_RAS_N  
SD_CAS_N  
O
8mA  
SDRAM Chip Select (Active Low)  
SD_CS_N: SDRAM chip select towards SDRAM.  
O
8mA  
SDRAM Write Enable (Active Low)  
SD_WE_N: Write enable towards SDRAM.  
O
8mA  
SDRAM Row Address Strobe Enable (Active Low)  
SD_RAS_N: Row address strobe towards SDRAM.  
O
8mA  
SDRAM Column Address Strobe (Active Low)  
SD_CAS_N: Column address strobe towards SDRAM.  
TDM-OVER-PACKET INTERFACE PINS  
TDM1 Transmit  
O
8mA  
TDM1_TX  
TDM1_RX  
TDM1_TX: First interface serial transmit line. Also used in high-speed  
E3/T3/STS1 mode.  
TDM1 Receive  
Ipu  
TDM1_RX: First interface serial receive line. This pin is active in external mode  
only. Also used in high-speed E3/T3/STS1 mode.  
35 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
NAME  
TYPE  
FUNCTION  
TDM1 Transmit Clock  
TDM1_TCLK: Used for clocking TDM1_TX and TDM1_RX lines in one-clock  
mode, or TDM1_TX in two-clock mode. This pin is active in external mode only.  
Also used in high-speed E3/T3/STS1 mode.  
TDM1_TCLK  
Ipu  
TDM1 Receive Clock  
TDM1_RCLK: Used for clocking TDM1_RX line in two-clock mode. Not used in  
one-clock mode. This pin is active in external mode only. Also used in high-speed  
E3/T3/STS1 mode.  
TDM1 Recovery Clock  
TDM1_ACLK: First interface recovered clock. Also used in high-speed  
E3/T3/STS1 mode.  
TDM1_RCLK  
TDM1_ACLK  
Ipu  
O
8mA  
TDM1 Transmit/Receive Sync Pulse  
TDM1_TX_SYNC: First interface transmit frame sync pulse. Used as both  
transmit and receive frame sync pulse in one-clock mode. Used as transmit  
frame sync in two-clock mode. The pulse frequency can be once every N x  
125μs, i.e., every 2ms. This pin is active in external mode only.  
TDM1 Transmit Multiframe Sync Pulse/Carrier Detect  
TDM1_TX_MF_CD: First interface transmit multiframe sync pulse input for  
framed interface (PCM), or carrier detect output in case of serial interface. This  
pin is active in external mode only.  
TDM1_TX_SYNC  
TDM1_TX_MF_CD  
Ipd  
IOpd  
Ipd  
TDM1 Receive Multiframe Sync Pulse  
TDM1_RX_SYNC: First interface receive multiframe sync pulse or frame sync  
pulse input. When used as frame sync pulse the pulse frequency can be once  
every N x 125μs, i.e., every 2ms. This pin is active in external mode only.  
TDM1 Transmit Signaling/Clear to Send  
TDM1_TSIG_CTS: First interface transmit signaling, or Clear To Send in case of  
serial interface.  
TDM1_RX_SYNC  
TDM1_TSIG_CTS  
O
8mA  
TDM1 Receive Signaling/Request To Send  
TDM1_RSIG_RTS  
TDM2_TX  
Ipu  
TDM1_RSIG_RTS: First interface serial Rx signaling input or Request To Send  
input in case of serial interface. This pin is active in external mode only.  
TDM2 Transmit  
O
8mA  
TDM2_TX: Second Interface serial transmit line.  
TDM2 Receive  
TDM2_RX  
Ipu  
Ipu  
Ipu  
TDM2_RX: Second interface serial receive line. This pin is active in external  
mode only. This pin is active in external mode only.  
TDM2 Transmit Clock  
TDM2_TCLK: Used for clocking TDM2_TX and TDM2_RX lines in one-clock  
mode, or TDM2_TX in two-clock mode. This pin is active in external mode only.  
This pin is active in external mode only.  
TDM2_TCLK  
TDM2 Receive Clock  
TDM2_RCLK  
TDM2_ACLK  
TDM2_RCLK: Used for clocking TDM2_RX line in two-clock mode. Not used in  
one-clock mode. This pin is active in external mode only.  
TDM2 Recovery Clock  
O
8mA  
TDM2_ACLK: Second interface recovered clock.  
TDM2 Transmit/Receive Sync Pulse  
TDM2_TX_SYNC: Second interface transmit frame sync pulse. Used as both  
transmit and receive frame sync pulse in one-clock mode. Used as transmit  
frame sync in two-clock mode. The pulse frequency can be once every N x  
125μs, i.e., every 2ms. This pin is active in external mode only.  
TDM2 Transmit Multiframe Sync Pulse/Carrier Detect  
TDM2_TX_MF_CD: Second interface transmit multiframe sync pulse input for  
framed interface (PCM), or carrier detect output in case of serial interface. This  
pin is active in external mode only.  
TDM2_TX_SYNC  
TDM2_TX_MF_CD  
Ipd  
IOpd  
36 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
NAME  
TYPE  
FUNCTION  
TDM2 Receive Multiframe Sync Pulse  
TDM2_RX_SYNC: Second interface receive multiframe sync pulse or frame sync  
pulse input. When used as frame sync pulse the pulse frequency can be once  
every N x 125μs, i.e., every 2ms. This pin is active in external mode only.  
TDM2 Transmit Signaling/Clear to Send  
TDM2_TSIG_CTS: Second interface transmit signaling, or Clear to Send in case  
of serial interface.  
TDM2_RX_SYNC  
Ipd  
O
8mA  
TDM2_TSIG_CTS  
TDM2 Receive Signaling/Request To Send  
TDM2_RSIG_RTS  
TDM3_TX  
Ipu  
TDM2_RSIG_RTS: Second interface serial Rx signaling input or Request To  
Send input in case of serial interface. This pin is active in external mode only.  
TDM3 Transmit  
O
8mA  
TDM3_TX: Third Interface serial transmit line.  
TDM3 Receive  
TDM3_RX  
Ipu  
Ipu  
Ipu  
TDM3_RX: Third interface serial receive line. This pin is active in external mode  
only.  
TDM3 Transmit Clock  
TDM3_TCLK: Used for clocking TDM3_TX and TDM3_RX lines in one-clock  
mode, or TDM3_TX in two-clock mode. This pin is active in external mode only.  
TDM3 Receive Clock  
TDM3_RCLK: Used for clocking TDM3_RX line in two-clock mode. Not used in  
one-clock mode. This pin is active in external mode only.  
TDM3 Recovery Clock  
TDM3_TCLK  
TDM3_RCLK  
TDM3_ACLK  
O
8mA  
TDM3_ACLK: Third interface recovered clock.  
TDM3 Transmit/Receive Sync Pulse  
TDM3_TX_SYNC: First interface transmit frame sync pulse. Used as both  
transmit and receive frame sync pulse in one-clock mode. Used as transmit  
frame sync in two-clock mode. The pulse frequency can be once every N x  
125μs, i.e., every 2ms. This pin is active in external mode only.  
TDM3 Transmit Multiframe Sync Pulse/Carrier Detect  
TDM3_TX_MF_CD: Third interface transmit multiframe sync pulse input for  
framed interface (PCM), or carrier detect output in case of serial interface. This  
pin is active in external mode only.  
TDM3_TX_SYNC  
TDM3_TX_MF_CD  
Ipd  
IOpd  
Ipd  
TDM3 Receive Multiframe Sync Pulse  
TDM3_RX_SYNC: Third interface receive multiframe sync pulse or frame sync  
pulse input. When used as frame sync pulse the pulse frequency can be once  
every N x 125μs, i.e., every 2ms. This pin is active in external mode only.  
TDM3 Transmit Signaling/Clear to Send  
TDM3_TSIG_CTS: Third interface transmit signaling, or Clear to Send in case of  
serial interface.  
TDM3_RX_SYNC  
TDM3_TSIG_CTS  
O
8mA  
TDM3 Receive Signaling/Request To Send  
TDM3_RSIG_RTS  
TDM4_TX  
Ipu  
TDM3_RSIG_RTS: Third interface serial Rx signaling input or Request To Send  
input in case of serial interface. This pin is active in external mode only.  
TDM4 Transmit  
O
8mA  
TDM4_TX: Fourth Interface serial transmit line.  
TDM4 Receive  
TDM4_RX  
Ipu  
Ipu  
Ipu  
TDM4_RX: Fourth interface serial receive line. This pin is active in external mode  
only.  
TDM4Transmit Clock  
TDM4_TCLK: Used for clocking TDM4_TX and TDM4_RX lines in one-clock  
mode, or TDM4_TX in two-clock mode. This pin is active in external mode only.  
TDM4 Receive Clock  
TDM4_RCLK: Used for clocking TDM4_RX line in two-clock mode. Not used in  
one-clock mode. This pin is active in external mode only.  
TDM4_TCLK  
TDM4_RCLK  
37 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
NAME  
TYPE  
FUNCTION  
O
8mA  
TDM4 Recovery Clock  
TDM4_ACLK: Fourth interface recovered clock.  
TDM4_ACLK  
TDM4 Transmit/Receive Sync Pulse  
TDM4_TX_SYNC: Fourth interface transmit frame sync pulse. Used as both  
transmit and receive frame sync pulse in one-clock mode. Used as transmit  
frame sync in two-clock mode. The pulse frequency can be once every N x  
125μs, i.e., every 2ms. This pin is active in external mode only.  
TDM4 Transmit Multiframe Sync Pulse/Carrier Detect  
TDM4_TX_MF_CD: Fourth interface transmit multiframe sync pulse input for  
framed interface (PCM), or carrier detect output in case of serial interface. This  
pin is active in external mode only.  
TDM4_TX_SYNC  
TDM4_TX_MF_CD  
Ipd  
IOpd  
Ipd  
TDM4 Receive Multiframe Sync Pulse  
TDM4_RX_SYNC: Fourth interface receive multiframe sync pulse or frame sync  
pulse input. When used as frame sync pulse the pulse frequency can be once  
every N x 125μs, i.e., every 2ms. This pin is active in external mode only.  
TDM4 Transmit Signaling/Clear to Send  
TDM4_TSIG_CTS_D2A4: Fourth interface transmit signaling, or Clear to Send in  
case of serial interface.  
TDM4_RX_SYNC  
TDM4_TSIG_CTS  
O
8mA  
TDM4 Receive Signaling/Request To Send  
TDM4_RSIG_RTS  
TDM5_TX  
Ipu  
TDM4_RSIG_RTS: Fourth interface serial Rx signaling input or Request To Send  
input in case of serial interface. This pin is active in external mode only.  
TDM5 Transmit  
O
8mA  
TDM5_TX: Fifth Interface serial transmit line.  
TDM5 Receive  
TDM5_RX  
Ipu  
Ipu  
Ipu  
TDM5_RX: Fifth interface serial receive line. This pin is active in external mode  
only.  
TDM5Transmit Clock  
TDM5_TCLK: Used for clocking TDM5_TX and TDM5_RX lines in one-clock  
mode, or TDM5_TX in two-clock mode. This pin is active in external mode only.  
TDM5 Receive Clock  
TDM5_RCLK: Used for clocking TDM5_RX line in two-clock mode. Not used in  
one-clock mode. This pin is active in external mode only.  
TDM5 Recovery Clock  
TDM5_TCLK  
TDM5_RCLK  
TDM5_ACLK  
O
8mA  
TDM5_ACLK: Fifth interface recovered clock.  
TDM5 Transmit/Receive Sync Pulse  
TDM5_TX_SYNC: Fifth interface transmit frame sync pulse. Used as both  
transmit and receive frame sync pulse in one-clock mode. Used as transmit  
frame sync in two-clock mode. The pulse frequency can be once every N x  
125μs, i.e., every 2ms. This pin is active in external mode only.  
TDM5 Transmit Multiframe Sync Pulse/Carrier Detect  
TDM5_TX_MF_CD: Fifth interface transmit multiframe sync pulse input for  
framed interface (PCM), or Carrier Detect output in case of serial interface. This  
pin is active in external mode only.  
TDM5_TX_SYNC  
Ipd  
TDM5_TX_MF_CD  
TDM5_RX_SYNC  
IOpd  
Ipd  
TDM5 Receive Multiframe Sync Pulse  
TDM5_RX_SYNC: First interface receive multiframe sync pulse or frame sync  
pulse input. When used as frame sync pulse the pulse frequency can be once  
every N x 125μs, i.e., every 2ms. This pin is active in external mode only.  
TDM5 Transmit Signaling/Clear to Send  
TDM5_TSIG_CTS: Fifth interface transmit signaling, or Clear to Send in case of  
serial interface.  
TDM5 Receive Signaling/Request To Send  
TDM5_RSIG_RTS: Fifth interface serial Rx signaling input or Request To Send  
input in case of serial interface. This pin is active in external mode only.  
O
8mA  
TDM5_TSIG_CTS  
TDM5_RSIG_RTS  
Ipu  
38 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
NAME  
TYPE  
FUNCTION  
O
8mA  
TDM6 Transmit  
TDM6_TX: Sixth Interface serial transmit line.  
TDM6_TX  
TDM6 Receive  
TDM6_RX  
Ipu  
Ipu  
Ipu  
TDM6_RX: Sixth interface serial receive line. This pin is active in external mode  
only.  
TDM6Transmit Clock  
TDM6_TCLK: Used for clocking TDM6_TX and TDM6_RX lines in one-clock  
mode, or TDM6_TX in two-clock mode. This pin is active in external mode only.  
TDM6 Receive Clock  
TDM6_RCLK: Used for clocking TDM6_RX line in two-clock mode. Not used in  
one-clock mode. This pin is active in external mode only.  
TDM6 Recovery Clock  
TDM6_TCLK  
TDM6_RCLK  
TDM6_ACLK  
O
8mA  
TDM6_ACLK: Sixth interface recovered clock.  
TDM6 Transmit/Receive Sync Pulse  
TDM6_TX_SYNC: Sixth interface transmit frame sync pulse. Used as both  
transmit and receive frame sync pulse in one-clock mode. Used as transmit  
frame sync in two-clock mode. The pulse frequency can be once every N x  
125μs, i.e., every 2ms. This pin is active in external mode only.  
TDM6 Transmit Multiframe Sync Pulse/Carrier Detect  
TDM6_TX_MF_CD: Sixth interface transmit multiframe sync pulse input for  
framed interface (PCM), or carrier detect output in case of serial interface. This  
pin is active in external mode only.  
TDM6_TX_SYNC  
TDM6_TX_MF_CD  
Ipd  
IOpd  
Ipd  
TDM6 Receive Multiframe Sync Pulse  
TDM6_RX_SYNC: Sixth interface receive multiframe sync pulse or frame sync  
pulse input. When used as frame sync pulse the pulse frequency can be once  
every N x 125μs, i.e., every 2ms. This pin is active in external mode only.  
TDM6 Transmit Signaling/Clear to Send  
TDM6_TSIG_CTS: Sixth interface transmit signaling, or Clear to Send in case of  
serial interface.  
TDM6_RX_SYNC  
TDM6_TSIG_CTS  
O
8mA  
TDM6 Receive Signaling/Request To Send  
TDM6_RSIG_RTS  
TDM7_TX  
Ipu  
TDM6_RSIG_RTS: Sixth interface serial Rx signaling input or Request To Send  
input in case of serial interface. This pin is active in external mode only.  
TDM7 Transmit  
O
8mA  
TDM7_TX: Seventh Interface serial transmit line.  
TDM7 Receive  
TDM7_RX  
Ipu  
Ipu  
Ipu  
TDM7_RX: Seventh interface serial receive line. This pin is active in external  
mode only.  
TDM7Transmit Clock  
TDM7_TCLK: Used for clocking TDM7_TX and TDM7_RX lines in one-clock  
mode, or TDM7_TX in two-clock mode. This pin is active in external mode only.  
TDM7 Receive Clock  
TDM7_RCLK: Used for clocking TDM7_RX line in two-clock mode. Not used in  
one-clock mode. This pin is active in external mode only.  
TDM7 Recovery Clock  
TDM7_TCLK  
TDM7_RCLK  
TDM7_ACLK  
O
8mA  
TDM7_ACLK: Seventh interface recovered clock.  
TDM7 Transmit/Receive Sync Pulse  
TDM7_TX_SYNC: Seventh interface transmit frame sync pulse. Used as both  
transmit and receive frame sync pulse in one-clock mode. Used as transmit  
frame sync in two-clock mode. The pulse frequency can be once every  
N x 125μs, i.e., every 2ms. This pin is active in external mode only.  
TDM7 Transmit Multiframe Sync Pulse/Carrier Detect  
TDM7_TX_MF_CD: Fifth interface transmit multiframe sync pulse input for  
framed interface (PCM), or carrier detect output in case of serial interface. This  
pin is active in external mode only.  
TDM7_TX_SYNC  
TDM7_TX_MF_CD  
Ipd  
IOpd  
39 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
NAME  
TYPE  
FUNCTION  
TDM7 Receive Multiframe Sync Pulse  
TDM7_RX_SYNC: Seventh interface receive multiframe sync pulse or frame  
sync pulse input. When used as frame sync pulse the pulse frequency can be  
once every N x 125μs, i.e., every 2ms. This pin is active in external mode only.  
TDM7 Transmit Signaling/Clear to Send  
TDM7_TSIG_CTS: Seventh interface transmit signaling, or Clear to Send in case  
of serial interface.  
TDM7_RX_SYNC  
Ipd  
O
8mA  
TDM7_TSIG_CTS  
TDM7 Receive Signaling/Request To Send  
TDM7_RSIG_RTS  
TDM8_TX  
Ipu  
TDM7_RSIG_RTS: Seventh interface serial Rx signaling input or Request To  
Send input in case of serial interface. This pin is active in external mode only.  
TDM8 Transmit  
O
8mA  
TDM8_TX: Eighth interface serial transmit line.  
TDM8 Receive  
TDM8_RX  
Ipu  
Ipu  
Ipu  
TDM8_RX: Eighth interface serial receive line. This pin is active in external mode  
only.  
TDM8 Transmit Clock  
TDM8_TCLK: Used for clocking TDM8_TX and TDM8_RX lines in one-clock  
mode, or TDM8_TX in two-clock mode. This pin is active in external mode only.  
TDM8 Receive Clock  
TDM8_RCLK: Used for clocking TDM8_RX line in two-clock mode. Not used in  
one-clock mode. This pin is active in external mode only.  
TDM8 Recovery Clock  
TDM8_TCLK  
TDM8_RCLK  
TDM8_ACLK  
O
8mA  
TDM8_ACLK: Eighth interface recovered clock.  
TDM8 Transmit/Receive Sync Pulse  
TDM8_TX_SYNC: Eighth interface transmit frame sync pulse. Used as both  
transmit and receive frame sync pulse in one-clock mode. Used as transmit  
frame sync in two-clock mode. The pulse frequency can be once every N x  
125μs, i.e., every 2ms. This pin is active in external mode only.  
TDM8 Transmit Multiframe Sync Pulse/Carrier Detect  
TDM8_TX_MF_CD: Eighth interface transmit multiframe sync pulse input for  
framed interface (PCM), or carrier detect output in case of serial interface. This  
pin is active in external mode only.  
TDM8_TX_SYNC  
Ipd  
TDM8_TX_MF_CD  
TDM8_RX_SYNC  
IOpd  
Ipd  
TDM8 Receive Multiframe Sync Pulse  
TDM8_RX_SYNC: First interface receive multiframe sync pulse or frame sync  
pulse input. When used as frame sync pulse the pulse frequency can be once  
every N x 125μs, i.e., every 2ms. This pin is active in external mode only.  
TDM8 Transmit Signaling/Clear to Send  
TDM8_TSIG_CTS: Eighth interface transmit signaling, or Clear to Send in case  
of serial interface. This pin is active in external mode only.  
TDM8 Receive Signaling/Request To Send  
O
8mA  
TDM8_TSIG_CTS  
TDM8_RSIG_RTS  
Ipu  
TDM8_RSIG_RTS: Eighth interface serial Rx signaling input or Request To Send  
input in case of serial interface. This pin is active in external mode only.  
MAC(10/100) PINS  
Clock Media Independent Interface Receive  
CLK_MII_RX: MII receive clock or SSMII receive clock.  
Media Independent Interface Receive Data 0  
MII_RXD[0]: MII receive data ‘0’ or SSMII receive data.  
Media Independent Interface Receive Data 1  
MII_RXD[1]: MII receive data ‘1’ or receive data SSMII sync.  
Media Independent Interface Receive Data 2  
MII_RXD[2]: MII receive data ‘2’ or RMII receive data ‘0.’  
Media Independent Interface Receive Data 3  
MII_RXD[3]: MII receive data ‘3’ or RMII receive data ‘1.’  
CLK_MII_RX  
MII_RXD[0]  
MII_RXD[1]  
MII_RXD[2]  
MII_RXD[3]  
I
I
I
I
I
40 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
NAME  
TYPE  
FUNCTION  
Media Independent Interface Receive Data Valid  
MII_RX_DV: MII receive data valid, or RMII carrier sense/data valid.  
Media Independent Interface Receive Error  
MII_RX_ERR: MII receive error, or RMII receive error.  
Media Independent Interface Collision  
MII_COL: MII collision detection.  
Media Independent Interface carrier sense.  
MII_CRS: MII carrier sense.  
MII_RX_DV  
I
MII_RX_ERR  
MII_COL  
I
I
I
MII_CRS  
Clock Media Independent Interface Transmit  
CLK_MII_TX: MII transmit clock or RMII ref clock or SSMII ref clock.  
Clock Source Synchronous Serial Media Independent Interface Transmit  
CLK_MII_TX  
CLK_SSMII_TX  
MII_TXD[0]  
MII_TXD[1]  
MII_TXD[2]  
MII_TXD[3]  
MII_TX_EN  
MII_TX_ERR  
MDIO  
I
O
12mA CLK_SSMII_TX: SSMII transmit clock (125MHz).  
O
8mA  
O
8mA  
O
8mA  
O
8mA  
O
8mA  
O
Media Independent Interface Transmit Data 0  
MII_TXD[0]: MII transmit data ‘0’, or SSMII transmit data.  
Media Independent Interface Transmit Data 1  
MII_TXD[1]: MII transmit data ‘0’, or SSMII transmit sync.  
Media Independent Interface Transmit Data 2  
MII_TXD[2]: MII transmit data ‘2’ or RMII transmit data ‘0.’  
Media Independent Interface Transmit Data 3  
MII_TXD[3]: MII transmit data ‘3’, or RMII transmit data ‘1.’  
Media Independent Interface Transmit Enable  
MII_TX_EN: MII transmit enable or RMII transmit enable.  
Media Independent Interface Transmit Error  
MII_TX_ERR: MII transmit error.  
8mA  
IOpu  
8mA  
O
Management Data Input/Output  
MDIO: Management data, synchronized to MDC.  
Management Data Clock  
MDC: Management data clock.  
MDC  
8mA  
FRAMER AND LIU PORT PINS  
TTIP1  
TTIP2  
TTIP3  
TTIP4  
TTIP5  
Transmit Bipolar Tip for Channels 1–8  
TTIPn: These pins are differential line driver tip outputs. The differential outputs  
of TTIPn and TRINGn can provide internal matched impedance for E1 75Ω, E1  
120Ω, T1 100Ω, or J1 110Ω.  
Oa  
TTIP6  
TTIP7  
Note: All these pins can be tri-stated when the TXENABLE pin is low.  
TTIP8  
TRING1  
TRING2  
TRING3  
TRING4  
TRING5  
TRING6  
TRING7  
TRING8  
Transmit Bipolar Ring for Channels 1–8  
TRINGn: These pins are differential line driver ring outputs. The differential  
outputs of TTIPn and TRINGn can provide internal matched impedance for E1  
75Ω, E1 120Ω, T1 100Ω, or J1 110Ω.  
Oa  
Note: All these pins can be tri-stated when the TXENABLE pin is low.  
Transmit Enable for all Channels 1–8  
TXENABLE: If this pin is pulled low all the transmitter outputs (TTIP and TRING)  
are high impedance. In addition, the register settings for tri-state control of  
TTIP/TRING are ignored if TXENABLE is low. If TXENABLE is high, the particular  
driver can be tri-stated if the TXEN bit is set in the LMCR register.  
TXENABLE  
I
41 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
NAME  
TYPE  
FUNCTION  
RTIP1  
RTIP2  
RTIP3  
RTIP4  
RTIP5  
Receive Bipolar Tip for Channels 1–8  
RTIPn: Receive analog input for differential receiver. Data and clock are  
recovered and output at RPOS/RNEG and RCLK pins, respectively. The  
differential inputs of RTIPn and RRINGn can provide internal matched impedance  
for E1 75Ω, E1 120Ω, T1 100Ω, or J1 110Ω.  
Ia  
RTIP6  
RTIP7  
RTIP8  
RRING1  
RRING2  
RRING3  
RRING4  
RRING5  
RRING6  
RRING7  
RRING8  
Receive Bipolar Ring for Channels 1–8  
RRINGn: Receive analog input for differential receiver. Data and clock are  
recovered and output at RPOS/RNEG and RCLK pins, respectively. The  
differential inputs of RTIPn and RRINGn can provide internal matched impedance  
for E1 75Ω, E1 120Ω, T1 100Ω, or J1 110Ω.  
Ia  
Receive Termination Selection  
RXTSEL: The input selects internal termination when high and external  
termination when low for the all the receivers when the RHPM bit is set in the  
LTRCR register.  
RXTSEL  
I
Receive Framer Clock  
RCLKFn: When the LIUs are disabled (GCR2.LIUDn bits), RCLKFn can be  
1.544MHz (T1) or 2.048MHz (E1) input clock that is used to clock data through  
the receive-side framer. RSER data is output on the rising edge of RCLKFn.  
RCLKFn is used to output RSER when the elastic store is not enabled. When the  
elastic store is enabled, the RSER is clocked by RSYSCLK.  
RCLKF1/RCLK1  
RCLKF2/RCLK2  
RCLKF3/RCLK3  
RCLKF4/RCLK4  
RCLKF5/RCLK5  
RCLKF6/RCLK6  
RCLKF7/RCLK7  
RCLKF8/RCLK8  
IO  
8mA  
Receive Clock Out  
RCLKn: When the LIU is used RCLKn is the recovered output clock from the  
line. This clock is recovered from the signal at RTIP and RRING. The output is  
1.544MHz for T1 and 2.048MHz for E1. This clock is used to clock data through  
the receive-side framer. RSER data is output on the rising edge of RCLKn.  
RCLKn is used to output RSER when the elastic store is not enabled. When the  
elastic store is enabled, the RSER is clocked by RSYSCLK.  
TCLKF1  
TCLKF2  
TCLKF3  
TCLKF4  
TCLKF5  
TCLKF6  
TCLKF7  
TCLKF8  
TCLKO1  
TCLKO2  
TCLKO3  
TCLKO4  
TCLKO5  
TCLKO6  
TCLKO7  
TCLKO8  
Transmit Clock Input for the Formatter  
TCLKFn: A 1.544MHz or a 2.048MHz primary clock. Used to clock data through  
the transmit-side formatter. This pin is active in external mode.  
I
Transmit Clock Output  
O
8mA  
TCLKOn: This signal is used to register the TDATFn output and is typically  
synchronous with the TCLKFn input. However, in framer and payload loopback  
applications this signal becomes synchronous with RCLKFn.  
42 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
NAME  
TYPE  
FUNCTION  
RSER1  
RSER2  
RSER3  
Receive Serial Data Output  
RSERn: Received NRZ serial data. Updated on rising edges of RCLKFn when  
the receive-side elastic store is disabled. Updated on the rising edges of  
RSYSCLKn when the receive-side elastic store is enabled. This output is low  
when in internal mode.  
RSER4  
RSER5  
RSER6  
RSER7  
O
8mA  
RSER8  
TDATF1  
TDATF2  
TDATF3  
TDATF4  
TDATF5  
TDATF6  
TDATF7  
TDATF8  
RSYNC1  
RSYNC2  
RSYNC3  
RSYNC4  
RSYNC5  
RSYNC6  
RSYNC7  
RSYNC8  
RSYSCLK1  
RSYSCLK2  
RSYSCLK3  
RSYSCLK4  
RSYSCLK5  
RSYSCLK6  
RSYSCLK7  
RSYSCLK8  
Transmit Data Formatter Output  
O
8mA  
TDATFn: Can be programmed to source NRZ data via a configuration register.  
This pin is low when the internal LIU is enabled. This is active when the internal  
LIUn is disabled (GCR2.LIUD bit).  
Receive Sync  
RSYNCn: If the receive-side elastic store is enabled, then this signal is used to  
input a frame or multiframe boundary pulse. If set to output frame boundaries  
then RSYNC can be programmed to output double-wide pulses on signaling  
frames in T1 mode. In E1 Mode RSYNC out can be used to indicate CAS and  
CRC4 multiframe.  
IO  
8mA  
Receive System Clock  
RSYSCLKn: 1.544MHz, or 2.048MHz receive backplane clock. Only used when  
the receive side elastic store function is enabled. Should be tied low in  
applications that do not use the receive side elastic store. This pin is active in  
external mode only.  
I
Frame Synchronization  
RFSYNCn: RFSYNC is an extracted 8kHz pulse, one RCLKF or RCLK wide that  
identifies frame boundaries.  
RF/RMSYNC1  
RF/RMSYNC2  
RF/RMSYNC3  
RF/RMSYNC4  
RF/RMSYNC5  
RF/RMSYNC6  
RF/RMSYNC7  
RF/RMSYNC8  
Receive Multiframe Synchronization  
O
8mA  
RMSYNCn: RMSYNC is an extracted pulse, one RCLKF or RCLK wide (elastic  
store disabled) or one RSYSCLK wide (elastic store enabled), which identifies  
multiframe boundaries. When the receive elastic store is enabled, the RMSYNC  
signal indicates the multiframe sync on the system (backplane) side of the elastic  
store. In E1 mode, will indicate either the CRC4 or CAS multiframe as determined  
by a configuration register.  
RLOF/RLOS1  
RLOF/RLOS2  
RLOF/RLOS3  
RLOF/RLOS4  
RLOF/RLOS5  
RLOF/RLOS6  
RLOF/RLOS7  
RLOF/RLOS8  
Receive Loss of Frame  
RLOFn: This pin can toggle high when the synchronizer is searching for the  
frame and multiframe.  
O
8mA  
Receive Loss of Signal  
RLOSn: This pin can toggle high when the framer detects a loss of signal  
condition.  
43 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
NAME  
TYPE  
FUNCTION  
TSER1  
TSER2  
TSER3  
Transmit Serial Data  
TSER4  
TSER5  
TSER6  
TSERn: Sampled on the falling edge of TCLKF when the transmit side elastic  
store is disabled. Sampled on the falling edge of TSYSCLK when the transmit  
side elastic store is enabled. This pin is active in external mode only.  
I
TSER7  
TSER8  
RDATF1  
RDATF2  
RDATF3  
RDATF4  
RDATF5  
RDATF6  
RDATF7  
RDATF8  
Receive Data Framer input  
RDATFn: RDATFn can be used for unipolar (NRZ) data if enabled. This is active  
when the internal LIUn is disabled (GCR2.LIUD bit).  
I
Transmit Synchronization In/Out  
TSYNCn: A pulse at this pin establishes either frame or multiframe boundaries  
for the transmit side. This signal can additionally be programmed to output either  
a frame or multiframe pulse. If this pin is set to output pulses at frame  
boundaries, it can additionally be set to output doublewide pulses at signaling  
frames in T1 mode. The operation of this signal is synchronous with TCLKF. Only  
used when elastic store is disabled.  
TSYNC/TSSYNC1  
TSYNC/TSSYNC2  
TSYNC/TSSYNC3  
TSYNC/TSSYNC4  
TSYNC/TSSYNC5  
TSYNC/TSSYNC6  
TSYNC/TSSYNC7  
TSYNC/TSSYNC8  
IO  
8mA  
Transmit System Synchronization In  
TSSYNCn: Only used when the transmit-side elastic store is enabled. A pulse at  
this pin will establish either frame or multiframe boundaries for the transmit side.  
The operation of this signal is synchronous with TSYSCLK.  
TSYSCLK/ECLK1  
TSYSCLK/ECLK2  
TSYSCLK/ECLK3  
TSYSCLK/ECLK4  
TSYSCLK/ECLK5  
TSYSCLK/ECLK6  
TSYSCLK/ECLK7  
TSYSCLK/ECLK8  
Transmit System Clock  
TSYSCLKn: 1.544MHz or 2.048MHz clock. Only used when the transmit-side  
elastic store function is enabled. This pin is active in external mode.  
I
External Clock  
ECLK: This pin is an external clock input for the receive and transmit. The pins is  
configured by register FMRTOPISM.  
CLOCK PINS  
System Clock Select  
CLK_SYS_S: This pin selects the input CLK_SYS frequency. The pin should be  
tied high when a 25MHz CLK_SYS is used. The pin should be tied low or left  
unconnected when a 50MHz or 75MHz CLK_SYS is used.  
System Clock  
CLK_SYS: Clock input used to drive the TDM-over-Packet internal circuitry.  
Requires a 25MHz or 50MHz or 75MHz(+50ppm or better) clock on this pin. The  
25MHz CLK_SYS is used to generate a 50MHz or 75MHz internal system clock  
for the TDM-over-Packet and SD_CLK. The 50MHz or 75MHz CLK_SYS is used  
for the SD_CLK output, and the internal system clock for the TDM-over-Packet  
block.  
CLK_SYS_S  
CLK_SYS  
Ipd  
I
44 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
NAME  
TYPE  
FUNCTION  
Clock High Synthesis  
CLK_HIGH: 19.44MHz or 38.88MHz or 77.76MHz clock input is used for E1/T1  
clock recovery machines of the TDM-over-Packet and the internal MCLK for the  
LIU and Framer. The LIU and FRAMER use this clock as the internal MCLK  
when programmed in default mode. A configuration register sets if the clock input  
is going to be 10.00MHz or 19.44MHz or 38.88MHz or 77.76MHz. It is  
recommend that this signal be tied to DVSS when none of the recovered clock  
outputs (TDM1_ACLK–TDM8_ACLK) are used or when the chip is in single-port  
high-speed mode.  
CLK_HIGH  
I
Accuracy is described in the Clock Recovery section (Section 7.7.4).  
Master Clock  
MCLK: This is an independent free-running clock whose input can be 2.048MHz  
±50ppm or 1.544MHz ±32ppm. An external MCLK is used when not using the  
TDM-over-Packet engine CLK_HIGH. The user must program this pin to be used  
as the external MCLK source. When using this MCLK pin set MCLKE bit and set  
MCLKS bit for correct operation as described in the GCR1 register.  
Common Clock  
MCLK  
I
CLK_CMN: Common clock has to be a multiple of 8kHz and in the range of  
1MHz to 25MHz. The frequency input should not be too close to an integer  
multiple of the service clock frequency. Based on these criteria, the following  
frequencies are suggested:  
For systems with access to a common SONET/SDH network, a frequency of  
19.44MHz (2430 x 8kHz).  
CLK_CMN  
I
For systems with access to a common ATM network, 9.72MHz (1215 x 8kHz) or  
19.44MHz (2430 x 8kHz).  
For systems using GPS, 8.184MHz (1023 x 8kHz).  
For systems connected by a single hop of 100Mbps Ethernet where it is possible  
to lock the physical layer clock, 25MHz (3125 x 8kHz).  
When common clock is not used tie to ground or VDD(3.3V).  
MICROPROCESSOR PINS  
Host Data Bus  
IO  
H_D[31:1]  
H_D[31:1]: Host data bus MSB is HD[31] when the host data bus width is 32 bits  
and HD_D[15] when the host data bus width is 16 bits.  
Host Data Bus  
8mA  
H_D[0]: In CPU mode (H_CPU_SPI_N = 1), this pin is used as H_D[0], which is  
the LSB of the CPU data bus.  
H_D[0]/  
IO  
SPI_MISO  
8mA  
SPI MISO  
SPI_MISO[0]: In SPI mode (H_CPU_SPI = 0), this pin is used as SPI_MISO  
output. If the SPI interface is not selected(SPI_SEL_N), this output is tri-state.  
Host Address Bus  
H_AD[24:1]  
H_CS_N  
I
I
H_AD[24:1]: Host address bus, MSB is H_AD[24]. When the host data bus is 32  
bits, H_AD[1] should be tied to VSS.  
Host Chip Select  
H_CS_N: Host chip select active low.  
Host Read/Write  
H_R_W_N: In CPU mode (H_CPU_SPI_N = 1), this input is host read/write.  
H_R_W_N/  
SPI_CP  
I
SPI Clock Phase  
SPU_CP: In SPI mode (H_CPU_SPI_N = 0), this input is the SPI clock phase.  
45 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
NAME  
TYPE  
FUNCTION  
H_D[7:0] Write Enable, Active Low  
H_WR_BE0_N: In CPU mode (H_CPU_SPI_N = 1) this input is H_D[7:0] write  
enable, active low.  
H_WR_BE0_N/  
SPI_CLK  
I
SPI Clock  
SPI_CLK: In SPI mode (H_CPU_SPI_N = 0), this input is SPI clock.  
H_D[15:8] Write Enable, Active Low  
H_WR_BE1_N: In CPU mode (H_CPU_SPI_N = 1), this input is H_D[15:8] write  
enable, active low.  
H_WR_BE1_N/  
SPI_MOSI  
I
I
I
SPI_MOSI  
SPI_MOSI: In SPI mode (H_CPU_SPI_N = 0), this input is SPI_MOSI.  
H_D[23:16] Write Enable, Active Low  
H_WR_BE2_N: In CPU mode (H_CPU_SPI_N = 1), this input is H_D[23:16] write  
enable, active low.  
H_WR_BE2_N/  
SPI_SEL_N  
SPI Select  
SPI_SEL_N: In SPI mode (H_CPU_SPI_N = 0), this input is SPI_SEL_N.  
H_D[31:24] Write Enable, Active Low  
H_WR_BE3_N: In CPU mode (H_CPU_SPI_N = 1), H_D[31:24] write enable,  
active low.  
H_WR_BE3_N/  
SPI_CI  
SPI Clock Invert  
SPI_CI: In SPI mode (H_CPU_SPI_N = 0), this input is clock invert for SPI mode.  
Host Ready  
Opu  
8mA  
H_READY_N  
H_INT[1:0]  
H_READY_N: Host ready, active low. This pin requires the use of an external  
pullup resistor. The signal is actively driven high ‘1’ before it becomes tri-state.  
Host Interrupt  
O
8mA  
H_INT[1:0]: Host Interrupts are active low. H_INT[0] is used for the TDM-over-  
Packet and H_INT[1] is used for the LIU, FRAMER and BERT. H_INT[0] can also  
be ORed with H_INT[1]. See register bit GCR1.IPOR.  
Data 32/16-Bit Select  
DAT_32_16_N  
H_CPU_SPI_N  
Ipu  
Ipu  
DAT_32_16_N: Selects the host data bus width to be ‘16’ when low ‘0’ and ‘32’  
when high ‘1’. This pin is ignored in SPI mode.  
SPI Mode  
H_CPU_SPI_N: ‘0’ – SPI mode, CPU bus is disabled, ‘1’ – Regular CPU bus  
MISCELLANEOUS PINS  
System Reset  
RST_SYS_N: System reset, active low.  
JTAG Test Mode Select  
JTMS: This pin is sampled on the rising edge of JTCLK and is used to place the  
test access port into the various defined IEEE 1149.1 states. This pin has a 10kΩ  
pullup resistor.  
RST_SYS_N  
JTMS  
Ipu  
Ipu  
JTAG Test Clock  
JTCLK  
JTDI  
I
JTCLK: This signal is used to shift data into JTDI on the rising edge and out of  
JTDO on the falling edge.  
JTAG Test Data In  
JTDI: Test instructions and data are clocked into this pin on the rising edge of  
JTCLK. This pin has a 10kΩ pullup resistor.  
JTAG Test Data Out  
JTDO: Test instructions and data are clocked out of this pin on the falling edge of  
JTCLK. If not used, this pin should be left unconnected.  
Ipu  
Oz  
8mA  
JTDO  
46 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
NAME  
TYPE  
FUNCTION  
JTAG Test Reset  
JTRST: JTRST is used to asynchronously reset the test access port controller.  
After power-up, JTRST must be toggled from low to high. This action sets the  
device into the JTAG DEVICE ID mode. Pulling JTRST low restores normal  
device operation. JTRST is pulled HIGH internally via a 10kΩ resistor operation.  
If boundary scan is not used, this pin should be held low.  
Resistor Reference  
JTRST  
Ipu  
RESREF: Requires a 10kΩ precision resistor (1% or better) to ground. This is  
used to calibrate the termination resistors internal to the part and the transmit  
impedance.  
RESREF  
I
TEST PINS  
Scan Enable  
SCEN  
STMD  
Ipd  
Ipd  
SCEN: Used during factory test. This pin should be a “No Connect.”  
Scan Test Mode  
STMD: Used during factory test. This pin should be a “No Connect.”  
High-Impedance Test Enable (Active Low)  
HIZ_N: This signal is used to enable testing. When this signal is low while JTRST  
is low, all the digital output and bidirectional pins are placed in the high-  
impedance state. For normal operation this signal is high. This is an  
asynchronous input.  
HIZ_N  
I
MBIST_EN  
MBIST_DONE  
MBIST_FAIL  
I
Used during factory test. Tie to DVSS.  
O
O
Used during factory test. This pin should be a “No Connect.”  
Used during factory test. This pin should be a “No Connect.”  
Test Clock  
TEST_CLK  
TST_CLD  
TST_TA  
TST_TB  
TST_TC  
TST_RA  
TST_RB  
TST_RC  
O
I
TEST_CLK: Used during factory test. This pin should be a “No Connect.”  
Test CLAD  
TST_CLD: Used during factory test. Tie to DVSS.  
Test Transmit Probe A  
TST_TA: Used during factory test. This pin should be a “No Connect.”  
Test Transmit Probe B  
TST_TB: Used during factory test. This pin should be a “No Connect.”  
Test Transmit Probe C  
TST_TC: Used during factory test. This pin should be a “No Connect.”  
Test Receiver Probe A  
TST_RA: Used during factory test. This pin should be a “No Connect.”  
Test Receiver Probe A  
TST_RA: Used during factory test. This pin should be a “No Connect.”  
Test Receiver Probe A  
TST_RA: Used during factory test. This pin should be a “No Connect.”  
O
O
O
O
O
O
47 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
NAME  
TYPE  
FUNCTION  
POWER PINS  
DVSS  
Digital Ground for Framers and TDM-over-Packet (31 pins)  
1.8V Core Supply Voltage for Framers and TDM-over-Packet (17 pins)  
3.3V Supply Voltage for IO (16 pins)  
DVDDC  
DVDDIO  
DVSSLIU  
DVDDLIU  
Digital Ground for LIUs (2 pins)  
3.3V Digital Supply for LIUs (2 pins)  
ATVDD1  
ATVDD2  
ATVDD3  
ATVDD4  
ATVDD5  
ATVDD6  
ATVDD7  
ATVDD8  
ATVSS1  
ATVSS2  
ATVSS3  
ATVSS4  
ATVSS5  
ATVSS6  
ATVSS7  
ATVSS8  
ARVDD1  
ARVDD2  
ARVDD3  
ARVDD4  
ARVDD5  
ARVDD6  
ARVDD7  
ARVDD8  
ARVSS1  
ARVSS2  
ARVSS3  
ARVSS4  
ARVSS5  
ARVSS6  
ARVSS7  
ARVSS8  
ACVDD2  
-
3.3V Power Supply for the Transmitter. All ATVDD pins need to be 3.3V.  
Analog Ground for Transmitters  
3.3V Analog Receive Power Supply  
Analog Receive Ground  
1.8V Analog CLAD Power Supply 2 Used for CLK_HIGH Adaption  
1.8V Analog CLAD Power Supply 1  
ACVDD1  
ACVSS2  
ACVSS1  
Analog CLAD GND2 Used for CLK_HIGH Adaption  
Analog CLAD GND1  
Note: Pins with names ending in an asterisk (*) or “_N” are active low.  
48 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
11. JTAG Information  
For the latest JTAG model search under www.maxim-ic.com/tools/bsdl/.  
11.1 JTAG Description  
The DS34T108 supports the standard instruction codes SAMPLE/PRELOAD, BYPASS, and EXTEST. Optional  
public instructions included are HIGHZ, CLAMP and IDCODE. See Figure 11-1 for a JTAG block diagram. The  
DS34T108 contains the following items that meet the requirements set by the IEEE 1149.1 Standard Test Access  
Port and Boundary Scan Architecture:  
Test Access Port (TAP)  
TAP Controller  
Instruction Register  
Bypass Register  
Boundary Scan Register  
Device Identification Register  
The Test Access Port has the necessary interface pins, namely JTCLK, JTRST, JTDI, JTDO, and JTMS. Details on  
these pins can be found in Section 10.2. Details on the Boundary Scan Architecture and the Test Access Port can  
be found in IEEE 1149.1-1990, IEEE 1149.1a-1993, and IEEE 1149.1b-1994.  
Figure 11-1. JTAG Block Diagram  
BOUNDRY SCAN  
REGISTER  
IDENTIFICATION  
REGISTER  
MUX  
BYPASS  
REGISTER  
INSTRUCTION  
REGISTER  
TEST ACCESS PORT  
CONTROLLER  
SELECT  
OUTPUT ENABLE  
Vdd  
Vdd  
Vdd  
10K  
10K  
10K  
JTDI  
JTMS  
JTCLK  
JTRST  
JTDO  
49 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
11.2 JTAG TAP Controller State Machine Description  
This section covers the details on the operation of the Test Access Port (TAP) Controller State Machine. See  
Figure 11-2 for details on each of the states described below. The TAP controller is a finite state machine that  
responds to the logic level at JTMS on the rising edge of JTCLK.  
Figure 11-2. JTAG TAP Controller State Machine  
Test-Logic-Reset  
1
0
1
1
Select  
Select  
1
Run-Test/Idle  
DR-Scan  
IR-Scan  
0
0
0
1
1
Capture-DR  
0
Capture-IR  
0
Shift-DR  
1
Shift-IR  
1
0
1
0
1
Exit1- DR  
0
Exit1-IR  
0
Pause-DR  
1
Pause-IR  
1
0
0
0
0
Exit2-DR  
1
Exit2-IR  
1
Update-DR  
Update-IR  
1 0  
1
0
Test-Logic-Reset. Upon device power-up, the TAP controller starts in the Test-Logic-Reset state. The Instruction  
Register contains the IDCODE instruction. All system logic on the device operates normally.  
Run-Test-Idle. Run-Test-Idle is used between scan operations or during specific tests. The Instruction Register  
and Test Register remain idle.  
Select-DR-Scan. All test registers retain their previous state. With JTMS low, a rising edge of JTCLK moves the  
controller into the Capture-DR state and initiates a scan sequence. JTMS high moves the controller to the Select-  
IR-SCAN state.  
50 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
Capture-DR. Data can be parallel loaded into the test data registers selected by the current instruction. If the  
instruction does not call for a parallel load or the selected register does not allow parallel loads, the test register  
remains at its current value. On the rising edge of JTCLK, the controller goes to the Shift-DR state if JTMS is low or  
it to the Exit1-DR state if JTMS is high.  
Shift-DR. The test data register selected by the current instruction is connected between JTDI and JTDO and shifts  
data one stage towards its serial output on each rising edge of JTCLK. If a test register selected by the current  
instruction is not placed in the serial path, it maintains its previous state.  
Exit1-DR. While in this state, a rising edge on JTCLK with JTMS high puts the controller in the Update-DR state,  
which terminates the scanning process. A rising edge on JTCLK with JTMS low puts the controller in the Pause-DR  
state.  
Pause-DR. Shifting of the test registers is halted while in this state. All test registers selected by the current  
instruction retain their previous state. The controller remains in this state while JTMS is low. A rising edge on  
JTCLK with JTMS high puts the controller in the Exit2-DR state.  
Exit2-DR. While in this state, a rising edge on JTCLK with JTMS high puts the controller in the Update-DR state  
and terminates the scanning process. A rising edge on JTCLK with JTMS low puts the controller in the Shift-DR  
state.  
Update-DR. A falling edge on JTCLK while in the Update-DR state latches the data from the shift register path of  
the Test registers into the data output latches. This prevents changes at the parallel output due to changes in the  
shift register. A rising edge on JTCLK with JTMS low puts the controller in the Run-Test-Idle state. With JTMS high,  
the controller enters the Select-DR-Scan state.  
Select-IR-Scan. All Test registers retain their previous state. The Instruction register remains unchanged during  
this state. With JTMS low, a rising edge on JTCLK moves the controller into the Capture-IR state and initiates a  
scan sequence for the Instruction register. JTMS high during a rising edge on JTCLK puts the controller back into  
the Test-Logic-Reset state.  
Capture-IR. The Capture-IR state is used to load the shift register in the Instruction register with a fixed value. This  
value is loaded on the rising edge of JTCLK. If JTMS is high on the rising edge of JTCLK, the controller enters the  
Exit1-IR state. If JTMS is low on the rising edge of JTCLK, the controller enters the Shift-IR state.  
Shift-IR. In this state, the shift register in the Instruction register is connected between JTDI and JTDO and shifts  
data one stage for every rising edge of JTCLK towards the serial output. The parallel register as well as all test  
registers remain at their previous states. A rising edge on JTCLK with JTMS high moves the controller to the Exit1-  
IR state. A rising edge on JTCLK with JTMS low keeps the controller in the Shift-IR state while moving data one  
stage through the Instruction shift register.  
Exit1-IR. A rising edge on JTCLK with JTMS low puts the controller in the Pause-IR state. If JTMS is high on the  
rising edge of JTCLK, the controller enters the Update-IR state and terminates the scanning process.  
Pause-IR. Shifting of the Instruction register is halted temporarily. With JTMS high, a rising edge on JTCLK puts  
the controller in the Exit2-IR state. The controller remains in the Pause-IR state if JTMS is low during a rising edge  
on JTCLK.  
Exit2-IR. A rising edge on JTCLK with JTMS high put the controller in the Update-IR state. The controller loops  
back to the Shift-IR state if JTMS is low during a rising edge of JTCLK in this state.  
Update-IR. The instruction shifted into the Instruction shift register is latched into the parallel output on the falling  
edge of JTCLK as the controller enters this state. Once latched, this instruction becomes the current instruction. A  
rising edge on JTCLK with JTMS low puts the controller in the Run-Test-Idle state. With JTMS high, the controller  
enters the Select-DR-Scan state.  
51 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
11.3 JTAG Instruction Register and Instructions  
The instruction register contains a shift register as well as a latched parallel output, and is 3 bits in length. When  
the TAP controller enters the Shift-IR state, the instruction shift register is connected between JTDI and JTDO.  
While in the Shift-IR state, a rising edge on JTCLK with JTMS low shifts data one stage towards the serial output at  
JTDO. A rising edge on JTCLK in the Exit1-IR state or the Exit2-IR state with JTMS high moves the controller to  
the Update-IR state. The falling edge of that same JTCLK latches the data in the instruction shift register to the  
instruction parallel output. Instructions supported by the DS34T108 and their respective operational binary codes  
are shown in Table 11-1.  
Table 11-1. JTAG Instruction Codes  
INSTRUCTION  
SELECTED REGISTER  
INSTRUCTION CODES  
SAMPLE/PRELOAD  
BYPASS  
Boundary Scan  
Bypass  
Boundary Scan  
Bypass  
010  
111  
000  
011  
100  
001  
EXTEST  
CLAMP  
HIGHZ  
IDCODE  
Bypass  
Device Identification  
Table 11-2. JTAG ID Code  
ID CODE (hex)  
Device ID[27:12]  
0093  
DEVICE  
Rev[31:28]  
Manu[11:0]  
143  
DS34T108  
DS34T104  
DS34T102  
DS34T101  
DS34S108  
DS34S104  
DS34S102  
DS34S101  
0
0
0
0
0
0
0
0
0092  
0091  
0090  
009B  
009A  
0099  
0098  
143  
143  
143  
143  
143  
143  
143  
11.3.1 SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a mandatory instruction for the IEEE 1149.1 specification. This instruction supports two  
functions. The digital I/Os of the device can be sampled at the boundary scan register without interfering with the  
normal operation of the device by using the Capture-DR state. SAMPLE/PRELOAD also allows the DS34T108 to  
shift data into the boundary scan register via JTDI using the Shift-DR state.  
11.3.2 EXTEST  
EXTEST allows testing of all interconnections to the device. When the EXTEST instruction is latched in the  
instruction register, the following actions occur. Once enabled via the Update-IR state, the parallel outputs of all  
digital output pins are driven. The boundary scan register is connected between JTDI and JTDO. The Capture-DR  
samples all digital inputs into the boundary scan register.  
11.3.3 BYPASS  
When the BYPASS instruction is latched into the parallel instruction register, JTDI connects to JTDO through the  
one-bit bypass test register. This allows data to pass from JTDI to JTDO not affecting the device’s normal  
operation.  
52 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
11.3.4 IDCODE  
When the IDCODE instruction is latched into the parallel Instruction register, the Identification Test register is  
selected. The device identification code is loaded into the Identification register on the rising edge of JTCLK  
following entry into the Capture-DR state. Shift-DR can be used to shift the identification code out serially via  
JTDO. During Test-Logic-Reset, the identification code is forced into the instruction register’s parallel output. The  
device ID code always has a one in the LSB position. The device ID codes are listed in Table 11-2.  
11.3.5 HIGHZ  
All digital outputs are placed into a high-impedance state. The bypass register is connected between JTDI and  
JTDO.  
11.3.6 CLAMP  
All digital outputs pins output data from the boundary scan parallel output while connecting the bypass register  
between JTDI and JTDO. The outputs do not change during the CLAMP instruction.  
11.4 JTAG Test Registers  
IEEE 1149.1 requires a minimum of two test registers: the bypass register and the boundary scan register. An  
optional test register has been included in the device design. This test register is the identification register and is  
used in conjunction with the IDCODE instruction and the Test-Logic-Reset state of the TAP controller.  
11.4.1 Bypass Register  
The bypass register is a single one-bit shift register used in conjunction with the BYPASS, CLAMP, and HIGHZ  
instructions, providing a short path between JTDI and JTDO.  
11.4.2 Identification Register  
The identification register contains a 32-bit shift register and a 32-bit latched parallel output. This register is  
selected during the IDCODE instruction and when the TAP controller is in the Test-Logic-Reset state.  
11.4.3 Boundary Scan Register  
The boundary scan register contains both a shift register path and a latched parallel output for all control cells and  
digital I/O cells, and is 32 bits in length. The BSDL file found at www.maxim-ic.com/tools/bsdl shows the entire  
cell bit locations and definitions.  
53 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
12. DC Electrical Characteristics  
ABSOLUTE MAXIMUM RATINGS  
Voltage Range on Any Input, Bidirectional or Open Drain  
Output Lead with Respect to DVSS………………………………………………………………………..-0.5V to +5.5V  
Supply Voltage Range (VDDIO, DVDDLIU) with Respect to DVSS and DVSSLIU……………………...-0.5V to +3.6V  
Supply Voltage Range (DVDDC) with Respect to DVSS…………………………………………………...-0.5V to +2.0V  
Ambient Operating Temperature Range……………………………………………………………………..-40°C to +85°C  
Junction Operating Temperature Range……………………………………………………………………-40°C to +125°C  
Storage Temperature Range………………………………………………………………………………...-55°C to +125°C  
Soldering Temperature………………………………………………………….See IPC/JEDEC J-STD-020 specification.  
These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the operation  
sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods can affect reliability. Ambient  
Operating Temperature Range is assuming the device is mounted on a JEDEC standard test board in a convection cooled JEDEC test  
enclosure.  
Note: The typical values listed are not production tested.  
Table 12-1. Recommended DC Operating Conditions  
(Tj = -40°C to +85°C.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Logic 1  
VIH  
VIL  
2.4  
-0.3  
3.465  
+0.8  
V
V
Output Logic 0  
Supply ±5%  
Supply ±5%  
DVDDIO,  
DVDDLIU,  
ARVDDn,  
ATVDDn  
DVDDC  
3.135  
1.71  
3.300  
1.8  
3.465  
1.89  
V
V
Table 12-2. DC Electrical Characteristics  
(Tj = -40°C to +85°C.)  
PARAMETER  
SYMBOL  
CONDITIONS  
DS34T108  
DS34T104  
DS34T102  
DS34T101  
MIN  
TYP  
400  
200  
120  
75  
MAX  
550  
300  
175  
115  
UNITS  
3.3V Supply Current  
(DVDDIO, DVDDLIU = 3.465V;  
ARVDDn, ATVDDn = 3.465V)  
(Note 1)  
IDDIO  
mA  
1.8V Supply Current  
(DVDDC = 1.89V)  
Lead Capacitance  
Input Leakage  
IDDC  
(Note 1)  
300  
7
350  
mA  
CIO  
IIL  
IILP  
pF  
μA  
μA  
-10  
-100  
+10  
-10  
Input Leakage  
Output Leakage (when High  
Impedance)  
ILO  
-10  
2.4  
+10  
μA  
Output Voltage (IOH = -4.0mA)  
Output Voltage (IOL = +4.0mA)  
Output Voltage (IOH = -8.0mA)  
Output Voltage (IOL = -8.0mA)  
Output Voltage (IOL = +12.0mA)  
Output Voltage (IOH = -12.0mA)  
Input Voltage Logic 0  
Input Voltage Logic 1  
VOH  
VOL  
VOH  
VOL  
VOL  
VOH  
VIL  
4mA output  
4mA output  
8mA output  
8mA output  
12mA output  
12mA output  
V
V
V
V
V
V
V
V
0.4  
2.4  
0.4  
0.4  
2.4  
2.0  
0.8  
VIH  
Note 1:  
All outputs loaded with rated capacitance; all inputs between DVDDIO and DVSS; inputs with pull-ups connected to DVDDIO.  
54 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
13. AC Timing Characteristics  
Refer to the full data sheet for this information.  
55 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
14. Pin Assignments  
14.1 Board Design for the DS34T108 Family of Products  
All devices in the DS34T108 family require the same footprint on the board. It is recommended that users design  
their board in such a way that it supports the stuffing of higher port-count devices into a lower port-count socket. If  
lower port-count designs are to be potentially stuffed with higher port-count devices, consideration must be taken  
during board design to bias the unused inputs, input/outputs, and outputs appropriately. Generally, unused inputs  
are tied directly to the ground plane, unused outputs are not connected, and unused input/outputs are tied to  
ground through a 10kΩ resistor. Unused inputs with internal pullups or pulldowns are not connected. Table 14-1  
designates how each ball on the package should be connected to implement a common board design. Shading  
indicates balls for the unused inputs, input/outputs, and outputs of higher port-count devices.  
When a user does stuff a socket with a higher port-count device, he/she needs a slightly modified BSDL file,  
available from the factory upon request.  
The user may decide to not implement a common board design. In that event, the balls for the unused inputs,  
input/outputs, and outputs need not be connected, and the stuffing of higher port-count devices into a lower port-  
count socket is not recommended.  
Table 14-1. Common Board Design Connections  
BALL  
M2  
DS34T108 SOCKET  
ACVDD1  
ACVDD2  
ACVSS1  
ACVSS2  
ARVDD1  
ARVDD2  
ARVDD3  
ARVDD4  
ARVDD5  
ARVDD6  
ARVDD7  
ARVDD8  
ARVSS1  
ARVSS2  
ARVSS3  
ARVSS4  
ARVSS5  
ARVSS6  
ARVSS7  
ARVSS8  
ATVDD1  
ATVDD2  
ATVDD3  
ATVDD4  
ATVDD5  
ATVDD6  
DS34T104 SOCKET  
ACVDD1  
ACVDD2  
ACVSS1  
ACVSS2  
ARVDD1  
ARVDD2  
ARVDD3  
ARVDD4  
ARVDD5  
ARVDD6  
ARVDD7  
ARVDD8  
ARVSS1  
ARVSS2  
ARVSS3  
ARVSS4  
ARVSS5  
ARVSS6  
ARVSS7  
ARVSS8  
ATVDD1  
ATVDD2  
ATVDD3  
ATVDD4  
ATVDD5  
ATVDD6  
DS34T102 SOCKET  
ACVDD1  
ACVDD2  
ACVSS1  
ACVSS2  
ARVDD1  
ARVDD2  
ARVDD3  
ARVDD4  
ARVDD5  
ARVDD6  
ARVDD7  
ARVDD8  
ARVSS1  
ARVSS2  
ARVSS3  
ARVSS4  
ARVSS5  
ARVSS6  
ARVSS7  
ARVSS8  
ATVDD1  
ATVDD2  
ATVDD3  
ATVDD4  
ATVDD5  
ATVDD6  
DS34T101 SOCKET  
ACVDD1  
ACVDD2  
ACVSS1  
ACVSS2  
ARVDD1  
ARVDD2  
ARVDD3  
ARVDD4  
ARVDD5  
ARVDD6  
ARVDD7  
ARVDD8  
ARVSS1  
ARVSS2  
ARVSS3  
ARVSS4  
ARVSS5  
ARVSS6  
ARVSS7  
ARVSS8  
ATVDD1  
ATVDD2  
ATVDD3  
ATVDD4  
ATVDD5  
ATVDD6  
K2  
M1  
K1  
B14  
B10  
B2  
F2  
U2  
AA2  
AA11  
AA13  
A14  
A10  
B1  
F1  
U1  
AA1  
AB11  
AB13  
B16  
B8  
D1  
H2  
R2  
W1  
56 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
BALL  
AA9  
AA15  
A16  
A8  
DS34T108 SOCKET  
ATVDD7  
ATVDD8  
ATVSS1  
DS34T104 SOCKET  
ATVDD7  
ATVDD8  
ATVSS1  
DS34T102 SOCKET  
ATVDD7  
ATVDD8  
ATVSS1  
DS34T101 SOCKET  
ATVDD7  
ATVDD8  
ATVSS1  
ATVSS2  
ATVSS2  
ATVSS2  
ATVSS2  
D2  
ATVSS3  
ATVSS3  
ATVSS3  
ATVSS3  
H1  
ATVSS4  
ATVSS4  
ATVSS4  
ATVSS4  
R1  
ATVSS5  
ATVSS5  
ATVSS5  
ATVSS5  
W2  
AB9  
AB15  
P1  
ATVSS6  
ATVSS6  
ATVSS6  
ATVSS6  
ATVSS7  
ATVSS7  
ATVSS7  
ATVSS7  
ATVSS8  
ATVSS8  
ATVSS8  
ATVSS8  
CLK_CMN  
CLK_HIGH  
CLK_MII_RX  
CLK_MII_TX  
CLK_SSMII_TX  
CLK_SYS/SCCLK  
CLK_SYS_S  
DAT_32_16_N  
DVDDC  
CLK_CMN  
CLK_HIGH  
CLK_MII_RX  
CLK_MII_TX  
CLK_SSMII_TX  
CLK_SYS/SCCLK  
CLK_SYS_S  
DAT_32_16_N  
DVDDC  
CLK_CMN  
CLK_HIGH  
CLK_MII_RX  
CLK_MII_TX  
CLK_SSMII_TX  
CLK_SYS/SCCLK  
CLK_SYS_S  
DAT_32_16_N  
DVDDC  
CLK_CMN  
CLK_HIGH  
CLK_MII_RX  
CLK_MII_TX  
CLK_SSMII_TX  
CLK_SYS/SCCLK  
CLK_SYS_S  
DAT_32_16_N  
DVDDC  
L1  
V16  
AA18  
Y19  
J1  
J2  
L21  
L2  
T5  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
V5  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
Y20  
Y10  
T18  
G18  
V18  
V20  
A12  
E18  
E20  
C20  
B11  
G5  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
E5  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
C4  
DVDDC  
DVDDC  
DVDDC  
DVDDC  
M9  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
N9  
P10  
P13  
N14  
P12  
M14  
L14  
P11  
K14  
J12  
J13  
57 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
BALL  
J11  
J10  
L9  
DS34T108 SOCKET  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDLIU  
DVDDLIU  
DVSS  
DS34T104 SOCKET  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDLIU  
DVDDLIU  
DVSS  
DS34T102 SOCKET  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDLIU  
DVDDLIU  
DVSS  
DS34T101 SOCKET  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDLIU  
DVDDLIU  
DVSS  
K9  
C3  
V3  
M10  
L13  
H15  
U17  
L11  
M11  
K12  
K11  
K10  
M12  
N11  
D4  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
H8  
DVSS  
DVSS  
DVSS  
DVSS  
K13  
M13  
B12  
N2  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
F6  
DVSS  
DVSS  
DVSS  
DVSS  
L10  
U6  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
W4  
DVSS  
DVSS  
DVSS  
DVSS  
R8  
DVSS  
DVSS  
DVSS  
DVSS  
N12  
F17  
L12  
N10  
R15  
W19  
N13  
Y12  
D19  
Y3  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSS  
DVSSLIU  
DVSSLIU  
H_AD[1]  
H_AD[10]  
H_AD[11]  
H_AD[12]  
H_AD[13]  
H_AD[14]  
H_AD[15]  
H_AD[16]  
DVSSLIU  
DVSSLIU  
H_AD[1]  
H_AD[10]  
H_AD[11]  
H_AD[12]  
H_AD[13]  
H_AD[14]  
H_AD[15]  
H_AD[16]  
DVSSLIU  
DVSSLIU  
H_AD[1]  
H_AD[10]  
H_AD[11]  
H_AD[12]  
H_AD[13]  
H_AD[14]  
H_AD[15]  
H_AD[16]  
DVSSLIU  
DVSSLIU  
H_AD[1]  
H_AD[10]  
H_AD[11]  
H_AD[12]  
H_AD[13]  
H_AD[14]  
H_AD[15]  
H_AD[16]  
E3  
L18  
N22  
L15  
P21  
N16  
N20  
P22  
N19  
58 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
BALL  
R21  
M19  
N21  
M21  
M17  
P20  
R22  
N17  
T21  
K16  
M22  
T20  
M18  
M16  
M20  
L16  
DS34T108 SOCKET  
H_AD[17]  
H_AD[18]  
H_AD[19]  
H_AD[2]  
H_AD[20]  
H_AD[21]  
H_AD[22]  
H_AD[23]  
H_AD[24]  
H_AD[3]  
H_AD[4]  
H_AD[5]  
H_AD[6]  
H_AD[7]  
H_AD[8]  
H_AD[9]  
H_CPU_SPI_N  
H_CS_N  
H_D[0]/SPI_MISO  
H_D[1]  
DS34T104 SOCKET  
H_AD[17]  
H_AD[18]  
H_AD[19]  
H_AD[2]  
H_AD[20]  
H_AD[21]  
H_AD[22]  
H_AD[23]  
H_AD[24]  
H_AD[3]  
H_AD[4]  
H_AD[5]  
H_AD[6]  
H_AD[7]  
H_AD[8]  
H_AD[9]  
H_CPU_SPI_N  
H_CS_N  
H_D[0]/SPI_MISO  
H_D[1]  
DS34T102 SOCKET  
H_AD[17]  
H_AD[18]  
H_AD[19]  
H_AD[2]  
H_AD[20]  
H_AD[21]  
H_AD[22]  
H_AD[23]  
H_AD[24]  
H_AD[3]  
H_AD[4]  
H_AD[5]  
H_AD[6]  
H_AD[7]  
H_AD[8]  
H_AD[9]  
H_CPU_SPI_N  
H_CS_N  
H_D[0]/SPI_MISO  
H_D[1]  
DS34T101 SOCKET  
H_AD[17]  
H_AD[18]  
H_AD[19]  
H_AD[2]  
H_AD[20]  
H_AD[21]  
H_AD[22]  
H_AD[23]  
H_AD[24]  
H_AD[3]  
H_AD[4]  
H_AD[5]  
H_AD[6]  
H_AD[7]  
H_AD[8]  
H_AD[9]  
H_CPU_SPI_N  
H_CS_N  
H_D[0]/SPI_MISO  
H_D[1]  
K19  
L17  
T22  
U21  
V22  
P18  
W22  
Y21  
P19  
Y22  
AA21  
AA22  
AB21  
U20  
N18  
R19  
AB22  
P17  
V21  
R17  
V19  
T19  
W21  
U16  
R18  
R20  
W20  
U19  
T17  
P16  
U18  
H_D[10]  
H_D[11]  
H_D[12]  
H_D[13]  
H_D[14]  
H_D[15]  
H_D[16]  
H_D[17]  
H_D[18]  
H_D[19]  
H_D[2]  
H_D[10]  
H_D[11]  
H_D[12]  
H_D[13]  
H_D[14]  
H_D[15]  
H_D[16]  
H_D[17]  
H_D[18]  
H_D[19]  
H_D[2]  
H_D[10]  
H_D[11]  
H_D[12]  
H_D[13]  
H_D[14]  
H_D[15]  
H_D[16]  
H_D[17]  
H_D[18]  
H_D[19]  
H_D[2]  
H_D[10]  
H_D[11]  
H_D[12]  
H_D[13]  
H_D[14]  
H_D[15]  
H_D[16]  
H_D[17]  
H_D[18]  
H_D[19]  
H_D[2]  
H_D[20]  
H_D[21]  
H_D[22]  
H_D[23]  
H_D[24]  
H_D[25]  
H_D[26]  
H_D[27]  
H_D[28]  
H_D[29]  
H_D[3]  
H_D[20]  
H_D[21]  
H_D[22]  
H_D[23]  
H_D[24]  
H_D[25]  
H_D[26]  
H_D[27]  
H_D[28]  
H_D[29]  
H_D[3]  
H_D[20]  
H_D[21]  
H_D[22]  
H_D[23]  
H_D[24]  
H_D[25]  
H_D[26]  
H_D[27]  
H_D[28]  
H_D[29]  
H_D[3]  
H_D[20]  
H_D[21]  
H_D[22]  
H_D[23]  
H_D[24]  
H_D[25]  
H_D[26]  
H_D[27]  
H_D[28]  
H_D[29]  
H_D[3]  
H_D[30]  
H_D[31]  
H_D[4]  
H_D[30]  
H_D[31]  
H_D[4]  
H_D[30]  
H_D[31]  
H_D[4]  
H_D[30]  
H_D[31]  
H_D[4]  
H_D[5]  
H_D[5]  
H_D[5]  
H_D[5]  
H_D[6]  
H_D[6]  
H_D[6]  
H_D[6]  
59 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
BALL  
R16  
U22  
T16  
J17  
L22  
K17  
K18  
L19  
J16  
J18  
DS34T108 SOCKET  
H_D[7]  
DS34T104 SOCKET  
H_D[7]  
DS34T102 SOCKET  
H_D[7]  
DS34T101 SOCKET  
H_D[7]  
H_D[8]  
H_D[8]  
H_D[8]  
H_D[8]  
H_D[9]  
H_D[9]  
H_D[9]  
H_D[9]  
H_INT[0]  
H_INT[0]  
H_INT[0]  
H_INT[0]  
H_INT[1]  
H_INT[1]  
H_INT[1]  
H_INT[1]  
H_R_W_N/SPI_CP  
H_READY_N  
H_WR_BE0_N/SPI_CLK  
H_R_W_N/SPI_CP  
H_READY_N  
H_WR_BE0_N/SPI_CLK  
H_R_W_N/SPI_CP  
H_READY_N  
H_WR_BE0_N/SPI_CLK  
H_R_W_N/SPI_CP  
H_READY_N  
H_WR_BE0_N/SPI_CLK  
H_WR_BE1_N/SPI_MOSI H_WR_BE1_N/SPI_MOSI H_WR_BE1_N/SPI_MOSI H_WR_BE1_N/SPI_MOSI  
H_WR_BE2_N/SPI_SEL_N H_WR_BE2_N/SPI_SEL_N H_WR_BE2_N/SPI_SEL_N H_WR_BE2_N/SPI_SEL_N  
L20  
T3  
H_WR_BE3_N/SPI_CI  
HiZ_N  
H_WR_BE3_N/SPI_CI  
HiZ_N  
H_WR_BE3_N/SPI_CI  
HiZ_N  
H_WR_BE3_N/SPI_CI  
HiZ_N  
L3  
JTCLK  
JTCLK  
JTCLK  
JTCLK  
M3  
JTDI  
JTDI  
JTDI  
JTDI  
N3  
JTDO  
JTDO  
JTDO  
JTDO  
K3  
JTMS  
JTMS  
JTMS  
JTMS  
P3  
JTRST_N  
JTRST_N  
JTRST_N  
MBIST_DONE  
MBIST_EN  
MBIST_FAIL  
MCLK  
JTRST_N  
MBIST_DONE  
MBIST_EN  
MBIST_FAIL  
MCLK  
M15  
P15  
N15  
N1  
MBIST_DONE  
MBIST_EN  
MBIST_FAIL  
MCLK  
MBIST_DONE  
MBIST_EN  
MBIST_FAIL  
MCLK  
AB17  
AA20  
AA17  
Y18  
Y17  
V17  
AA16  
W16  
AB16  
Y16  
W17  
AB20  
AB18  
W18  
AA19  
AB19  
C10  
L4  
MDC  
MDC  
MDC  
MDC  
MDIO  
MDIO  
MDIO  
MDIO  
MII_COL  
MII_COL  
MII_COL  
MII_COL  
MII_CRS  
MII_CRS  
MII_CRS  
MII_CRS  
MII_RX_DV  
MII_RX_ERR  
MII_RXD[0]  
MII_RXD[1]  
MII_RXD[2]  
MII_RXD[3]  
MII_TX_EN  
MII_TX_ERR  
MII_TXD[0]  
MII_TXD[1]  
MII_TXD[2]  
MII_TXD[3]  
N.C.  
MII_RX_DV  
MII_RX_ERR  
MII_RXD[0]  
MII_RXD[1]  
MII_RXD[2]  
MII_RXD[3]  
MII_TX_EN  
MII_TX_ERR  
MII_TXD[0]  
MII_TXD[1]  
MII_TXD[2]  
MII_TXD[3]  
N.C.  
MII_RX_DV  
MII_RX_ERR  
MII_RXD[0]  
MII_RXD[1]  
MII_RXD[2]  
MII_RXD[3]  
MII_TX_EN  
MII_TX_ERR  
MII_TXD[0]  
MII_TXD[1]  
MII_TXD[2]  
MII_TXD[3]  
N.C.  
MII_RX_DV  
MII_RX_ERR  
MII_RXD[0]  
MII_RXD[1]  
MII_RXD[2]  
MII_RXD[3]  
MII_TX_EN  
MII_TX_ERR  
MII_TXD[0]  
MII_TXD[1]  
MII_TXD[2]  
MII_TXD[3]  
N.C.  
RCLKF1/RCLK1  
RCLKF2/RCLK2  
RCLKF3/RCLK3  
RCLKF4/RCLK4  
RCLKF5/RCLK5  
RCLKF6/RCLK6  
RCLKF7/RCLK7  
RCLKF8/RCLK8  
RCLKF1/RCLK1  
RCLKF2/RCLK2  
RCLKF3/RCLK3  
RCLKF4/RCLK4  
10K to GND  
10K to GND  
10K to GND  
10K to GND  
RCLKF1/RCLK1  
RCLKF2/RCLK2  
10K to GND  
10K to GND  
10K to GND  
10K to GND  
10K to GND  
10K to GND  
RCLKF1/RCLK1  
10K to GND  
10K to GND  
10K to GND  
10K to GND  
10K to GND  
10K to GND  
10K to GND  
C9  
K5  
D7  
P6  
Y6  
P5  
AB3  
60 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
BALL  
A6  
DS34T108 SOCKET  
RDATF1  
DS34T104 SOCKET  
RDATF1  
RDATF2  
RDATF3  
RDATF4  
GND  
DS34T102 SOCKET  
RDATF1  
RDATF2  
GND  
DS34T101 SOCKET  
RDATF1  
GND  
L7  
RDATF2  
C5  
RDATF3  
GND  
F4  
RDATF4  
GND  
GND  
P4  
RDATF5  
GND  
GND  
Y4  
RDATF6  
GND  
GND  
GND  
AA5  
AA3  
A11  
K8  
RDATF7  
GND  
GND  
GND  
RDATF8  
GND  
GND  
GND  
RESREF  
RESREF  
RF/RMSYNC1  
RF/RMSYNC2  
RF/RMSYNC3  
RF/RMSYNC4  
N.C.  
RESREF  
RF/RMSYNC1  
RF/RMSYNC2  
N.C.  
RESREF  
RF/RMSYNC1  
N.C.  
RF/RMSYNC1  
RF/RMSYNC2  
RF/RMSYNC3  
RF/RMSYNC4  
RF/RMSYNC5  
RF/RMSYNC6  
RF/RMSYNC7  
RF/RMSYNC8  
RLOF/RLOS1  
RLOF/RLOS2  
RLOF/RLOS3  
RLOF/RLOS4  
RLOF/RLOS5  
RLOF/RLOS6  
RLOF/RLOS7  
RLOF/RLOS8  
RRING1  
E7  
G4  
E4  
N.C.  
N.C.  
N.C.  
M6  
W8  
T4  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
AB5  
M8  
A4  
N.C.  
N.C.  
N.C.  
RLOF/RLOS1  
RLOF/RLOS2  
RLOF/RLOS3  
RLOF/RLOS4  
N.C.  
RLOF/RLOS1  
RLOF/RLOS2  
N.C.  
RLOF/RLOS1  
N.C.  
N.C.  
H4  
N.C.  
N.C.  
D5  
N.C.  
N.C.  
U4  
N.C.  
N.C.  
N.C.  
U3  
N.C.  
N.C.  
N.C.  
N7  
N.C.  
N.C.  
N.C.  
V7  
B13  
B9  
RRING1  
RRING2  
RRING3  
RRING4  
N.C.  
RRING1  
RRING2  
N.C.  
RRING1  
N.C.  
RRING2  
N.C.  
A2  
RRING3  
N.C.  
N.C.  
E2  
RRING4  
N.C.  
N.C.  
V2  
RRING5  
N.C.  
N.C.  
N.C.  
AB2  
AA10  
AA12  
J5  
RRING6  
N.C.  
N.C.  
N.C.  
RRING7  
N.C.  
N.C.  
N.C.  
RRING8  
RSER1  
RSER1  
RSER2  
RSER3  
RSER4  
N.C.  
RSER1  
RSER2  
N.C.  
RSER1  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
D6  
RSER2  
H7  
RSER3  
N.C.  
D3  
RSER4  
N.C.  
N6  
RSER5  
N.C.  
N.C.  
W6  
T8  
RSER6  
N.C.  
N.C.  
RSER7  
N.C.  
N.C.  
AB4  
P2  
RSER8  
RST_SYS_N  
RSYNC1  
RST_SYS_N  
RSYNC1  
RST_SYS_N  
RSYNC1  
RST_SYS_N  
RSYNC1  
A5  
L6  
RSYNC2  
RSYNC2  
RSYNC2  
10K to GND  
10K to GND  
A3  
RSYNC3  
RSYNC3  
10K to GND  
61 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
BALL  
H6  
DS34T108 SOCKET  
RSYNC4  
RSYNC5  
RSYNC6  
RSYNC7  
RSYNC8  
RSYSCLK1  
RSYSCLK2  
RSYSCLK3  
RSYSCLK4  
RSYSCLK5  
RSYSCLK6  
RSYSCLK7  
RSYSCLK8  
RTIP1  
DS34T104 SOCKET  
RSYNC4  
10K to GND  
10K to GND  
10K to GND  
10K to GND  
RSYSCLK1  
RSYSCLK2  
RSYSCLK3  
RSYSCLK4  
GND  
DS34T102 SOCKET  
10K to GND  
10K to GND  
10K to GND  
10K to GND  
10K to GND  
RSYSCLK1  
RSYSCLK2  
GND  
DS34T101 SOCKET  
10K to GND  
10K to GND  
10K to GND  
10K to GND  
10K to GND  
RSYSCLK1  
GND  
W3  
R4  
AA6  
M5  
C6  
K7  
F8  
GND  
H5  
GND  
GND  
W5  
GND  
GND  
U5  
GND  
GND  
GND  
Y8  
GND  
GND  
GND  
N8  
GND  
GND  
GND  
A13  
A9  
RTIP1  
RTIP1  
RTIP1  
RTIP2  
RTIP2  
RTIP2  
N.C.  
N.C.  
N.C.  
A1  
RTIP3  
RTIP3  
N.C.  
N.C.  
E1  
RTIP4  
RTIP4  
N.C.  
N.C.  
N.C.  
V1  
RTIP5  
N.C.  
N.C.  
N.C.  
AB1  
AB10  
AB12  
R3  
RTIP6  
N.C.  
N.C.  
N.C.  
RTIP7  
N.C.  
N.C.  
N.C.  
RTIP8  
RXTSEL  
SCEN  
RXTSEL  
SCEN  
RXTSEL  
SCEN  
RXTSEL  
SCEN  
J15  
A17  
F18  
B19  
D17  
F16  
B18  
E17  
A19  
H17  
F19  
F20  
D18  
G17  
C19  
E16  
H16  
B17  
C18  
F21  
B22  
H20  
C21  
H18  
SD_A[0]  
SD_A[0]  
SD_A[1]  
SD_A[10]  
SD_A[11]  
SD_A[2]  
SD_A[3]  
SD_A[4]  
SD_A[5]  
SD_A[6]  
SD_A[7]  
SD_A[8]  
SD_A[9]  
SD_BA[0]  
SD_BA[1]  
SD_CAS_N  
SD_CLK  
SD_CS_N  
SD_D[0]  
SD_D[1]  
SD_D[10]  
SD_D[11]  
SD_D[12]  
SD_D[13]  
SD_A[0]  
SD_A[1]  
SD_A[10]  
SD_A[11]  
SD_A[2]  
SD_A[3]  
SD_A[4]  
SD_A[5]  
SD_A[6]  
SD_A[7]  
SD_A[8]  
SD_A[9]  
SD_BA[0]  
SD_BA[1]  
SD_CAS_N  
SD_CLK  
SD_CS_N  
SD_D[0]  
SD_D[1]  
SD_D[10]  
SD_D[11]  
SD_D[12]  
SD_D[13]  
SD_A[0]  
SD_A[1]  
SD_A[10]  
SD_A[11]  
SD_A[2]  
SD_A[3]  
SD_A[4]  
SD_A[5]  
SD_A[6]  
SD_A[7]  
SD_A[8]  
SD_A[9]  
SD_BA[0]  
SD_BA[1]  
SD_CAS_N  
SD_CLK  
SD_CS_N  
SD_D[0]  
SD_D[1]  
SD_D[10]  
SD_D[11]  
SD_D[12]  
SD_D[13]  
SD_A[1]  
SD_A[10]  
SD_A[11]  
SD_A[2]  
SD_A[3]  
SD_A[4]  
SD_A[5]  
SD_A[6]  
SD_A[7]  
SD_A[8]  
SD_A[9]  
SD_BA[0]  
SD_BA[1]  
SD_CAS_N  
SD_CLK  
SD_CS_N  
SD_D[0]  
SD_D[1]  
SD_D[10]  
SD_D[11]  
SD_D[12]  
SD_D[13]  
62 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
BALL  
C22  
D21  
G20  
D22  
J20  
G21  
G19  
J21  
E22  
J19  
H21  
F22  
K21  
G22  
K20  
H22  
G16  
A21  
K22  
J22  
C16  
A22  
A18  
B21  
E21  
H19  
A20  
E19  
B20  
D20  
D16  
C17  
K15  
B6  
DS34T108 SOCKET  
SD_D[14]  
SD_D[15]  
SD_D[16]  
SD_D[17]  
SD_D[18]  
SD_D[19]  
SD_D[2]  
DS34T104 SOCKET  
SD_D[14]  
SD_D[15]  
SD_D[16]  
SD_D[17]  
SD_D[18]  
SD_D[19]  
SD_D[2]  
SD_D[20]  
SD_D[21]  
SD_D[22]  
SD_D[23]  
SD_D[24]  
SD_D[25]  
SD_D[26]  
SD_D[27]  
SD_D[28]  
SD_D[29]  
SD_D[3]  
SD_D[30]  
SD_D[31]  
SD_D[4]  
SD_D[5]  
SD_D[6]  
SD_D[7]  
SD_D[8]  
SD_D[9]  
SD_DQM[0]  
SD_DQM[1]  
SD_DQM[2]  
SD_DQM[3]  
SD_RAS_N  
SD_WE_N  
STMD  
DS34T102 SOCKET  
SD_D[14]  
SD_D[15]  
SD_D[16]  
SD_D[17]  
SD_D[18]  
SD_D[19]  
SD_D[2]  
SD_D[20]  
SD_D[21]  
SD_D[22]  
SD_D[23]  
SD_D[24]  
SD_D[25]  
SD_D[26]  
SD_D[27]  
SD_D[28]  
SD_D[29]  
SD_D[3]  
SD_D[30]  
SD_D[31]  
SD_D[4]  
SD_D[5]  
SD_D[6]  
SD_D[7]  
SD_D[8]  
SD_D[9]  
SD_DQM[0]  
SD_DQM[1]  
SD_DQM[2]  
SD_DQM[3]  
SD_RAS_N  
SD_WE_N  
STMD  
DS34T101 SOCKET  
SD_D[14]  
SD_D[15]  
SD_D[16]  
SD_D[17]  
SD_D[18]  
SD_D[19]  
SD_D[2]  
SD_D[20]  
SD_D[21]  
SD_D[22]  
SD_D[23]  
SD_D[24]  
SD_D[25]  
SD_D[26]  
SD_D[27]  
SD_D[28]  
SD_D[29]  
SD_D[3]  
SD_D[30]  
SD_D[31]  
SD_D[4]  
SD_D[5]  
SD_D[6]  
SD_D[7]  
SD_D[8]  
SD_D[9]  
SD_DQM[0]  
SD_DQM[1]  
SD_DQM[2]  
SD_DQM[3]  
SD_RAS_N  
SD_WE_N  
STMD  
SD_D[20]  
SD_D[21]  
SD_D[22]  
SD_D[23]  
SD_D[24]  
SD_D[25]  
SD_D[26]  
SD_D[27]  
SD_D[28]  
SD_D[29]  
SD_D[3]  
SD_D[30]  
SD_D[31]  
SD_D[4]  
SD_D[5]  
SD_D[6]  
SD_D[7]  
SD_D[8]  
SD_D[9]  
SD_DQM[0]  
SD_DQM[1]  
SD_DQM[2]  
SD_DQM[3]  
SD_RAS_N  
SD_WE_N  
STMD  
TCLKF1  
TCLKF1  
TCLKF1  
TCLKF2  
GND  
TCLKF1  
GND  
K4  
TCLKF2  
TCLKF2  
D8  
TCLKF3  
TCLKF3  
GND  
J6  
TCLKF4  
TCLKF4  
GND  
GND  
T6  
TCLKF5  
GND  
GND  
GND  
T7  
TCLKF6  
GND  
GND  
GND  
U8  
TCLKF7  
GND  
GND  
GND  
M4  
TCLKF8  
GND  
GND  
GND  
L8  
TCLKO1  
TCLKO2  
TCLKO3  
TCLKO4  
TCLKO5  
TCLKO1  
TCLKO2  
TCLKO3  
TCLKO4  
N.C.  
TCLKO1  
TCLKO2  
N.C.  
TCLKO1  
N.C.  
B5  
N.C.  
J7  
N.C.  
N.C.  
E6  
N.C.  
N.C.  
N4  
63 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
BALL  
U7  
DS34T108 SOCKET  
TCLKO6  
DS34T104 SOCKET  
DS34T102 SOCKET  
DS34T101 SOCKET  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
P7  
TCLKO7  
AA7  
C7  
TCLKO8  
TDATF1  
TDATF1  
TDATF2  
TDATF3  
TDATF4  
N.C.  
TDATF1  
TDATF2  
N.C.  
TDATF1  
N.C.  
J8  
TDATF2  
N.C.  
B4  
TDATF3  
N.C.  
N.C.  
K6  
TDATF4  
N.C.  
N.C.  
R6  
TDATF5  
N.C.  
N.C.  
N.C.  
N5  
TDATF6  
N.C.  
N.C.  
N.C.  
Y7  
TDATF7  
N.C.  
N.C.  
N.C.  
P8  
TDATF8  
E10  
D12  
C11  
D10  
D11  
F12  
E11  
C12  
F13  
E13  
E9  
TDM1_ACLK  
TDM1_RCLK  
TDM1_RSIG_RTS  
TDM1_RX  
TDM1_ACLK  
TDM1_RCLK  
TDM1_ACLK  
TDM1_RCLK  
TDM1_RSIG_RTS  
TDM1_RX  
TDM1_RX_SYNC  
TDM1_TCLK  
TDM1_TSIG_CTS  
TDM1_TX  
TDM1_TX_MF_CD  
TDM1_TX_SYNC  
TDM2_ACLK  
TDM2_RCLK  
TDM2_RSIG_RTS  
TDM2_RX  
TDM2_RX_SYNC  
TDM2_TCLK  
TDM2_TSIG_CTS  
TDM2_TX  
TDM2_TX_MF_CD  
TDM2_TX_SYNC  
N.C.  
TDM1_ACLK  
TDM1_RCLK  
TDM1_RSIG_RTS  
TDM1_RX  
TDM1_RSIG_RTS  
TDM1_RX  
TDM1_RX_SYNC  
TDM1_TCLK  
TDM1_TSIG_CTS  
TDM1_TX  
TDM1_RX_SYNC  
TDM1_TCLK  
TDM1_RX_SYNC  
TDM1_TCLK  
TDM1_TSIG_CTS  
TDM1_TX  
TDM1_TSIG_CTS  
TDM1_TX  
TDM1_TX_MF_CD  
TDM1_TX_SYNC  
TDM2_ACLK  
TDM2_RCLK  
TDM2_RSIG_RTS  
TDM2_RX  
TDM1_TX_MF_CD  
TDM1_TX_SYNC  
TDM2_ACLK  
TDM1_TX_MF_CD  
TDM1_TX_SYNC  
N.C.  
N.C.  
E12  
C14  
D13  
C13  
G10  
F11  
G11  
F10  
E14  
G14  
C15  
G13  
D15  
D14  
G9  
TDM2_RCLK  
N.C.  
TDM2_RSIG_RTS  
TDM2_RX  
N.C.  
N.C.  
TDM2_RX_SYNC  
TDM2_TCLK  
TDM2_TSIG_CTS  
TDM2_TX  
TDM2_RX_SYNC  
TDM2_TCLK  
N.C.  
N.C.  
TDM2_TSIG_CTS  
TDM2_TX  
N.C.  
N.C.  
TDM2_TX_MF_CD  
TDM2_TX_SYNC  
TDM3_ACLK  
TDM3_RCLK  
TDM3_RSIG_RTS  
TDM3_RX  
TDM2_TX_MF_CD  
TDM2_TX_SYNC  
TDM3_ACLK  
N.C.  
N.C.  
N.C.  
N.C.  
TDM3_RCLK  
N.C.  
N.C.  
TDM3_RSIG_RTS  
TDM3_RX  
N.C.  
N.C.  
N.C.  
N.C.  
TDM3_RX_SYNC  
TDM3_TCLK  
TDM3_TSIG_CTS  
TDM3_TX  
TDM3_RX_SYNC  
TDM3_TCLK  
N.C.  
N.C.  
N.C.  
N.C.  
G12  
E15  
F9  
TDM3_TSIG_CTS  
TDM3_TX  
N.C.  
N.C.  
N.C.  
N.C.  
TDM3_TX_MF_CD  
TDM3_TX_SYNC  
TDM4_ACLK  
TDM4_RCLK  
TDM4_RSIG_RTS  
TDM4_RX  
TDM3_TX_MF_CD  
TDM3_TX_SYNC  
TDM4_ACLK  
N.C.  
N.C.  
F14  
H12  
J14  
F15  
H9  
N.C.  
N.C.  
N.C.  
N.C.  
TDM4_RCLK  
N.C.  
N.C.  
TDM4_RSIG_RTS  
TDM4_RX  
N.C.  
N.C.  
64 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
BALL  
H14  
H11  
G15  
J9  
DS34T108 SOCKET  
TDM4_RX_SYNC  
TDM4_TCLK  
DS34T104 SOCKET  
DS34T102 SOCKET  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
DS34T101 SOCKET  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
TDM4_RX_SYNC  
TDM4_TCLK  
TDM4_TSIG_CTS  
TDM4_TX  
TDM4_TSIG_CTS  
TDM4_TX  
TDM4_TX_MF_CD  
TDM4_TX_SYNC  
N.C.  
H13  
H10  
V11  
V9  
TDM4_TX_MF_CD  
TDM4_TX_SYNC  
TDM5_ACLK  
N.C.  
TDM5_RCLK  
N.C.  
T9  
TDM5_RSIG_RTS  
TDM5_RX  
N.C.  
R11  
U14  
T13  
P14  
R12  
R10  
R14  
W14  
T12  
R9  
N.C.  
TDM5_RX_SYNC  
TDM5_TCLK  
N.C.  
N.C.  
TDM5_TSIG_CTS  
TDM5_TX  
N.C.  
N.C.  
TDM5_TX_MF_CD  
TDM5_TX_SYNC  
TDM6_ACLK  
N.C.  
N.C.  
N.C.  
TDM6_RCLK  
N.C.  
TDM6_RSIG_RTS  
TDM6_RX  
N.C.  
V12  
T15  
V15  
V13  
W15  
U15  
T10  
V14  
U13  
T14  
U12  
R13  
Y11  
W9  
N.C.  
TDM6_RX_SYNC  
TDM6_TCLK  
N.C.  
N.C.  
TDM6_TSIG_CTS  
TDM6_TX  
N.C.  
N.C.  
TDM6_TX_MF_CD  
TDM6_TX_SYNC  
TDM7_ACLK  
N.C.  
N.C.  
N.C.  
TDM7_RCLK  
N.C.  
TDM7_RSIG_RTS  
TDM7_RX  
N.C.  
N.C.  
TDM7_RX_SYNC  
TDM7_TCLK  
N.C.  
N.C.  
TDM7_TSIG_CTS  
TDM7_TX  
N.C.  
W12  
Y15  
U11  
Y13  
U9  
N.C.  
TDM7_TX_MF_CD  
TDM7_TX_SYNC  
TDM8_ACLK  
N.C.  
N.C.  
N.C.  
TDM8_RCLK  
N.C.  
Y9  
TDM8_RSIG_RTS  
TDM8_RX  
N.C.  
V10  
T11  
Y14  
W11  
W10  
W13  
N.C.  
TDM8_RX_SYNC  
TDM8_TCLK  
N.C.  
N.C.  
TDM8_TSIG_CTS  
TDM8_TX  
N.C.  
N.C.  
TDM8_TX_MF_CD  
65 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
BALL  
U10  
J3  
DS34T108 SOCKET  
TDM8_TX_SYNC  
TEST_CLK  
TRING1  
DS34T104 SOCKET  
DS34T102 SOCKET  
DS34T101 SOCKET  
N.C.  
N.C.  
N.C.  
TEST_CLK  
TRING1  
TRING2  
TRING3  
TRING4  
N.C.  
TEST_CLK  
TRING1  
TRING2  
N.C.  
TEST_CLK  
TRING1  
N.C.  
B15  
B7  
TRING2  
N.C.  
C2  
TRING3  
N.C.  
N.C.  
G2  
T2  
TRING4  
N.C.  
N.C.  
TRING5  
N.C.  
N.C.  
N.C.  
Y2  
TRING6  
N.C.  
N.C.  
N.C.  
AA8  
AA14  
D9  
TRING7  
N.C.  
N.C.  
N.C.  
TRING8  
TSER1  
TSER1  
TSER2  
TSER1  
TSER2  
TSER1  
GND  
J4  
TSER2  
B3  
TSER3  
TSER3  
GND  
GND  
F3  
TSER4  
TSER4  
GND  
GND  
V6  
TSER5  
GND  
GND  
GND  
R7  
TSER6  
GND  
GND  
GND  
V8  
TSER7  
GND  
GND  
GND  
P9  
TSER8  
GND  
GND  
GND  
G3  
L5  
TST_CLD  
TST_CLD  
TSYNC/TSSYNC1  
TSYNC/TSSYNC2  
TSYNC/TSSYNC3  
TSYNC/TSSYNC4  
10K to GND  
10K to GND  
10K to GND  
10K to GND  
TSYSCLK1/ECLK1  
TSYSCLK2/ECLK2  
TSYSCLK3/ECLK3  
TSYSCLK4/ECLK4  
GND  
TST_CLD  
TSYNC/TSSYNC1  
TSYNC/TSSYNC2  
10K to GND  
10K to GND  
10K to GND  
10K to GND  
10K to GND  
10K to GND  
TSYSCLK1/ECLK1  
TSYSCLK2/ECLK2  
GND  
TST_CLD  
TSYNC/TSSYNC1  
10K to GND  
10K to GND  
10K to GND  
10K to GND  
10K to GND  
10K to GND  
10K to GND  
TSYSCLK1/ECLK1  
GND  
TSYNC/TSSYNC1  
TSYNC/TSSYNC2  
TSYNC/TSSYNC3  
TSYNC/TSSYNC4  
TSYNC/TSSYNC5  
TSYNC/TSSYNC6  
TSYNC/TSSYNC7  
TSYNC/TSSYNC8  
TSYSCLK1/ECLK1  
TSYSCLK2/ECLK2  
TSYSCLK3/ECLK3  
TSYSCLK4/ECLK4  
TSYSCLK5/ECLK5  
TSYSCLK6/ECLK6  
TSYSCLK7/ECLK7  
TSYSCLK8/ECLK8  
TTIP1  
E8  
G7  
F5  
M7  
Y5  
R5  
AB6  
C8  
G8  
F7  
GND  
G6  
V4  
GND  
GND  
GND  
GND  
AA4  
W7  
AB7  
A15  
A7  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
TTIP1  
TTIP1  
TTIP1  
N.C.  
TTIP2  
TTIP2  
TTIP2  
N.C.  
N.C.  
C1  
TTIP3  
TTIP3  
N.C.  
N.C.  
G1  
T1  
TTIP4  
TTIP4  
N.C.  
N.C.  
N.C.  
TTIP5  
N.C.  
N.C.  
N.C.  
Y1  
TTIP6  
N.C.  
N.C.  
N.C.  
AB8  
AB14  
H3  
TTIP7  
N.C.  
N.C.  
N.C.  
TTIP8  
TXENABLE  
TXENABLE  
TXENABLE  
TXENABLE  
66 of 74  
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
14.2 DS34T108 Pin Assignment  
Figure 14-1. DS34T108 Pin Assignment (HSBGA Package)  
1
2
3
4
5
6
7
8
9
10  
11  
RTIP3  
RRING3  
RSYNC3  
RLOF/RLOS2  
RSYNC1  
RDATF1  
TTIP2  
ATVSS2  
RTIP2  
ARVSS2  
RESREF  
A
B
ARVSS3  
TTIP3  
ARVDD3  
TRING3  
TSER3  
DVDDLIU  
RSER4  
TDATF3  
DVDDC  
TCLKO2  
RDATF3  
TCLKF1  
RSYSCLK1  
RSER2  
TRING2  
TDATF1  
ATVDD2  
TSYSCLK1/ECLK1  
TCLKF3  
RRING2  
RCLKF2/RCLK2  
TSER1  
ARVDD2  
NC  
DVDDC  
TDM 1_RSIG_RTS  
TDM 1_RX_SYNC  
TDM 1_TSIG_CTS  
TDM 2_TSIG_CTS  
TDM 2_TX  
C
ATVDD3  
RTIP4  
ATVSS3  
RRING4  
ARVDD4  
TRING4  
DVSS  
RLOF/RLOS4  
DVDDC  
RCLKF4/RCLK4  
RF/RM SYNC2  
TSYSCLK3/ECLK3  
TSYNC/TSSYNC3  
RSER3  
TDM 1_RX  
TDM 1_ACLK  
D
DVSSLIU  
TSER4  
RF/RM SYNC4  
RDATF4  
TCLKO4  
TSYNC/TSSYNC2  
RSYSCLK3  
TSYSCLK2/ECLK2  
DVSS  
TDM2_ACLK  
E
ARVSS4  
TTIP4  
TSYNC/TSSYNC4  
DVDDC  
DVSS  
TDM 3_TX_M F_CD TDM 2_TX_M F_CD  
F
TST_CLD  
TXENABLE  
TEST_CLK  
JTM S  
RF/RM SYNC3  
RLOF/RLOS3  
TSER2  
TSYSCLK4/ECLK4  
RSYNC4  
TDM 3_TCLK  
TDM 4_RX  
TDM 2_TCLK  
TDM 4_TX_SYNC  
DVDDIO  
G
H
ATVSS4  
CLK_SYS/SCCLK  
ACVSS2  
CLK_HIGH  
ACVSS1  
M CLK  
ATVDD4  
CLK_SYS_S  
ACVDD2  
DVDDC  
RSYSCLK4  
RSER1  
TDM 4_TCLK  
DVDDIO  
TCLKF4  
TCLKO3  
TDATF2  
TDM 4_TX  
J
TCLKF2  
RCLKF3/RCLK3  
TSYNC/TSSYNC1  
RSYNC8  
TDATF4  
RSYSCLK2  
RDATF2  
RF/RM SYNC1  
TCLKO1  
DVDDIO  
DVSS  
DVSS  
K
JTCLK  
RCLKF1/RCLK1  
TCLKF8  
RSYNC2  
DVDDIO  
DVSS  
DVSS  
L
ACVDD1  
DVSS  
JTDI  
RF/RM SYNC5  
RSER5  
TSYNC/TSSYNC5  
RLOF/RLOS7  
TCLKO7  
RLOF/RLOS1  
RSYSCLK8  
TDATF8  
DVDDIO  
DVSS  
DVSS  
M
N
JTDO  
TCLKO5  
TDATF6  
DVDDIO  
DVSS  
DVSS  
CLK_CM N  
ATVSS5  
TTIP5  
RST_SYS_N  
ATVDD5  
TRING5  
JTRST_N  
RXTSEL  
HiZ_N  
RDATF5  
RCLKF7/RCLK7  
TSYNC/TSSYNC7  
DVDDC  
RCLKF5/RCLK5  
TDATF5  
TSER8  
DVDDIO  
DVDDIO  
P
RSYNC6  
TSER6  
DVSS  
TDM 6_RSIG_RTS  
TDM 5_RSIG_RTS  
TDM8_RCLK  
TDM 5_RCLK  
TDM 7_TSIG_CTS  
TDM 8_RSIG_RTS  
ATVDD7  
TDM 5_TX_M F_CD  
TDM 6_TX_SYNC  
TDM 8_TX_SYNC  
TDM 8_RX  
TDM 8_TX  
DVDDC  
TDM 5_RX  
R
RF/RM SYNC7  
RLOF/RLOS5  
TSYSCLK5/ECLK5  
DVSS  
TCLKF5  
TCLKF6  
RSER7  
TDM 8_RX_SYNC  
TDM 7_TX_SYNC  
TDM 5_ACLK  
TDM 8_TSIG_CTS  
TDM 7_TCLK  
ARVDD7  
T
ARVSS5  
RTIP5  
ARVDD5  
RRING5  
ATVSS6  
TRING6  
RLOF/RLOS6  
DVDDLIU  
RSYNC5  
DVSSLIU  
RDATF8  
RCLKF8/RCLK8  
RSYSCLK6  
DVDDC  
DVSS  
TCLKO6  
TCLKF7  
U
TSER5  
RLOF/RLOS8  
TSYSCLK7/ECLK7  
TDATF7  
TSER7  
V
ATVDD6  
TTIP6  
RSYSCLK5  
TSYNC/TSSYNC6  
RDATF7  
RSER6  
RF/RM SYNC6  
RSYSCLK7  
TRING7  
W
Y
RDATF6  
RCLKF6/RCLK6  
RSYNC7  
ARVSS6  
RTIP6  
ARVDD6  
RRING6  
TSYSCLK6/ECLK6  
RSER8  
TCLKO8  
RRING7  
AA  
AB  
RF/RM SYNC8  
TSYNC/TSSYNC8  
TSYSCLK8/ECLK8  
TTIP7  
ATVSS7  
RTIP7  
ARVSS7  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
DVDDC  
RTIP1  
ARVSS1  
TTIP1  
ATVSS1  
SD_A[0]  
SD_D[6]  
SD_A[5]  
SD_DQM[0]  
SD_D[3]  
SD_D[5]  
A
B
C
D
E
DVSS  
RRING1  
ARVDD1  
TDM2_RSIG_RTS  
TDM3_RX_SYNC  
TDM2_TX_SYNC  
TDM3_TX_SYNC  
TDM3_ACLK  
TDM4_RX_SYNC  
TDM4_RCLK  
DVDDIO  
TRING1  
TDM3_RCLK  
TDM 3_RX  
ATVDD1  
SD_D[4]  
SD_CS_N  
SD_WE_N  
SD_A[11]  
SD_A[4]  
DVSS  
SD_A[3]  
SD_D[0]  
SD_A[9]  
DVDDC  
SD_A[1]  
DVDDC  
SD_D[13]  
SD_A[10]  
SD_BA[1]  
DVSS  
SD_DQM[2]  
DVDDC  
SD_D[7]  
SD_D[12]  
SD_D[15]  
SD_D[8]  
SD_D[1]  
SD_D[10]  
SD_D[14]  
SD_D[17]  
SD_D[21]  
SD_D[24]  
SD_D[26]  
SD_D[28]  
SD_D[31]  
SD_D[30]  
H_ IN T [ 1]  
TDM1_TX  
TDM 1_RCLK  
TDM2_RCLK  
TDM 1_TCLK  
TDM 3_TSIG_CTS  
TDM4_ACLK  
DVDDIO  
TDM2_RX_SYNC  
TDM2_RX  
SD_RAS_N  
SD_CAS_N  
SD_A[2]  
SD_DQM[3]  
DVDDC  
TDM1_TX_SYNC  
TDM 1_TX_MF_CD  
TDM3_RSIG_RTS  
TDM 4_TX_M F_CD  
DVDDIO  
TDM 3_TX  
SD_DQM[1]  
SD_A[7]  
TDM4_RSIG_RTS  
TDM4_TSIG_CTS  
DVSS  
SD_A[8]  
F
SD_D[29]  
SD_CLK  
SD_BA[0]  
SD_A[6]  
SD_D[2]  
SD_D[16]  
SD_D[11]  
SD_D[18]  
SD_D[27]  
SD_D[19]  
SD_D[23]  
SD_D[20]  
SD_D[25]  
D A T _ 3 2 _ 16 _ N  
H_AD[2]  
H_AD[19]  
H_AD[12]  
H_AD[17]  
H_AD[24]  
H_D[1]  
G
H
J
SD_D[9]  
H_WR_B E1_N/ SPI_  
MOSI  
H_WR_BE2_N/SPI_S  
EL_N  
SCEN  
STMD  
H_INT[ 0]  
H_R_W_N/SPI_CP  
H_CS_N  
SD_D[22]  
H_CPU_SPI_N  
DVSS  
DVSS  
H_AD[3]  
H_AD[9]  
H_READY_N  
H_AD[1]  
K
L
H_WR_BE0_N/SPI_ H_WR_BE3_N/SPI_  
DVSS  
DVSS  
DVDDIO  
H_AD[11]  
CLK  
CI  
DVSS  
DVSS  
DVDDIO  
MBIST_DONE  
MBIST_FAIL  
M BIST_EN  
DVSS  
H_AD[7]  
H_AD[20]  
H_AD[23]  
H_D[22]  
H_AD[6]  
H_D[2]  
H_AD[18]  
H_AD[8]  
H_AD[4]  
M
N
P
DVSS  
DVSS  
DVDDIO  
H_AD[13]  
H_D[5]  
H_AD[16]  
H_D[14]  
H_AD[14]  
H_AD[21]  
H_D[3]  
H_AD[10]  
H_AD[15]  
H_AD[22]  
H_D[0]/SPI_MISO  
H_D[8]  
DVDDIO  
DVDDIO  
TDM5_TSIG_CTS  
TDM5_TX_SYNC  
TDM7_RSIG_RTS  
TDM5_RX_SYNC  
TDM7_ACLK  
TDM6_ACLK  
TDM8_TCLK  
TRING8  
H_D[11]  
TDM5_TX  
TDM6_RCLK  
TDM7_RX  
TDM6_RX  
TDM7_TX  
DVSS  
TDM7_RX_SYNC  
TDM 5_TCLK  
TDM 7_RCLK  
TDM6_TSIG_CTS  
TDM 8_TX_M F_CD  
TDM 8_ACLK  
ARVDD8  
H_D[7]  
H_D[24]  
H_D[29]  
H_D[20]  
R
T
TDM6_RX_SYNC  
TDM6_TX_MF_CD  
TDM6_TCLK  
TDM 6_TX  
H_D[9]  
H_D[4]  
DVDDC  
H_D[26]  
H_AD[5]  
H_D[19]  
H_D[28]  
DVSS  
H_D[6]  
H_D[31]  
U
V
CLK_MII_RX  
MII_RXD[1]  
M II_RXD[3]  
M II_RXD[0]  
M II_RXD[2]  
MII_RX_ERR  
MII_TX_EN  
MII_RX_DV  
M II_COL  
DVDDC  
H_D[25]  
DVDDC  
H_D[30]  
DVDDC  
MDIO  
H_D[23]  
H_D[10]  
MII_TXD[1]  
M II_CRS  
CLK_MII_TX  
MII_TXD[0]  
DVSS  
H_D[27]  
H_D[12]  
W
Y
TDM7_TX_MF_CD  
ATVDD8  
CLK_SSM II_TX  
M II_TXD[2]  
M II_TXD[3]  
H_D[13]  
H_D[15]  
RRING8  
H_D[16]  
H_D[17]  
AA  
AB  
RTIP8  
ARVSS8  
TTIP8  
ATVSS8  
MDC  
M II_TX_ERR  
H_D[18]  
H_D[21]  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
67 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
14.3 DS34T104 Pin Assignment  
Figure 14-2. DS34T104 Pin Assignment (TEBGA Package)  
1
2
3
4
5
6
7
8
9
10  
11  
RTIP3  
RRING3  
RSYNC3  
RLOF/RLOS2  
RSYNC1  
RDATF1  
TTIP2  
ATVSS2  
RTIP2  
ARVSS2  
RESREF  
A
B
ARVSS3  
TTIP3  
ARVDD3  
TRING3  
ATVSS3  
RRING4  
ARVDD4  
TRING4  
ATVDD4  
CLK_SYS_S  
ACVDD2  
DVDDC  
ACVDD1  
DVSS  
TSER3  
DVDDLIU  
RSER4  
DVSSLIU  
TSER4  
TST_CLD  
TXENABLE  
TEST_CLK  
JTM S  
TDATF3  
DVDDC  
DVSS  
TCLKO2  
RDATF3  
RLOF/RLOS4  
DVDDC  
TSYNC/TSSYNC4  
DVDDC  
RSYSCLK4  
RSER1  
TCLKF1  
RSYSCLK1  
RSER2  
TCLKO4  
DVSS  
TRING2  
ATVDD2  
RRING2  
RCLKF2/RCLK2  
TSER1  
ARVDD2  
NC  
DVDDC  
TDM1_RSIG_RTS  
TDM 1_RX_SYNC  
TDM1_TSIG_CTS  
TDM 2_TSIG_CTS  
TDM 2_TX  
TDM 4_TCLK  
DVDDIO  
DVSS  
TDATF1  
TSYSCLK1/ECLK1  
C
ATVDD3  
RTIP4  
RCLKF4/RCLK4  
TCLKF3  
TDM 1_RX  
TDM 1_ACLK  
D
RF/RMSYNC4  
RDATF4  
RF/RM SYNC3  
RLOF/RLOS3  
TSER2  
TCLKF2  
RCLKF1/RCLK1  
NC  
RF/RM SYNC2  
TSYNC/TSSYNC2  
TDM2_ACLK  
E
ARVSS4  
TTIP4  
TSYSCLK3/ECLK3  
RSYSCLK3  
TDM 3_TX_M F_CD TDM 2_TX_M F_CD  
F
TSYSCLK4/ECLK4  
RSYNC4  
TCLKF4  
TDATF4  
RSYNC2  
TST_RB  
TST_RA  
NC  
TSYNC/TSSYNC3  
TSYSCLK2/ECLK2  
TDM 3_TCLK  
TDM 4_RX  
TDM 4_TX  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
NC  
TDM 2_TCLK  
G
H
ATVSS4  
CLK_SYS/SCCLK  
ACVSS2  
CLK_HIGH  
ACVSS1  
M CLK  
RSER3  
TCLKO3  
RSYSCLK2  
RDATF2  
TST_TC  
NC  
DVSS  
TDM 4_TX_SYNC  
DVDDIO  
DVSS  
DVSS  
DVSS  
DVSS  
DVDDIO  
NC  
TDATF2  
J
RCLKF3/RCLK3  
TSYNC/TSSYNC1  
NC  
RF/RM SYNC1  
K
JTCLK  
TCLKO1  
DVSS  
L
JTDI  
RLOF/RLOS1  
DVSS  
M
N
JTDO  
NC  
TST_TA  
NC  
NC  
NC  
DVSS  
CLK_CM N  
ATVSS5  
NC  
RST_SYS_N  
ATVDD5  
NC  
JTRST_N  
RXTSEL  
HiZ_N  
TST_TB  
NC  
NC  
DVDDIO  
NC  
P
NC  
TST_RC  
NC  
NC  
DVSS  
NC  
NC  
R
NC  
DVDDC  
NC  
NC  
NC  
NC  
NC  
T
ARVSS5  
NC  
ARVDD5  
NC  
NC  
NC  
DVSS  
NC  
NC  
NC  
NC  
NC  
U
DVDDLIU  
NC  
NC  
DVDDC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
V
ATVDD6  
NC  
ATVSS6  
NC  
DVSS  
NC  
NC  
NC  
NC  
NC  
NC  
W
Y
DVSSLIU  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DVDDC  
NC  
NC  
ARVSS6  
NC  
ARVDD6  
NC  
NC  
NC  
NC  
NC  
NC  
ATVDD7  
ATVSS7  
ARVDD7  
ARVSS7  
AA  
AB  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
DVDDC  
RTIP1  
ARVSS1  
ARVDD1  
TDM 2_RSIG_RTS  
TDM 3_RX_SYNC  
TDM 2_TX_SYNC  
TDM 3_TX_SYNC  
TDM 3_ACLK  
TDM 4_RX_SYNC  
TDM 4_RCLK  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
NC  
TTIP1  
ATVSS1  
SD_A[0]  
SD_D[6]  
SD_A[5]  
SD_DQM [0]  
SD_D[3]  
SD_D[5]  
A
B
C
D
E
DVSS  
RRING1  
TRING1  
TDM 3_RCLK  
TDM3_RX  
TDM3_TX  
TDM 4_RSIG_RTS  
TDM 4_TSIG_CTS  
DVSS  
ATVDD1  
SD_D[4]  
SD_CS_N  
SD_WE_N  
SD_A[11]  
SD_A[3]  
SD_D[0]  
SD_A[9]  
DVDDC  
SD_A[1]  
DVDDC  
SD_D[13]  
SD_A[10]  
SD_BA[1]  
DVSS  
SD_DQM [2]  
DVDDC  
SD_D[7]  
SD_D[12]  
SD_D[15]  
SD_D[8]  
SD_D[1]  
SD_D[10]  
SD_D[14]  
SD_D[17]  
SD_D[21]  
SD_D[24]  
SD_D[26]  
SD_D[28]  
SD_D[31]  
SD_D[30]  
H_INT[1]  
TDM 1_TX  
TDM 1_RCLK  
TDM2_RCLK  
TDM 1_TCLK  
TDM3_TSIG_CTS  
TDM4_ACLK  
DVDDIO  
DVSS  
TDM 2_RX_SYNC  
TDM 2_RX  
TDM 1_TX_SYNC  
TDM 1_TX_M F_CD  
TDM 3_RSIG_RTS  
TDM 4_TX_MF_CD  
DVDDIO  
DVSS  
SD_RAS_N  
SD_CAS_N  
SD_A[2]  
SD_DQM [3]  
DVDDC  
SD_A[4]  
SD_DQM [1]  
SD_A[7]  
DVSS  
SD_A[8]  
F
SD_D[29]  
SD_CLK  
SD_BA[0]  
SD_A[6]  
SD_D[2]  
SD_D[16]  
SD_D[11]  
SD_D[18]  
SD_D[27]  
SD_D[19]  
SD_D[23]  
SD_D[20]  
SD_D[25]  
DAT_32_16_N  
H_AD[2]  
H_AD[19]  
H_AD[12]  
H_AD[17]  
H_AD[24]  
H_D[1]  
G
H
J
SD_D[9]  
H_WR_BE1_N/SPI_  
M OSI  
H_WR_BE2_N/SPI_S  
EL_N  
SCEN  
H_ INT[ 0 ]  
H_R_W_N/SPI_CP  
H_CS_N  
SD_D[22]  
H_CPU_SPI_N  
STM D  
H_AD[3]  
H_AD[9]  
H_READY_N  
H_AD[1]  
K
L
H_WR_BE0_N/SPI_ H_WR_BE3_N/SPI_  
DVSS  
DVSS  
H_AD[11]  
M BIST_DONE  
M BIST_FAIL  
M BIST_EN  
DVSS  
CLK  
CI  
DVSS  
DVSS  
H_AD[7]  
H_AD[20]  
H_AD[23]  
H_D[22]  
H_AD[6]  
H_D[2]  
H_AD[18]  
H_AD[8]  
H_AD[4]  
M
N
P
DVSS  
DVSS  
H_AD[13]  
H_D[5]  
H_AD[16]  
H_D[14]  
H_AD[14]  
H_AD[21]  
H_D[3]  
H_AD[10]  
H_AD[15]  
H_AD[22]  
H_D[0]/SPI_M ISO  
H_D[8]  
DVDDIO  
NC  
DVDDIO  
NC  
H_D[11]  
NC  
H_D[7]  
H_D[24]  
H_D[29]  
H_D[20]  
R
T
NC  
NC  
NC  
NC  
H_D[9]  
H_D[4]  
DVDDC  
H_D[26]  
H_AD[5]  
H_D[19]  
NC  
NC  
NC  
NC  
H_D[28]  
DVSS  
H_D[6]  
H_D[31]  
U
V
NC  
NC  
NC  
NC  
CLK_M II_RX  
M II_RXD[1]  
M II_RXD[3]  
M II_RXD[0]  
M II_RXD[2]  
M II_RX_ERR  
M II_TX_EN  
M II_RX_DV  
MII_COL  
M DC  
DVDDC  
H_D[25]  
DVDDC  
H_D[30]  
DVDDC  
M DIO  
H_D[23]  
H_D[10]  
NC  
NC  
NC  
NC  
M II_TXD[1]  
M II_CRS  
CLK_M II_TX  
M II_TXD[0]  
DVSS  
H_D[27]  
H_D[12]  
W
Y
DVSS  
NC  
NC  
NC  
CLK_SSM II_TX  
M II_TXD[2]  
M II_TXD[3]  
H_D[13]  
H_D[15]  
NC  
ARVDD8  
ARVSS8  
NC  
ATVDD8  
ATVSS8  
H_D[16]  
H_D[17]  
AA  
AB  
NC  
NC  
M II_TX_ERR  
H_D[18]  
H_D[21]  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
68 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
14.4 DS34T102 Pin Assignment  
Figure 14-3. DS34T102 Pin Assignment (TEBGA Package)  
1
2
3
4
5
6
7
8
9
10  
11  
NC  
NC  
NC  
RLOF/RLOS2  
RSYNC1  
RDATF1  
TTIP2  
ATVSS2  
RTIP2  
ARVSS2  
RESREF  
A
B
ARVSS3  
NC  
ARVDD3  
NC  
NC  
DVDDLIU  
NC  
NC  
DVDDC  
DVSS  
NC  
TCLKO2  
TCLKF1  
RSYSCLK1  
RSER2  
NC  
TRING2  
ATVDD2  
RRING2  
RCLKF2/RCLK2  
TSER1  
TDM2_ACLK  
NC  
ARVDD2  
DVDDC  
TDM 1_RSIG_RTS  
TDM 1_RX_SYNC  
TDM 1_TSIG_CTS  
TDM2_TSIG_CTS  
TDM2_TX  
NC  
NC  
TDATF1  
TSYSCLK1/ECLK1  
NC  
TDM1_RX  
TDM 1_ACLK  
TDM 2_TX_M F_CD  
TDM 2_TCLK  
NC  
C
ATVDD3  
NC  
ATVSS3  
NC  
NC  
NC  
NC  
D
DVSSLIU  
NC  
DVDDC  
RF/RMSYNC2  
TSYNC/TSSYNC2  
E
ARVSS4  
NC  
ARVDD4  
NC  
NC  
NC  
DVSS  
NC  
NC  
NC  
NC  
F
TST_CLD  
TXENABLE  
TEST_CLK  
JTM S  
NC  
DVDDC  
TSYSCLK2/ECLK2  
NC  
G
H
ATVSS4  
CLK_SYS/SCCLK  
ACVSS2  
CLK_HIGH  
ACVSS1  
MCLK  
ATVDD4  
CLK_SYS_S  
ACVDD2  
DVDDC  
ACVDD1  
DVSS  
NC  
NC  
NC  
NC  
DVSS  
NC  
TSER2  
TCLKF2  
RCLKF1/RCLK1  
NC  
RSER1  
NC  
NC  
TDATF2  
NC  
DVDDIO  
DVSS  
DVDDIO  
DVSS  
J
NC  
NC  
RSYSCLK2  
RDATF2  
NC  
RF/RM SYNC1  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
NC  
K
JTCLK  
JTDI  
TSYNC/TSSYNC1  
RSYNC2  
NC  
TCLKO1  
DVSS  
DVSS  
L
NC  
NC  
RLOF/RLOS1  
DVSS  
DVSS  
M
N
JTDO  
NC  
NC  
NC  
NC  
NC  
DVSS  
DVSS  
CLK_CMN  
ATVSS5  
NC  
RST_SYS_N  
ATVDD5  
NC  
JTRST_N  
RXTSEL  
HiZ_N  
NC  
NC  
NC  
NC  
DVDDIO  
NC  
DVDDIO  
NC  
P
NC  
NC  
NC  
NC  
DVSS  
NC  
NC  
R
NC  
DVDDC  
NC  
NC  
NC  
NC  
NC  
NC  
T
ARVSS5  
NC  
ARVDD5  
NC  
NC  
NC  
DVSS  
NC  
NC  
NC  
NC  
NC  
NC  
U
DVDDLIU  
NC  
NC  
DVDDC  
NC  
NC  
NC  
NC  
NC  
NC  
V
ATVDD6  
NC  
ATVSS6  
NC  
DVSS  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
W
Y
DVSSLIU  
NC  
NC  
NC  
NC  
NC  
NC  
DVDDC  
NC  
NC  
ARVSS6  
NC  
ARVDD6  
NC  
NC  
NC  
NC  
NC  
NC  
ATVDD7  
ATVSS7  
ARVDD7  
ARVSS7  
AA  
AB  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
DVDDC  
DVSS  
TDM 1_TX  
TDM 1_RCLK  
TDM 2_RCLK  
TDM1_TCLK  
NC  
RTIP1  
ARVSS1  
TTIP1  
ATVSS1  
SD_A[0]  
SD_D[6]  
SD_A[5]  
SD_DQM [0]  
SD_D[3]  
SD_D[5]  
A
B
C
D
E
RRING1  
ARVDD1  
TRING1  
NC  
ATVDD1  
SD_D[4]  
SD_CS_N  
SD_WE_N  
SD_A[11]  
SD_A[4]  
SD_A[3]  
SD_D[0]  
SD_A[9]  
DVDDC  
SD_A[1]  
DVDDC  
SD_D[13]  
SD_A[10]  
SD_BA[1]  
DVSS  
SD_DQM [2]  
DVDDC  
SD_D[7]  
SD_D[12]  
SD_D[15]  
SD_D[8]  
SD_D[1]  
SD_D[10]  
SD_D[14]  
SD_D[17]  
SD_D[21]  
SD_D[24]  
SD_D[26]  
SD_D[28]  
SD_D[31]  
SD_D[30]  
H_INT[1]  
TDM 2_RX_SYNC  
TDM2_RSIG_RTS  
TDM2_RX  
NC  
NC  
SD_RAS_N  
SD_CAS_N  
SD_A[2]  
SD_DQM [3]  
DVDDC  
TDM 1_TX_SYNC  
TDM2_TX_SYNC  
NC  
SD_DQM [1]  
SD_A[7]  
TDM 1_TX_M F_CD  
NC  
NC  
NC  
DVSS  
SD_A[8]  
F
NC  
NC  
NC  
SD_D[29]  
SD_CLK  
SD_BA[0]  
SD_A[6]  
SD_D[2]  
SD_D[16]  
SD_D[11]  
SD_D[18]  
SD_D[27]  
SD_D[19]  
SD_D[23]  
SD_D[20]  
SD_D[25]  
DAT_32_16_N  
H_AD[2]  
H_A D[ 19]  
H_AD[12]  
H_AD[17]  
H_AD[24]  
H_D[1]  
G
H
J
NC  
NC  
DVSS  
SCEN  
STMD  
H_AD[11]  
M BIST_DONE  
M B IST_FA IL  
M BIST_EN  
DVSS  
NC  
SD_D[9]  
H_WR_BE1_N/SPI_  
M OSI  
H_WR_BE2_N/SPI_S  
EL_N  
DVDDIO  
DVSS  
DVSS  
DVSS  
DV SS  
DVDDIO  
NC  
DVDDIO  
DVSS  
DVSS  
DVSS  
DV SS  
DVDDIO  
NC  
NC  
H_INT[ 0]  
H_R_W_N/SPI_CP  
H_CS_N  
SD_D[22]  
H_CPU_SPI_N  
DVDDIO  
DVDDIO  
DVDDIO  
DV DDIO  
NC  
H_AD[3]  
H_AD[9]  
H_READY_N  
H_AD[1]  
K
L
H_WR_BE0_N/SPI_ H_WR_BE3_N/SPI_  
CLK  
CI  
H_AD[7]  
H_AD[20]  
H_A D[ 23]  
H_D[22]  
H_AD[6]  
H_D[ 2]  
H_AD[18]  
H_AD[8]  
H_AD[4]  
M
N
P
H_AD[ 13]  
H_D[5]  
H_AD[ 16]  
H_D[14]  
H_A D[ 14]  
H_AD[21]  
H_D[3]  
H_AD[ 10]  
H_AD[15]  
H_AD[22]  
H_D[0]/SPI_M ISO  
H_D[8]  
H_D[11]  
NC  
H_D[7]  
H_D[24]  
H_D[29]  
H_D[20]  
R
T
NC  
NC  
NC  
H_D[9]  
H_D[4]  
DVDDC  
H_D[26]  
H_AD[5]  
H_D[19]  
NC  
NC  
NC  
NC  
H_D[28]  
DVSS  
H_D[6]  
H_D[31]  
U
V
NC  
NC  
NC  
NC  
CLK_M II_RX  
M II_RXD[1]  
M II_RXD[3]  
M II_RXD[0]  
M II_RXD[2]  
M II_RX_ERR  
M II_TX_EN  
MII_RX_DV  
M II_COL  
M DC  
DVDDC  
H_D[25]  
DVDDC  
H_D[30]  
DVDDC  
M DIO  
H_D[23]  
H_D[10]  
NC  
NC  
NC  
NC  
M II_TXD[1]  
M II_CRS  
CLK_M II_TX  
M II_TXD[0]  
DVSS  
H_D[27]  
H_D[12]  
W
Y
DVSS  
NC  
NC  
NC  
NC  
CLK_SSMII_TX  
M II_TXD[2]  
M II_TXD[3]  
H_D[13]  
H_D[15]  
ARVDD8  
ARVSS8  
NC  
ATVDD8  
ATVSS8  
H_D[16]  
H_D[17]  
AA  
AB  
NC  
NC  
M II_TX_ERR  
H_D[18]  
H_D[21]  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
69 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
14.5 DS34T101 Pin Assignment  
Figure 14-4. DS34T101 Pin Assignment (TEBGA Package)  
1
2
3
4
5
6
7
8
9
10  
11  
NC  
NC  
NC  
NC  
RSYNC1  
RDATF1  
NC  
ATVSS2  
NC  
ARVSS2  
RESREF  
A
B
ARVSS3  
NC  
ARVDD3  
NC  
NC  
DVDDLIU  
NC  
NC  
NC  
TCLKF1  
RSYSCLK1  
NC  
NC  
TDATF1  
NC  
ATVDD2  
NC  
NC  
ARVDD2  
NC  
DVDDC  
DVDDC  
NC  
TSYSCLK1/ECLK1  
TDM 1_RSIG_RTS  
C
ATVDD3  
NC  
ATVSS3  
NC  
DVSS  
NC  
NC  
TSER1  
NC  
TDM1_RX  
TDM 1_ACLK  
NC  
TDM 1_RX_SYNC  
D
DVSSLIU  
NC  
NC  
DVDDC  
NC  
NC  
NC  
TDM 1_TSIG_CTS  
NC  
E
ARVSS4  
NC  
ARVDD4  
NC  
NC  
NC  
DVSS  
NC  
NC  
NC  
NC  
F
TST_CLD  
TXENABLE  
TEST_CLK  
JTM S  
NC  
DVDDC  
NC  
NC  
NC  
NC  
NC  
G
H
ATVSS4  
CLK_SYS/SCCLK  
ACVSS2  
CLK_HIGH  
ACVSS1  
MCLK  
ATVDD4  
CLK_SYS_S  
ACVDD2  
DVDDC  
ACVDD1  
DVSS  
NC  
NC  
NC  
NC  
DVSS  
NC  
NC  
NC  
NC  
RSER1  
NC  
NC  
NC  
NC  
DVDDIO  
DVSS  
DVSS  
DVSS  
DVSS  
DVDDIO  
NC  
DVDDIO  
DVSS  
DVSS  
DVSS  
DVSS  
DVDDIO  
NC  
J
NC  
NC  
NC  
NC  
RF/RMSYNC1  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
NC  
K
JTCLK  
JTDI  
RCLKF1/RCLK1  
TSYNC/TSSYNC1  
NC  
NC  
TCLKO1  
L
NC  
NC  
NC  
NC  
NC  
NC  
RLOF/RLOS1  
M
N
JTDO  
NC  
NC  
NC  
NC  
CLK_CM N  
ATVSS5  
NC  
RST_SYS_N  
ATVDD5  
NC  
JTRST_N  
RXTSEL  
HiZ_N  
NC  
NC  
NC  
NC  
P
NC  
NC  
NC  
NC  
DVSS  
NC  
NC  
R
NC  
DVDDC  
NC  
NC  
NC  
NC  
NC  
NC  
T
ARVSS5  
NC  
ARVDD5  
NC  
NC  
NC  
DVSS  
NC  
NC  
NC  
NC  
NC  
NC  
U
DVDDLIU  
NC  
NC  
DVDDC  
NC  
NC  
NC  
NC  
NC  
NC  
V
ATVDD6  
NC  
ATVSS6  
NC  
DVSS  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
W
Y
DVSSLIU  
NC  
NC  
NC  
NC  
NC  
NC  
DVDDC  
NC  
NC  
ARVSS6  
NC  
ARVDD6  
NC  
NC  
NC  
NC  
NC  
NC  
ATVDD7  
ATVSS7  
ARVDD7  
ARVSS7  
AA  
AB  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
DVDDC  
DVSS  
TDM 1_TX  
TDM1_RCLK  
NC  
RTIP1  
ARVSS1  
ARVDD1  
NC  
TTIP1  
TRING1  
NC  
ATVSS1  
ATVDD1  
SD_D[4]  
SD_A[0]  
SD_D[6]  
SD_A[5]  
SD_A[10]  
SD_BA[1]  
DVSS  
SD_DQM [0]  
SD_DQM [2]  
DVDDC  
SD_D[3]  
SD_D[5]  
SD_D[10]  
SD_D[14]  
SD_D[17]  
SD_D[21]  
SD_D[24]  
SD_D[26]  
SD_D[28]  
SD_D[31]  
SD_D[30]  
H_INT[1]  
A
B
C
D
E
RRING1  
SD_CS_N  
SD_WE_N  
SD_A[11]  
SD_A[4]  
SD_A[3]  
SD_D[0]  
SD_A[9]  
DVDDC  
SD_A[1]  
DVDDC  
SD_D[13]  
SD_D[7]  
NC  
SD_D[12]  
SD_D[15]  
SD_D[8]  
SD_D[1]  
NC  
NC  
NC  
SD_RAS_N  
SD_CAS_N  
SD_A[2]  
SD_DQM [3]  
DVDDC  
TDM 1_TX_SYNC  
NC  
NC  
SD_DQM [1]  
SD_A[7]  
TDM 1_TCLK  
NC  
TDM 1_TX_MF_CD  
NC  
NC  
DVSS  
SD_A[8]  
F
NC  
NC  
NC  
NC  
SD_D[29]  
SD_CLK  
SD_BA[0]  
SD_A[6]  
SD_D[2]  
SD_D[16]  
SD_D[11]  
SD_D[19]  
SD_D[23]  
SD_D[20]  
SD_D[25]  
DAT_32_16_N  
H_AD[2]  
H_AD[19]  
H_AD[12]  
H_AD[17]  
H_AD[24]  
H_D[1]  
G
H
J
NC  
NC  
DVSS  
SCEN  
STM D  
H_AD[11]  
M BIST_DONE  
M BIST_FAIL  
M BIST_EN  
DVSS  
NC  
SD_D[9]  
H_WR_BE1_N/SPI_  
M OSI  
H_WR_BE2_N/SPI_S  
EL_N  
DVDDIO  
DVSS  
DVSS  
DVSS  
DVSS  
DVDDIO  
NC  
DVDDIO  
DVSS  
DVSS  
DVSS  
DVSS  
DVDDIO  
NC  
NC  
H_INT[ 0]  
H_R_W_N/SPI_CP  
H_CS_N  
SD_D[22]  
H_CPU_SPI_N  
SD_D[18]  
SD_D[27]  
DVDDIO  
DVDDIO  
DVDDIO  
DVDDIO  
NC  
H_AD[3]  
H_AD[9]  
H_READY_N  
H_AD[1]  
K
L
H_WR_BE0_N/SPI_ H_WR_BE3_N/SPI_  
CLK  
CI  
H_AD[7]  
H_AD[20]  
H_AD[23]  
H_D[22]  
H_AD[6]  
H_D[2]  
H_AD[18]  
H_AD[8]  
H_AD[4]  
M
N
P
H_AD[13]  
H_D[5]  
H_AD[16]  
H_D[14]  
H_AD[14]  
H_AD[21]  
H_D[3]  
H_AD[10]  
H_AD[15]  
H_AD[22]  
H_D[0]/SPI_M ISO  
H_D[8]  
H_D[11]  
NC  
H_D[7]  
H_D[24]  
H_D[29]  
H_D[20]  
R
T
NC  
NC  
NC  
H_D[9]  
H_D[4]  
DVDDC  
H_D[26]  
H_AD[5]  
H_D[19]  
NC  
NC  
NC  
NC  
H_D[28]  
DVSS  
H_D[6]  
H_D[31]  
U
V
NC  
NC  
NC  
NC  
CLK_M II_RX  
M II_RXD[1]  
M II_RXD[3]  
M II_RXD[0]  
M II_RXD[2]  
MII_RX_ERR  
M II_TX_EN  
M II_RX_DV  
M II_COL  
M DC  
DVDDC  
H_D[25]  
DVDDC  
H_D[30]  
DVDDC  
M DIO  
H_D[23]  
H_D[10]  
NC  
NC  
NC  
NC  
M II_TXD[1]  
M II_CRS  
CLK_MII_TX  
M II_TXD[0]  
DVSS  
H_D[27]  
H_D[12]  
W
Y
DVSS  
NC  
NC  
NC  
NC  
CLK_SSM II_TX  
M II_TXD[2]  
M II_TXD[3]  
H_D[13]  
H_D[15]  
ARVDD8  
ARVSS8  
NC  
ATVDD8  
ATVSS8  
H_D[16]  
H_D[17]  
AA  
AB  
NC  
NC  
M II_TX_ERR  
H_D[18]  
H_D[21]  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
70 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
15. Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. The package number provided for each package is a  
link to the latest package outline information. The 484-ball HSBGA and the 484-ball TEBGA have the same footprint. The difference between  
the packages is that the HSBGA has an internal heat spreader.)  
15.1 484-Ball HSBGA (56-G6038-002)  
71 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
15.2 484-Ball TEBGA (56-G6038-001)  
72 of 74  
 
_____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108  
16. Thermal Information  
VALUE  
PARAMETER  
HSBGA  
TEBGA  
Target Ambient Temperature Range  
Die Junction Temperature Range  
Theta-JC (Junction to Top of Case)  
Theta-JB (Junction to Bottom Pins)  
Theta-JA, Still Air (Note 1)  
-40°C to +85°C  
-40°C to +125°C  
2.2°C/W  
-40°C to +85°C  
-40°C to +125°C  
5.4°C/W  
5.2°C/W  
12.5°C/W  
11.2°C/W  
19.7°C/W  
Note 1: Theta-JA values are estimates using JEDEC-standard PCB and enclosure dimensions.  
73 of 74  
 
______________________________________________________DS34T101/DS34T102/DS34T104/DS34T108  
17. Document Revision History  
REVISION  
DESCRIPTION  
New product release.  
072707  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses  
are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
74 of 74  
© 2007 Maxim Integrated Products is a registered trademark of Maxim Integrated Products.  
 

相关型号:

DS34T101GN

Single/Dual/Quad/Octal TDM-over-Packet Chip
MAXIM

DS34T101GN*

Single/Dual/Quad/Octal TDM-Over-Packet Chip
MAXIM

DS34T101GN+

Single/Dual/Quad/Octal TDM-Over-Packet Chip
MAXIM

DS34T101GN+*

Single/Dual/Quad/Octal TDM-Over-Packet Chip
MAXIM

DS34T101_08

Single/Dual/Quad/Octal TDM-over-Packet Chip
MAXIM

DS34T101_09

Single/Dual/Quad/Octal TDM-over-Packet Chip
MAXIM

DS34T102

Single/Dual/Quad/Octal TDM-over-Packet Chip
MAXIM

DS34T102GN

Single/Dual/Quad/Octal TDM-over-Packet Chip
MAXIM

DS34T102GN*

Single/Dual/Quad/Octal TDM-Over-Packet Chip
MAXIM

DS34T102GN+

Single/Dual/Quad/Octal TDM-over-Packet Chip
MAXIM

DS34T102GN+*

Single/Dual/Quad/Octal TDM-Over-Packet Chip
MAXIM

DS34T104

Single/Dual/Quad/Octal TDM-over-Packet Chip
MAXIM