MAX101CFR [MAXIM]

500Msps, 8-Bit ADC with Track/Hold; 500 MSPS , 8位ADC,采样/保持
MAX101CFR
型号: MAX101CFR
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

500Msps, 8-Bit ADC with Track/Hold
500 MSPS , 8位ADC,采样/保持

文件: 总16页 (文件大小:151K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0296; Rev 0; 8/94  
5 0 0 Ms p s , 8 -Bit ADC w it h Tra c k /Ho ld  
MAX01  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
500Msps Conversion Rate  
The MAX101 ECL-compatible, 500Msps, 8-bit analog-  
to-digital converter (ADC) allows accurate digitizing of  
analog signals from DC to 250MHz (Nyquist frequen-  
cy). Dual monolithic converters, driven by the track/hold  
(T/H), operate on opposite clock edges (time inter-  
leaved). Designed with Maxims proprietary advanced  
bipolar processes, the MAX101 contains a high-perfor-  
mance T/H amplifier and two quantizers in an 84-pin  
ceramic flat pack.  
7.0 Effective Bits Typical at 250MHz  
1.2GHz Analog Input Bandwidth  
Less than ±1/2LSB INL  
50Differential or Single-Ended Inputs  
±270mV Input Signal Range  
Ratiometric Reference Inputs  
Dual Latched Output Data Paths  
The innovative design of the internal T/H assures an  
exceptionally wide 1.2GHz input bandwidth and aper-  
ture delay uncertainty of less than 2ps, resulting in a  
high 7.0 effective bits at the Nyquist frequency. Special  
c omp a ra tor outp ut d e s ig n a nd d e c od ing c irc uitry  
reduce out-of-sequence code errors. The probability of  
erroneous codes due to metastable states is reduced to  
-15  
Low Error Rate, Less than 10  
84-Pin Ceramic Flat Pack  
Metastable States  
________________________Ap p lic a t io n s  
High-Speed Digital Instrumentation  
High-Speed Signal Processing  
Medical Systems  
15  
less than 1 error per 10 clock cycles. And, unlike  
other ADCs that can have errors resulting in false full-  
scale or zero-scale outputs, the MAX101 keeps the error  
magnitude to less than 1LSB.  
Radar/Signal Processing  
High-Energy Physics  
The analog input is designed for either differential or  
single-ended use with a ±270mV range. Sense pins for  
the reference input allow full-scale calibration of the  
input range or facilitate ratiometric use.  
Communications  
Phase adjustment is available to adjust the relative  
sampling of the converter halves for optimizing convert-  
er performance. Input clock phasing is also available  
for interleaving several MAX101s for higher effective  
sampling rates.  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
PIN-PACKAGE  
84 Ceramic Flat Pack  
(with heatsink)  
MAX101CFR* 0°C to +70°C  
*Contact factory for 84-pin ceramic flat pack without heatsink.  
_________________________________________________________Fu n c t io n a l Dia g ra m  
VA  
RT  
VA  
RTS  
VA  
RBS  
VA  
RB  
L
A
T
C
H
E
S
MAX101  
8
8
ADATA  
AIN+  
AIN-  
FLASH CONVERTER  
(8 -BIT)  
B
U
F
TRACK  
AND  
HOLD  
DCLK  
DCLK  
STROBE  
STROBE  
F
E
R
CLK  
CLK  
FLASH CONVERTER  
(8 -BIT)  
8
8
L
A
T
C
H
E
S
BDATA  
TRK1  
PH  
ADJ  
VB  
RT  
VB  
RTS  
TRK1  
VB  
RBS  
VB  
RB  
________________________________________________________________ Maxim Integrated Products  
1
Ca ll t o ll fre e 1 -8 0 0 -9 9 8 -8 8 0 0 fo r fre e lit e ra t u re .  
5 0 0 Ms p s , 8 -Bit ADC w it h Tra c k /Ho ld  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltages  
DIV10 Input Voltage (V , V ).......................................V to 0V  
IH IL EE  
V
V
EE  
...........................................................................0V to +7V  
.............................................................................-7V to 0V  
Output Current, (I max)  
T <100°C .......................................................................14mA  
J
CC  
O
V
CC  
- V .........................................................................+12V  
EE  
100°C < T <125°C.........................................................12mA  
J
Analog Input Voltage .............................................................±2V  
Reference Voltage (VA , VB )...........................-0.3V to +1.5V  
Operating Temperature Range ...............................0°C to +70°C  
Operating Junction Temperature (Note 2)............0°C to +125°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+250°C  
RT  
RT  
Reference Voltage (VA , VB )..........................-1.5V to +0.3V  
RB  
RB  
MAX01  
Clock Input Voltage (V , V ).....................................-2.3V to 0V  
IH IL  
Note 1: The digital control inputs are diode protected. However, limited protection is provided on other pins. Permanent damage  
may occur on unconnected units under high-energy electrostatic fields. Keep unused units in supplied conductive carrier or  
shunt the terminals together.  
Note 2: Typical thermal resistance, junction-to-case R  
= 5°C/W and thermal resistance, junction to ambient (MAX101CFR)  
θJC  
R
θJA  
=12°C/W, if 200 lineal ft/min airflow is provided. See Package Information.  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = -5.2V, V = +5V, R = 100to -2V, VA , VB = 1.02V, VA , VB = -1.02V, T = +25°C, unless otherwise noted.  
EE  
CC  
L
RT  
RT  
RB  
RB  
A
T
MIN  
to T  
= 0°C to +70°C. Note 3)  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ACCURACY  
Resolution  
8
Bits  
T
= +25°C  
±0.50  
±0.75  
±0.75  
±0.85  
A
Integral Nonlinearity (Note 4)  
INL  
AData, BData  
LSB  
T
A
= T to T  
MIN MAX  
T
A
= +25°C  
AData, BData,  
no missing codes  
Differential Nonlinearity  
DNL  
LSB  
T
A
= T to T  
MIN MAX  
DYNAMIC SPECIFICATIONS  
f
= 10MHz  
7.6  
7.1  
7.0  
AIN  
f
V
= 500MHz,  
= 95% full scale  
CLK  
Effective Bits  
ENOB  
SNR  
f
= 125MHz  
= 250MHz  
Bits  
dB  
IN  
AIN  
(Note 5)  
f
6.7  
AIN  
f
V
= 125MHz, f  
= 95% full scale (Note 6)  
= 500MHz,  
CLK  
AIN  
Signal-to-Noise Ratio  
44.5  
IN  
Maximum Conversion Rate  
Analog Input Bandwidth  
Aperture Width  
f
(Note 7)  
500  
Msps  
GHz  
ps  
CLK  
BW  
1.2  
270  
2
3dB  
t
Figure 4  
Figure 4  
AW  
Aperture Jitter  
t
ps  
AJ  
ANALOG INPUT  
Full scale  
230  
-305  
-17  
1.8  
315  
-215  
32  
AIN+ to AIN-, Table 2,  
Input Voltage Range  
V
mV  
IN  
T
A
= T to T  
MIN MAX  
Zero scale  
Input Offset Voltage  
Least Significant Bit Size  
Input Resistance  
V
IO  
AIN+, AIN-, T = T  
to T  
MAX  
mV  
mV  
A
MIN  
LSB  
T
A
= T  
to T  
MAX  
2.5  
51  
MIN  
R
AIN+, AIN-, to GND  
49  
I
Input Resistance  
Temperature Coefficient  
0.008  
/°C  
2
_______________________________________________________________________________________  
5 0 0 Ms p s , 8 -Bit ADC w it h Tra c k /Ho ld  
MAX01  
ELECTRICAL CHARACTERISTICS (continued)  
(V = -5.2V, V = +5V, R = 100to -2V, VA , VB = 1.02V, VA , VB = -1.02V, T = +25°C, unless otherwise noted.  
EE  
CC  
L
RT  
RT  
RB  
RB  
A
T
MIN  
to T  
= 0°C to +70°C. Note 3)  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
REFERENCE INPUT  
Reference String Resistance  
R
VA to VA  
RT  
100  
175  
REF  
RB  
Reference String Resistance  
Temperature Coefficient  
0.02  
/°C  
LOGIC INPUTS  
Digital Input Low Voltage  
V
CLK, CLK  
CLK, CLK  
T
= T  
= T  
= T  
= T  
= T  
to T  
to T  
to T  
to T  
to T  
-1.50  
V
V
IL  
A
MIN  
MIN  
MIN  
MIN  
MIN  
MAX  
Digital Input High Voltage  
Digital Input High Current  
Input Bias Current  
V
IH  
T
A
-1.1  
1.1  
MAX  
MAX  
MAX  
MAX  
I
IH  
DIV10 = 0V  
PH = 0V  
T
A
3.1  
40  
50  
mA  
µA  
µA  
I
B
T
A
ADJ  
CLK, CLK = -0.8V  
(no termination)  
Clock Input Bias Current  
I
T
A
CLK  
LOGIC OUTPUTS (Note 8)  
T
= +25°C  
-1.95  
-1.95  
-1.3  
-1.60  
-1.50  
-1.00  
-0.9  
A
AData, BData  
DCLK, DCLK  
T
A
= T  
to T  
MIN  
MAX  
MAX  
Digital Output Low Voltage  
V
OL  
V
T
A
= +25°C  
T
A
= T  
to T  
-1.4  
MIN  
T
= +25°C  
-1.02  
-1.10  
-0.70  
-0.60  
A
AData, BData,  
DCLK, DCLK  
Digital Output High Voltage  
V
V
OH  
T
A
= T  
to T  
MIN  
MAX  
MAX  
Digital Output Voltage  
POWER REQUIREMENTS  
Positive Supply Current  
V
- V  
DCLK, DCLK  
T
A
= T  
to T  
275  
445  
mV  
OH  
OL  
MIN  
T
A
= +25°C  
550  
765  
1065  
1130  
-525  
I
V
CC  
= 5.0V  
mA  
VCC  
T
A
= T to T  
MIN MAX  
T
A
= +25°C  
-935  
-975  
35  
-750  
Negative Supply Current  
I
V
EE  
= -5.2V  
mA  
dB  
dB  
VEE  
CMRR  
PSRR  
T
A
= T  
to T  
MIN  
MIN  
MAX  
MAX  
Common-Mode Rejection Ratio  
Power-Supply Rejection Ratio  
V
INCM  
= ±0.5V  
T
A
= T  
to T  
V
(nom) = ±0.25V  
(nom) = ±0.25V  
40  
CC  
T
A
= T  
to T  
MIN  
MAX  
V
EE  
40  
_______________________________________________________________________________________  
3
5 0 0 Ms p s , 8 -Bit ADC w it h Tra c k /Ho ld  
TIMING CHARACTERISTICS  
(V = -5.2V, V = +5V, R = 100to -2V, VA , VB = 1.02V, VA , VB = -1.02V, T = +25°C, unless otherwise noted.)  
EE  
CC  
L
RT  
RT  
RB  
RB  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
0.9  
TYP  
MAX  
2.5  
UNITS  
ns  
Clock Pulse Width Low  
Clock Pulse Width High  
t
CLK, CLK  
CLK, CLK  
PWL  
t
0.9  
2.5  
ns  
PWH  
CLK to DCLK  
Propagation Delay  
t
DIV10 = 0, Figures 1, 2  
DIV10 = 0, Figures 1, 2  
20% to 80%  
1.2  
0.7  
2.3  
1.3  
3.4  
1.8  
ns  
ns  
ps  
ps  
PD1  
PD2  
MAX01  
DCLK to A/BData  
Propagation Delay  
t
DCLK  
DATA  
DCLK  
DATA  
400  
850  
400  
700  
Rise Time  
Fall Time  
t
R
t
20% to 80%  
F
Pipeline Delay  
(Latency)  
See Figures 2, 3  
and Table 1  
Clock  
Cycles  
t
Divide-by-1 mode  
15  
15  
NPD  
Note 3: All devices are 100% production tested at +25°C and are guaranteed by design for T = T  
to T  
as specified.  
A
MIN  
MAX  
Note 4: Deviation from best-fit straight line. See Integral Nonlinearity section.  
Note 5: See the Signal-to-Noise Ratio and Effective Bits section in the Detailed Description of Specifications.  
Note 6: SNR calculated from effective bits performance using the following equation: SNR(dB) = 1.76 + 6.02 x effective bits.  
Note 7: Clock pulse width minimum requirements t  
Note 8: Outputs terminated through 100to -2.0V.  
and t  
must be observed to achieve stated performance.  
PWL  
PWH  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V = -5.2V, V = +5V, R = 100to -2V, VA , VB = 1.02V, VA , VB = -1.02V, T = +25°C, unless otherwise noted.)  
EE  
CC  
L
RT  
RT  
RB  
RB  
A
INTEGRAL NONLINEARITY  
vs. OUTPUT CODE  
DIFFERENTIAL NONLINEARITY  
vs. OUTPUT CODE  
0.75  
0.75  
0.50  
0.25  
0.50  
0.25  
0
0
-0.25  
-0.25  
-0.50  
-0.75  
-0.50  
-0.75  
0
64  
128  
192  
256  
0
64  
128  
192  
256  
OUTPUT CODE  
OUTPUT CODE  
4
_______________________________________________________________________________________  
5 0 0 Ms p s , 8 -Bit ADC w it h Tra c k /Ho ld  
MAX01  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = -5.2V, V = +5V, R = 100to -2V, VA , VB = 1.02V, VA , VB = -1.02V, T = +25°C, unless otherwise noted.)  
EE  
CC  
L
RT  
RT  
RB  
RB  
A
FFT PLOT  
(f = 251.4462MHz)  
FFT PLOT  
(f = 10.4462MHz)  
AIN  
AIN  
0
0
f
= 500MHz,  
f
= 250MHz,  
CLK  
CLK  
-10  
-20  
-30  
-40  
-50  
-60  
-10  
-20  
-30  
-40  
-50  
-60  
SER = -44.5dB,  
NOISE FLOOR = -67.3dB,  
SPURIOUS = -58.2dB  
SER = -47.2dB,  
NOISE FLOOR = -70.5dB,  
SPURIOUS = -61.8dB  
-70  
-80  
-70  
-80  
-90  
-90  
-100  
-100  
0
25  
50  
75  
100  
125  
0
12.5  
25  
37.5  
(MHz)  
50  
62.5  
(MHz)  
EFFECTIVE BITS vs. ANALOG INPUT  
EFFECTIVE BITS vs. CLOCK  
FREQUENCY (f  
(f = 500MHz, V = 95% FS)  
AIN IN  
FREQUENCY (f  
)
)
AIN  
= 500MHz, V = 95% FS)  
CLK  
(f  
CLK  
IN  
8
8
7
6
7
6
0
50  
100  
150  
(MHz)  
200  
250  
300  
0
100  
200  
300  
(MHz)  
400  
500  
600  
f
f
AIN  
CLK  
_______________________________________________________________________________________  
5
5 0 0 Ms p s , 8 -Bit ADC w it h Tra c k /Ho ld  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V = -5.2V, V = +5V, R = 100to -2V, VA , VB = 1.02V, VA , VB = -1.02V, T = +25°C, unless otherwise noted.)  
EE  
CC  
L
RT  
RT  
RB  
RB  
A
DATA CLOCK (DCLK)  
RISE TIME (526ps), DIV10 = OPEN  
DATA CLOCK (DCLK) FALL TIME  
(352ps), DIV10 = OPEN  
-550mV  
-550mV  
MAX01  
100mV/div  
100mV/div  
-1.55V  
-1.55V  
-4.18ns  
-4.18ns  
5.2ns  
5.2ns  
BDATA FALL TIME (714ps),  
DIV10 = OPEN  
BDATA RISE TIME (855ps),  
DIV10 = OPEN  
-825mV  
-825mV  
100mV/div  
100mV/div  
-1.825V  
-1.825V  
-4.98ns  
5.02ns  
-4.98ns  
5.02ns  
6
_______________________________________________________________________________________  
5 0 0 Ms p s , 8 -Bit ADC w it h Tra c k /Ho ld  
MAX01  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
1
PAD  
Internal connection, leave open.  
2, 62  
3, 61  
CLK  
CLK  
Complementary Differential Clock Inputs. Can be driven from standard 10KH ECL with the following  
considerations: Internally, pins 2, 62 and 3, 61 are the ends of a 50transmission line. Either end  
can be driven with the other end terminated with 50to -2V. See Typical Operating Circuit.  
4, 7, 15, 18,  
24, 27, 30,  
34, 37, 40,  
46, 49, 57,  
60, 64, 67,  
68, 70, 71,  
74, 77, 78,  
79, 82, 84  
GND  
Power-Supply Ground  
5, 59  
6, 58  
TRK1  
TRK1  
Phasing inputs (normally left open). See Applications Information section.  
Positive Power Supply, +5V ±5% nominal  
8, 21, 43,  
56, 81  
VCC  
9
VB  
“B” side negative reference voltage input (Note 9)  
“B” side negative reference voltage sense (Note 9)  
Internal connection, leave pin open.  
RB  
10  
VB  
RBS  
11  
TP4  
TP3  
VB  
12  
13  
Internal connection, leave pin open.  
“B” side positive reference voltage sense (Note 9)  
“B” side positive reference voltage input (Note 9)  
No Connect—no internal connection to these pins.  
RTS  
14  
VB  
RT  
16, 48, 63  
29  
N.C.  
SUB  
Circuit Substrate contact. This pin must be connected to V  
.
EE  
31  
33  
DCLK  
DCLK  
Complementary Differential Clock Outputs. Used to synchronize following circuitry: Outputs A0–A7  
are valid after DCLKs rising edge. B0–B7 output data are valid after DCLKs falling edge (see Figure 1  
for output timing information).  
32, 69, 80  
35  
VEE  
Negative Power Supply, -5.2V ±5% nominal  
DIV10  
Divide by 10 mode. Leave open for normal operation. Selects test mode when grounded.  
36, 38, 39,  
41, 42, 44,  
45, 47  
A7–A0  
B7–B0  
AData and BData Outputs. A0 and B0 are the LSBs, and A7 and B7 are the MSBs. AData and BData  
outputs conform to ECL logic swings and drive 100transmission lines. Terminate with 100to -2V  
(120for Tj > +100°C). See Figures 1–3.  
28, 26, 25,  
23, 22, 20,  
19, 17  
_______________________________________________________________________________________  
7
5 0 0 Ms p s , 8 -Bit ADC w it h Tra c k /Ho ld  
_________________________________________________P in De s c rip t io n (c o n t in u e d )  
PIN  
50  
NAME  
VA  
FUNCTION  
“A” side positive reference voltage input (Note 9)  
RT  
51  
VA  
“A” side positive reference voltage sense (Note 9)  
Internal connection, leave pin open.  
RTS  
MAX01  
52  
TP1  
TP2  
VA  
53  
Internal connection, leave pin open.  
54  
“A” side negative reference voltage sense (Note 9)  
“A” side negative reference voltage input (Note 9)  
Internal connection, leave pin open.  
RBS  
55  
VA  
RB  
65  
TP5  
66  
TP6  
AIN+  
AIN-  
Internal connection, leave pin open.  
72, 73  
75, 76  
Analog Inputs, internally terminated with 50to ground. Full-scale linear input range is approximately  
±270mV. Drive AIN+ and AIN- differentially for best high-frequency performance.  
Phase adjustment for T/H. Normally connected to ground. A phase adjustment of approximately ±18ps  
can be made by varying this pins bias point to optimize interleaving between sides A and B (Note 10).  
83  
PH  
ADJ  
Note 9: VA , VA , VB , and VB should be adjusted separately from a well bypassed reference circuit to ensure proper  
RT  
RB  
RT  
RB  
amplitude and offset matching. The sense connections to each of these terminals allows precision setting of the reference  
voltage. The reference ladder is similar for both converter halves (check electrical section for values). Any noise on these  
terminals will severely reduce overall performance.  
Note 10: Good results are obtained by connecting the PH  
input to ground. Improve performance by applying a voltage between  
ADJ  
±1.25V to this input. The time that the “A” T/H bridge samples relative to the time that the “B” T/H bridge samples can be  
varied through a ±18ps range.  
CLK  
CLK  
t
t
PWL  
PWH  
DCLK  
DCLK  
t
PD1  
ADATA  
BDATA  
t
t
PD2  
PD2  
Figure 1. Output Timing, Normal Mode, DIV10 = OPEN  
8
_______________________________________________________________________________________  
5 0 0 Ms p s , 8 -Bit ADC w it h Tra c k /Ho ld  
MAX01  
N1  
N
N+2  
+14  
+15  
+16  
+17  
N+1  
CLK  
0
1
7
8
DCLK  
ADATA  
BDATA  
N-1  
N+1  
N+3  
N-2  
N
N+2  
t
PD2  
t
PD2  
NOTE: DATA ARBITRARY ON START-UP FOR SIDE A OR B, SEE INPUT CLOCK PHASING.  
Figure 2. Output Timing, Clock to Data, Normal Mode DIV10 = OPEN  
N
N+2  
N+3  
+15  
+16  
+17  
N+1  
CLK  
DCLK  
ADATA  
BDATA  
N
N+5  
NOTE: DATA ARBITRARY ON START-UP FOR SIDE A OR B, SEE INPUT CLOCK PHASING.  
Figure 3. Output Timing, Test Mode (DIV10 = GND)  
_______________________________________________________________________________________  
9
5 0 0 Ms p s , 8 -Bit ADC w it h Tra c k /Ho ld  
______De fin it io n s o f S p e c ific a t io n s  
S ig n a l-t o No is e Ra t io a n d Effe c t ive Bit s  
CLK  
Signal-to-noise ratio (SNR) is the ratio between the RMS  
amplitude of the fundamental input frequency to the  
CLK  
t
AW  
RMS amplitude of all other analog-to-digital (A/D) out-  
p ut s ig na ls . The the ore tic a l minimum A/D nois e is  
caused by quantization error and is a direct result of  
the ADCs resolution: SNR = (6.02N + 1.76)dB, where N  
is the number of effective bits of resolution. Therefore, a  
perfect 8-bit ADC can do no better than 50dB. The FFT  
plots in the Typical Operating Characteristics show the  
output level in various spectral bands.  
ANALOG  
INPUT  
MAX01  
t
AD  
t
AJ  
SAMPLED  
DATA (T/H)  
Effective bits is calculated from a digital record taken  
from the ADC under test. The quantization error of the  
ideal converter equals the total error of the device. In  
addition to ideal quantization error, other sources of  
error include all DC and AC nonlinearities, clock and  
aperture jitter, missing output codes, and noise. Noise  
on references and supplies also degrades effective bits  
performance.  
TRACK  
HOLD  
APERTURE DELAY (t  
TRACK  
T/H  
)
AD  
APERTURE WIDTH (t  
)
AW  
APERTURE JITTER (t  
)
AJ  
The ADCs input is a sine wave filtered with an anti-  
aliasing filter to remove any harmonic content. The digi-  
tal record taken from this signal is compared against a  
ma the ma tic a lly g e ne ra te d s ine wa ve . DC offs e ts ,  
phase, and amplitudes of the mathematical model are  
adjusted until a best-fit sine wave is found. After sub-  
tracting this sine wave from the digital record, the resid-  
ual error remains. The rms value of the error is applied  
in the following equation to yield the ADCs effective  
bits.  
Figure 4. T/H Aperture Timing  
typical converters can be incorrect, including false full-  
or zero-scale output. The MAX101s unique design  
reduces the magnitude of this type of error to 1LSB,  
and reduces the probability of the error occurring to  
15  
less than one in every 10 clock cycles. If the MAX101  
were operated at 500MHz, 24 hours a day, this would  
translate to less than one metastable state error every  
46 days.  
measured rms error  
Effective bits = N - log  
—————————-  
2
ideal rms error  
In t e g ra l No n lin e a rit y  
Integral nonlinearity is the deviation of the transfer func-  
tion from a reference line measured in fractions of 1LSB  
us ing a b e s t s tra ig ht line ” d e te rmine d b y a le a s t  
square curve fit.  
where N is the resolution of the converter. In this case,  
N = 8.  
The worst-case error for any device will be at the con-  
verters maximum clock rate with the analog input near  
the Nyquist rate (one-half the input clock rate).  
Diffe re n t ia l No n lin e a rit y  
Differential nonlinearity (DNL) is the difference between  
the measured LSB step and an ideal LSB step size  
between adjacent code transitions. DNL is expressed  
in LSBs and is calculated using the following equation:  
Ap e rt u re Wid t h a n d J it t e r  
Aperture width is the time the T/H circuit takes to dis-  
connect the hold capacitor from the input circuit (i.e., to  
turn off the sampling bridge and put the T/H in hold  
mode). Aperture jitter is the sample-to-sample variation  
in aperture delay (Figure 4).  
[V  
MEAS  
- (V  
)] - LSB  
MEAS - 1  
DNL(LSB) = ——————————————-  
LSB  
Erro r Ra t e s  
Errors resulting from metastable states may occur when  
the analog input voltage, at the time the sample is  
taken, falls close to the decision point for any one of the  
input comparators. The resulting output code for many  
where V  
code.  
is the measured value of the previous  
MEAS - 1  
A DNL specification of less than 1LSB guarantees no  
missing codes and a monotonic transfer function.  
10 ______________________________________________________________________________________  
5 0 0 Ms p s , 8 -Bit ADC w it h Tra c k /Ho ld  
MAX01  
_______________De t a ile d De s c rip t io n  
Table 1. Output Mode Control  
DCLK*  
(MHz)  
Co n ve rt e r Op e ra t io n  
The parallel or flash” architecture used by the MAX101  
provides the fastest multibit conversion of all common  
integrated ADC designs. The basic element of a flash, as  
with all other ADC architectures, is the comparator, which  
has a positive input, a negative input, and an output. If  
the voltage at the positive input is higher than the nega-  
tive input (connected to a reference), the output will be  
high. If the positive input voltage is lower than the refer-  
ence, the output will be low. A typical n-bit flash consists  
DIV10  
MODE  
DESCRIPTION  
Normal AData and BData valid on oppo-  
Divide  
by 2  
OPEN  
250  
site DCLK edges (AData on rise,  
BData on fall).  
AData and BData valid on oppo-  
site DCLK edges (AData on rise,  
BData on fall). Data sampled at  
input CLK rate but 4 out of every  
5 samples discarded.  
Test  
Divide  
by 10  
GND  
50  
n
of 2 - 1 comparators with negative inputs evenly spaced  
at 1LSB increments from the bottom to the top of the ref-  
erence ladder. For n = 8, there are 255 comparators.  
* Input clocks (CLK, CLK) = 500MHz for all above combinations. In  
all modes, the output clock DCLK will be a 50% duty cycle signal.  
For any input voltage, all the comparators with negative  
inputs connected to the reference ladder below the  
input voltage will have outputs of 1 and all comparators  
with negative inputs above the input voltage will have  
outputs of 0. Decode logic is provided to convert this  
information into a parallel n-bit digital word (the output)  
corresponding to the number of LSBs (minus 1) that the  
input voltage is above the bottom of the ladder.  
Da t a Flo w  
The MAX101s internal T/H amplifier samples the analog  
input voltage for the ADC to convert. The T/H is split into  
two sections that operate on alternate negative clock  
edges. The input clock, CLK, is conditioned by the T/H  
and fed to the A/D section. The output clock, DCLK,  
used for output data timing, will be divided by 2 or 10  
from the input clock, CLK (Table 1). This would result in  
an output data rate of 250Mbps on each output port in  
normal mode and 50Mbps in test mode. The differential  
inp uts , AIN+ a nd AIN-, a re tra c ke d c ontinuous ly  
between data samples. When a negative strobe edge is  
sensed, one-half of the T/H goes into the hold mode  
(Figure 4). When the strobe is low, the just-acquired  
sample is presented to the ADCs input comparators.  
Internal processing of the sampled data takes an addi-  
tional 15 clock cycles before it is available at the out-  
puts, AData and BData. See Figures 1–3 for timing.  
The c omp a ra tors c onta in la tc h c irc uitry a nd a re  
clocked. This allows the comparators to function as  
described previously when, for example, clock is low.  
When clock goes high (samples) the comparator will  
latch and hold its state until the clock goes low again.  
The MAX101 uses a monolithic dual interleaved parallel  
q ua ntize r c hip with two s e p a ra te 8-b it c onve rte rs .  
These converters deliver results to the A and B output  
latches on alternate negative edges of the input clock.  
Tra c k /Ho ld  
As with all ADCs, if the input waveform is changing  
rapidly during the conversion the effective bits and  
SNR will d e c re a s e . The MAX101 ha s a n inte rna l  
track/hold (T/H) that increases attainable effective bits  
performance and allows more accurate capture of ana-  
log data at high conversion rates.  
__________Ap p lic a t io n s In fo rm a t io n  
An a lo g In p u t Ra n g e s  
Although the normal operating range is ±270mV, the  
MAX101 can be operated with up to ±500mV on each  
input with respect to ground. This extended input level  
includes the analog signal and any DC common-mode  
voltage.  
The internal T/H circuit provides two important circuit  
functions for the MAX101:  
To ob ta in full-s c a le d ig ita l outp ut with d iffe re ntia l  
inp ut d rive , a nomina l + 270mV mus t b e a p p lie d  
between AIN+ and AIN-. That is, AIN+ = +135mV and  
AIN- = -135mV (with no DC offset). Mid-scale digital  
output code occurs when there is no voltage difference  
across the analog inputs. Zero-scale digital output  
code, with differential -270mV drive, occurs when AIN+  
= -135mV and AIN- = +135mV. Table 2 shows how the  
output of the converter stays at all ones (full scale)  
when over-ranged or all zeros (zero scale) when under-  
ranged.  
1) Its nominal voltage gain of 4 reduces the input dri-  
ving s ig na l to ± 270mV d iffe re ntia l (a s s uming a  
±1.02V reference).  
2) It provides a differential 50input that allows easy  
interface to the MAX101.  
______________________________________________________________________________________ 11  
5 0 0 Ms p s , 8 -Bit ADC w it h Tra c k /Ho ld  
Table 2. Input Voltage Range  
AIN+  
(mV)  
AIN-  
(mV)  
OUTPUT  
CODE  
MSB to  
LSB  
INPUT  
+135  
0
-135  
1 1 1 1 1 1 1 1 full scale  
1 0 0 0 0 0 0 0 mid scale  
0 0 0 0 0 0 0 0 zero scale  
1 1 1 1 1 1 1 1 full scale  
1 0 0 0 0 0 0 0 mid scale  
0 0 0 0 0 0 0 0 zero scale  
POSITIVE  
REFERENCE  
Differential  
0
VA  
RT  
-135  
+270  
0
+135  
MAX01  
0
0
0
PARASITIC  
RESISTANCE  
Single  
Ended  
VA  
RTS  
-270  
* An offset V , as specified in the DC electrical paramters, will be  
IO  
R
present at the input. Compensate for this offset by adjusting the  
reference voltage. Offsets may be different between side A and  
side B.  
TO  
COMPARATORS  
For single-ended operation:  
R
R
R
R
1) Apply a DC offset to one of the analog inputs, or  
leave one input open. (Both AIN+ and AIN- are ter-  
minated internally with 50to analog ground.)  
2) Drive the othe r inp ut with a ± 270mV + offs e t to  
obtain either full- or zero-scale digital output. If a DC  
common-mode offset is used, the total voltage swing  
allowed is ±500mV (analog signal plus offset with  
respect to ground).  
Re fe re n c e  
The ADCs reference resistor is a Kelvin-sensed, resis-  
tor string that sets the ADCs LSB size and dynamic  
operating range. Normally, the top and bottom of this  
string are driven with an external buffer amplifier. It will  
need to supply approximately 21mA due to the 100Ω  
minimum resistor string impedance. A ±1.02V refer-  
ence voltage is normally applied to inputs VA , VB  
,
RT  
RT  
VA , and VB . This reference voltage can be adjust-  
RB  
RB  
e d up to ± 1.2V to a c c ommod a te e xte nd e d inp ut  
requirements (accuracy specifications are guaranteed  
with ±1.02V references). The reference inputs VA  
,
RTS  
VA  
, VB  
, and VB  
allow Kelvin sensing of the  
RBS  
RTS  
RBS  
VA  
RBS  
applied voltages to increase precision.  
An RC network at the ADCs reference terminals is  
needed for best performance. This network consists of  
a 33resistor connected in series with the buffer out-  
put that drives the reference. A 0.47µF capacitor must  
be connected near the resistor at the buffers output  
(s e e Typ ic a l Op e ra ting Circ uit). This re s is tor a nd  
capacitor combination should be located within 0.5  
inches of the MAX101 package. Any noise on these  
p ins will d ire c tly a ffe c t the c od e unc e rta inty a nd  
degrade the ADCs effective bits performance.  
PARASITIC  
RESISTANCE  
VA  
RB  
NEGATIVE  
REFERENCE  
Figure 5. Reference Ladder  
12 ______________________________________________________________________________________  
5 0 0 Ms p s , 8 -Bit ADC w it h Tra c k /Ho ld  
MAX01  
CLK a n d DCLK  
All input and output clock signals are differential. The  
input clocks, CLK and CLK, are the primary timing sig-  
nals for the MAX101. CLK (pins 2, 62) and CLK (pins 3,  
61) are fed to the internal circuitry through an internal  
50transmission line. One set of CLK, CLK inputs  
should be driven and the other pair terminated by 50Ω  
to -2V. Either set of inputs can be used as the driven  
inputs (input lines are balanced) for easy circuit con-  
La yo u t , Gro u n d in g , a n d P o w e r S u p p lie s  
A +5V ±5% supply as well as a -5.2V ±5% supply is  
needed for proper operation. Bypass the VEE and VCC  
supply pins to GND with high-quality 0.1µF and 0.001µF  
ceramic capacitors located as close to the package as  
possible. Connect all ground pins to a ground plane to  
optimize noise immunity and highest device accuracy.  
P h a s e Ad ju s t  
This control pin affects the point in time that one-half of  
the converter samples the input signal relative to the  
nection. A minimum pulse width (t ) is required for  
PWL  
CLK and CLK (Figures 1–3).  
other half. PH  
is normally connected to ground (0V),  
ADJ  
For best performance and consistent results, use a low-  
phase-jitter clock source for CLK and CLK. Phase jitter  
larger than 2ps from the input clock source reduces the  
c onve rte rs e ffe c tive b its p e rforma nc e a nd c a us e s  
inconsistent results. The clock supplied to the MAX101  
is internally divided by two, reshaped, and buffered.  
This divided clock becomes the internal signal used as  
strobes for the converters.  
but can be adjusted over a ±1.25V range that typically  
provides a ±18ps adjustment between the A” side T/H  
bridge strobe and the “B” side T/H bridge strobe.  
In p u t Clo c k P h a s in g (TRK1 , TRK1 )  
At power-up, the clock edge from which AData and  
BData are synchronized is undetermined. The convert-  
e r c a n work from a s p e c ific inp ut c loc k e d g e , a s  
described in the following paragraph.  
DCLK and DCLK are output clock signals derived from  
the input clocks and are used for external timing of the  
AData and BData outputs. (AData is valid after the ris-  
ing edge of DCLK and BData is valid after the falling  
edge.) They are fixed at one-half the rate of the input  
clocks in normal mode (Table 1). The MAX101 is char-  
acterized to work with 500MHz maximum input clock  
frequencies. See Typical Operating Circuit.  
TRK1 and TRK1 are differential inputs that are used in  
addition to the normal input clock (CLK) to set data  
phasing. A signal at one-half the input clock rate with  
the proper setup and hold times (setup and hold typi-  
cally 300ps) is applied to these inputs. Choose AData  
by applying a logic “1” to TRK1 (“0” to TRK1) before  
CLK’s negative transition. Choose BData by applying a  
logic “0 at CLK’s negative edge (“1” to TRK1). In this  
manner, several MAX101s can be interleaved to obtain  
faster effective sampling rates. Voltages at the TRK1  
input between ±50mV are interpreted as logic “1” and  
voltages between -350mV and -500mV are interpreted  
as logic “0.  
Ou t p u t Mo d e Co n t ro l (DIV1 0 )  
When DIV10 is grounded, it enables the test mode,  
where the input incoming clock is divided by ten. This  
reduces the output data and clock rates by a factor of  
5, allowing the output clock duty cycle to remain at  
50%. The clock to output phasing remains the same  
and four out of every five sampled input values are dis-  
carded.  
When left open, this input (DIV10) is pulled low by inter-  
nal circuitry and the converter functions in its normal  
mode.  
______________________________________________________________________________________ 13  
5 0 0 Ms p s , 8 -Bit ADC w it h Tra c k /Ho ld  
___________________________________________________Typ ic a l Op e ra t in g Circ u it  
0.01µF  
+5V  
0.1µF  
1
+VS  
2
2.5V  
1.5k  
VOUT  
GND  
MAX01  
0.001µF  
3
MX580LH  
MC100E151  
0.01µF  
8, 21, 43, 56, 81  
1/ MAX412  
2
D
>
Q
Q
500Ω  
20Ω  
33Ω  
50  
V
CC  
VA  
RT  
1.2k  
0.47µF  
50Ω  
CMPSH-3  
51  
0.01µF  
0.01µF  
8
VA  
RTS  
ADATA  
D
>
Q
Q
50Ω  
20k  
54  
VA  
RBS  
1.5k  
20k  
1/ MAX412  
2
500Ω  
20Ω  
33Ω  
55  
VA  
RB  
0.47µF  
CMPSH-3  
1.2k  
WATKINS-JOHNSON  
SMRA 89-1 (2x)  
10k  
MAX101  
72, 73  
75, 76  
33  
31  
DCLK  
DCLK  
AIN+  
AIN-  
1.5k  
1/ MAX412  
2
MC100E151  
500Ω  
20Ω  
33Ω  
14  
VB  
RT  
D
>
Q
Q
1.2k  
0.47µF  
50Ω  
CMPSH-3  
13  
0.01µF  
0.01µF  
VB  
RTS  
50Ω  
20k  
10  
8
VB  
RBS  
D
>
Q
Q
BDATA  
1.5k  
20k  
1/ MAX412  
2
500Ω  
20Ω  
33Ω  
9
VB  
RB  
0.47µF  
CMPSH-3  
1.2k  
+1.25V  
10k  
62  
83  
PHASE  
PH  
ADJ  
CLK  
CLK  
50Ω  
2
-2V  
-2V  
-1.25V  
61  
MC100E116  
50Ω  
3
GND SUB  
29  
VEE  
32, 69, 80  
4, 7, 15, 18, 24, 27, 30, 34,  
37, 40, 46, 49, 57, 60, 64, 67, 68,  
70, 71, 74, 77, 78, 79, 82, 84  
0.001µF  
0.1µF  
-5.2V  
14 ______________________________________________________________________________________  
5 0 0 Ms p s , 8 -Bit ADC w it h Tra c k /Ho ld  
MAX01  
____________________________________________________________P in Co n fig u ra t io n  
TOP VIEW  
1
2
3
63  
PAD  
CLK  
CLK  
GND  
N.C.  
CLK  
CLK  
GND  
62  
61  
4
60  
59  
58  
57  
56  
55  
54  
53  
5
6
7
TRK1  
TRK1  
GND  
VCC  
TRK1  
TRK1  
GND  
VCC  
8
9
VB  
RB  
VA  
RB  
10  
VB  
VA  
RBS  
RBS  
TP4  
TP3  
MAX101  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
TP2  
TP1  
52  
51  
50  
49  
48  
47  
46  
VB  
RTS  
VA  
RTS  
VB  
VA  
RT  
RT  
GND  
N.C.  
B0  
GND  
N.C.  
A0  
GND  
B1  
GND  
A1  
45  
44  
43  
B2  
A2  
VCC  
VCC  
Ceramic Flat Pack  
______________________________________________________________________________________ 15  
5 0 0 Ms p s , 8 -Bit ADC w it h Tra c k /Ho ld  
________________________________________________________P a c k a g e In fo rm a t io n  
PIN FIN HEATSINK  
FORCED CONVECTION PARAMETERS  
23  
21  
19  
MAX01  
17  
15  
Angle*  
13  
11  
45° Angle*  
9
7
0
100  
200  
300  
400  
500  
VELOCITY (ft /min)  
*DIRECTION OF AIRFLOW ACROSS HEATSINK  
MILLIMETERS  
INCHES  
E1  
E
DIM  
MIN  
MAX  
MIN MAX  
E2  
A
17.272 18.288 0.680 0.720  
S
e
A1 1.041 1.270 0.041 0.050  
A2 3.048 3.302 0.120 0.130  
0.060±.005(7x)  
b
C
D
0.406 0.508 0.016 0.020  
0.228 0.279 0.009 0.011  
29.184 29.794 1.149 1.173  
D1  
D1 44.196 44.704 1.740 1.760  
D2 25.298 25.502 0.996 1.004  
D3 28.448 28.829 1.120 1.135  
D
D2  
D3  
e
1.270 BSC  
0.050 BSC  
E
29.184 29.794 1.149 1.173  
E1 44.196 44.704 1.740 1.760  
E2 25.298 25.502 0.996 1.004  
E3 28.194 28.702 1.110 1.130  
0.075±.020(6x)  
EQUAL SPACES  
PIN #1  
b
A2 A1  
C
S
1.930 2.184 0.076 0.086  
84-PIN CERAMIC FLAT  
PACK WITH HEAT SINK  
A
5°–6°  
0.060±.005  
E3  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1994 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1020

10-Bit, Multichannel ADCs/DACs with FIFO, Temperature Sensing, and GPIO Ports
MAXIM

MAX1020BETX

10-Bit, Multichannel ADCs/DACs with FIFO, Temperature Sensing, and GPIO Ports
MAXIM

MAX1020BETX+T

Analog Circuit, 1 Func, BICMOS, PQCC36, 6 X 6 MM, TQFN-36
MAXIM

MAX1020BETX-T

Analog Circuit, 1 Func, BICMOS, PQCC36, 6 X 6 MM, TQFN-36
MAXIM

MAX1020_12

10-Bit, Multichannel ADCs/DACs with FIFO, Temperature Sensing, and GPIO Ports
MAXIM

MAX1021

10-Bit, Multichannel ADCs/DACs with FIFO, Temperature Sensing, and GPIO Ports
MAXIM

MAX1021BETX

10-Bit, Multichannel ADCs/DACs with FIFO, Temperature Sensing, and GPIO Ports
MAXIM

MAX1021BETX+T

暂无描述
MAXIM

MAX1022

10-Bit, Multichannel ADCs/DACs with FIFO, Temperature Sensing, and GPIO Ports
MAXIM

MAX1022BETX

10-Bit, Multichannel ADCs/DACs with FIFO, Temperature Sensing, and GPIO Ports
MAXIM

MAX1022BETX+

Analog Circuit, 1 Func, BICMOS, PQCC36, 6 X 6 MM, TQFN-36
MAXIM

MAX1022BETX+T

Analog Circuit, 1 Func, BICMOS, PQCC36, 6 X 6 MM, 0.80 MM HEIGHT, MO-220-WJJD, TQFN-36
MAXIM