MAX1007 [MAXIM]

Mobile-Radio Analog Controller; 移动无线模拟控制器
MAX1007
型号: MAX1007
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Mobile-Radio Analog Controller
移动无线模拟控制器

控制器 无线
文件: 总12页 (文件大小:112K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1180; Rev 0; 6/98  
Mo b ile -Ra d io An a lo g Co n t ro lle r  
MAX107  
________________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
Multi-Input 8-Bit ADC  
The MAX1007 is a multifunctional integrated circuit  
d e s ig ne d for hig h-p e rforma nc e mob ile ra d ios . It  
includes one 8-bit analog-to-digital converter (ADC),  
and two 7-bit and two 6-bit digital-to-analog converters  
(DACs) for functions including radio-frequency (RF)  
power sensing and antenna-diversity selection.  
Two 7-Bit DACs with Buffered Outputs  
Two 6-Bit DACs: Buffered/Unbuffered  
Power-Sense Conditioning Circuitry  
RSSI Measurement  
The ADC p rovid e s for p owe r s e ns e , re c e ive -s ig na l  
strength intensity (RSSI) measurements and system  
supervision. In the power-sense mode, the ADC con-  
verts the power-sensing circuitry signal (representing  
either the transmitted (Tx) or received (Rx) RF power)  
into a digital code, ensuring optimum Tx power setting  
and Rx signal analysis. An additional direct input to the  
ADC provides for system-supervision measurements,  
such as power-supply voltages, battery voltage, and  
temperature.  
Antenna-Diversity Circuitry  
Internal Reference  
Serial-Logic Interface  
+2.85V to +3.6V Single-Supply Operation  
Two Shutdown Modes  
Four DAC blocks typically control DC levels in radios.  
As part of the Maxim PWT1900 chip set, the two 7-bit  
DACs control the gain settings and the two 6-bit DACs  
control the varactor diodes to tune a TCXO and bias a  
GaAs amplifier. Each DAC register and output can be  
updated independently, providing maximum flexibility.  
Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
PIN-PACKAGE  
24 SSOP  
MAX1007CAG  
MAX1007EAG  
-40°C to +85°C  
24 SSOP  
Pin Configuration appears at end of data sheet.  
For antenna diversity, a magnitude-comparison circuit  
captures and compares two peak signals. A latched  
logic-comparator output reveals which signal has the  
largest magnitude. The MAX1007 also includes an on-  
board voltage reference for the ADC and DACs.  
Fu n c t io n a l Dia g ra m  
PSDCTRL  
PSDWDW  
The MAX1007 offers a high level of signal integrity with  
minima l powe r dissipa tion. Single -supply ope ra tion  
ranges from +2.85V to +3.6V. To further save power, there  
are two shutdown modes: standby and total shutdown.  
Standby is a partial shutdown that keeps the bandgap  
reference and the 2.4V reference generator active. Total  
shutdown disables all circuit blocks except the serial  
interface, reducing supply current to less than 1µA.  
PREAMBLE-SWITCHED DIVERSITY  
DUAL  
D FLIP-FLOP  
BANT  
T/H  
REF  
RSSI  
PKWDW  
ADC CTRL  
RPS  
CH1  
ADC  
CH0  
The MAX1007 is available in a 24-pin SSOP and is  
specified for commercial and extended temperature  
ranges.  
POWER  
SENSE  
FPS1  
FPS2  
CS  
PSOUT  
SCLK  
DIN  
________________________Ap p lic a t io n s  
POWER SENSE CIRCUITRY  
7
DOUT  
PWT1900  
SDAC  
SDAC  
XDAC  
SDG  
Wireless Communications:  
6
6
MAX1007  
XDAC  
GDAC  
Cellular Radios  
PCS Radios  
PMR/SMR  
WLL  
VREF  
GDAC  
KDAC  
7
KDAC  
PSBIAS  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
Mo b ile -Ra d io An a lo g Co n t ro lle r  
ABSOLUTE MAXIMUM RATINGS  
AV or DV to AGND or DGND...........................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
A
DD  
DD  
Digital Inputs to DGND.............................................-0.3V to +6V  
Analog Inputs to AGND............................................-0.3V to +6V  
REF to AGND............................................................-0.3V to +6V  
AGND to DGND.................................................................± 0.3V  
SSOP (derate 8.0mW/°C above +70°C) ......................640mW  
Operating Temperature Ranges  
MAX1007CAG.....................................................0°C to +70°C  
MAX1007EAG ..................................................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
AV to DV ....................................................................± 0.3V  
DD  
DD  
Maximum Current into Any Pin............................................50mA  
MAX107  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(AV = DV = +2.85V to +3.6V, f  
= 1.152MHz, T = T  
to T , unless otherwise noted.)  
MAX  
DD  
DD  
SCLK  
A
MIN  
PARAMETER  
CONDITIONS  
MIN  
2.85  
TYP  
MAX  
UNITS  
POWER-SUPPLY REQUIREMENTS  
Supply Voltages AV , DV  
SUPPLY CURRENTS [I(AV ) + I(DV )] (Note 1)  
3.0  
3.6  
V
DD  
DD  
DD  
DD  
Transmit Mode 1:  
All DACs, Ref, RefBuf Active  
RxEN = 0, TxEN = 1; AV = DV = 3V;  
DD DD  
PKWDW = ADCCTRL = DGND  
1.8  
4.7  
5.0  
mA  
mA  
Transmit Mode 2:  
All DACs, PGA, REF, Peak  
Detector, PSBIAS, I  
RefBuf Active  
RxEN = 0, TxEN = 1; AV = DV = 3V;  
DD DD  
PKWDW and ADCCTRL as per state B on Figure 1  
,
SOURCE  
Transmit Mode 3:  
All DACs, PGA, REF, Peak  
RxEN = 0, TxEN = 1; AV = DV = 3V;  
DD DD  
PKWDW and ADCCTRL as per state C on Figure 1  
12.2  
32  
mA  
Detector, PSBIAS, I  
RefBuf, ADC Active  
,
SOURCE  
Receive Mode 1:  
KDAC, XDAC, Ref, RefBuf  
Active  
RxEN = 1, TxEN = 0; AV = DV = 3V;  
PKWDW = ADCCTRL = DGND  
DD  
DD  
1.24  
2.95  
3.5  
mA  
mA  
Receive Mode 2:  
KDAC, XDAC, Peak Detector,  
RSSI Buffer, Ref, RefBuf Active  
RxEN = 1, TxEN = 0; AV = DV = 3V; PKWDW and  
ADCCTRL as per state B on Figure 1  
DD  
DD  
Receive Mode 3:  
KDAC, XDAC, ADC, Peak  
Detector RSSI Buffer, Ref,  
RefBuf Active  
RxEN = 1, TxEN = 0; AV = DV = 3V; PKWDW and  
DD DD  
ADCCTRL as per state C on Figure 1  
11.2  
4.07  
31  
mA  
mA  
Receive Mode 4:  
RxEN = 1, TxEN = 0; AV = DV = 3V; PKWDW and  
DD  
DD  
KDAC, XDAC, ADC, RSSI  
Buffer, Ref, RefBuf, PSD  
Circuit Active  
ADCCTRL as per state B on Figure 1. PSDWDW and PSD-  
CNTRL as per state D on Figure 2  
10.5  
Standby:  
XDAC, GDAC, Ref, RefBuf Active  
RxEN = 1, TxEN = 1; AV = DV = 3V  
1.24  
1
3.5  
10  
mA  
µA  
DD  
DD  
RxEN = 0, TxEN = 0; AV = DV = 3V;  
DD  
DD  
Total Shutdown  
ADCCTRL = PSDCTRL = PKWDW = PSDWDW = DGND;  
SCLK not active, either high or low  
2
_______________________________________________________________________________________  
Mo b ile -Ra d io An a lo g Co n t ro lle r  
MAX107  
ELECTRICAL CHARACTERISTICS (continued)  
(AV = DV = +2.85V to +3.6V, f  
= 1.152MHz, T = T  
to T  
, unless otherwise noted.)  
DD  
DD  
SCLK  
A
MIN  
MAX  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
XDAC  
Resolution  
6
Bits  
LSB  
LSB  
LSB  
%FSR  
V
Differential Nonlinearity  
Integral Nonlinearity  
Offset Error  
2 < code FS  
2 < code FS  
±1  
±1/2  
±1  
Gain Error  
(Note 2)  
±10  
2.42  
30  
Full-Scale Output Swing  
Output Resistance  
GDAC  
No resistive load  
2.1  
6
2.75  
±1  
kΩ  
Resolution  
Bits  
LSB  
LSB  
LSB  
%FSR  
V/µs  
V
Differential Nonlinearity  
Integral Nonlinearity  
Offset Error  
2 < code FS  
2 < code FS  
±1  
±1  
C
= 30pF, R = 40kΩ  
L
L
Gain Error  
(Note 2)  
±10  
0.1  
2.42  
4
Output Slew Rate  
Full-Scale Output Swing  
Full-Scale Step Response Time  
SDAC, KDAC  
R
C
= 40kΩ  
2.1  
7
2.75  
±1  
L
L
= 30pF, R = 40k, settling to 5% of final value  
µs  
L
Resolution  
Bits  
LSB  
LSB  
LSB  
%FSR  
V/µs  
V
Differential Nonlinearity  
Integral Nonlinearity  
Offset Error  
2 < code FS  
2 < code FS  
±1  
±1  
±10  
0.1  
2.42  
4
Gain Error  
(Note 2)  
Output Slew Rate  
Full-Scale Output Swing  
Full-Scale Step Response Time  
Power-Up Time from Standby  
ADC  
C
R
C
C
= 30pF, R = 40kΩ  
L
L
L
L
L
= 40kΩ  
2.1  
2.75  
= 30pF, R = 40k, settling to 2% of final value  
µs  
L
= 30pF, R = 40k, settling to within 2% of final value  
4
µs  
L
Resolution  
8
0
Bits  
V
Input Signal Range  
Differential Nonlinearity  
Integral Nonlinearity  
Conversion Time  
Offset Error  
V
REF  
V
= 1.028V (typ)  
= 1.028V (typ)  
±1  
LSB  
LSB  
µs  
REF  
V
REF  
±1  
5.2  
±2  
±5  
LSB  
LSB  
V
Gain Error  
With respect to V  
REF  
Reference Voltage  
ADC Power-Up Time from Standby  
1.028  
1.74  
µs  
_______________________________________________________________________________________  
3
Mo b ile -Ra d io An a lo g Co n t ro lle r  
ELECTRICAL CHARACTERISTICS (continued)  
(AV = DV = +2.85V to +3.6V, f  
= 1.152MHz, T = T  
to T  
, unless otherwise noted.)  
DD  
DD  
SCLK  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RSSI CIRCUIT  
Lowpass-Filter Time Constant  
Minimum Peak Level Detected  
Maximum Peak Level Detected  
TRANSMIT POWER SENSE  
Offset Voltage  
10  
20  
µs  
mV  
V
100  
300  
V
REF  
MAX107  
RPS, FPS1, FPS2 to ADC input  
Forward transmit  
150  
-0.53  
-6  
mV  
V/V  
Power-Sense Amp Gain (PGA)  
Reflected transmit, class 1  
Reflected transmit, classes 2, 3, 4  
Figure 3b  
-0.44  
100  
Current Source  
50  
180  
1.1  
µA  
RPS, FPS1, FPS2 pulled to AGND when not  
selected  
Pull-Down Input Resistance  
200  
REFERENCE  
Output Voltage  
0.96  
200  
1.028  
1.87  
V
V
PS Bias Voltage Output  
PS Bias Sink Current  
Internal DAC Reference  
SERIAL-LOGIC INTERFACE  
R
R
in series with C , C = 1nF, 200Ω ≤ R 1kΩ  
L
L S  
S
µA  
V
in series with C , C = 1nF, 200Ω ≤ R 1kΩ  
2.42  
S
L
L
S
Digital Inputs (CS, SCLK, DIN, PKWDW, ADCCTRL, PSDWDW, PSDCTRL)  
Input Voltage High  
Input Voltage Low  
Input Current  
V
0.7V  
V
V
IH  
DD  
V
IL  
0.3V  
DD  
I
IN  
Excluding PSDCTRL, PSDWDW  
PSDCTRL, PSDWDW  
Digital inputs  
±1  
µA  
kΩ  
pF  
Input Resistance  
Inpt Capacitance  
R
20  
IN  
IN  
C
10  
Digital Outputs (DOUT, BANT, SDG)  
Output Voltage High  
V
C
C
= 20pF, R = 100kΩ  
V - 0.4  
DD  
V
V
L
L
L
OH  
Output Voltage Low  
V
OL  
= 20pF, R = 100kΩ  
0.4  
L
TIMING SPECIFICATIONS (Figure 4)  
DIN Valid to SCLK Setup  
DIN to SCLK Hold  
t
100  
0
ns  
ns  
1
t
2
CS Low to SCLK High  
t
t
20  
ns  
ns  
3
100  
CS Low to DOUT Valid  
SCLK High to DOUT Valid  
SCLK Pulse Width High  
SCLK Pulse Width Low  
4
t
5
t
6
t
7
150  
100  
ns  
ns  
ns  
200  
200  
434  
434  
t
8
C
= 20pF  
ns  
CS High to DOUT Disable  
L
ADC Data Output Delay After  
End of ADC Conversion  
(Figure 4b)  
t
9
500  
ns  
4
_______________________________________________________________________________________  
Mo b ile -Ra d io An a lo g Co n t ro lle r  
MAX107  
ELECTRICAL CHARACTERISTICS (continued)  
(AV = DV = +2.85V to +3.6V, f  
= 1.152MHz, T = T  
to T  
, unless otherwise noted.)  
DD  
DD  
SCLK  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RF input on RSSI, RPS, FPS1, FPS2, or  
PSBIAS, (Figure 4c)  
ADCCTRL Low to RF input  
t
t
200  
ns  
10  
11  
PSDWDW Low to BANT Valid  
SCLK Duty Cycle  
C
= 20pF (Figure 4c)  
100  
50  
ns  
%
L
Note 1: All digital inputs at DV or DGND.  
DD  
Note 2: All DACs use an internal reference voltage of 2.42V.  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(T = +25°C, unless otherwise noted.)  
A
SUPPLY CURRENT vs. TEMPERATURE  
(Tx MODE)  
SUPPLY CURRENT vs. TEMPERATURE  
(Rx MODE)  
DIFFERENTIAL NONLINEARITY  
0.5  
1.55  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
2.40  
2.30  
2.20  
2.10  
2.00  
1.90  
1.80  
0.4  
0.3  
V
DD  
= 3.6V  
V
= 3.6V  
DD  
0.2  
0.1  
V
DD  
= 2.85V  
V
DD  
= 2.85V  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-40  
25  
TEMPERATURE (°C)  
85  
-40  
25  
TEMPERATURE (°C)  
85  
0
50  
100  
150  
200  
250  
300  
CODES  
REFERENCE VOLTAGE  
vs. TEMPERATURE  
PS BIAS VOLTAGE vs. TEMPERATURE  
1.86  
1.84  
1.025  
V
DD  
= 3.6V  
V
= 3.6V  
1.024  
1.023  
1.022  
1.021  
1.020  
1.019  
DD  
V
DD  
= 2.85V  
1.82  
1.80  
1.78  
V
= 2.85V  
DD  
1.76  
-40  
-5  
25  
55  
85  
-40  
-5  
25  
55  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
Mo b ile -Ra d io An a lo g Co n t ro lle r  
P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
Used to measure reverse-transmit power level. Only active in transmit mode when PKWDW = 1,  
SDAC[F/R] = Reverse. When not selected, this pin is internally pulled to AGND through a 200switch.  
1
RPS  
Used to measure forward power-sense class 2/3/4. Only active in transmit mode when GDAC[Power  
Class] = Class 2/3/4, PKWDW = 1, and SDAC[F/R] = Forward. When not selected, this pin is internally  
pulled to AGND through a 200switch.  
2
3
FPS2  
MAX107  
Used to measure forward power-sense level 1. Only active in transmit mode when GDAC[Power Class] =  
Class 1, PKWDW = 1, and SDAC[F/R] = Forward. When not selected, this pin is internally pulled to AGND  
through a 200switch.  
FPS1  
4
5
SDAC  
Buffered output of 7-bit DAC. Controls gain stage in up/down converter.  
Analog Supply Voltage  
AV  
DD  
6
XDAC  
AGND  
REF  
Unbuffered output of 6-bit DAC. Used to control VCXO frequency.  
Analog Ground  
7
8
1.028V Reference Voltage Output  
9
KDAC  
GDAC  
SDG  
Buffered output of 7-bit DAC. Controls gain stage in external modulator block.  
Buffered output of 6-bit DAC. Controls negative gate bias voltage of external power amplifier.  
Software-Programmable Logic Output. Can be used to shut down external bias generator.  
10  
11  
Best-Antenna Digital Output. Result of preamble-switched diversity measurement (Figure 2). 0indicates  
more power was sensed from period A with respect to period B. “1” means vice versa. Period A is  
sensed in the first 12 clock periods following the PSDWDW rising edge.  
12  
BANT  
Preamble-Switched Diversity Measurement-Control Signal (Figure 2). This pin has a 20kpull-down  
resistor to digital ground.  
13  
14  
PSDCTRL  
PSDWDW  
Preamble-Switched Diversity Measurement Window (Figure 2). This pin has a 20kpull-down resistor to  
digital ground.  
15  
16  
17  
18  
19  
20  
21  
22  
23  
ADCCTRL  
PKWDW  
DOUT  
RSSI/Power-Sense Measurement-Control Input (Figure 1)  
RSSI/Power-Sense Measurement-Window Digital Input (Figure 1)  
Serial-Data Output. Enabled when CS is low.  
DGND  
Digital Ground  
SCLK  
Serial-Clock Input. Clock can be stopped and resumed at any time (40% to 60% duty cycle).  
Digital Supply Voltage  
DV  
DD  
DIN  
Serial-Data Input  
Chip Select Input. Enables serial interface when low.  
Power-Sense Measurement Buffered-Bias Output Voltage. Active only during power sensing.  
CS  
PSBIAS  
Received-Signal Strength Indicator Analog Input for power-sense and antenna diversity measurements.  
Signal goes into peak-detector circuit and is sampled at the end of the measurement window by the 8-bit  
ADC. Only active in receive mode when PKWDW = 1. Peak-detector circuit can be bypassed by using  
CH1 as the ADC input.  
24  
RSSI  
6
_______________________________________________________________________________________  
Mo b ile -Ra d io An a lo g Co n t ro lle r  
MAX107  
STATE  
A
1
B
C
CONTROL  
SIGNALS  
2
PKWDW  
7 CLOCKS  
CLOCKS  
ADCCTRL  
10 CLOCKS  
8 CLOCKS  
8 CLOCKS  
INTERNAL SIGNALS  
ACTIVE ADC  
ADC CONVERSION  
RESET  
6 CLOCKS  
1
1
SWITCH FOR PS  
10 CLOCKS  
Figure 1. RSSI/Power-Sense Control Signals  
STATE  
D
ANTENNA SELECT  
(EXTERNALLY GENERATED)  
FIRST ANTENNA  
PERIOD A  
SECOND ANTENNA  
RSSI  
PSDWDW  
PSDCTRL  
PERIOD B  
9 CLOCKS  
1
4
8 CLOCKS  
4
INTERNAL RESET 1  
INTERNAL RESET 2  
COMPARE  
NEW VALUE  
OLD VALUE  
BANT  
Figure 2. Antenna-Diversity Control Signals  
P o w e r S e n s e  
_______________De t a ile d De s c rip t io n  
The power-sense circuit consists of a multiplexer (mux),  
a programmable gain amplifier (PGA), a peak detector,  
a nd a b uffe r. The c irc uit a mp lifie s /a tte nua te s the  
demodulated RF waveform, peak-holds the signal, and  
buffers the outputs to the ADC for power-sense mea-  
surement.  
The MAX1007 comprises several blocks for measuring  
and controlling radio-frequency (RF) signals. The mea-  
surement blocks, including power sense, antenna or  
preamble-switched diversity, and the analog-to-digital  
converter (ADC), allow the comparison of various RF  
inputs. The control blocks, including four digital-to-ana-  
log converters (DACs), digital outputs BANT and SDG,  
and the serial interface, aid frequency tuning and allow  
the optimization of transceiver gain under microproces-  
sor control.  
The demodulation process with external circuitry for  
one channel is shown in Figures 3a and 3b. This circuit  
typ ic a lly re c ove rs the ne g a tive e nve lop e of the RF  
waveform. The 1.87V PSBIAS voltage and the 100µA  
current source are both generated by the MAX1007.  
_______________________________________________________________________________________  
7
Mo b ile -Ra d io An a lo g Co n t ro lle r  
In Figure 3b, the mux selects the signal from one of  
three input channels: RPS, FPS1, and FPS2. The PGA  
then amplifies or attenuates the input signal according  
to the signal power-class level and the transmission  
mode (forward or reverse) (Table 1). Three gain set-  
tings are provided in the PGA: -0.53, -0.44, and -6. The  
voltage range at the internal node PSOUT is equal to  
the ADCs input range.  
After the PGA, the signal is fed to a peak detector,  
which tracks the input and holds the positive peak volt-  
age until the ADC starts a conversion.  
MAX107  
Table 1. Data-Byte Definitions  
A [2:0]  
NAME  
D [7:0]  
DESCRIPTION  
Write [7,6]:  
[5:0]:  
Reserved  
0 0 0  
XDAC  
XDAC value [5:0]; LSB is bit 0, binary.  
Write  
Write  
[7]:  
F/R bit, defines forward or reverse power-sense measurement  
0 = Reverse power-sense measurement; RPS pin  
1 = Forward power-sense measurement; FPS1/FPS2 pin  
SDAC value [6:0]; LSB is bit 0, binary.  
0 0 1  
0 1 0  
SDAC  
KDAC  
[6:0]:  
[7]:  
ADC channel selection:  
0 = Power sense or RSSI via peak-hold circuit connected to ADC (CH0)  
1 = RSSI pin connected to ADC directly (CH1)  
KDAC value [6:0]; LSB is bit 0, binary.  
[6:0]:  
Write [7,6]:  
Power class: 00 = Class 1  
01 = Class 2  
0 1 1  
GDAC  
10 = Class 3  
11 = Class 4  
[6:0]:  
GDAC value [5:0]; LSB is bit 0, binary.  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
Reserved  
Reserved  
Reserved  
ADC  
Read [7:0]:  
ADC value [7:0]; LSB is bit 0, binary.  
PSBIAS  
1.87V  
AV  
DD  
R5  
300Ω  
I
SOURCE  
100µA  
C3  
C4  
10pF  
1nF  
50TRANSMIT LINE  
OR 22nH INDUCTOR  
RPS  
FPS1  
FPS2  
AGND  
R1  
D1  
R3  
RPS  
FPS1  
FPS2  
50Ω  
1k  
PSOUT  
PGA  
C1  
10pF  
+
R2  
50Ω  
RF INPUT  
C2  
10pF  
AGND  
Figure 3a. External Circuit for Envelope Detection  
(one channel)  
Figure 3b. Power-Sense Block  
8
_______________________________________________________________________________________  
Mo b ile -Ra d io An a lo g Co n t ro lle r  
MAX107  
RS S I  
The RSSI input provides a filtered input and a direct  
input to the ADC. The filtered signal path consists of a  
unity-gain buffer, an RC lowpass filter, and a peak  
detector to condition the signal for the ADC. The low-  
pass filters time constant is 10µs (min). The mux at the  
ADCs input selects CH0 (filtered input) or CH1 (direct  
RSSI input).  
Re fe re n c e  
The b a nd g a p volta g e re fe re nc e s up p orts s e ve ra l  
blocks of the MAX1007. The nominal 1.21V output is  
s c a le d a nd b uffe re d for the p owe r-s e ns e b ia s , the  
PGA, the ADC, and the DACs. The PSBIAS output volt-  
age is 1.87V nominal. The ADC reference is 1.028V. It  
is buffered to isolate switching noise and to allow exter-  
nal capacitor bypassing (0.014µF to 0.05µF) for AC sta-  
bility. A buffered gain supplies all DACs with a nominal  
2.42V reference voltage.  
Co n t ro l Tim in g  
The power-sense circuit is activated by the externally  
g e ne ra te d PKWDW s ig na l (Fig ure 1) whe n the  
MAX1007 is either in transmit or receive mode. When  
the PKWDW signal goes high, the entire power-sense  
circuit turns on. However, since the PGA is active only  
in the transmit mode, it remains shut down during RSSI  
power measurements to conserve power.  
Dig it a l-t o -An a lo g Co n ve rt e rs  
All four DAC outputs are reset to zero at power-up.  
Preset DACs to output voltages other than zero in total  
shutdown mode and update DACs by settling the LD  
bit in the command byte.  
XDAC  
XDAC is a 6-bit voltage-output DAC intended to drive  
varactor diodes to tune a voltage-controlled crystal  
oscillator. The input is double-buffered for independent  
updates. The inverted R-2R ladder output is unbuffered  
since the load is strictly capacitive. The maximum out-  
put voltage is 2.42V nominal, and the maximum output  
re s is ta nc e is 30k. The outp ut is re s e t to ze ro a t  
power-up and is active instantly. When XDAC is dis-  
abled, the DAC output is actively pulled to AGND.  
An t e n n a Dive rs it y  
The antenna or preamble-switched diversity (PSD) cir-  
cuit compares the signal amplitude presented at RSSI  
during two different time periods and latches the result  
at BANT (Best Antenna). The circuit consists of a dual  
track/hold (T/H) stage, a comparator, and an output  
latch (D flip-flop).  
The comparison begins with the signal from the first  
antenna applied to the RSSI pin (Figure 2). PSDWDW  
goes high, and the PSD circuit is turned on. A power-  
on-reset signal initializes the D flip-flop so that it always  
starts with BANT low. After 4 clocks to reset the peak  
detector, PSDCTRL goes high to start the measure-  
ment. The T/H stage acquires the signal for 8 clocks  
while PSDCTRL is high, then holds the peak value while  
the second antenna is switched externally to the RSSI  
p in a nd the T/H is ze roe d . PSDCTRL g oe s low for  
another 4 clocks, then goes high to enable the peak  
detector again. The peak detector is active for another  
8 clocks while the output is compared with the peak  
value for the first antenna. When PSDWDW goes low at  
the end of the comparison phase, the comparators out-  
put is clocked into the D flip-flop. The D flip-flops out-  
put, BANT, is low if the first antenna signal is greater  
tha n the s e c ond , a nd hig h if the s e c ond s ig na l is  
greater than the first. PSDCTRL goes low one clock  
period after PSDWDW goes low to power down the  
PSD circuitry.  
GDAC  
GDAC is a 6-bit voltage-output DAC intended to control  
a n e xte rna l ne g a tive b ia s g e ne ra tor, s uc h a s the  
MAX840, for a GaAs amplifier. The digital input is double-  
buffered. The inverted R-2R ladder output is buffered  
and can drive a 5kload. The maximum output voltage  
is 2.42V nominal. The DAC output is reset to zero at  
power-up and is active in standby. A programmable  
logic output (SDG) is provided to shut down the exter-  
nal bias generator.  
S DAC a n d KDAC  
SDAC and KDAC are 7-bit voltage-output DACs intend-  
ed to tune power levels of an up/downconverter or a  
modulator. The digital inputs are double-buffered. The  
inverted R-2R ladder outputs are buffered and can  
drive 5kloads. The maximum output voltage is 2.42V  
nominal. The SDAC and KDAC DAC outputs are reset  
to zero at power-up.  
An a lo g -t o -Dig it a l Co n ve rt e r  
The ADC is an 8-bit, half-flash ADC with a T/H and two  
inputs (CH0, CH1). When selected, the acquisition time  
is 1.74µs. The ADC input range is equal to the 1.028V  
internal reference.  
S e ria l-In t e rfa c e a n d Co n t ro l Lo g ic  
The serial interface is a 4-wire implementation with CS,  
SCLK, and DIN inputs and a DOUT output. The hard-  
ware consists of a 7-bit command register, an 8-bit  
data input register, an 8-bit data output register, a  
counter, and control logic. Communication is framed in  
16-bit words (8 command bits followed by 8 data bits)  
_______________________________________________________________________________________  
9
Mo b ile -Ra d io An a lo g Co n t ro lle r  
LD is the software control to update the output regis-  
READ  
CS  
ters. During a write operation, the addressed DACs  
input buffer is updated. With LD reset to “0,” the DAC  
register and DAC output remain unchanged. With LD  
s e t to “1,” a ll DACs a nd p owe r-c la s s re g is te rs a re  
simultaneously updated to the values in their input reg-  
isters immediately after the last data bit (including DAC  
values, power-class bits, F/R bit, RSSI and ADC input  
selections, SDG, and power-down bits).  
t
t
6
t
7
3
SCLK  
DOUT  
t
t
5
t
8
4
MAX107  
After a 16-bit read cycle, pull CS high. The interface is  
now ready for a new command sequence. During a  
read operation, the ADC conversion result is output to  
DOUT. With LD set to “1,” all other outputs and power-  
class registers are also updated.  
WRITE  
SCLK  
t
1
t
2
DIN  
Write Command  
The 8 data bits are latched in the data input register.  
The command byte is decoded, and the data bits are  
transferred to the appropriate registers.  
Figure 4a. Read/Write Detailed Interface Timing  
by the counter. Data is clocked into DIN or the falling  
edge of SCLK, and is clocked out of DOUT on SCLK’s  
rising edge. The serial interface is always active.  
Read Command  
After the command byte is decoded, the last 8 clocks  
output data, MSB first, from the ADC output register to  
DOUT (Figure 4b). After a 16-bit read cycle, pull CS  
high. The interface is now ready for a new command  
sequence.  
The SCLK and DIN idle state is low (Figure 4). The first  
1” clocked in after CS goes low is the start bit, signify-  
ing the beginning of a 16-bit data word. The command  
and data input registers are cleared and the counter is  
started. The next 7 bits are latched in the command  
register.  
To minimize the delay between the power-sense measure-  
ment and the ADC output, program a READ ADC’ com-  
mand prior to making the power-sense measurement and  
clock out the data as soon as the conversion is complete  
(Figure 4b). This reduces the delay by 8 clock cycles.  
Command Byte  
The c omma nd b yte (Fig ure 4d ) c ons is ts of thre e  
address bits (A2, A1, A0), two power-mode bits (RxEN,  
TxEN), a shutdown control bit (SD), and a load data bit  
(LD). Table 1 lists the address and data-byte defini-  
tions.  
To minimize the delay between the power-sense measure-  
ment and the ADC output, program a READ ADC” com-  
mand prior to making the power-sense measurement and  
clock out the data as soon as the conversion is complete  
(Figure 4b). This reduces the delay by F clock cycles.  
SD is the software control for the GaAs FET bias gener-  
a tor s hutd own p in a nd GDAC. Re s e tting SD to “0”  
causes SDG to go low and disables GDAC. The SDG  
output is updated if LD is set high.  
CS  
SCLK  
CLOCK COMMAND  
BYTE INTO DIN  
CLOCK CONVERSION  
DATA ONTO DOUT  
ACTIVE ADC  
t
9
DOUT  
ADC CONVERSION DATA  
WRITE A  
“READ ADC”  
COMMAND  
POWER-SENSE  
MEASUREMENTS  
CLOCK OUT  
CONVERSION  
RESULT  
Figure 4b. Clock Command Conversion  
10 ______________________________________________________________________________________  
Mo b ile -Ra d io An a lo g Co n t ro lle r  
MAX107  
Table 2. Power Modes  
ADCCTRL  
RSSI  
RxEN,  
DESCRIPTION  
TxEN  
t
10  
RPS  
0 0  
0 1  
1 0  
Total shutdown  
FPS1  
FPS2  
PSBIAS  
Transmit mode, all DACs enabled  
Receive mode, SDAC and GDAC outputs disabled  
PSDWDW  
Standby: REF, GDAC, and XDAC enabled. Rest of  
IC is shut down.  
1 1  
t
11  
BANT  
OLD DATA  
VALID  
Figure 4c. Power-Sense/Best-Antenna Detailed Interface  
WRITE  
CS  
SCLK  
START A2 A1 A0 RxEN TxEN SD LD D7 D6 D5 D4 D3 D2 D1 D0  
COMMAND BYTE  
DIN  
READ  
CS  
SCLK  
DIN  
START A2 A1 A0 RxEN TxEN SD LD  
COMMAND BYTE  
DOUT  
D7 D6 D5 D4 D3 D2 D1  
D0  
Figure 4d. Serial-Interface Timing  
P o w e r-S u p p ly Byp a s s in g a n d  
Gro u n d Ma n a g e m e n t  
Optimum system performance is obtained with printed  
circuit boards that use separate analog and digital  
ground planes. Wire-wrap boards are not recommend-  
e d . The two g round p la ne s s hould b e c onne c te d  
together at the low-impedance power-supply source.  
Ap p lic a t io n s In fo rm a t io n  
Precautions must be taken to minimize RF coupling  
through the IC.  
S h u t d o w n Mo d e s  
At power-up, the device initializes in total shutdown  
mode. The digital interface is always active. Table 2  
describes the various power modes available.  
Bypass AV  
with a 0.1µF ceramic capacitor connect-  
DD  
ed between AV and AGND. Mount it with short leads  
DD  
Whe n the PGA is not on (in shutdown, sta ndb y, or  
receive mode, or when PKWDW is low), the PS input  
pins (RPS, FPS1, FPS2) are pulled down to ground. To  
minimize RF coupling, the unselected channels are  
also pulled down to ground when the circuit is active.  
The current source and the 1.87V PSBIAS voltage gen-  
erator are turned on only when the device is performing  
the transmit power-sense measurement.  
close to the device. Similarly bypass DV with a 0.1µF  
DD  
c e ra mic c a p a c itor c onne c te d b e twe e n DV  
a nd  
DD  
DGND. Ferrite beads may also be used to further iso-  
late the analog and digital power supplies.  
______________________________________________________________________________________ 11  
Mo b ile -Ra d io An a lo g Co n t ro lle r  
P in Co n fig u ra t io n  
Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 6744  
TOP VIEW  
RPS  
FPS2  
FPS1  
SDAC  
1
2
3
4
5
6
7
8
9
24 RSSI  
23 PSBIAS  
22 CS  
21 DIN  
MAX107  
MAX1007  
AV  
DD  
20 DV  
DD  
XDAC  
AGND  
REF  
19 SCLK  
18 DGND  
17 DOUT  
KDAC  
16 PKWDW  
15 ADCCTRL  
14 PSDWDW  
13 PSDCTRL  
GDAC 10  
SDG 11  
BANT 12  
SSOP  
________________________________________________________P a c k a g e In fo rm a t io n  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1998 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1007CAG

Mobile-Radio Analog Controller
MAXIM

MAX1007CAG+T

Analog Circuit, 1 Func, PDSO24, 5.30 X 0.65 MM, SSOP-24
MAXIM

MAX1007CAG-T

Analog Circuit, 1 Func, PDSO24, 5.30 X 0.65 MM, SSOP-24
MAXIM

MAX1007EAG

Mobile-Radio Analog Controller
MAXIM

MAX1007EAG-T

Analog Circuit, 1 Func, PDSO24, 5.30 X 0.65 MM, SSOP-24
MAXIM

MAX100CFR

Analog-to-Digital Converter, 8-Bit
MAXIM

MAX100CFR-T

暂无描述
MAXIM

MAX100EVKIT

Evaluation Kit for the MAX100
MAXIM

MAX101

500Msps, 8-Bit ADC with Track/Hold
MAXIM

MAX1011

Low-Power, 90Msps, 6-Bit ADC
MAXIM

MAX1011CEG

Low-Power, 90Msps, 6-Bit ADC
MAXIM

MAX1011CEG+

ADC, Flash Method, 6-Bit, 1 Func, 1 Channel, Parallel, Word Access, PDSO24, 0.150 INCH, 0.025 INCH PITCH, QSOP-24
MAXIM